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Fluctuating hydrodynamics (FHD) provides a framework for modeling microscopic fluctua-
tions in a manner consistent with statistical mechanics and nonequilibrium thermodynamics.
This paper presents an FHD formulation for isothermal reactive incompressible liquid mixtures with
stochastic chemistry. Fluctuating multispecies mass diffusion is formulated using a Maxwell–Stefan
description without assuming a dilute solution, and momentum dynamics is described by a stochastic
Navier–Stokes equation for the fluid velocity. We consider a thermodynamically consistent general-
ization for the law of mass action for non-dilute mixtures and use it in the chemical master equation
(CME) to model reactions as a Poisson process. The FHD approach provides remarkable compu-
tational efficiency over traditional reaction-diffusion master equation methods when the number of
reactive molecules is large, while also retaining accuracy even when there are as few as ten reac-
tive molecules per hydrodynamic cell. We present a numerical algorithm to solve the coupled FHD
and CME equations and validate it on both equilibrium and nonequilibrium problems. We simulate
a diffusively driven gravitational instability in the presence of an acid-base neutralization reaction,
starting from a perfectly flat interface. We demonstrate that the coupling between velocity and con-
centration fluctuations dominates the initial growth of the instability. Published by AIP Publishing.
https://doi.org/10.1063/1.5043428

I. INTRODUCTION

Thermal fluctuations in fluids arise from random molec-
ular motions, driving both microscopic behavior and macro-
scopic behavior that deterministic models fail to predict. In dif-
fusive mixing experiments, velocity fluctuations lead to giant
fluctuations in concentration in the presence of concentration
gradients.1 Buoyancy-driven instabilities can be triggered or
affected by thermal fluctuations.2,3 In reaction-diffusion sys-
tems, thermal fluctuations can accelerate the formation of
Turing patterns on a macroscopic time scale4 and induce long-
time memory in the chemical kinetics of a diffusion-limited
system.5

In this paper, we develop a formulation and numerical
methodology for the stochastic simulation of reactive microflu-
ids. Here we incorporate a stochastic description of chemical
reactions based on the chemical master equation (CME)6 into
an isothermal fluctuating hydrodynamics (FHD)7,8 descrip-
tion of diffusive and advective mass transport. Hence, our
proposed algorithm combines discrete processes (CME for
reactive processes) and continuous processes (FHD for
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transport processes); a similar idea has been used for the sim-
ulation of the Boltzmann equation.9–11 The use of the CME
enables us to correctly capture large fluctuations of composi-
tion, going beyond the Gaussian approximation inherent in the
chemical Langevin equation (CLE) used in our prior work.12

While our previous work on reaction-diffusion systems4 also
employed the CME, it was restricted to dilute solutions. Here
we generalize the CME to non-dilute ideal mixtures with
a complete Maxwell–Stefan formulation of diffusive trans-
port in multispecies mixtures. This includes cross-diffusion
coupling among distinct species and can account for devi-
ations from ideality, unlike the standard reaction-diffusion
master equation (RDME) approach.13–15 Finally, by includ-
ing the fluctuating Navier–Stokes equations in the model, we
account for advection by thermal velocity fluctuations, which
is necessary to capture giant nonequilibrium composition
fluctuations.10,11,16

Our approach is related to, but also distinct from, prior
work on fluctuating hydrodynamics for reactive liquid mix-
tures. An alternative Langevin-based approach proposed in
Ref. 17, and extended to full hydrodynamics in Ref. 18, repre-
sents reactions as a diffusion process along an internal reaction
coordinate, driven by the Gaussian noise. This description
is fully consistent with nonequilibrium thermodynamics and
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fluctuating hydrodynamics, but is not easily extensible to
multispecies mixtures, and, importantly, is expensive to use
in numerical simulations because it requires introducing an
additional reaction coordinate, thus effectively increasing the
dimensionality of the problem. Instead, in our approach, we
only consider the reactant and product states and consider reac-
tions as a jump process between these two states, driven by the
Poisson noise. The deterministic (macroscopic) as well as a lin-
earized version of the FHD equations we consider here is the
same as that obtained from a quasi-stationary approximation
of the model developed in Ref. 18 [see Eq. (26) in Ref. 18 and
the book by Keizer19), as we have discussed in more detail in
prior work.12 The key difference is that here we describe chem-
ical fluctuations using a nonlinear FHD description based on a
master equation, rather than a linearized Langevin description.
This is common in stochastic reaction-diffusion models used
in biochemical modeling,20,21 as we have discussed in more
detail in prior work.4 However, traditional RDME descriptions
have been restricted to dilute solutions and do not account for
velocity (momentum) fluctuations. More broadly, biochem-
ical reaction-diffusion models have largely been developed
without input from the field of (non)equilibrium thermody-
namics, and especially fluctuating hydrodynamics. Here we
bridge this gap by combining features of the RDME with
FHD, thus delivering on the promise made in Ref. 4 to
“explore combining Langevin and CME approaches together,
thus further bridging the apparent gap between the two.”
Giant nonequilibrium fluctuations, which arise due to the
coupling with velocity fluctuations, have been studied theo-
retically using linearized FHD for a dimerization reaction in
Refs. 22 and 23. Here we study giant fluctuations in a liq-
uid mixture undergoing a dimerization reaction numerically
and show that a quantitatively accurate theoretical description
is difficult due to the nonlinearity of the macroscopic steady
state.

