Elizabeth A. Nowadnick

Assistant Professor, Department of Materials Science and Engineering University of California, Merced 5200 N. Lake Road, Merced, CA 95343 (650) 575-9934 / enowadnick@ucmerced.edu / https://sites.ucmerced.edu/bnowadnick

RESEARCH INTERESTS

Ferroelectrics, complex oxides, quantum materials, computational materials physics

EMPLOYMENT

Assistant Professor
Department of Materials Science and Engineering
University of California, Merced, CA

Assistant Professor
Department of Physics
New Jersey Institute of Technology, Newark, NJ

Postdoctoral Research Associate
School of Applied and Engineering Physics
Cornell University, Ithaca, NY
Adviser: Craig J. Fennie

Postdoctoral Research Scientist

2013 - 2014

Department of Physics Columbia University, New York, NY

Adviser: Andrew J. Millis

EDUCATION

Ph.D. in Physics

Stanford University, Stanford, CA

Dissertation: Phase competition in strongly correlated materials

Adviser: Thomas P. Devereaux

B.S. in Physics (with honors) and Mathematics

2006

Stanford University, Stanford, CA

PUBLICATIONS

- Ferroelectric switching pathways and domain structure of SrBi₂(Ta,Nb)₂O₉ from first principles
 Nabaraj Pokhrel and Elizabeth A. Nowadnick
 Physical Review B 107, 054108 (2023) Editor's Suggestion
- 2. Real-Space Infrared Spectroscopy of Ferroelectric Domain Walls in Multiferroic h-(Lu,Sc)FeO₃ Kevin A. Smith, Sriram P. Ramkumar, Kai Du, Xianghan Xu, Sang-Wook Cheong, Stephanie N. Gilbert Corder, Hans A. Bechtel, <u>Elizabeth A. Nowadnick</u>, and Janice L. Musfeldt ACS Applied Materials and Interfaces 15, 7562 (2023)
- 3. Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr)₃Mn₂O₇
 Leixin Miao, Kishwar-E Hasin, Parivash Moradifar, Debangshu Mukherjee, Ke Wang, Sang-Wook Cheong, Elizabeth A. Nowadnick, and Nasim Alem
 Nature Communications 13, 4927 (2022)
- Manipulation of spin orientation via ferroelectric switching in Fe-doped Bi₂WO₆ from first principles
 Katherine Inzani, Nabaraj Pokhrel, Nima Leclerc, Zachary Clemens, Sriram P. Ramkumar, Sinéad M. Griffin, and <u>Elizabeth A. Nowadnick</u> Physical Review B 105, 054434 (2022)
- 5. Octahedral rotations in Ruddlesden-Popper layered oxides under pressure from first principles Sriram P. Ramkumar and Elizabeth A. Nowadnick Physical Review B **104**, 144105 (2021)
- 6. Pressure-induced phase transition and phonon softening in h-Lu_{0.6}Sc_{0.4}FeO₃ K. A. Smith, S. P. Ramkumar, N. C. Harms, A. J. Clune, S.-W. Cheong, Z. Liu, <u>E. A. Nowadnick</u>, J. L. Musfeldt *Physical Review B* **104**, 094109 (2021)
- 7. Revealing pressure-driven structural transitions in hybrid improper ferroelectric $Sr_3Sn_2O_7$ K. A. Smith, S. P. Ramkumar, N. C. Harms, A. J. Clune, X. Xu, S.-W. Cheong, Z. Liu, <u>E. A. Nowadnick</u>, J. L. Musfeldt *Physical Review B* **104**, 064106 (2021) **Editor's Suggestion**
- 8. Charge order textures induced by non-linear couplings in a half-doped manganite Ismail El Baggari, David J. Baek, Michael J. Zachman, Di Lu, Yasuyuki Hikita, Harold Hwang, Elizabeth A. Nowadnick, Lena F. Kourkoutis

