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1. Introduction 
Learners typically encounter new words in complex environments teeming 

with possible meanings. Researchers have long assumed that one way learners 
deal with such referential ambiguity is by considering additional referential 
contexts in which the same word occurs (e.g., Fazly, Alishahi, & Stevenson, 
2010; Fisher, Hall, Rakowitz, & Gleitman, 1994; Pinker, 1984; Siskind, 1996; 
Yu & Smith, 2007). Across situations, scene elements that are not relevant to a 
word’s meaning should occur less consistently than those that are central to its 
meaning. If learners could identify the elements that consistently co-occurred 
with a word across uses, then this would help them determine the word’s likely 
referent. 

Recent evidence suggests that under at least some circumstances, both 
children and adults can use cross-situational information to identify a word’s 
referent (e.g., Scott & Fisher, 2012; Smith & Yu, 2008; Yu & Smith, 2007; 
Yurovsky, Yu, & Smith, 2013). For instance, Yu and Smith (2007) presented 
adults with a series of training trials in which they saw four novel shapes and 
heard four made-up words. Across trials, each novel label consistently co-
occurred with only one object. Following training, participants were tested on 
their knowledge of the words in a 4-alternative forced choice paradigm. During 
each test trial, they heard one novel label paired with its target referent and three 
distracter objects. The participants selected the target referent significantly more 
often than expected by chance, suggesting that they had used the cross-
situational information to identify the words’ referents.  

Considerable questions remain regarding the mechanism that supports 
cross-situational word learning. One such question is how much information 
learners retain about the potential referents that occur with a word on a given 
observation. Some researchers have proposed that learners simultaneously 
accrue information about an entire set of potential referents for a given word 
(Fazly et al., 2010; Smith, Smith, & Blythe, 2011; Yu & Smith, 2007; Yurovsky, 
Fricker, Yu, & Smith, 2014). When learners first encounter a new word, they 
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encode whatever referents co-occurred with that word. The next time they 
encounter the word, learners compare the current set of potential referents to the 
set previously stored in memory, adding new possibilities and updating the co-
occurrence probabilities for previously encountered referents. 

Other researchers, however, have argued that learners are unable to track all 
of the candidate referents that co-occur with a word (e.g., Medina, Snedeker, 
Trueswell, & Gleitman, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013). 
Instead, they suggest that when learners first encounter a word, they make a 
guess or conjecture about the word’s meaning. Learners retain this hypothesis 
and discard information about alternative referents. The next time learners 
encounter the word, they retrieve and evaluate their conjecture. If the 
hypothesized referent is present, then they strengthen and retain the hypothesis. 
If the hypothesized referent is absent, then the hypothesis is discarded and 
learners generate a new guess based on the current referential scene.  

Empirical attempts to test these accounts have yielded mixed results. Some 
studies suggest that learners do accumulate knowledge about multiple 
competing referents for a single word (e.g., Dautriche & Chemla, 2014; Smith et 
al., 2011; Yurovsky & Frank, 2015; Yurovsky et al., 2014). For instance, 
Yurovsky and Frank (2015) presented adult participants with trials in which they 
saw between two and eight novel objects and heard a novel word. Participants 
were asked to select the object that they thought the word referred to. On their 
next encounter with the word, participants saw a set of novel objects and either 
the referent they had previously selected (same trials) or one of the objects that 
they had not selected on their previous encounter with the word (switch trials). 
On both trial types, participants selected the repeated referent significantly more 
often than expected by chance. This suggests that in addition to retaining their 
conjecture across observations, participants also retained information about 
other referents that had occurred with the word. 

In contrast, several studies suggest participants retain only a single potential 
referent for a word across observations (Medina et al., 2011; Trueswell et al., 
2013). For example, Trueswell et al. (2013) presented adults with a series trials 
in which a novel label was accompanied by two or five everyday objects. On 
each trial, participants selected the object that they thought the word referred to. 
Examination of participants’ trial-by-trial guesses revealed that when 
participants incorrectly guessed which referent went with a word, they 
performed at chance on the next encounter with that word. In contrast, when the 
participants had guessed correctly on the previous trial, they selected the target 
referent on the next encounter significantly more often than expected by chance. 
These results suggest that learners only remembered their previous guesses. If 
that previous guess was disconfirmed on the next trial, they appeared to be 
incapable of remembering which alternative referents had been present before.  

These two sets of conflicting findings are difficult to reconcile because the 
experiments have differed along many dimensions. These include whether the 
words referred to a single object token or an object category, the number of 
potential referents that occurred on each observation, whether those referents 



 
 

were presented in isolation or in a natural scene, and the interval between 
observations for a given word, among others (for discussion, Yurovsky & Frank, 
2015; Yurovsky et al., 2014). 