In this work, we simplify our previous variable-density
low Mach FHD formulation by restricting it to miscible liquid
mixtures,3 in which the density is essentially independent of
composition at a fixed pressure and temperature. The resulting
Boussinesq (incompressible) approximation of the momentum
equation enables us to construct an efficient numerical method
that accounts for inertial effects important in buoyancy-driven
fluid flows yet remains robust for small Reynolds numbers
and large Schmidt numbers. The spatio-temporal discretiza-
tion of the FHD equations is based on our previous work3

but with some important improvements necessary for simulat-
ing complex reactive mixtures at small length scales. Notably,
we extend our previous work on reaction-diffusion systems4

to general multispecies mixtures so that large deviations of
composition are handled accurately and robustly, and negative
densities are avoided.

We follow a general framework for the systematic con-
struction of FHD numerical methods based on the stochastic
version of the method of lines approach.24 Using this frame-
work, we have previously developed stochastic simulation
methods for gas mixtures25 and quasi-incompressible miscible
liquid mixtures.3,26,27 For liquid mixtures, we have developed a
computationally efficient low Mach number model that elimi-
nates fast pressure waves while preserving the spatio-temporal

spectrum of the slower diffusive fluctuations.27 To avoid severe
restriction on the time step size when the Schmidt number is
large, we have developed an implicit temporal discretization
of viscous dissipation26 that relies on a variable-coefficient
multigrid precondition to solve the coupled velocity-pressure
Stokes system.28

In this paper, we make three novel contributions to the
numerical methodology developed in our prior work. First, by
incorporating a second-order midpoint tau-leaping scheme29

into our prior algorithms for multispecies miscible liquid
mixtures,3 we construct a numerical method that efficiently
samples reactions at a cost no larger than that of integrating
the chemical Langevin equation. Because our novel midpoint
temporal integrator solves the CME by using tau leaping,30

it is robust for large composition fluctuations, while also
being efficient for weak fluctuations. Second, the midpoint
scheme is constructed to be robust for large Schmidt num-
bers, i.e., much faster momentum diffusion compared to mass
diffusion, as is typical in liquid systems. In particular, the
numerical method reproduces the correct spectrum of giant
nonequilibrium fluctuations even for time step sizes much
larger than the stability limit dictated by fast momentum dif-
fusion, while also preserving the slow inertial momentum
dynamics at large scales. Third, we take careful attention
to handling vanishing species robustly both in the formula-
tion of the multispecies diffusion model and in the numerical
algorithm.

The rest of the paper is organized as follows. In Sec. II,
we present the formulation of the FHD equations coupled with
the CME formulation of reactions. In Sec. III, we present a
numerical scheme that can solve these equations accurately
and robustly even in the presence of large composition fluctu-
ations and vanishing species. In Sec. IV, we present numerical
results for four examples and discuss various aspects of our
numerical method and the effects of thermal fluctuations. First,
we verify that for dilute solutions our algorithm preserves the
robustness and accuracy properties of our previous method
for reaction-diffusion systems4 by modeling the hydrolysis of
sucrose at micrometer scales. Second, to assess the fidelity
of our approach in a non-dilute setting, we consider a binary
mixture undergoing a dimerization reaction 2A
 A2 at ther-
modynamic equilibrium with a small number of molecules per
cell. Third, we also study such a mixture out of equilibrium in
the presence of giant nonequilibrium fluctuations with a large
number of molecules per cell. Fourth, we use our numerical
algorithm to simulate a diffusively driven gravitational insta-
bility in the presence of an acid-base neutralization reaction
recently studied experimentally2 and show that the coupling
between velocity and concentration fluctuations triggers and
drives the instability at early times. In Sec. V, we conclude
the paper with a brief summary and a discussion of future
directions.