 Nature Communications 12, 3747 (2021)
- 9. Highly tunable ferroelectricity in hybrid improper ferroelectric Sr₃Sn₂O₇ Xianghan Xu, Yazhong Wang, Fei-Ting Huang, Kai Du, <u>Elizabeth A. Nowadnick</u>, Sang-Wook Cheong Advanced Functional Materials **2020**, 2003623 (2020)

- 10. Coupled structural distortions, domains, and control of phase competition in polar SmBaMn₂O₆ Elizabeth A. Nowadnick, Jiangang He, Craig J. Fennie Physical Review B **100**, 195129 (2019) Editor's Suggestion
- 11. Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca₃Ti₂O₇ K. A. Smith, E. A. Nowadnick, S. Fan, O. Khatib, S. J. Lim, B. Gao, N. C. Harms, S. N. Neal, J. K. Kirkland, M. C. Martin, C. J. Won, M. B. Raschke, S.-W. Cheong, C. J. Fennie, G. L. Carr, H. A. Bechtel, and J. L. Musfeldt Nature Communications 10, 5235 (2019)
- 12. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model
 - C. B. Mendl, E. A. Nowadnick, E. W. Huang, S. Johnston, B. Moritz, T. P. Devereaux *Physical Review B* **96**, 205141 (2017)
- 13. Domains and ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles Elizabeth A. Nowadnick and Craig J. Fennie Physical Review B **94**, 104105 (2016) Editor's Suggestion
- 14. Electron doping of the parent cuprate La₂CuO₄ without cation substitution
 H. I. Wei, C. Adamo, E. A. Nowadnick, E. B. Lochocki, S. Chatterjee, J. P. Ruf, M. R. Beasley, D. G. Schlom, K. M. Shen
 Physical Review Letters 117, 147002 (2016)
- 15. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo Y. F. Kung, C.-C. Chen, Yao Wang, E. W. Huang, E. A. Nowadnick, B. Moritz, R. T. Scalettar, S. Johnston, T. P. Devereaux *Physical Review B* **93**, 155166 (2016) *Editor's Suggestion*
- 16. Quantifying electronic correlation strength in a complex oxide: A combined DMFT and ARPES study of LaNiO₃
 E. A. Nowadnick, J. P. Ruf, H. Park, P. D. C. King, D. G. Schlom, K. M. Shen, A. J. Millis Physical Review B 92, 245109 (2015) Editor's Suggestion
- 17. Doping evolution of spin and charge excitations in the Hubbard model Y. F. Kung, E. A. Nowadnick, C. J. Jia, S. Johnston, B. Moritz, R. T. Scalettar, T. P. Devereaux *Physical Review B* **92**, 195108 (2015)
- 18. Quasiparticle properties of the nonlinear Holstein model at finite doping and temperature Shaozhi Li, E. A. Nowadnick, S. Johnston *Physical Review B* **92**, 064301 (2015)
- 19. Renormalization of spectra by phase competition in the half-filled Hubbard-Holstein model E. A. Nowadnick, S. Johnston, B. Moritz, T. P. Devereaux *Physical Review B* **91**, 165127 (2015)

- 20. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in $Bi_2Sr_2CaCu_2O_{8+\delta}$
 - M. Hashimoto, E. A. Nowadnick, R.-H. He, I. M. Vishik, B. Moritz, Y. He, K. Tanaka, R. G. Moore, D. Lu, Y. Yoshida, M. Ishikado, T. Sasagawa, K. Fujita, S. Ishida, S. Uchida, H. Eisaki, Z. Hussain, T. P. Devereaux, Z.-X. Shen

