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A B S T R A C T   

Drawing on the traditions of environmental justice, intersectionality, and social determinants of health, and 
using data from the EPA’s NATA 2014 estimates of cancer risk from air toxics, we demonstrate a novel quan
titative approach to evaluate intersectional environmental health risks to communities: Eco-Intersectional 
Multilevel (EIM) modeling. Results from previous case studies were found to generalize to national-level pat
terns, with multiply marginalized tracts with a high percent of Black and Latinx residents, high percent female- 
headed households, lower educational attainment, and metro location experiencing the highest risk. Overall, 
environmental health inequalities in cancer risk from air toxics are: (1) experienced intersectionally at the 
community-level, (2) significant in magnitude, and (3) socially patterned across numerous intersecting axes of 
marginalization, including axes rarely evaluated such as gendered family structure. EIM provides an innovative 
approach that will enable explicit consideration of structural/institutional social processes in the social pro
duction of intersectional and geospatial inequalities.   

1. Introduction 

Poor and minority communities are often disproportionately exposed 
to numerous environmental health hazards (Brulle and Pellow 2006; 
Nixon 2011; Taylor 2014). Often labeled as “fenceline communities” or 
“sacrifice zones” (Lerner 2010), the health of residents in these neigh
borhoods is undervalued in pursuit of the production, resource extrac
tion, and waste management demanded in the capitalist, modern world 
(Pellow 2018; Pulido 2017). This disproportionate exposure to hazards 
is recognized as a key mechanism in the social production of health 
inequalities along racial/ethnic and class lines (Berkman and Kawachi 
2000; Krieger 1994, 2011), as well as of geospatial inequalities in health 
(Kawachi and Berkman 2003; Pearce et al., 2010). Historically, envi
ronmental justice (EJ) research has relied heavily on case studies of 
particular communities to document injustices (Cole and Foster 2001; 
Roberts and Toffolon-Weiss, 2001). While case studies are valuable for 
their specificity, as well as their ability to humanize abstract processes, 
determining the extent to which findings generalize to communities 
across the country requires alternative approaches. Recently, a growing 
literature argues that environmental injustices are perpetrated intersec
tionally (e.g., Ducre 2012; Ducre 2018; Olofsson et al., 2016). 

Quantitative intersectional EJ scholarship using an intercategorical 
approach have examined the differences between intersecting 
socio-economic and racial/ethnic categories at the individual and 
neighborhood levels (Mohai and Saha 2006; Crowder and Downey 
2010; Ard 2015; Liévanos 2015). Key gaps in the EJ literature therefore 
center on two questions: To what extent are findings from case studies 
that multiply marginalized communities are disproportionately 
burdened by environmental health hazards generalizable to the entire 
United States? And, are these structural forms of environmental injustice 
intersectional across systems of power? 

Intersectionality scholars have long implicated structural-level pro
cesses, such as racism and sexism, in the production of intersectional 
experiences and outcomes (e.g., Collins 1990/2009; Crenshaw, 1991; 
McCall 2005). Intersectionality’s concordance with theories of the social 
determinants of health, including ecosocial theory (Krieger 1994, 2011), 
has contributed to its growing use in studies of population health in
equalities (e.g., Bowleg 2012; Evans et al., 2018; Veenstra, 2013; 
Warner and Brown 2011). However, while the mechanisms producing 
environmental health risks operate at the neighborhood-level, much of 
the intersectionality literature focusing on health inequalities makes use 
of individual-level data and their effects on individual-level outcomes. 
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In recognition of this, the field has increasingly called for greater 
attention to structural-level processes in order to explain the observed 
social and geospatial patterning of inequalities, as well as for method
ological innovations that will enable this (e.g., Bauer 2014; Evans 
2019b; McCall 2005; Nash 2008; Schulz and Mullings 2006). 

In this study we address these key questions and advance a novel 
analytic approach: Eco-Intersectional Multilevel (EIM) Modeling. This 
approach explicitly draws on the traditions of EJ, intersectionality, and 
social determinants of health for its framing and interpretation. An EIM 
approach treats neighborhoods as the primary unit of analysis, with the 
intersectional nature of these places measured using multiple axes of 
demographic and urbanization characteristics. Using multilevel models 
that nest U.S. census tracts (level 1) within intersectional strata of 
neighborhoods (level 2) defined by neighborhood-level demographics, 
we demonstrate a novel approach for estimating the intersectional ef
fects of environmental health hazards. Combining social demographic 
and environmental health risk data in over 72,000 census tracts, we 
demonstrate the EIM approach by quantifying tract-level intersectional 
inequalities in exposure and population health impact from carcinogenic 
air pollutants. 

1.1. Theoretical orientation 

We position our present work within intersectionality, EJ, and the 
social determinants of health because all three scholarly traditions have 
converged on the issue of inequalities in environmental health threats. 
Our use of these approaches orients us towards a critical perspective on 
the placement of environmental hazards. We now briefly review these 
traditions. 

1.1.1. Intersectionality 
Intersectionality is a theoretical framework originating in Black 

feminist scholarship that draws attention to the interlocking, mutually 
constituted nature of systems of oppression and privilege such as racism, 
sexism, and socioeconomic inequality (Cho et al., 2013; Choo and Marx 
Ferree, 2010; Collins, 1990/2009; Crenshaw 1991; Hancock 2007, 
2013). Intersectionality examines these overlapping systems of oppres
sion at a variety of levels, from the individual to the structural, 
emphasizing the interconnection between them. Intended originally as a 
mechanism for critiquing single-axis modes of thought that focused on 
race(ism) and gender/sex(ism) as separate axes of marginalization, thus 
rendering invisible the experiences of multiply marginalized pop
ulations such as Black women, intersectionality scholarship today has 
expanded to encompass a variety of approaches, all unified by this 
original critical perspective. In her oft-sighted work, McCall (2005) 
identifies three major approaches to intersectionality: the 
anti-categorical, the intracategorical, and the intercategorical. 
Anti-categorical approaches focus on the “deconstruct[ion] of analytical 
categories” while intracategorical approaches “focus on particular social 
groups at neglected points of intersection … in order to reveal the 
complexity of lived experience within such groups” (ibid:1773-4). 
Intercategorical approaches, on the other hand, are typically quantita
tive and involve “provisionally adopt[ing] existing analytical categories 
to document relationships of inequality” (ibid:1773). 

Conventional approaches to quantitative, intercategorical analyses 
involve fitting regression models saturated with fixed additive and 
interaction effects in order to estimate outcomes across intersectional1 

social strata. This approach poses several methodological challenges, 

particularly because of the importance of broadening intersectionality’s 
focus beyond gender and race/ethnicity to additional axes of margin
alization (McCall 2005; Nash 2008). As more axes are added to the 
analysis, methodological limitations emerge, including: (1) a limited 
sample size in many strata, and therefore unreliable stratum-specific 
estimates; (2) reductions in model parsimony, and therefore limita
tions to the scalability of the approach for evaluating high-dimensional 
interactions; (3) difficulties with the interpretability of results when the 
number of interactions increases. These issues have prompted calls for 
innovative approaches to intercategorical analysis (Bauer 2014; Bowleg 
2012; McCall 2005; Nash 2008). One recent methodological advance
ment is intersectional Multilevel Analysis of Individual Heterogeneity 
and Discriminatory Accuracy (intersectional MAIHDA), which offers 
several advantages over conventional interaction models (Evans 2015; 
Evans et al., 2018; Merlo 2018). 