II. REACTIVE FLUCTUATING HYDRODYNAMICS

Our formulation relies on several approximations appro-
priate for many isothermal miscible liquid mixtures. First,
we neglect the effects of thermodiffusion and barodiffusion
on mass transport and assume constant temperature T and
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thermodynamic pressure P. Second, we assume that density
variations due to composition are small enough that they
have no effect on the flow field except through a buoyancy
force. Hence, we formulate our FHD system as an isothermal
Boussinesq simplification of the low Mach number multi-
species model used in Ref. 3. While a numerical method can
be potentially constructed without these approximations, the
Boussinesq formulation greatly reduces the complexity of the
numerical scheme without losing essential physics.

Given these approximations, we recast the continuity
equation for mass density as a divergence-free constraint on
velocity and assume a constant density ρ0,

ρ0
∂v

∂t
+ ∇π = −ρ0∇ · (vv

T) + ∇ · (η∇̄v + Σ) + f , (1)

∇ · v = 0, (2)

ρ0
∂ws

∂t
= −ρ0∇ · (wsv) − ∇ · Fs + msΩs. (3)

Here, v is the fluid velocity, π is the mechanical pressure
(a Lagrange multiplier that ensures that the velocity remains
divergence free31), η(w) is the viscosity, ∇̄ = ∇+∇T is a sym-
metric gradient, and Σ is the stochastic momentum flux. By
denoting the number of species with N spec, the vector of mass
fractions (concentrations) is given by w = (w1, . . . , wNspec ),
where ws is the mass fraction of species s and

∑
sws = 1. We

compute the mass density of each species using ρs = ρ0ws, and
thus the total mass density

∑
sρs = ρ0 is strictly constant. The

buoyancy force f (w) is a problem-specific function of w. The
total diffusive mass flux Fs of species s is decomposed into a
dissipative flux Fs and fluctuating flux F̃s,

Fs = Fs + F̃s, (4)

and msΩs represents a source term representing stochastic
chemistry, where ms is the molecular mass andΩs is the num-
ber density production rate for species s. Note that by summing
up (3) over all species, we recover (2) since

∑
sFs = 0 and∑

smsΩs = 0. Based on the fluctuation-dissipation relation, the
stochastic momentum flux Σ is modeled as

Σ =
√
ηkBT

[
Zmom + (Zmom)T

]
, (5)

where kB is Boltzmann’s constant, and Zmom(r, t) is a stan-
dard Gaussian white noise (GWN) tensor field with uncorre-
lated components having δ-function correlations in space and
time.

We formulate multispecies diffusion in Sec. II A and
chemistry in Sec. II B. It is important to note that both the dif-
fusion and chemistry formulations are obtained from a general
form of the specific chemical potential for each species,

µs(x, T , P) = µ0
s (T , P) +

kBT
ms

log(xsγs), (6)

where µ0
s (T , P) is a reference chemical potential and γs(x, T, P)

is the activity coefficient (for an ideal mixture, γs = 1). Here
x denotes mole fractions, which can be expressed in terms
of w as

x = m̄

(
w1

m1
, . . . ,

wNspec

mNspec

)
, (7)

where m̄ is the mixture-averaged molecular mass,

m̄ = *
,

∑
s

ws

ms

+
-

−1

. (8)

In Sec. II C, we confirm the thermodynamic consistency of
our formulation by showing that thermodynamic equilibrium
is determined by the chemical potentials and that transport
processes and reactions do not change equilibrium statistics.
In Sec. II D, we discuss the simplification of our model for
dilute solutions.

A. Multispecies diffusion

Here we summarize the FHD description of multispecies
diffusion formulated in Ref. 3. Neglecting thermodiffusion
and barodiffusion, the Maxwell–Stefan formulation of the
diffusion driving force gives

Γ∇x = −ρ−1
0 ΛW−1F, (9)

where Γ is the matrix of thermodynamic factors that becomes
the identity matrix for ideal mixtures and W is a diagonal
matrix with entries w. The symmetric matrix Λ is defined
via

Λss′ = −
xsxs′

−Dss′
if s , s′ and Λss = −

∑
s′,s

Λss′ , (10)

where −Dss′ is the Maxwell–Stefan binary diffusion coefficient
between species s and s′. Denoting a pseudo-inverse of Λwith
χ, we can rewrite (9) as

F = −ρ0WχΓ∇x. (11)

The stochastic mass fluxes F̃ are given by the fluctuation-
dissipation relation

F̃ =
√

2m̄ρ0 Wχ
1
2 Zmass, (12)

where χ
1
2 is a “square root” of χ satisfying χ

1
2 (χ

1
2 )T = χ,

andZmass(r, t) is a standard GWN field with uncorrelated com-
ponents. Modifications of this formulation in the presence of
trace or vanishing species are discussed in Sec. III A.