 Nature Materials 14, 37 (2015)
- 21. Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors W. S. Lee, J. J. Lee, E. A. Nowadnick, S. Gerber, W. Tabis, S. W. Huang, V. N. Strocov, E. M. Motoyama, G. Yu, B. Moritz, H. Y. Huang, R. P. Wang, Y. B. Huang, W. B. Wu, C. T. Chen, D. J. Huang, M. Greven, T. Schmitt, Z. X. Shen, T. P. Devereaux Nature Physics 10, 883 (2014)
- 22. Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering C. J. Jia, E. A. Nowadnick, K. Wohlfeld, Y. F. Kung, C.-C. Chen, S. Johnston, T. Tohyama, B. Moritz, T. P. Devereaux *Nature Communications* **5**, 3314 (2014)
- 23. Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model
 S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T. Scalettar, T. P. Devereaux
 - S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T. Scalettar, T. P. Devereaux *Physical Review B* 87, 235133 (2013) *Editor's Suggestion*
- 24. Measurement of Coherent Polarons in the Strongly Coupled Antiferromagnetically Ordered Iron-Chalcogenide Fe_{1.02}Te using Angle-Resolved Photoemission Spectroscopy

 Z. K. Liu, R.-H. He, D. H. Lu, M. Yi, Y. L. Chen, M. Hashimoto, R. G. Moore, S.-K. Mo, <u>E. A. Nowadnick</u>, J. Hu, T. J. Liu, Z. Q. Mao, T. P. Devereaux, Z. Hussain, Z.-X. Shen Physical Review Letters 110, 037003 (2013)
- 25. Competition between antiferromagnetic and charge-density-wave order in the half-filled Hubbard-Holstein model
 - E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, T. P. Devereaux *Physical Review Letters* **109**, 246404 (2012)
- 26. Alternative route to charge density wave formation in multiband systems
 H.-M. Eiter, M. Lavagnini, R. Hackl, E. A. Nowadnick, A. F. Kemper, T. P. Devereaux, J.-H. Chu,
 J. G. Analytis, I. R. Fisher, L. Degiorgi

 Proceedings of the National Academy of Sciences 110, 64 (2012)
- 27. Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Nonequilibrium: Application to Pump-Probe Phenomena
 G. De Filippis, V. Cataudella, E. A. Nowadnick, T. P. Devereaux, A. S. Mishchenko, N. Nagaosa Physical Review Letters 109, 176402 (2012)

- 28. Quasiparticle interference and the interplay between superconductivity and density wave order in the cuprates
 - E. A. Nowadnick, B. Moritz, T. P. Devereaux *Physical Review B* **86**, 134509 (2012)
- 29. Material and doping dependence of the nodal and antinodal dispersion renormalizations in single-and multi-layer cuprates
 S. Johnston, W. S. Lee, Y. Chen, <u>E. A. Nowadnick</u>, B. Moritz, T. P. Devereaux, Z.-X. Shen Advances in Condensed Matter Physics 2010, 968304 (2010)
- 30. Correlation of anomalous normal state properties with superconductivity in $Pb_{1-x-y}Tl_xIn_yTe$ A.S. Erickson, N. P. Breznay, <u>E. A. Nowadnick</u>, T. H. Geballe, I. R. Fisher *Physical Review B* **81**, 134521 (2010)
- 31. A momentum-dependent perspective on quasiparticle interference in Bi₂Sr₂CaCu₂O_{8+δ} I.M. Vishik, E. A. Nowadnick, W. S. Lee, Z.-X. Shen, B. Moritz, T. P. Devereaux, K. Tanaka, T. Sasagawa, T. Fujii Nature Physics 5, 718 (2009)
- 32. Dynamics of single vortices in grain boundaries: I-V characteristics on the femtovolt scale B. Kalisky, J. R. Kirtley, E. A. Nowadnick, R. B. Dinner, E. Zeldov, Ariando, S. Wenderich, H. Hilgenkamp, D. M. Feldmann, K. A. Moler *Applied Physics Letters* **94**, 202504 (2009)