Intersectional MAIHDA is a tool for intercategorical intersectional 
analysis that “apply[s] hierarchical, multilevel models to study large 
numbers of interactions and intersectional social identities, such as race, 
gender, and class, while partitioning the total variance between two 
levels——the between-strata (or between category) level and the 
within-strata (or within category) level” (Evans et al., 2018:64). This is 
aligned with scholars using multilevel modeling structures to assess 
interactions (Jones et al., 2016). Briefly, the approach hinges on nesting 
individuals (level 1) hierarchically within intersectional strata (level 2), 
defined according to combinations of relevant identities and axes of 
marginalization, in much the same way that individuals (level 1) are 
nested in physical contexts such as neighborhoods (level 2) in conven
tional multilevel models. Leveraging features of multilevel models such 
as parsimony and adjustment of stratum-specific estimates based on 
sample size, this approach addresses many of the abovementioned 
shortcomings of conventional intersectional approaches (Evans et al. 
2018, 2020). Estimates of variance within strata provide recognition of 
the inherent heterogeneity of effects within social strata, while estimates 
of variation between strata provide convenient summary statistics 
quantifying the magnitude of inequalities. The EIM approach builds on 
these recent advancements in intersectional analysis, but centers expo
sures and outcomes at the community-level rather than the 
individual-level. 

1.1.2. Environmental justice 
EJ research arose alongside the EJ movement (Chavis, 1987; Mohai 

and Saha, 2006; Taylor, 2014) to address issues of public health, 
workplace safety, and environmental inequalities (Taylor 2014; Mohai 
et al., 2009). Central to the struggle against environmental injustices has 
been the demonstration of unequal exposure to environmental hazards 
in minority and low-income communities (e.g., Mohai and Saha 2006; 
Mohai and Saha 2007). Case studies of particular cities or communities 
are common in EJ scholarship, with particular attention to the ways in 
which local environmental hazards disproportionately impact margin
alized communities (e.g., Ducre 2012; Grineski et al., 2007; Lerner 2010; 
Sicotte and Swanson 2007). The extent to which these findings are 
generalizable has usually been explored either through a 
single-axis/additive framework (e.g., Anderton et al., 1994; Mohai et al., 
2009) or by using intracategorical intersectional approaches across race 
and ethnicity and socio-economic status (e.g., Collins et al., 2011; Gri
neski et al., 2013; Liévanos 2017; McKane et al., 2018). Scholars have 
increasingly called for explicit intersectional theorizing of systems of 
power in EJ scholarship (e.g., Ducre 2018; Malin and Ryder 2018; Mohai 
et al., 2009; Olofsson et al., 2016; Pellow 2018). 

Intercategorical intersectional scholarship in EJ that examines na
tional patterns has been limited to a small handful of studies, most of 
which have focused on the intersections of race/ethnicity and income at 
the neighborhood-level. For example, in their groundbreaking study 
Downey and Hawkins (2008a) explored census tract-level inequalities in 
exposure to air toxics intersectionally throughout the U.S. and found 
that Black, white, and Latinx households with similar income levels 

1 Intersectionality scholarship is a vast field examining intersectional expe
riences from health outcomes to policy analysis (Choo and Ferree 2010). 
Throughout this paper, we use the adjective intersectional to convey the 
multitude of intersectionality scholarship as well as to describe the various 
“intersectional experiences” including research focusing on health and envi
ronmental outcomes that manifest through overlapping systems of power. 
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tended to experience inequalities in environmental hazards, with 
low-income Blacks being the most likely to experience high levels of 
hazards. Zwickl et al. (2014) found similar results for exposure to in
dustrial air toxics, with racial/ethnic disparities in pollution being 
stronger among neighborhoods with lower median household incomes. 
Furthermore, Ard (2015) examined trends in exposure to industrial air 
toxics by race/ethnicity and socioeconomic status (SES) at the census 
block group from 1995 to 2004 and found that while exposure to air 
toxics decreased for everyone during this period, African-Americans 
remained consistently more exposed than whites and Hispanics, and 
that SES was not as protective for African-Americans. Paralleling an 
increased interest in intersectionality beyond race and class, Liévanos 
(2015; 2019) expands the attention of national EJ scholarship to also 
consider immigrant isolation and concentration of single-mother fam
ilies in predicting the intersectional spatial demography of air toxics 
exposure. He found Latinx-immigrant, Black, and Latinx economically 
deprived communities predicted tract exposure to spatial clusters of 
carcinogenic air pollution in 2005. 

As in intercategorical intersectional analyses at the individual-level, 
adding numerous axes of marginalization to community-level models 
poses many of the same methodological challenges. Answering calls for 
consideration of interactions of axes of marginalization beyond the 
traditional focus on just race and class (Downey, 2005; Downey et al., 
2017; Downey and Hawkins 2008b; Ducre 2018; Liévanos 2015), this 
study outlines an innovative approach that addresses many of these 
methodological limitations. 

1.1.3. Social determinants of population health inequalities 
Population health is an interdisciplinary field focused on addressing 

the social determinants of health inequalities. A key theory in popula
tion health is Krieger’s ecosocial theory (Krieger 1994, 2011). As she 
argues: “we literally incorporate, biologically, in societal and ecological 
context, the material and social world in which we live” (Krieger 
2011:214). Relevant social determinants of health have been identified 
across numerous ecological levels, but particularly concerning are those 
that operate at structural/institutional levels (Bauer 2014; Berkman and 
Kawachi 2000). This includes processes involved in determining the 
placement of environmental hazards in communities. Krieger identifies 
exposure to exogenous hazards, including toxic substances and haz
ardous conditions, as a key pathway through which embodiment occurs 
and health inequalities are generated. 

Population health also focuses on the geospatial patterning of health 
risks and adverse outcomes, including a broad literature on neighbor
hoods and health (e.g., Kawachi and Berkman 2003). Multilevel 
(random effects) models and spatial approaches such as GIS are 
frequently used and adept at identifying inequalities across geographical 
spaces. However, analogous to the EJ literature, the linking of these 
spatial inequalities to social determinants such as residential segregation 
by race/ethnicity or SES have tended to inadequately address the extent 
to which these processes are interlocking and co-constituted (Williams 
and Collins 2001). Furthermore, these studies often examine the spatial 
patterning of health outcomes measured at the individual-level, and the 
role of mediating processes such as the presence of emissions sources is 
rarely evaluated (Arcaya et al., 2016). 