B. Chemical reactions

We consider a liquid mixture undergoing N react elemen-
tary reversible reactions of the form

Nspec∑
s=1

ν+
srMs 


Nspec∑
s=1

ν−srMs (r = 1, . . . , Nreact), (13)

where ν±sr are the molecule numbers andMs are chemical sym-
bols. We define the stoichiometric coefficient of species s in
the forward reaction r as ∆ν+

sr = ν
−
sr − ν

+
sr and the coefficient in

the reverse reaction as ∆ν−sr = ν
+
sr − ν

−
sr . We assume that mass

conservation holds in each reaction r; i.e.,
∑

s ∆ν
±
srms = 0 for

all r. It is important to note that all reactions must be reversible
for thermodynamic consistency.

To sample Ωs, we need propensity density functions a±r
for the forward/reverse (+/-) rates of reaction r. Specifically,
the mean number of reaction occurrences in a locally well-
mixed reactive cell of volume ∆V during an infinitesimal time
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interval dt is given as a±r ∆Vdt. Accordingly, the mean number
density production rate of species s is given as

Ωs =
∑

r

∑
α=±

∆ναsraαr . (14)

In Sec. II B 1, we give a generalized law of mass action (LMA)
based on thermodynamically consistent a±r , and in Sec. II B 2,
we present a CME-based stochastic formulation of chemical
reactions.

1. Generalized law of mass action

Here we adopt the canonical form for the rate of chemi-
cal reactions.19,32 Propensity density functions are expressed
as12

a±r = λr

∏
s

eν
±
sr µ̂s , (15)

where λr(T, P) ≥ 0 is a reaction rate parameter assumed to
be independent of the composition and µ̂s = msµs/kBT is the
dimensionless chemical potential per particle. For the general
form of chemical potential (6), we have

a±r = κ
±
r

∏
s

(xsγs)
ν±sr , (16)

where κ±r (T , P) = λr
∏

s exp(ν±sr µ̂
0
s ) denotes the for-

ward/reverse reaction rate constant. From the condition
a+

r = a−r at chemical equilibrium, we can express the
equilibrium constant as a purely thermodynamic quantity,

Kr(T , P) =
κ+

κ−
= exp*

,
−

∑
s

∆ν+
sr µ̂

0
s

+
-
, (17)

as required by statistical mechanics.
It is important to note that propensity density functions

and equilibrium constants are expressed in terms of mole frac-
tions xs (for ideal mixtures) or activities xsγs. This generalized
LMA has a different form compared to the number density
based LMA used for ideal gas mixtures in our prior work.12

However, this does not imply any incompatibility between
the two forms of LMA. For isothermal gas mixtures, pres-
sure changes significantly upon reaction due to changes in
mole numbers and thus κ±r (T , P) cannot be assumed to be con-
stant. On the other hand, in liquid mixtures, where pressure
changes are not significant, κ±r (T , P) can be assumed to be
constant.

2. CME-based stochastic chemistry

We believe that an accurate mesoscopic chemistry
description should be based on a master equation approach,
which leads to the CME20 for well-mixed33 systems. As will
be demonstrated in Sec. III A, both the CME description
and the generalized LMA are crucial for achieving thermo-
dynamic consistency. Note, however, that our CME-based
description itself does not require reversible reactions. For
modeling purposes, one can exclude some forward or reverse
reactions by assuming that they have zero rates. However, we
remind the reader that this is inconsistent with equilibrium
thermodynamics.

For reactions in a closed well-mixed cell of volume
∆V, the CME describes the time evolution of the system in

terms of the temporal change in the probability of the
system to occupy each state (specified by the number of
molecules of each species). We use an equivalent, but more
direct, trajectory-wise representation,4 which is related to the
computationally efficient tau leaping method.30 The change
in the number of molecules N s of species s in a given
cell during an infinitesimal time interval dt is expressed in
terms of the number of occurrences P(a±r ∆Vdt) of each re-
action r,

dNs = Ωs∆Vdt =
∑

r

∑
α=±

∆ναsrP(aαr ∆Vdt), (18)

where P(m) denotes the Poisson random variables with mean
m. Note that the instantaneous rate of change is written as an
Ito stochastic term. The tau leaping method discretizes (18)
with a finite time step size ∆t. To faithfully model the dis-
crete nature of reactions, we sample integer-valued reaction
counts using Poisson random numbers as in the traditional
tau leaping algorithm. However, it is important to note that
we use continuous-ranged number densities for advection-
diffusion, and therefore cells are not guaranteed to have an
integer number of molecules.