RESEARCH FUNDING

University of California Office of the President (UCOP-MRPI) No. M23PL5880 \$299,628 (\$99,813 to UC Merced) over 2 years (PI) Ferroelectric oxide membranes for low-energy next-generation electronics	2023
National Science Foundation (NSF), No. 2223486, \$379,734 over 3 years (PI) Manipulation of single spins in ferroelectric oxides from first principles	2022
Multidisciplinary University Research Initiatives (MURI) program, No. FA9550-21-1-0429 \$4.5 million (\$702,750 to UC Merced) over 5 years (co-PI) <i>Tunneling phenomena in interface superconductors</i>	2021
Office of Naval Research (ONR) No. N00014-21-1-2957, \$446,957 over 3 years (PI) Electromechanical properties of layered perovskite oxide ferroelectrics from first principles	2021
New Jersey Institute of Technology Faculty Seed Grant, \$7500 (PI) High Pressure Behavior of Hybrid Organic-Inorganic Halide Perovskites from First Principles	2018
National Science Foundation East Asia and Pacific Science Institute Fellowship, \$5000 (PI) Host Institution: RIKEN Center for Emergent Matter Science, Wako, Japan	2011

INVITED CONFERENCE TALKS AND SEMINARS

Ferroelectric oxides: from fundamental physics to next generation electronics Physics seminar, San Jose State University, San Jose, CA (4/2023)

Ferroelectric oxides: from fundamental physics to next generation electronics Physics colloquium, University of California, Merced (3/2023)

Charge order textures induced by non-linear lattice couplings in a half-doped manganite Invited Talk, Fundamental Physics of Ferroelectrics and Related Materials Workshop, Washington, DC (2/2022)

Charge order textures induced by non-linear lattice couplings in a half-doped manganite Molecular Foundry Theory Seminar, Lawrence Berkeley National Laboratory (11/2021)

Understanding and controlling the crystal structures of correlated oxides

Materials and Biomaterials Science and Engineering Seminar, University of California, Merced (10/2019)

Structural complexity as a route to new ferroelectric and multiferroic oxides
Seminar, Centre for Advanced Materials and Related Technology, University of Victoria (2/2019)

Structural complexity as a route to new ferroelectric and multiferroic oxides
Seminar, Department of Materials Science and Engineering, University of California, Merced (2/2019)

Structural control of hidden phases in layered perovskite oxides from first principles Seminar, Department of Materials Science and Engineering, Drexel University (1/2019)

Domain walls in hybrid improper ferroelectric Ca₃Ti₂O₇ Invited Talk, APS Mid-Atlantic Section Meeting, Newark, NJ (11/2017)

Domains and Ferroelectric Switching in Ca₃Ti₂O₇ from first principles Seminar, Department of Physics, Rutgers University, Piscataway, NJ (6/2017)

Domains and domain switching in a structurally complex ferroelectric oxide Seminar, Department of Physics, New Jersey Institute of Technology, Newark, NJ (5/2017)

Harnessing structural complexity to engineer new multifunctional oxides
Seminar, Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC (4/2017)

Harnessing structural complexity to engineer new multifunctional oxides Colloquium, Department of Physics, Colorado State University, Fort Collins, CO (2/2017) Harnessing structural complexity to engineer new multifunctional oxides
Seminar, Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign,
Urbana, IL (1/2017)

Domains and ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles Invited Talk, Materials Research Society Fall Meeting, Boston, MA (12/2016)

Phase competition in strongly correlated systems with electron-phonon coupling Seminar, Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL (1/2014)

Phase competition in strongly correlated systems with electron-phonon coupling Seminar, Suranaree University of Technology, Nakhon Ratchasima, Thailand (7/2013)

Phase competition in strongly correlated systems with electron-phonon coupling Seminar, Max-Planck Institute, Stuttgart, Germany (2/2013)

Phase competition in strongly correlated systems with electron-phonon coupling Seminar, Walther Meissner Institute, Garching, Germany (2/2013)