Intercategorical intersectionality is rapidly becoming a popular 
framework in the study of population health (e.g., Bowleg 2012; Green 
et al., 2017; Merlo 2018; Schulz and Mullings 2006; Veenstra, 2013; 
Warner and Brown 2011). Ecosocial theory and intersectionality are 
highly compatible (Agénor et al., 2014; Evans et al., 2018), and their 
joint use helps to ensure that the critical edge of intersectional thought is 
not lost in translation when it is applied to population health. Increas
ingly, scholars have called for new approaches that will enable the 
modeling of social processes generating these inequalities (Bauer 2014; 
Evans 2019b). The intersectional MAIHDA approach has emerged 
within medical sociology and social epidemiology in response to these 
calls for methodological innovation (Evans 2015; Evans et al., 2018; 

Jones et al., 2016; Merlo 2018). This provides a new tool for examining 
the social determinants of health and represents a “gold standard for 
investigating health disparities in (social) epidemiology” (Merlo 2018: 
74). This literature is rapidly developing, and holds considerable 
promise for integrating EJ, intersectionality, and population health 
scholarship in order to address the shared concerns of these fields. 

1.2. Toward an eco-intersectional multilevel perspective 

In introducing the term “eco-intersectionality” to describe the ana
lytic approach we propose, we are aware that this may be deemed un
necessary by some intersectionality scholars. As noted previously, 
intersectionality has long focused on the structural, institutional and 
ecological-level processes involved in the production of intersectionally 
patterned discrimination, experiences, and outcomes. Why, then, the 
new term? We introduce this term in order to differentiate our modeling 
approach from analyses of individual-level data, such as the emerging 
intersectional MAIHDA approach. We acknowledge and stress, however, 
that we are merely applying intersectionality theory to an ecological and 
multilevel analysis framework, not proposing a new form of inter
sectionality theorizing. 

In this study we advance an eco-intersectional multilevel (EIM) 
modeling approach to evaluate intersectional experiences of environ
mental injustice at the community-level. While most intercategorical 
intersectional analyses treat individuals as the unit of analysis, an EIM 
approach treats neighborhoods (or communities) as the unit of analysis. 
When addressing environmental threats this shift in unit of analysis is 
sensible, because it is frequently the community-level at which expo
sures are determined. While individuals who are multiply marginalized 
may be more likely to experience these hazards on average and may 
possess fewer resources to cope with the adverse consequences of 
exposure once it occurs, the mechanisms at work do not selectively 
target individuals. Instead, the mechanisms of environmental hazards 
placement work at a structural neighborhood-level with intersecting 
classed, racialized, gendered, and urbanized dimensions. If communities 
experiencing marginalization through multiple intersections of racism, 
classism, and patriarchy are discriminated against (or at least not the 
recipients of public or state concern), under-resourced, low in available 
time for mobilizing, and/or lacking in power/social capital, then this 
can result in the placement of harmful production and other environ
mental health hazards in those communities. Furthermore, it will be 
more difficult for communities with lower social and political capital to 
organize to remove or mitigate existing threats. The end result is resi
dents in these communities being disproportionately exposed to exter
nalities from production, waste treatment, or other hazardous processes. 
Simultaneously, social processes at work creating hazards for margin
alized communities also operate by privileging other communities based 
on intersections of racialized, classed, and gendered systems of power 
(Pulido 2000). 

Here, we use census tracts as a geographical proxy for the 
neighborhood/community-level. In this study, we examine racial/ethnic 
composition, percent female-headed households, educational attain
ment, median household income level, and metro/non-metro locale. 
Inequalities by neighborhood SES have been central to EJ literature, 
however SES is often operationalized as median household income. By 
expanding our analysis to also consider educational attainment of resi
dents we acknowledge that while income and education are frequently 
correlated, they may operate through very different processes to shape 
environmental risk (Ard 2015). For instance, a community with a higher 
percentage of residents who have some college education may, regard
less of median household income level, possess greater social capital and 
power to resist placement of hazards in their community or to organize 
to mitigate existing risks. Our inclusion of percent female-headed 
households is based on clear findings of its salience and 
under-recognized importance (Ducre 2012). Following others, we 
theorize percent female-headed households both as a marker of 
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deprivation (Mosher 2001; Smith 2007; Wilson 1987, 1996) and as “an 
independent predictor of heightened risk of exposure to environmental 
toxins” (Liévanos 2019: 163; see also: Downey, 2005; Downey et al., 
2017; Downey and Hawkins 2008b; Liévanos 2015). Similarly, the 
importance of metro versus non-metro environments in shaping envi
ronmental hazards has been well established, with urban areas having 
greater concentration of sources of air pollution including trans
portation and industrial uses (Liévanos 2019; Clark et al., 2014). 

It is important to recognize that while we have selected these axes for 
our focus, future work could examine other aspects of marginalization 
and inequality. These choices are not based on naturalistic categoriza
tions, but rather analytic ones. For example, while SES at the 
neighborhood-level is clearly an important determinant shaping envi
ronmental hazard exposure, choosing analytic thresholds is always a 
somewhat arbitrary process. Intercategorical intersectionality scholars 
have wrestled with this issue for some time, and it is for this reason that 
scholars speak of “provisionally adopt[ing] existing analytical cate
gories” (McCall 2005:1773) while retaining an awareness of the 
inherent limitations of both thresholds and labels. As in all inter
sectionality scholarship that makes use of labels, care should be taken to 
avoid reification (Cho et al., 2013). 

While conventional multilevel approaches typically model clustering 
by geographical boundaries or environments, intersectional MAIHDA 
and EIM examine clustering by analytic groupings. For example, a 
conventional multilevel model might nest census tracts (level 1) within 
counties (level 2) within states (level 3) (Fig. 1, Panel A). Intersectional 
MAIHDA is conducted using individual-level data, and involves nesting 
individuals (level 1) within intersectional social strata (level 2) (Fig. 1, 
Panel B). Intersectional social strata are identified based on every 
possible combination of categorizations being analyzed, such as cate
gories of gender, race/ethnicity, SES, and sexual identification. We 
expand the MAIHDA approach from the individual-level to the census 
tract-level. EIM modeling nests census tracts (level 1) within intersec
tional strata of census tracts (level 2) (Fig. 1, Panel C), where intersec
tional strata of census tracts are defined using all examined 
combinations of analytic categories of neighborhood demographics such 
as racial and ethnic composition and socio-economic status. In EIM 
models neighborhoods are clustered according to analytic typologies, 
reflecting their similarity of intersectional experiences regardless of 
their precise physical location. Despite their similarities, EIM is distinct 
from MAIHDA both because of the difference in analytic units (com
munities versus individuals) and because of the change this shift in focus 
requires in order to theorize the underlying intersectional processes at 
work. 

While neighborhoods are the focus in EIM, it is also essential to 
recognize that these are embedded within a multilevel framework of 
interacting ecological levels, and that consequently they are shaped by 
processes at other levels, including policies, economies, and social 

movements at the city-, state-, national-, and international-levels. The 
placement of environmental hazards in particular locales is shaped by a 
combination of decision-making processes within organizations, cost of 
land, zoning laws, and environmental regulations. The present analysis 
is concerned with documenting the environmental health inequalities 
that are the end result of processes operating across all ecological levels. 

The EIM approach: (1) brings intersectionality methods into greater 
alignment with theory by re-emphasizing the role of the community/ 
structural level; (2) provides a new perspective on geospatial and social 
patterns of health inequalities; (3) expands on current efforts in the EJ 
literature to more explicitly incorporate intersectionality theorizing; and 
(4) generalizes questions examined previously in EJ case studies to test 
whether multiply marginalized communities are systematically exposed 
to excess environmental threats across the United States. We used a 
complete case sample of 72,103 census tracts from the United States. 