We note that a Gaussian approximation of the Poisson
random number P(a±r ∆Vdt) in (18) leads to the chemical
Langevin equation (CLE). In this Langevin (Gaussian noise)
approximation,4,12

Ω
CLE
s =

∑
r

∑
α=±

∆ναsr

(
aαr +

√
aαr Zreact

r

)
, (19)

whereZreact
r (r, t) denotes a standard GWN field. The Langevin

description is justified in the limit of small Gaussian fluc-
tuations with respect to average concentrations.20 However,
the Langevin description predicts an unphysical equilibrium
state with negative densities and does not correctly model
large deviations of chemical fluctuations.12 By contrast, the
tau leaping method correctly reproduces the large devia-
tion functional of the CME, while still remaining as effi-
cient as the CLE [see the discussion around Eq. (8.1) in
Ref. 34].

C. Thermodynamic consistency

We now demonstrate the thermodynamic consistency of
our formulation for ideal mixtures at thermodynamic equilib-
rium. For the simplicity of exposition, we consider a binary
liquid mixture of A atoms and A2 molecules undergoing a
dimerization reaction

2A 
 A2, (20)

noting that this analysis also applies to multispecies ideal mix-
tures. In Sec. III A, we consider the single-cell (homogeneous)
case. We obtain the thermodynamic equilibrium distribution
of monomers and dimers to show that our chemistry model
satisfies detailed balance with respect to the correct Einstein
equilibrium distribution. In Sec. III B, we consider the spatially
extended case. We show that the governing Boussinesq equa-
tions give flat structure factors at thermodynamic equilibrium
in the Gaussian approximation, in agreement with statistical
mechanics.
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1. Single-cell system

We denote the number of monomers and dimers as N1 and
N2, respectively. By the constant density approximation, N1

and N2 satisfy N1 + 2N2 = ρ0∆V /m ≡N0, where m is the mass
of a monomer and N0 is the total number of A atoms in a cell
of volume ∆V. Hence, we denote the equilibrium distribution
of the composition with P(N2).

Statistical mechanics predicts that the equilibrium distri-
bution is given by the Einstein distribution, P ∼ eS/kB , where
S denotes the entropy of the system at a given state. Note
that even though we consider isothermal systems, we can still
use the Einstein distribution since the only contribution to
the free energy that depends on composition is the entropy
of mixing. For a binary ideal mixture, the entropy of mixing is
given as

Smix(N1, N2) = kB log
(N1 + N2)!

N1!N2!
, (21)

and the entropy of the system is

S(N1, N2) = Smix(N1, N2) − kB(N1 µ̂
0
1 + N2 µ̂

0
2). (22)

Hence, we obtain the equilibrium distribution

P(N2) ∼ eS(N0−2N2,N2)/kB (23)

with
∑N0/2

N2=0 P(N2) = 1. Note that it is straightforward to obtain
the ratio of occupation probabilities of adjacent states,

P(N2 + 1)
P(N2)

=
(N0 − 2N2)(N0 − 2N2 − 1)

(N0 − N2)(N2 + 1)
exp(2 µ̂0

1 − µ̂
0
2). (24)

We now analyze when detailed balance is achieved for
the dimerization reaction (20) with respect to the equilibrium
distribution P(N2). The detailed balance condition is given as

P(N2)a+(N2) = P(N2 + 1)a−(N2 + 1), (25)

where a±(N2) denote the forward/reverse rates at the state with
N2 dimers, which are to be determined. By using (17) and (24),
one can show that the detailed balance condition (25) exactly
holds for

a+(N2) ≡ κ+
(

N1

N1 + N2

) (
N1 − 1

N1 + N2 − 1

)
, (26a)

a−(N2) ≡ κ−
(

N2

N1 + N2

)
, (26b)

with N1 = N0 − 2N2. It is important to note that (26) reduces
to a+ = κ+x2

1 and a− = κ−x2 in the thermodynamic limit.
Hence, (26a) can be considered as an integer-based correc-
tion to the generalized LMA (16); this correction makes sense
because the probability of choosing a second monomer is
(N1 − 1)/(N1 + N2 − 1). Such integer corrections are well
known for low density solutions and used in most RDME
models of reaction-diffusion systems, but to our knowledge
they have not previously been formulated for non-dilute ideal
mixtures.