Here, however, we focus on one feature that all of these prior studies have 
in common: participants’ knowledge about the potential referents for a word was 
inferred from their patterns of explicit guesses across trials. Although the 
referent that a participant selects provides one index of their knowledge, this 
measure might nevertheless fail to capture valuable information about the 
process by which that selection was made. A given referent selection could be 
arrived at via very different means. A participant might select the correct 
referent for a word because that participant had previously guessed that referent 
and thus confidently selects it again without considering other referents. 
Alternatively, the participant might consider how often each of the available 
referents had occurred with the word in the past and ultimately select the correct 
referent because it had the highest co-occurrence probability. In order to 
distinguish between these two possibilities, one would need to examine the 
participant’s decision-making process as it unfolded in real time. 

One way to capture this decision-making process is via mouse tracking: 
when adults are asked to click on the referent for a spoken word, the velocity, 
duration, and shape of their mouse trajectory is sensitive to real-time 
competition between alternative referents (e.g., Dale, Kehoe, & Spivey, 2007; 
Farmer, Cargill, Hindy, Dale, & Spivey, 2007; Spivey, Grosjean, & Knoblich, 
2005). For instance, Spivey et al. (2005) presented participants with pairs of 
objects on a computer screen; prerecorded audio instructed participants to click 
on one of the objects. When the two objects were phonological competitors 
(e.g., pickle, picture), participants took longer to select the target, achieved 
maximum velocity later along the mouse trajectory, and exhibited more 
deviation toward the distractor as compared to trials in which the two objects’ 
names were phonologically dissimilar. Thus, participants’ mouse trajectories 
revealed competition between alternative referents that was not evident in their 
ultimate selection.  

In the present study, we investigated whether mouse tracking could provide 
new insights into the mechanism underlying cross-situational word learning. As 
participants select a referent for a word, do they consider alternative referents 
that were present on previous trials? To test this question, we devised a novel 
mouse-tracking version of Yu and Smith’s (2007) cross-situational word 
learning paradigm. Participants first viewed a series of training trials in which 
multiple novel labels occurred with multiple referents. Participants then viewed 
test trials in which they heard a single label while viewing four objects. On each 
test trial, participants selected the object that they thought the word referred to, 
and we tracked their mouse movements as they made this selection. In half of 
the test trials (competitor-absent trials), participants saw the target referent and 
three objects that had not previously occurred with the word. In the remaining 
test trials (competitor-present trials), one of the three non-target objects had 
occurred with the word in 50% of the training trials (high-probability 



 
 

competitor). If participants retain co-occurrence information for the set of 
potential referents for a word, then in the competitor-present trials they should 
experience online competition between the high-probability competitor and the 
target as they make their selection. This competition should impact their mouse 
trajectories in the competitor-present trials, resulting in differing patterns of 
motor dynamics across the two trial types. If, however, the participants simply 
track a single conjecture, then the frequency with which the available referents 
had previously occurred with the word should have no influence and mouse 
trajectories should not differ across trial types. 

 
2. Method 
2.1. Participants 
 

208 undergraduate students (Mean age = 19.9, 138 females) completed the 
experiment for course credit. All the participants used their right hand to 
perform the task.  
 
2.2. Stimuli 

 
Referents were high-resolution photos of 18 common objects. Each object 

was paired with a 1- or 2-syllable nonsense word. Words were constructed to be 
phonotactically probable in English and recorded by a female native English 
speaker.  
 
2.3. Design 
 

Participants received 27 training trials and 18 test trials. On each training 
trial, participants saw four objects, one in each corner of the screen, and heard 
four labels played over the computer speaker (see Figure 1). The objects for 
each trial were randomly selected to satisfy three constraints: each word 
occurred six times with its target referent, three times with a high-probability 
competitor referent, and less than three times with all other objects. We 
randomly generated two unique sets of word-object pairs.  

In each test trial, participants saw four objects, one in each corner of the 
screen, and heard a single label. On competitor-present trials, the objects 
consisted of the target, the high-probability competitor, and two objects that had 
appeared in training but had never co-occurred with the word. On competitor-
absent trials, objects consisted of the target and three objects that had occurred 
in training but had not co-occurred with the word. Participants saw one of two 
randomized test orders. The onscreen positions of the objects were randomly 
generated with the constraint that on competitor-present trials the target and the 
distractor could not be diagonally adjacent. This was done to maintain a 
consistent angle between the target and the competitor relative to the central 
starting position. 