1.3. Dependent variable: estimated cancer risk from air toxics 

The National Air Toxics Assessment (NATA) is a “state of the science 
screening” for national air quality by the EPA (Office of Air Quality 
Planning and Standards 2018) and has been employed in previous EJ 
research (e.g., Depro et al., 2015; Liévanos 2015; Alvarez and 
Norton-Smith 2018). NATA evaluates exposure to carcinogenic air pol
lutants at the tract-level from a variety of sources, and estimates the 
potential cumulative risk to population health. Estimates are produced 
in a multi-stage process. First, a National Emissions Inventory is 
compiled of 180 air toxics that are known or suspected causes of cancer 
and other serious health issues. A wide variety of pollution sources are 
included, ranging from manufacturing and transportation to secondary 
sources such as air toxics that form in the atmosphere due to photo
chemical reactions. 

The second step involves estimating ambient air concentrations 
through atmospheric dispersion and photochemical models. Finally, the 
EPA estimates the risks to human health associated with exposure to 
these concentrations, including lifetime cancer risk, and models human 
outdoor activity for exposure at the tract-level. Prior EJ scholars who 
have used NATA estimates have interpreted them as estimates of relative 
cancer risk attributable to outdoor residential hazardous air pollutant 
exposures (e.g., Grineski et al., 2017). NATA provides estimates of 
cancer risk from air toxics for each tract, defined as the predicted 
number of cases of cancer attributable to air toxics exposure per million 
people, assuming lifelong (70 years) exposure to those levels of emis
sions. We use the most current 2014 NATA estimates, which were 
released in August of 2018. 

1.4. Intersectional strata of census tracts 

All demographic variables used to classify census tracts according to 

Fig. 1. Comparison of multilevel model structures. Notes: Arrows indicate hierarchical, nested structure of data. For instance, in conventional multilevel models, 
multiple census tracts (level 1) are nested within each county, and counties (level 2) are nested within each state (level 3). 
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intersectional strata were obtained from the 2010–2014 American 
Community Survey, available from the National Historical Geographic 
Information System (Manson et al., 2018). The metropolitan status is 
from the latest 2013 Rural-Urban Continuum Codes released by the U.S. 
Department of Agriculture Economic Research Service (USDA ERS 
2013). 

1.4.1. Racial/ethnic composition 
To construct the racialized dimension, we derived four categories by 

first classifying all tracts as either above or below the median percentage 
of Black, non-Latinx residents and either above or below the median 
percentage of Latinx residents. For brevity, we henceforth refer to 
percent of Black non-Latinx residents as percent Black. A cross- 
tabulation of these values was used to construct the four categories: 
(1) tracts below the median percent Black and below the median percent 
Latinx residents; (2) tracts above the median percent Black and below the 
median percent Latinx residents; (3) tracts below the median percent 
Black and above the median percent Latinx residents; (4) tracts above the 
median percent Black and above the median percent Latinx residents. 

1.4.2. Female-headed households 
To construct the gendered family structure dimension of the stratum 

categories, we classified tracts according to terciles of percent female- 
headed household: (1) lowest tercile; (2) middle tercile; (3) highest 
tercile. 

1.4.3. Educational attainment 
The first classed dimension of the strata categories is educational 

attainment of residents who are 25 years or older. Tracts were classified 
according to terciles of percent residents with some college education or 
more: (1) lowest tercile; (2) middle tercile; (3) highest tercile. 

1.4.4. Median household income 
The second classed dimension of the stratum is median household 

income. Tracts were classified according to terciles of median household 
income: (1) lowest tercile; (2) middle tercile; (3) highest tercile. 

1.4.5. Metro/non-metro 
To measure urbanicity, we classified tracts based on the county-level 

metro/non-metro classifications using population and commuting data 
(USDA ERS 2013). We classified categories 1 through 3 (coded “1”) as 
metro and 4 through 9 as non-metro (coded “0”). For this initial EIM 
analysis, we did not evaluate suburban classification, both because 
defining suburbanicity is notoriously difficult and because doing so 
substantially reduced sample sizes within many strata. 

1.4.6. Stratum ID codes 
Each stratum was given a unique five-digit code: racial/ethnic 

composition (digit 1), female-headed households (digit 2), educational 
attainment (digit 3), median household income (digit 4), and metro/ 
non-metro (digit 5). The value in each digit corresponds with the 
codes above. For example, stratum 23310 refers to census tracts that are: 
above the median percent Black and below the median percent Latinx 
residents (2), highest tercile of percent female-headed household (3), 
highest tercile educational attainment (3), lowest tercile median 
household income (1), and non-metro (0). 

1.5. Controls 

We included a variety of control variables frequently adjusted for in 
similar analyses (Downey and Hawkins 2008a; Alvarez and 
Norton-Smith 2018; Liévanos 2019), including some that are potential 
intermediary effects. All control variables were mean-centered. We 
specifically control for median age, percent unemployment, percent of 
housing units built after 1970, median housing value, percent 
manufacturing workers, and percent of renters. 

1.6. Analytical approach 

Analytically EIM is similar to intersectional MAIHDA (Evans 2015; 
Evans et al., 2018), except that the EIM model treats area units (e.g., 
census tracts) as the level 1 unit of analysis, whereas MAIHDA utilizes 
individual-level data at level 1. Thus, many of the advantages of 
MAIHDA over conventional fixed effect interaction models are also ad
vantages of the EIM approach. We therefore briefly review these ad
vantages (and differences) from conventional models. 

The conventional single-level approach to quantitative intercate
gorical analysis involves fitting a regression model that includes fixed 
parameters for all additive main effects and all permutations of in
teractions (first-order, second-order, and higher-order). For example, 
the linear model might take the form: 

yi = β0 + β1(womani)+ β2(Blacki)+ β3(womani)(Blacki) + ei0 (1)  

where yi is the observed outcome for individual i, β values are the fixed 
additive and interaction parameters, and ei0 is the residual difference for 
individual i between the predicted value and the observed value yi. In 
addition to the methodological limitations as the number of categories 
and axes of marginalization increases (e.g., low scalability, low model 
parsimony, small sample size in some intersectional strata, and issues 
with the interpretability of results), Evans et al. (2018) note two addi
tional theoretical issues with this setup. First, while between-group 
comparisons are, to some extent, inherent to the task of identifying in
equalities, this setup has the unfortunate side-effect of reinforcing the 
social primacy of the multiply privileged (in this case, white men), who 
when consistently used as the reference category can sometimes come to 
be seen as a “default” type of human. Second, this setup enables the 
detection of “interaction effects” only for some social strata—in this 
case, Black women—unless the model is re-run with different reference 
levels. Some theorists have called for attention to intersections that mix 
privilege and marginalization (Bauer 2014; Choo and Ferree 2010; 
Hancock 2007; Nash 2008). Ideally, we want to estimate an “interaction 
effect” for all social strata, with this interaction effect capturing the 
difference between what is observed for that stratum and what we might 
have predicted for it based on the additive contributions of the main 
effects. 