CONTRIBUTED CONFERENCE TALKS

Ferroelectric switching paths and domain structure of SrBi₂(Ta,Nb)₂O₉ from first principles Materials Research Society Spring Meeting, San Francisco, CA (4/2023)

Manipulation of spin orientation in iron-doped ferroelectric oxides from first principles APS March Meeting, Las Vegas, NV (3/2023)

Coupled structural distortions, domains, and control of phase competition in polar SmBaMn₂O₆ Fundamental Physics of Ferroelectrics and Related Materials, Silver Spring, MD (1/2020)

Domain boundaries in hybrid improper ferroelectric layered perovskites APS March Meeting, Los Angeles, CA (3/2018)

Phase competition by design in RBaMn₂O₆ APS March Meeting, New Orleans, LA (3/2017)

Domains and ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles Fundamental Physics of Ferroelectrics and Related Materials, Williamsburg, VA (1/2017)

Ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles APS March Meeting, Baltimore, MD (3/2016)

Ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles Fundamental Physics of Ferroelectrics and Related Materials, Washington, DC (1/2016) Tuning octahedral rotations in ABO₃ perovskites with pressure and strain from first principles APS March Meeting, San Antonio, TX (3/2015)

Direct spectroscopic evidence for phase competition between pseudogap and superconductivity in $Bi_2Sr_2CaCu_2O_{8+\delta}$

Gordon Research Seminar on Correlated Electron Systems, South Hadley, MA (6/2014)

Doping dependence of spectral properties in strongly correlated systems with electron-phonon coupling APS March Meeting, Denver, CO (3/2014)

Quantum Monte Carlo simulation of electron-phonon coupling in ARPES spectra on correlated materials

APS March Meeting, Baltimore, MD (3/2013)

Phase competition in strongly correlated systems with electron-phonon coupling Workshop on Novel Materials and Superconductivity, Planneralm, Austria (2/2013)

Spectral properties of correlated systems with electron-phonon coupling APS March Meeting, Boston, MA (2/2012)

Raman response in density wave materials APS March Meeting, Dallas, TX (3/2011)

Quasiparticle scattering in the cuprates
Boulder School for Condensed Matter and Materials Physics, Boulder, CO (7/2010)

The role of symmetry in the Z-map APS March Meeting, Portland, OR (3/2010)

Quasiparticle scattering from impurities in the cuprates APS March Meeting, Pittsburgh, PA (3/2009)

Study of $B \rightarrow \Lambda_c p \pi$ APS April Meeting, Dallas, TX (4/2006)

POSTER PRESENTATIONS

Phase competition by design in SmBaMn₂O₆

Gordon Research Conference on Multiferroic and Magnetoelectric Materials, Lewiston, ME (8/2018)

Domains and ferroelectric switching pathways in Ca₃Ti₂O₇ from first principles Gordon Research Conference on Multiferroic and Magnetoelectric Materials, Lewiston, ME (8/2016)

Tuning octahedral rotations in ABO₃ perovskites with pressure and strain from first principles Spin-orbit Coupling and Magnetism in Correlated Transition Metal Oxides Workshop, The Ohio State University, Columbus, OH (5/2015) Charge density wave formation near band degeneracies: a new paradigm towards broken symmetry ground states

Low Energy Electrodynamics in Solids, Napa, CA (7/2012)

Quantum Monte Carlo studies of electron-phonon coupling in strongly correlated electron materials Japanese Society for the Promotion of Science Summer Program, Hayama, Japan (6/2011)

Raman response in density wave materials

Gordon Research Conference on Superconductivity, Waterville Valley, NH (6/2011)

TEACHING EXPERIENCE

Instructor,	University	of California, Merced
-------------	------------	-----------------------

MSE 119: Materials Simulations Fall 2020, Fall 2022

MSE 112: Materials Selection and Performance Spring 2020, Spring 2021, Spring 2023, Fall 2023

Instructor, New Jersey Institute of Technology

Spring 2018, Spring 2019

Physics II: Electricity and Magnetism (calculus-based introductory physics)