 



 
 

 
 
Figure 1. Sample of a single learning trial.  
 
2.4. Procedure 
 

Participants were instructed that they would see a series of objects and hear 
words and afterwards they would be tested on which word went with which 
object. Participants then viewed the training trials on a 65 cm by 45 cm 
computer screen. On each trial, participants saw four objects and heard four 
consecutively presented audio labels. The first label occurred 1s after the onset 
of the trial; each subsequent label occurred 1s after the previous label. Each trial 
lasted 12s; trials were separated by 1s of black screen.  

Following training, participants moved to a second identical computer in an 
adjoining room. Participants were told that they would see sets of objects 
accompanied by a single word and that after hearing each word, they should 
drag the green dot that appeared in the center of the screen to the object that they 
thought matched the word. Participants were told to make their decision as 
quickly and accurately as possible. At the start of each trial, the objects and the 
green dot appeared on screen; after 1s, a single audio label was delivered. The 
green dot was initially locked in place and unlocked at the offset of the label. 
This prevented the participants from making a selection prior to hearing the 
word. Once the participants made a selection by releasing the green dot over one 
of the objects, the trial ended. Trials were separated by 1s of black screen. While 
the participants were performing the task, we recorded the streaming x, y 
coordinates of the computer mouse (sample rate ≈ 71 Hz). 

 
2.5. Data Preprocessing 

 



 
 

On each trial, participants’ final x, y coordinates were taken as their referent 
selection. To examine participants’ real-time decision making, all of the 
trajectories were remapped to orient the target location to the top-right corner. 
This was achieved by inverting the trajectories along the x-axis and y-axis. All 
trajectories were lined up to a common x, y starting position (0, 0), then 
individually normalized by resampling trajectories at 101 equally time-spaced 
values and computing, by means of linear interpolation, the corresponding 
mouse-coordinate values (separately for the x and y coordinate vectors). 

All data analyses were conducted with R 3.1.2 (2014) and the lme4 package 
(Bates, Maechler, Bolker, & Walker, 2015); all plots were created using the 
ggplot2 package (Wickham, 2009). All of the subsequent analysis of variance 
(ANOVA) models include participants as a random effect. 
 
3. Results 
 

 
 
Figure 2. Average proportion of correct responses for the competitor-
present and competitor-absent trials. Error bars represent one standard 
error of the mean. The dashed line indicates chance performance. 
 

Figure 2 shows the proportion of correct target selections, separately by trial 
type. One sample t-tests revealed that participants selected the target 
significantly more often than expected by chance (.25) on both competitor-



 
 

absent trials (M = .50, SD = .24), t(207) = 14.88, p < .001, d = 2.07, and 
competitor-present trials (M = .41, SD = .25), t(207) = 9.22, p < .001, d = 1.28. 
However, a paired samples t-test indicated participants were significantly more 
likely to select the target on competitor-absent trials than on competitor-present 
trials, t(207) = 5.93, p < .001, d = .37. This suggests that the presence of the 
high-probability competitor increased the difficulty of identifying the words’ 
referents.  

To determine whether participants experienced online competition between 
potential referents, we next examined participants’ mouse trajectories. In 
particular, we focused on trials where participants’ selected either the target or 
the high-probability competitor (i.e. referents that had previously co-occurred 
with the word)2. We then separated the trajectories into three trajectory types: 
competitor-absent (795 trajectories), competitor-present correct (target selected; 
454 trajectories), and competitor-present incorrect (high-probability competitor 
selected; 275 trajectories).  

We next examined the participants’ reaction times (from label offset to 
mouse-click release). An ANOVA on participant’s reaction times with trajectory 
type as a within-subject factor revealed a significant main effect of trajectory 
type, F(2, 325) = 6.25, p = .002. Planned comparisons revealed that participants 
were significantly faster at selecting the target on competitor-absent trials (M = 
1586 ms, SD = 879) than competitor-present trials (M = 1727 ms, SD = 962), z = 
-2.77, p = .015. Participants were also faster to select the target on competitor-
absent trials than they were to select the high-probability competitor on 
competitor-present trials (M = 1802 ms, SD = 942), z = -2.91, p = .01. Within 
competitor-present trajectory types, the speed of target responses and high-
probability competitor responses did not differ, z < 1. The fact that participants 
were slower on competitor-present trials than on competitor-absent trials 
suggests that they experienced real-time competition between the target and the 
high-probability competitor.  