Using individual-level data, a linear intersectional MAIHDA model 
would resemble: 

yij = βδj + u0j + e0ij u0j̃N
(
0, σ2

u

)
e0ij̃N

(
0, σ2

e

)
(2)  

where yij is the value of the outcome for individual i in social stratum j, δj 

is a vector of the intercept and additive effects for stratum j and β is a 
vector of the associated parameter values, u0j is the stratum-level re
sidual for stratum j, and e0ij is the individual-level residual for individual 
i in social stratum j. Both residuals are normally distributed with mean 0. 
The between-stratum residual variance is σ2

u while the within-stratum 
(between-individual) residual variance is σ2

e . In a null model, which 
includes no additive main effects, the σ2

u would provide a measure of the 
total variation (or inequality) between strata. In a model inclusive of 
additive main effects that does not include any fixed interaction parame
ters, u0j represents the residual interaction term for stratum j, and a 
unique residual is estimated for all strata. In the additive main effects 
model, σ2

u would describe the variation between strata that is not 
explained by additive effects alone. Two additional statistics frequently 
calculated for intersectional MAIHDA (Axelsson et al., 2018; Evans 
2019a; Evans et al., 2018; Evans and Erickson 2019; Hernández-Yumar 
et al., 2018) are the Variance Partition Coefficient (VPC) and the Pro
portional Change in Variance (PCV). The VPC is calculated as: 

VPC=
σ2

u

σ2
u + σ2

e
× 100% (3)  

while the PCV is calculated as: 

C.H. Alvarez and C.R. Evans                                                                                                                                                                                                                 



Social Science & Medicine xxx (xxxx) xxx

6

PCV=
σ2

u, Null model − σ2
u, Non null model

σ2
u, Null model

× 100% (4) 

The VPC from the null model provides a measure of the proportion of 
total variation in the sample that exists at the between-stratum level. In 
the case where a non-null model is the model inclusive of additive ef
fects, the PCV provides a measure of the extent to which the observed 
between-stratum variation from the null model is explained by the ad
ditive effects, and the value of 1 − PCV is the percent of residual 
between-stratum variation that is not explained by additive effects (and 
therefore might be attributable to interactions, under the assumption of 
no omitted variable bias). 

Intersectional MAIHDA and EIM models thus avoid at least two 
important theoretical limitations of conventional modeling approaches, 
and address many of the methodological limitations of conventional 
approaches as well. For instance, as categories/axes of marginalization 
are added to intersectional analyses, the number of fixed parameters in 
conventional models grows geometrically, while MAIHDA and EIM grow 
linearly, improving model parsimony and scalability. The issue of 
interpretability is also largely resolved because of model parsimony, and 
because an estimate of a residual/interaction is obtained for each stra
tum. Useful summary statistics such as the VPC and PCV are also ob
tained, which enable a consideration of variation within and between 
strata as well as differences in average effects. 

In this study we focus almost exclusively on the total predicted 
values for each stratum, which combine additive fixed effects and the 
stratum-specific residuals, rather than on the residual interaction effects 
themselves. What, then, is the purpose of fitting this “intersectionality- 
plus” (Weldon 2008) multilevel model, when it might be simpler to just 
estimate the mean cancer risk in each stratum? The answer to this relates 
to the final advantage of MAIHDA and EIM over conventional ap
proaches, which is in how these models address strata with small sample 
sizes. While there is no ultimate way to avoid the issue of small sample 
size in many strata if the data is parsed too finely, simulation analyses 
have shown that the intersectional multilevel approaches are more 
robust to adverse consequences of this than their conventional coun
terparts (Evans 2015; Evans et al., 2018; Bell et al., 2019). The main 
issue is that as sample size decreases in a given stratum, any estimates 
for that stratum will become unreliable. However, multilevel models 
automatically adjust estimates based on reliability and sample size, 
whereas conventional approaches would simply estimate the predicted 
value with no adjustment for reliability (Evans et al., 2020). 

The EIM model structure used in this study is the same as in Equation 
(2), however the model describes the outcome yij for census tract i in 
intersectional social stratum j (Fig. 1). A total of 72,103 census tracts 
were nested in 216 unique social strata. Seventy-five percent of the 
intersectional strata of neighborhoods contained 30 or more census 
tracts and all strata contained some census tracts (Supplemental 
Table 1). 

Our model building progressed as follows. Model 1A is a null model, 
which provides information about overall levels of inequality in air 
toxics-related cancer risk between strata. Model 1B is the additive main 
effects model, and Model 1C further includes control variables. In order 
to ensure that any notable effects were not simply driven by a few 
“outlier” census tracts, where perhaps something unique is occurring 
that is not part of a larger story of intersectionality, we conducted a set of 
robustness checks. For this we dropped from the data set all census tracts 
with extremely high predicted cancer risk values (≥ 250 cases per 
million) and re-fit the above models. Models 2A (null), 2B (main effects) 
and 2C (main effects + controls) are therefore fitted to the data where 22 
census tracts were dropped from the analysis. We identified each of 
these 22 cases individually, determined their precise geographic loca
tion (particularly relative to other census tracts also considered out
liers), and conducted searches for information about why the cancer risk 
in these communities was estimated to be particularly high. 

All models were run in MLwiN 3.02 (Rasbash et al., 2017) called 

from Stata 14.1 using the runmlwin command (Leckie and Charlton 
2013). Estimations were performed using Bayesian Markov Chain Monte 
Carlo (MCMC) estimation procedures (Browne 2017) with diffuse priors. 
Quasilikelihood methods were used to provide the MCMC procedure 
with initialization values. For all models a burn-in of 5000 iterations and 
total length of 50,000 iterations (with thinning every 50 iterations) was 
used, and 95% credible intervals were obtained for all estimates. 

2. Results 

The median value of predicted cancer risk in the sample was 31.7, 
with a substantial range of 6.2 to 1505.1 cases per million (see Table 1). 
Parameter results for Models 1A-C are provided in Table 2. The VPC in 
Model 1A was 18.33%, indicating a high degree of clustering at the 
intersectional strata level, as well as meaningful between-stratum in
equalities. This can be best visualized in Fig. 2A, which provides a 
caterpillar plot of the predicted values and 95% CI by stratum (see 
Supplemental Table 1 for exact predicted values). The “top ten” highest 
and lowest predicted values are identified in Fig. 3. As can be seen here, 
the predicted values ranged from 19.41 (stratum 11330: low % Black 
and low % Latinx, low % female-headed households, high educational 
attainment, high median household income, non-metro) to 51.04 cases 
per million (stratum 23131: high % Black and low % Latinx, high % 
female-headed households, low educational attainment, high median 
household income, metro). All three strata that were high % Black and 
low % Latinx, high % female-headed households, low educational 
attainment, and metro (at varying levels of median household income) 
were in the highest four predicted values for any strata. This indicates 
that, regardless of median household income, this intersection was 
especially likely to experience exposures to carcinogenic air toxics. 

Considered from a purely additive perspective, the results obtained 
in Models 1B and 1C match what we might expect in general for how 
marginalization relates to exposure likelihood (Table 2). Higher per
centages of Black and Latinx residents, higher percentages of female- 

Table 1 
Descriptive statistics of census tracts.   