Teaching Assistant, Cornell University

Summer 2016

PARADIM Summer School: "Introduction to Density Functional Theory for Experimentalists"

Teaching Assistant, Stanford University

Thermodynamics, Kinetic Theory, and Statistical Mechanics II	Winter 2010
Modern Physics Laboratory (algebra-based introductory physics)	Spring 2008
Mechanics and Heat (algebra-based introductory physics)	Fall 2007

Tutor, Stanford Undergraduate Math Organization

2003 - 2006

Topics: Multivariable Calculus, Linear Algebra, Differential Equations

SERVICE AND LEADERSHIP – UNIVERSITY

Executive Committee	2022 - 2024
Materials and Biomaterials Science and Engineering Graduate Program	

University of California, Merced

Admissions Committee 2019 - 2020

Materials and Biomaterials Science and Engineering Graduate Program University of California, Merced

Reviewer, Faculty Seed Grant Applications 2019

College of Science and Liberal Arts, New Jersey Institute of Technology

2017 - 2018 Faculty Representative, Applied Physics Major

New Jersey Institute of Technology Open Houses for Prospective Students

Organizer, Bi-weekly Seminar Series Controlling Complex Electronic Materials Interdisciplinary Research Group Cornell Center for Materials Research	2015 - 2017
Graduate Studies Committee Student Representative Stanford Physics Department	2010 - 2011
Teaching Mentor for First-Year Teaching Assistants Stanford Physics Department	2010
Graduate Qualifying Exam Committee Student Representative Stanford Physics Department	2008 - 2009
Undergraduate Studies Committee Student Representative Stanford Physics Department	2005 - 2006
SERVICE AND LEADERSHIP – RESEARCH COMMUNITY	
Editorial Board Member, <i>Physical Review B</i>	2023-present
Co-organizer, "Complex Oxide Interfaces and Heterostructures" Focus Topic APS March Meeting 2023, Las Vegas, NV	2023
Co-organizer Ferro2021: Fundamental Physics of Ferroelectrics and Related Materials Workshop Ferro2020: Fundamental Physics of Ferroelectrics and Related Materials Workshop	2021 2020
Co-organizer, "Dielectric and Ferroic Oxides" Focus Topic APS March Meeting 2019, Boston, MA	2019
Proposal Evaluation Board Member Center for Nanoscale Materials, Argonne National Laboratory	2018 - 2023
Referee Chemistry of Materials, Physical Review Letters, Physical Review B, Physical I Communications Physics, npj Computational Materials, Physica Status Solidi B, Temperature Physics	
Session Chair, R23: "Magnetic Phenomena in Bulk Nickelates and Other Oxides" APS March Meeting, Los Angeles, CA	3/2018
GRADUATE STUDENTS AND POSTDOCS SUPERVISED	
Haseeb Ahmad PhD student in Physics	1/2023- present

Md Kamal Hossain Ph.D. student in Physics	1/2020 – present
Kishwar-E Hasin Ph.D. student in Materials and Biomaterials Science and Engineering	1/2020 - present
Nabaraj Pokhrel Ph.D. student in Physics	8/2019 - present
Aneer Lamichhane Ph.D. student in Materials Science and Engineering New Jersey Institute of Technology	8/2018 – 7/2019
Dr. Bradford Barker Postdoctoral Research Fellow	2/2023-present
Dr. Kuntal Talit Postdoctoral Research Fellow	11/2022-present
Dr. Sriram Poyyapakkam Ramkumar Postdoctoral Research Fellow Present position: Micron Technology, Inc.	3/2018 – 12/2020
UNDERGRADUATE RESEARCHERS	
Zachary Clemens Materials Science and Engineering major (UC Merced)	6/2020 – 12/2020
Gerassimos Giannoulis Engineering Physics major (Ramapo College of New Jersey)	5/2018 - 7/2018