To further examine this real-time competition, for each trajectory we 
computed the maximum deviation (MD): the largest positive x-coordinate 
deviation from an ideal response trajectory (i.e. a straight line between the 
starting position and the selected object) for each of the 101 time steps. For each 
participant, we calculated average MD values for each of the three trajectory 
types (see Figure 3). An ANOVA on the participants’ MD with trajectory type 
as a within-subject factor revealed a significant main effect of trajectory type, 
F(2, 325) = 5.41, p = .005. Planned comparisons revealed marginally smaller 
MD values for competitor-absent trajectories (M = 64.74, SD = 66.45) than 
competitor-present correct trajectories (M = 74.96, SD = 76.34), z = -2.29, p = 
.057. Competitor-absent trajectories also exhibited significantly smaller MD 
values than competitor-present incorrect trajectories (M = 81.65, SD = 83.44), z 
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because the angle between the starting position and the object varied across trajectories, 
depending on the object selected.  



 
 

= -2.96, p = .008. The MD values of competitor-present correct and competitor-
present incorrect trajectories did not differ, z < 1. Participants’ tendency to 
deviate more in competitor-present trials suggests consideration of multiple 
referential alternatives.  

 
 
Figure 3. Mean maximum deviation (MD) values separated by trajectory 
type. Error bars represent one standard error of the mean.  
 

Finally, angle information and sample entropy were computed using the 
mousetrack R package (Coco & Duran, 2015). Angle information has been used 
in previous mouse-tracking studies (see Dale et al., 2007) to investigate how 
initial movements deviated from the point of origin. Angle trajectory of mouse 
movements is computed as the angle relative to the y-axis for each sample in a 
trajectory. This provides a single measure that integrates information about x-
axis and y-axis movements. A trajectory starting at the origin and moving 
directly to the participant’s final selection would have a constant angle trajectory 
(45° in our case). If participants experienced competition between referents, then 
this competition should be evident as more complex angle trajectories.  
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To measure the complexity of angle trajectories, we submitted angle trajectory 
to an analysis of sample entropy for each trial (Richman & Mooreman, 2000). 
Sample entropy is an analysis that measures the complexity of a given time 
series. It is robust for small time series (Yentes et al., 2012) and has been used to 
measure the complexity or “disorder” of mouse movement trajectories (Dale et 
al., 2007; McKinstry, Dale, & Spivey, 2008). Sample entropy is computed for 
the angle trajectories by counting the number of similar sequences, m and m+1 
(up to m=5), within a similarity tolerance parameter, 0.2*SDangle trajectory and then 
taking the negative logarithm of the ratio of similar sequence pair across m and 
m + 1, –ln(m/m+1). A time series of similar distances between data points across 
sequence lengths will result in lower sample entropy values. Larger sample 
entropy values are considered to have higher complexity.  

 
 

Figure 4. Average level of angle entropy, separately by trajectory type. 
Error bars represent one standard error of the mean. 
 

We interpret higher values of sample entropy of angle trajectories as 
exhibiting competition effects through more disordered movements toward the 
selected object. Conversely, we interpret lower values of sample entropy as 
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having more ordered, regular movements toward the selected object, i.e., similar 
angle deviations relative to the y-axis across the trajectory. An ANOVA on 
sample entropy (see Figure 4) with trajectory type as a within-subjects factor 
revealed a significant main effect of trajectory type, F(2, 325) = 6.37, p = .002. 
Planned comparisons revealed that trajectories were significantly less complex 
for competitor-absent trajectories (M = .13, SD = .06) than for competitor-
present correct trajectories (M = .14, SD = .07), z = -2.59, p = .026 and 
competitor-present incorrect trajectories (M = .15, SD = .08), z = -3.14, p = .005. 
Within the competitor-present trials, the complexity of the trajectories did not 
differ, z < 1. Participants exhibited an increased back-and-forth pattern when the 
high-probability competitor was present, regardless of whether they ultimately 
selected it. 

Thus, trajectories on competitor-present trials exhibited greater deflection 
and complexity than competitor-absent trials. This suggests that both the target 
and high-probability competitor were partially active as potential response 
alternatives as participants were making their selection. 
 
4. Discussion 
 

Recent studies suggest that adults and children are able to use cross-
situational information to identify the referents of novel nouns under at least 
some circumstances (e.g., Yu & Smith, 2007). However, it remains unclear how 
much information learners retain about the potential referents for a given word. 
The present study attempted to shed light on this question using a novel mouse-
tracking paradigm. Adult participants were exposed to novel words in a series of 
ambiguous learning trials and then tested on their knowledge of the words’ 
referents. In some test trials, participants saw the word’s target referent and three 
alternative referents that had never co-occurred with the word before, while in 
other trials the target referent was accompanied by high-probability competitor 
that had repeatedly occurred with the word during training. Participants were 
faster and more accurate when the high-probability competitor was absent than 
they were when it was present. Moreover, examination of participants’ mouse 
trajectories revealed differing patterns of motor dynamics across the two types 
of test trials: when the high-probability competitor was present, participants 
deviated more from a straight line and followed a more complex path to the 
selected referent.  