Mean SD Min Max Median 

Estimated Air Toxics Cancer 
Risk 

31.65 12.92 6.17 1505.12 31.00 

Race/Ethnicity by Tract      
% White, not Latinx 63.22 30.16 0 100.00 72.69 
% Latinx 15.65 21.16 0 100.00 6.61 
% Black, not Latinx 13.38 21.93 0 100.00 3.74 

% Female-Headed 
Households 

13.64 8.71 0 87.28 11.53 

% Residents with Some 
College or More 

57.26 17.82 4.74 100.00 56.26 

Median Household Income 
(in $1,000s) 

57.23 28.49 2.50 250.00 51.00 

Metro (binary) .8338 .3723 0 1 1 
% Renters 36.30 22.70 0 100 31.15 
% Unemployed 9.76 6.01 0 100 8.44 
% Housing units built after 

1970 
55.49 28.77 0 100.00 57.21 

Median Housing Value (in 
$1,000s) (n = 71,375) 

219.10 173.75 10.000 100.00 162.50 

% Workers in 
Manufacturing (n =
72,102) 

10.45 6.91 0 71.77 9.13 

Median Age 38.75 7.62 11.50 84.30 38.80 

Note: n = 72,103 unless otherwise stated. Percent unemployed was calculated as 
the number of civilians (aged 16 years and older) in the labor force who reported 
being unemployed divided by the total population in the tract (aged 16 years and 
older) who are in the labor force. Median housing value is of owner-occupied 
housing units in tens of thousands of dollars. Percent of workers in 
manufacturing is the number of civilians (aged 16 years and older) employed in 
manufacturing divided by the total number of civilians (aged 16 years and older) 
who are employed. 
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Table 2 
Results from multilevel linear regression models.  

FIXED EFFECTS Model 1A (Null) Model 1B (Main Effects) Model 1C (Main Effects + Controls) 

Est 95% CI P Est 95% CI P Est 95% CI P 

Intercept 29.70 28.86 30.51 <0.001 21.99 20.88 23.04 <0.001 23.41 22.29 24.52 <0.001 
Racialization             
Low% Black, Low% Latinx (ref) – – – – – – – – – – – – 
High% Black, Low% Latinx     8.29 7.34 9.25 <0.001 7.95 6.88 9.00 <0.001 
Low% Black, High% Latinx     3.30 2.33 4.22 <0.001 2.41 1.37 3.38 <0.001 
High% Black, High% Latinx     6.85 5.87 7.89 <0.001 5.76 4.75 6.84 <0.001 
Female Headed Household             
Low Tercile (ref) – – – – – – – – – – – – 
Middle Tercile     1.02 0.10 1.85 0.014 1.13 0.25 2.03 0.006 
High Tercile     2.73 1.92 3.60 <0.001 2.66 1.75 3.61 <0.001 
Educational Attainment             
Low Tercile (ref) – – – – – – – – – – – – 
Middle Tercile     − 1.95 − 2.79 − 1.09 <0.001 − 2.39 − 3.20 − 1.58 <0.001 
High Tercile     − 1.67 − 2.59 − 0.77 0.002 − 3.21 − 4.12 − 2.27 <0.001 
Median Household Income             
Low Tercile (ref) – – – – – – – – – – – – 
Middle Tercile     − 0.46 − 1.26 0.41 0.145 − 0.10 − 0.88 0.77 0.401 
High Tercile     − 0.74 − 1.60 0.16 0.069 − 0.64 − 1.57 0.32 0.095 
Metro     6.45 5.72 7.16 <0.001 6.04 5.25 6.76 <0.001 
CONTROLS             
Median Age*         − 0.03 − 0.05 − 0.02 <0.001 
Housing built after 1970 (%)*         0.03 0.02 0.03 <0.001 
Median Housing Value*‡ 0.06 0.05 0.07 <0.001 
Manufacturing (%)*         − 0.05 − 0.06 − 0.03 <0.001 
Renters (%)*         0.04 0.03 0.04 <0.001 
Unemployment (%)*         0.01 − 0.01 0.03 0.186 
RANDOM EFFECTS Est 95% CI  Est 95% CI  Est 95% CI  
Stratum Var (σ2

u0)  32.61 26.36 39.92  4.76 3.48 6.41  4.61 3.28 6.30  

Census Tract Var (σ2
e0)  145.25 143.74 146.74  145.30 143.84 146.81  144.31 142.77 145.81  

VPC (%) 18.33 15.50 21.39  3.17 2.36 4.19  3.10 2.25 4.14  
PCV (%) **     85.40    85.86    
N 72,103    72,103    71,374    

Notes: * Variable is mean-centered. ** Proportional Change in Stratum-Level Variance relative to model 1A (null model). ‡In tens of thousands. Due to missing data in 
ACS on median housing value (n = 728) and percent manufacturing (n = 1), the total number of census tracts in Model 1C was reduced to 71,374. 

Fig. 2. Predicted Cancer Risk By Stratum, ranked from low to high. Notes: Estimates (indicated by markers) and 95% CI (indicated by spikes) were obtained by 
combining fixed additive main effects and random (residual) effects for each stratum in Model 1B. Predicted values for strata were ranked from low (rank 1) to high 
(rank 2016). 
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headed households, and metro location were significant predictors of 
elevated cancer risk, while higher average education attainment was 
correlated with reductions in cancer risk. Higher median household 
income was associated with reductions in cancer risk, however this was 
not statistically significant. Relative to strata with low percent Black and 
low percent Latinx residents, increasing the concentration of either 
Black or Latinx residents increased the predicted cancer risk, however 
the risk increases were particularly large for strata with a high percent 
Black residents. These results were robust to inclusion of controls. 

Comparing Models 1B and 1A, the VPC was reduced from 18.33% in 
the null model to 3.17% in the main effects model, with a PCV between 
models of 85.4%. This value was largely unchanged after adjustment for 
controls (VPC = 3.10% in Model 1C, PCV = 85.86%). This indicates that 
while additive main effects were capable of explaining a large proportion of 
the between-stratum inequalities, they were by no means sufficient to explain 
all of these inequalities. Furthermore, 54 of 216 intersectional strata have 
residuals that differ statistically from the null (Supplement Figures 1 and 
2). In other words, considerable interactions exist between these axes of 
marginalization and an intersectionality story is appropriate. 

Twenty-two census tracts had a predicted cancer risk higher than 
250 cases per million. To examine the robustness of our results, these 
cases were excluded from Models 2A-C (Supplemental Table 2). Fig. 2B 
is a caterpillar plot of predicted cancer risk by stratum without the 
outliers. Notably, the exclusion of the outliers particularly affected the 
upper tail of predicted values, with predictions for the “highest risk” 
strata being reduced. To further examine whether the exclusion of the 

outliers changes the overall intersectionality story, Fig. 4 provides de
tails on the “top ten” strata at the higher and lower predicted values. 
Nine out of ten strata of the “top ten” high risk strata from Fig. 4 were 
present in Fig. 3, suggesting that the exclusion of the outliers did not 
substantially reshuffle which strata were identified as being high or low 
risk. While the actual predicted values for strata which had tracts 
removed were naturally affected, the overall patterns of inequality were 
robust to exclusion of extreme cases. 