In the thermodynamic limit, we can apply Stirling’s
approximation to (21) and express chemical potentials in (22)
in terms of equilibrium mole fractions xeq

s , to give

SStirling = Seq − kBN
∑

s

xs log(xs/x
eq
s ), (27)

where Seq denotes the entropy at xeq and N =
∑

sN s. We can
further approximate SStirling up to second order in δxs = xs

− xeq
s (s = 1, . . ., N spec − 1), to get a Gaussian approximation

to the Einstein distribution. This Gaussian approximation is
described by linearized FHD, and we study it in more detail,
including spatial dependence, next.

2. Spatially extended system

We can extend the dimerization results obtained for the
single-cell case to the spatially extended case. For an ideal
mixture, the total entropy of the system is additive over the
individual cells,

Stot =
∑

i

S(N0 − 2N (i)
2 , N (i)

2 ), (28)

where N (i)
2 denotes the number of dimers in cell i. Therefore,

the Einstein distribution for the spatially extended system is
the product distribution

Ptot =
∏

i

P(N (i)
2 ). (29)

This means that the number of dimers in each cell is indepen-
dent of those in the other cells and has the same distribution
as the single-cell case.

We note that our FHD model of multispecies diffusion
is constructed so that it reproduces the correct Einstein dis-
tribution under Stirling’s approximation; i.e., our model is
consistent with (27) and (28). Hence, the combined chem-
istry and FHD model is expected to give the correct equi-
librium distribution, as long as there are sufficiently many
molecules of all species in each cell to justify the continu-
ous approximation. In Sec. IV B, we numerically confirm that
our method gives an accurate approximation to (29) even when
there are significant fluctuations of composition, with as few as
N2 ∼ 10 dimers per cell.

At the level of a Gaussian approximation, we can inves-
tigate the system analytically using the linearized FHD equa-
tions. We denote the mass fractions of monomers and dimers as
w and 1 − w, respectively. We assume that w fluctuates around
w̄. At equilibrium, our FHD equations (1)–(3) are linearized
for v = δv and w = w̄ + δw as follows:

∂t(δv) = −ρ
−1
0 ∇π + ν∇2(δv)

+
√
νkBT ρ−1

0 ∇ ·
[
Zmom + (Zmom)T

]
, (30a)

∇ · (δv) = 0, (30b)

∂t(δw) = D∇2(δw) +
√

2DkBT ρ−1
0 µ−1

w ∇ · Zmass + ρ−1
0 mΩlin

1 ,

(30c)

where ν = η/ρ0, D = −D12, and µw is the second order derivative
of Gibbs free energy with respect to concentration w, given as
µw = kBT/[mw̄(1 − w̄2)] for an ideal mixture. The linearized
reaction term is denoted by ρ−1

0 mΩlin
1 .

We denote the equilibrium structure factors (spectra) by
Seq
v,v (k) = 〈δ v̂δ v̂∗〉 and Seq

w,w(k) = 〈δŵδŵ∗〉, where the hat
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denotes a Fourier transform and the asterisk denotes a con-
jugate transpose. Noting that the concentration equation is
uncoupled from the momentum equation, these structure fac-
tors can be obtained separately. For the non-reactive case, they
are independent of k,27

Seq
v,v =

kBT
ρ0

I, Seq
w,w =

kBT
ρ0µw

=
m
ρ0
w̄(1 − w̄2). (31)

It is easy to show that the spatial correlations of the compo-
sition fluctuations Seq

w,w are fully consistent with the Gaussian
approximation of (29).

For the reactive case, (30c) contains the stochastic chem-
istry term

ρ−1
0 mΩlin

1 = −r(δw) +

√
8m2(1 − w̄)

ρ2
0(1 + w̄)

κ− Zreact, (32)

where the linearized reaction rate is

r =
4m

ρ0w̄(1 + w̄)2
κ−. (33)

This is obtained by linearizing the Langevin expression (19).
One can easily show that the inclusion of the reaction term does
not change Seq

w,w , consistent with thermodynamic equilibrium.
This explicitly confirms that our formulation is consistent with
equilibrium statistical mechanics at the level of a Gaussian
approximation of the fluctuations.