These results are inconsistent with what one would expect if learners 
retained only a single conjecture about a word’s meaning. If participants only 
recalled their prior guess for a given word, then when that hypothesized referent 
was present in the test trial, they should have selected it. When that conjecture 
was not present in the test trial, participants should have selected a referent at 
random from the available choices. In either case, the decision-making process 
should not have been affected by how frequently the available referents had 
previously co-occurred with the word. Contrary to this prediction, the speed and 
shape of participants’ response trajectories differed across trial types, suggesting 



 
 

that participants were sensitive to the fact that both high-probability competitor 
and target previously co-occurred with the word. 

Thus, our results suggest that learners can accrue information about 
multiple potential referents for a word. Of course, this does not necessarily 
imply that learners retain perfect co-occurrence statistics for all potential 
referents for a word, nor that they are able to track multiple potential referents in 
all situations. The amount of co-occurrence information that learners are able to 
retain likely depends on a variety of factors, including how many referents 
present on a given observation (Smith et al., 2011; Yurovsky & Frank, 2015) 
and whether those referents occur in semantically coherent or themed referential 
contexts (Dautriche & Chemla, 2014). Our results simply demonstrate that under 
some conditions, learners are capable of tracking at least two potential referents 
that frequently co-occur with a word. 

More generally, our results demonstrate that continuous measures can 
provide information not evident in discrete guesses. For instance, our forced-
choice measure revealed that participants’ were more accurate on competitor-
absent than on competitor-present trials. This finding could reflect the fact that 
participants were tracking multiple potential referents for each word and the 
resulting competition between the target and high-probability competitor 
increased the difficulty of the competitor-present trials. However, one could also 
offer a conjecture-based explanation for this same finding. Unlike competitor-
absent trials, competitor-present trials included two referents that had previously 
co-occurred with the word. These trials therefore afforded the opportunity to 
confirm an incorrect conjecture: if participants previously guessed that the word 
referred to the high-probability competitor, they would select it if present, 
resulting in lower accuracy on competitor-present trials. Examining participants’ 
mouse trajectories as they made their guesses allowed us to tease apart these two 
possibilities: the differing patterns of motor dynamics across the two trial types 
indicated that participants experienced competition between the high-probability 
competitor and the target. Even when participants ultimately selected the target, 
the way in which they did so differed when the high-probability competitor was 
present. These results thus suggest that assessing the decision-making process in 
real-time reveals information not captured by forced-choice measures. 

Converging evidence for this conclusion comes from Trueswell et al. 
(2013), who eye-tracked participants as they performed their cross-situational 
learning task. Recall that Trueswell et al. (2013) found that when participants 
incorrectly guessed the referent for a word, they performed at chance on their 
next encounter with that word, suggesting that they retained only their previous 
conjecture. In contrast to their forced-choice responses, participants’ eye 
movements suggested that under some conditions, they retained knowledge of 
multiple referents. Specifically, when participants saw only two referents on 
each trial, they looked significantly longer at the target than the competitor 
referent, regardless of whether they had guessed correctly on their previous 
encounter with a word. Together with our findings, these results suggest that 
continuous measures have the potential to capture fine-grained information that 



 
 

learners retain about alternative referents, even when this information does not 
appear to impact their overt guesses. 

Our results thus suggest that mouse tracking offers a promising avenue for 
exploring the mechanisms behind cross-situational word learning. Future studies 
could potentially incorporate mouse tracking into cross-situational paradigms in 
which participants select a referent on each exposure to a word (e.g., Smith et 
al., 2010; Trueswell et al., 2013). Combining mouse tracking with repeated 
testing could provide new insight into the amount of fine-grained information 
participants retain on a given exposure as well as how this information changes 
across encounters. Finally, recent work suggests that when learners receive 
similar cross-situational evidence for two potential referents for a word, this can 
disrupt cross-situational learning (e.g., Bunce & Scott, in press; Yurovsky et al., 
2013). Mouse tracking could be used to examine the influence of carefully 
controlled co-occurring distracters in order to better understand when and how 
competition between referents leads to breakdowns in cross-situational word 
learning. 
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