Each of the outlier tracts was examined individually in the NATA 
data files to determine the particular toxic(s) responsible for the 
elevated cancer risk estimate. Once these toxics were identified, we 
conducted a search to identify news reports, official communications 
from the EPA, and/or websites for State Departments of Health that 
identified particular polluters as the sources of the toxics of concern to 
the EPA. The results of this are provided in Table 3. 

In several cases, these outlier tracts were in contiguous clusters with 
other outlier tracts, forming geographic clusters of particularly high risk, 
including a large cluster in the infamous “Cancer Alley” along the Mis
sissippi River in Louisiana (Roberts and Toffolon-Weiss, 2001). All 
twenty-two tracts experienced elevated risk at least in part due to 
exposure to ethylene oxide emissions from local facilities. While ten of 
the twenty-two tracts belonged to strata ranked in the “top ten” highest 
for predicted cancer risk, twelve were from strata at a variety of ranks. 
One of these tracts was even in an intersectional social stratum reporting 
less environmental health risk (in stratum 11331: low % Black and 
Latinx, low % female-headed households, high educational attainment, 
high median household income, and metro) in Willowbrook, IL, though 
this tract was contiguous with another intersectional social stratum 
reporting worse environmental health risk. In our examination of these 
cases, there was nothing to suggest that these “outliers” were in any way 
systematically different than other tracts in how they came to be 
exposed, except that they happen to play host to producers of particu
larly carcinogenic air toxics. In other words, these tracts are simply part 
of the larger pattern of systematic marginalization experienced by other 
tracts that share the same intersectional characteristics across neigh
borhood demographics. We therefore argue that it is most appropriate to 
include these tracts in our final estimates for strata and to focus on re
sults from Model 1. 

3. Discussion 

In this study we propose a novel eco-intersectional multilevel 
modeling approach that addresses many limitations of conventional 
approaches and explicitly integrates critical theory from EJ, population 
health, and intersectionality for its framing and interpretation. We have 
demonstrated the utility of the EIM approach by modeling carcinogenic 
air toxics risk of census tract-level burden among various intersectional 
neighborhood demographics across the U.S. Our finding that margin
alized communities—namely those with higher concentrations of racial/ 
ethnic minorities and single-mother families, and lower average income 
and educational attainment residing in metro areas—experience dras
tically elevated levels of exposure to carcinogenic air toxics will surprise 
few who have a passing familiarity with these issues. However, with rare 
exceptions (e.g., Ard 2015; Downey and Hawkins 2008a; Zwickl et al., 
2014; Liévanos 2015) what has been largely missing from the literature 
are national-level, explicitly intersectional accounts that seek to gener
alize findings from earlier case studies to communities across the 
country. This could lead, unintentionally, to a sense that communities 
enduring worse environmental health risk through an intersection of 
systems of power are somehow the exception, rather than the rule. Our 
intention is not to replace case study research, but to generalize findings 
from case studies to a national-level story. 

Our findings confirm the generalizability of the conclusions that 
environmental injustices are: (1) experienced intersectionally at the 
community-level, (2) significant in magnitude, and (3) socially 
patterned across numerous intersecting axes of marginalization, 

Fig. 3. Strata with highest and lowest predicted cancer risk.  

Fig. 4. Strata with highest and Lowest Predicted Cancer Risk, excluding 22 
census tracts with cancer risk >250 cases per million. 
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including axes rarely evaluated such as gendered family structure. The 
EIM approach provides several useful summary statistics that demon
strate the extent of interaction between axes of marginalization, such as 
the VPC and PCV. According to our primary models (Models 1A-C), 
there was considerable clustering of risk at the intersectional stratum- 
level (VPC = 18.3% in model 1A), indicating substantial inequalities 
between strata of census tracts. Furthermore, while controlling for ad
ditive effects did reduce the unexplained variation between strata (PCV 
= 85.4% in Model 1B), considerable inequality remained (VPC = 3.2%), 
indicating a meaningful contribution from interactions. A purely addi
tive story is therefore insufficient to explaining the social and 
geographic patterning of risk from air toxics in the U.S. Our results tell a 
national intersectionality story where census tracts with a higher 
percent of Black and Latinx residents, a higher percent of single mothers, 
a lower percent of residents with higher education, and tracts that are 
located within metro areas have the highest rates of estimated cancer 
risk from air toxics. EIM analyses enable us to quantify the excess risk 
experienced by these multiply marginalized strata, whereas additive- 
only approaches might underestimate the risk these strata experience 
due to omission of interaction effects. 

The magnitude of these inequalities is noteworthy. This EIM analysis 
reveals that a tract from the stratum with the highest predicted value 
(stratum 23131: high % Black and low % Latinx residents, high % 
female-headed household, lowest tercile of educational attainment, high 
household income, metro, risk est = 51.04) will on average be expected 
to have risk that is 2.6 times higher than a tract from the stratum with 
the lowest predicted value (stratum 11330: low % Black and low % 
Latinx residents, low % female-headed household, highest tercile of 
educational attainment, high household income, non-metro, risk est =
19.41). Through EIM, we can examine the relational intercategorical 
comparison between interaction groups to reveal the stark environ
mental health risk between them. Furthermore, this demonstrates a 
substantial inequality that is more universally experienced than a focus 
on individual tracts would imply. So-called “outlier” tracts with excep
tionally high health burdens from environmental injustices, such as 
clusters in the notorious “Cancer Alley” Louisiana, are in fact part of a 
larger, national story of marginalization. The same social processes that 
systematically undervalue the health of residents in those communities 
also undervalue the health of similar communities across the country. 

Our results confirm the salience of under-studied axes of 

Table 3 
Details for twenty-two “outlier” census tracts with estimated cancer risk≥ 250 cases per million.   

State 
County EPA 

Region 
Tract # Stratum 

ID 
Population 
Size 

Est Cancer 
Risk 

Explanation for Elevated Riska 

CO Jefferson 8 8059010902 33211 2310 525.56 Elevated estimated risk due to ethylene oxide emissions from Terumo BCT 
Sterilization Services in Lakewood, CO. 

IL DuPage 5 17043845811 42321 3838 263.44 These two census tracts are contiguous. Elevated estimated risk due to ethylene 
oxide emissions from the Sterigenics facility, located in Willowbrook, IL. IL DuPage 5 17043845902 11331 3411 281.81 

LA St. Charles 6 22089060100 23131 1937 808.72 This cluster of twelve contiguous census tracts spans a section of the Mississippi 
River in two counties in Louisiana: St. Charles and St. John the Baptist. The area 
is part of the notorious “Cancer Alley.” Elevated estimated risk due to 
chloroprene and ethylene oxide emissions. The La Place Chemical Plant 
operated by Denke Performance Elastomer (located in tract #22095070800) 
has been identified as the major source of chloroprene emissions. The Union 
Carbide facility and the Evonik Materials facility have been identified as the 
major sources of ethylene oxide emissions. 