D. Dilute limit

One of the common assumptions in traditional reaction-
diffusion modeling is that each chemical species is dilute and
thus diffuses independently of other species. In this section, we
explain how our formulation simplifies in the dilute limit. We
consider a solution where all solute species are dilute (i.e.,
xs � 1), but the solvent is possibly a homogeneous mix-
ture. We use index s here to denote only solute species. In
the dilute limit, γs → 1 and the solute number densities are
linearly proportional to their mole fractions, ns ≈ (ρ0/m̄sol)xs,
where m̄sol is the mixture-averaged molecular mass among
solvent species; see (8). Hence, µ̂s can be expressed in terms
of ns,

µ̂s =

(
µ̂0

s + log
m̄sol

ρ0

)
+ log ns, (34)

and consequently, the generalized (mole fraction based) LMA
can be cast into the form of the traditional (number density
based) LMA,

a±r = k±r
∏

s

nν
±
sr

s , (35)

where k±r denote the reaction rate constants.
In the dilute limit, multispecies diffusion also becomes

simpler. In Appendix A, we consider the dilute limit of a single
solute species dissolved in a solvent mixture and show that
the diffusion of the solute species is decoupled from solvent
species; see (A8). It is straightforward to extend this result to
multiple solute species. The diffusion coefficient of each solute
species s then becomes a constant, that is, decoupled from the
other species, yielding

∂

∂t
ns = Ds∇

2ns + ∇ ·
[√

2DsnsZs

]
+Ωs, (36)

whereΩs represent the stochastic chemistry terms based on the
LMA (35). Therefore, in the absence of fluid flow, our formula-
tion is reduced to our previous reaction-diffusion model4 in the
dilute limit. Note that jump processes and diffusion processes
are combined in (36) and the time evolution of the probability
distribution of n = {ns} can be described by the differential
Chapman–Kolmogorov equation.13

III. NUMERICAL METHOD

In developing a numerical method to solve (1)–(3), we
seek an approach that

• exhibits second-order accuracy in space and time deter-
ministically and second-order weak accuracy in time
for the linearized FHD equations;35

• reduces to our previous method for reaction-diffusion
systems4 in the dilute limit, in the absence of fluid
flow;

• generates accurate structure factors for both equilib-
rium and giant fluctuations, even for large Schmidt
numbers;

• is robust in the presence of trace or vanishing species.

We explain below how our design decisions satisfy these
requirements. In Sec. III A, we review our spatial discretiza-
tion scheme and discuss robust numerical approaches for
avoiding negative densities and treating vanishing species. In
Sec. III B, we present our temporal integration scheme. In
Sec. III C, we analyze the weak accuracy of our temporal
integrator.

A. Spatial discretization

Our spatial discretization is identical to the one used
in our previous work on non-reactive FHD,3,26,27,36 with a
few modifications noted below. The numerical framework is
a structured-grid finite-volume approach with cell-averaged
densities and pressure and face-averaged (staggered) veloci-
ties. We use standard second-order stencils for the gradient,
divergence, and spatial averaging in order to satisfy discrete
fluctuation-dissipation balance.24

For the densities, we construct all mass fluxes on faces
and employ the standard conservative divergence. For the
advective mass fluxes, we implement two options. Centered
advection uses two-point averaging of densities to faces, is
nondissipative, and thus preserves the spectrum of fluctua-
tions.24 However, in order to prevent unphysical oscillations
in mass densities in high Péclet number flows with sharp
gradients, we can also use the Bell–Dawson–Shubin (BDS)
second-order Godunov advection scheme.37,38 We note that
BDS advection adds artificial dissipation and does not obey
a fluctuation-dissipation principle but is necessary for sim-
ulations where centered advection would fail due to insuf-
ficient spatial resolution. All simulations in this paper use
centered advection unless otherwise noted. The discretiza-
tion of the momentum equation is the same as our previ-
ous work.3,26 We allow for periodic boundary conditions,
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impermeable walls, and no-flow reservoirs27,36 held at fixed
concentrations.

The first modification relative to our previous work3 is
that for the stochastic mass fluxes F̃, we compute the matrix√

2m̄ρ0Wχ
1
2 directly on the face using spatially averaged den-

sities rather than computing this matrix at cell centers and
averaging to faces. To compute the spatial averages, we use a
modified arithmetic averaging function,4

ñ(n1, n2) =
n1 + n2

2
H(n1∆V )H(n2∆V ), (37)

where n1 and n2 denote the number densities at the cell cen-
ters of two neighboring cells and H is a smoothed Heaviside
function, defined as

H(x) =




0 for x ≤ 0,

x for 0 ≤ x ≤ 1,

1 for x ≥ 1.

(38)

Specifically, we first convert cell-centered mass fractions to
number densities, then apply ñ to obtain face-centered num-
ber densities, and finally convert these back to mass fractions
that are used to compute

√
m̄Wχ

1
2 . We note that ñ drives

the average (and thus stochastic flux) to zero if the number
of molecules in either neighboring cell is sufficiently small
(i.e., ni∆V ≤ 1), which prevents the occurrence of negative
number densities. In most cases of interest, small numbers
of molecules per cell correspond to dilute species. For dilute
species [see (36)], the validity of using ñ has been justified in

Ref. 4. In Sec. IV B, we numerically confirm that our approach
is robust even when the total number of molecules in a cell
is O(10).