LA St. Charles 6 22089062500 23121 2988 273.27 
LA St. Charles 6 22089062700 23111 4753 284.51 
LA St. John the 

Baptist 
6 22095070100 22231 2685 303.01 

LA St. John the 
Baptist 

6 22095070300 22221 6258 296.31 

LA St. John the 
Baptist 

6 22095070400 22231 4381 286.54 

LA St. John the 
Baptist 

6 22095070500 43121 6229 329.27 

LA St. John the 
Baptist 

6 22095070700 23121 4348 511.32 

LA St. John the 
Baptist 

6 22095070800 23121 2537 1505.12 

LA St. John the 
Baptist 

6 22095070900 23111 3115 616.62 

LA St. John the 
Baptist 

6 22095071000 23111 2840 490.28 

LA St. John the 
Baptist 

6 22095071100 23121 3398 363.19 

PA Lehigh 3 42077000101 43221 3661 346.52 These three census tracts are contiguous. Elevated estimated risk due to 
ethylene oxide emissions from the B Braun Medical Inc facility, located in 
Allentown, PA. 

PA Lehigh 3 42077005902 42221 1571 596.46 
PA Lehigh 3 42077009200 31221 3768 256.05 
TX Harris 6 48201343100 42231 4629 348.20 These two census tracts are contiguous and located in Houston, TX. Elevated 

estimated risk due to ethylene oxide emissions. East Houston is well known as 
the location of a variety of polluters in close proximity to fenceline 
neighborhoods. 

TX Harris 6 48201343200 41331 4944 296.18 

TX Jefferson 6 48245010902 31331 4592 274.52 Elevated estimated risk due to ethylene oxide emissions from the Huntsman 
Corporation’s Port Neches facility. 

WV Kanawha 3 54039013400 22211 2222 366.66 Elevated estimated risk due to ethylene oxide emissions from the Union 
Carbide facility. 

Notes: Estimated cancer risk is reported as cases per million persons, and assumes a lifetime (70 year) of exposure to concentrations of air toxics equivalent to those in 
the tract in that year. 
The numeric value for Stratum IDs is a five-digit code. 
Digit 1: racial/ethnic composition (1 = low% Black low% Latinx, 2 = high% Black low% Latinx, 3 = low% Black high% Latinx, 4 = high% Black high% Latinx). 
Digit 2: percent female-headed households tercile (1 = low, 2 = middle, 3 = high). 
Digit 3: educational attainment tercile (1 = low, 2 = middle, 3 = high). 
Digit 4: median household income tercile (1 = low, 2 = middle, 3 = high). 
Digit 5: metro/non-metro (1 = metro, 0 = non-metro). 

a Each tract was examined individually in the NATA data files to determine the particular toxic(s) responsible for the elevated cancer risk estimate. Once these toxics 
were identified, we conducted a search to identify news reports, official communications from the EPA, and/or websites for State Departments of Health that identified 
particular polluters as the sources of the toxics of concern to the EPA. 
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marginalization to the experience of environmental injustice, particu
larly the concentration of female-headed households (Ducre 2012; 
Downey, 2005; Downey and Hawkins 2008b; Downey et al., 2017; 
Liévanos 2015). Additionally, as these results clearly show, future 
research may benefit from consideration of multiple dimensions of SES 
inequality, such as aggregate measures of educational attainment and 
household income. 

Situating EIM within the broader history of EJ social movements, this 
study introduces a flexible novel tool for telling large-scale, intersec
tional stories of environmental injustice. Future work could address 
similar patterns of risk from other sources of pollution, including water 
or soil-based hazards. Rather than using a dependent variable that 
represents health burden attributable to a particular type of hazard, 
future work could also examine concentration of particular industries or 
pollutants or examine health outcomes other than cancer. EIM could be 
coupled with EJ screening tools such as the CalEnviroScreen or other 
exposure indicators to identify neighborhoods with greater vulnera
bility. We encourage academics, activists, community members, and 
practitioners to use EIM to further understanding of inequalities across 
communities and to eradicate social, health, and environmental 
injustices. 

3.1. Limitations 

This study and the EIM approach in general are not without limita
tions. First, we have not attempted to identify (nor argue for the exis
tence of) naturalistic categories of census tracts. Rather, the 
categorizations we have used are analytic, and to some extent arbitrary. 
For example, would the degree of stratum-level clustering be maximized 
by categorizing percent female-headed households according to quar
tiles rather than terciles? Such a question, though intellectually inter
esting, is also somewhat beside the point of this exercise, which is 
broadly to demonstrate the unequal burden experienced systematically 
by some communities. Nevertheless, how census tracts are categorized is 
a topic worthy of future consideration, though we urge caution in order 
to avoid (unintentionally) reifying categorical labels. The successes of 
community-based participatory research (CBPR) in improving scientific 
rigor is noteworthy. By working with community members, future CBPR 
research could shed light on what social dimensions to focus analyses on 
and how best to operationalize them in EIM (Balazs and Morello-Frosch 
2013). 

Second, these analyses do not examine causal or life-course questions 
of how existing environmental inequalities came to be (Grace et al., 
2020). For instance, were facilities producing known carcinogens sys
tematically placed in certain communities because their residents were 
viewed as “expendable” (Pellow 2018)? Or because residents were 
viewed as less likely to offer (effective) resistance? Or because the land 
was cheaper? Or were poor and marginalized individuals more likely to 
choose (for a certain value of “choose”) to live near polluters? Or some 
combination of these explanations? These causal questions are vital to 
address, and have been extensively examined by others (e.g., Pais, et al., 
2014; Taylor 2014; Elliott 2015; Howell and Elliot, 2018). In this study 
we view the estimation of inequalities, the examination of their 
magnitude and direction, and their correspondence with axes of 
marginalization and social power, as a critical starting point for the 
conversation of how to proceed in pursuit of environmental and health 
justice. One line of future research could integrate the EIM approach 
with life-course approaches at residential levels such as length of resi
dency to further advance intersectionality, environmental justice, and 
age (Brown 2018). 

4. Conclusion 

Three distinct scholarly traditions—environmental justice, popula
tion health, and intersectionality—have converged on a critical view of 
the treatment of residents of “fenceline communities” across the United 

States. EIM provides an innovative approach for all three fields that will 
explicitly frame EJ work through an intersectional lens, address known 
limitations of conventional approaches to modeling high-dimensional 
interactions, and focus attention on the intersectional, structural-level 
determinants of health inequalities. EIM and intersectional MAIHDA 
are useful tools for scholars, practitioners, and community members to 
assess intersectional inequalities across various systems of power from 
different vantage points (i.e., intersectional MAIHDA at the individual- 
level and EIM at the neighborhood-level). 

Our results demonstrate that there are considerable inequalities in 
cancer risk attributable to environmental hazards, and that these in
equalities likely explain, at least in part, observed inequalities along 
racial/ethnic, socioeconomic, and geospatial lines. Yet the existence of 
environmental hazards in neighborhoods is governed by social processes 
operating at higher levels than the neighborhood or community. Regu
latory environments and enforcement mechanisms determine what 
types of emissions are allowed near places of residence, what concen
trations of emissions are allowable, and the minimum distance required 
between places of residence and emission sources. Finding the political 
will to address these inequalities and enact more stringent regulations is, 
of course, the remaining challenge. For too long privileged communities 
have been silent bystanders to unfolding environmental injustices. 
While sometimes openly lamenting the human costs, they have never
theless been inadequately involved in demanding accountability and 
change. It is our hope that this new tool will be used to generate the 
necessary will to act in pursuit of social and environmental justice. 
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