Another key modification is the computation of the diffu-
sion matrix χ for the deterministic and stochastic mass fluxes
in the absence of some species or in the presence of van-
ishing species. In the vanishing limit, where one or more
concentrations become zero, the diffusion matrix χ is not
well conditioned since the corresponding diagonal compo-
nent χss diverges. This can cause numerical issues when one
attempts to compute F and F̃ since they depend on Wχ and
Wχ

1
2 , respectively. Unlike χ, however, the matrices Wχ and

WχW are well defined in the vanishing limit, and we can con-
struct Wχ using a special procedure. The basic idea is that we
first compute a diffusion sub-matrix χsub of χ with the rows
and columns corresponding to each vanishing species omit-
ted. Then we expand this sub-matrix into the full matrix Wχ
and approximate the remaining components using the mathe-
matical limit of vanishing species, ws → 0+, for all vanishing
species s.

To formally describe the procedure for computing Wχ
in the vanishing limit, we introduce a mapping, m(i), used
to expand/contract a subsystem matrix to/from a full matrix.
For example, in a 6-species system having vanishing species
w2 and w4, we have m(i) = (1, 0, 2, 0, 3, 4), i = (1, . . .,
6). As graphically illustrated using the 6-species system in
Fig. 1, there are four cases to consider when one populates
(Wχ)ij,

(Wχ)ij =




wi χ
sub
m(i)m(j), m(i) , 0,m(j) , 0 (yellow), (39a)

miDi

m̄
, m(i) = 0, j = i (red), (39b)

0, m(i) = 0, j , i, (39c)

wiDj

[ ∑
k

m(k),0

xk

−Dkj
χsub
m(i)m(k) −

mj

m̄

]
, m(i) , 0,m(j) = 0 (blue), (39d)

where

Dj =

[ ∑
k

m(k),0

xk

−Dkj

]−1

. (40)

Note that color names in the parentheses in (39) correspond to
the colors in Fig. 1. A derivation of (39) and (40) is presented
in Appendix A. The full matrix Wχ

1
2 can be obtained from the

Cholesky decomposition of the symmetric matrix WχW . We
note that if species s is vanishing, then (WχW)is = (WχW)sj

= 0, so no stochastic mass flux is generated for species s.
We note that for each vanishing species only the diago-

nal element of Wχ remains nonzero. Hence, the diffusion of
a dilute species s (ws � 1) becomes decoupled from other

FIG. 1. Graphical depiction of the expansion of sub-matrix χsub into a full
matrix Wχ for a 6-species system having vanishing species w2 and w4.
Depicted is the full matrix Wχ, where the colors correspond to the cases
in (39).
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species [see (A8)] and the effective diffusion coefficient Ds

in (40) corresponds to the trace diffusion coefficient of s in
the given fluid mixture. It is also important to note that the
construction (39) guarantees that Fs = F̃s = 0 for vanishing
species and ensures the mass conservation condition over all
species,

∑
s′ Fs′ =

∑
s′ F̃s′ = 0. Therefore, this procedure is

robust to roundoff errors.
In our double-precision implementation, we treat any

species s with ws < 10−14 as a vanishing species.

B. Temporal integration scheme

The spatial discretization of the non-reactive FHD equa-
tions for the mass densities yields a set of stochastic ordinary

differential equations. It is straightforward to incorporate our
CME-based chemistry model from Sec. II B via additional
Poisson-noise terms,

ρ0
dws,i

dt
=

[
− ρ0∇ · (wsv) − ∇ · Fs

]
i

+

ms

∑
r

∑
α=±

∆ναsr
P(aαr ∆Vdt)
∆Vdt

 i

, (41)

where ws,i denotes the mass fraction of species s in cell i.
Our overall temporal integration strategy is a predictor-

corrector approach for both species and velocity. Our goal is
to develop a scheme that is second-order accurate in space and
time deterministically, exhibits second-order weak accuracy

Algorithm 1. Advancing the mass densities ρn
s = ρ0w

n
s and velocity vn from time tn to tn+1 = tn + ∆t. We list

both centered and BDS options for advection; the BDS notation is defined in Sec. III B in Ref. 26.

1. Solve a predictor Stokes problem for the updated velocity vn+1,∗ and mechanical pressure πn+1/2,∗:

ρ0v
n+1,∗ − ρ0v

n

∆t
+ ∇πn+1/2,∗ = −∇ ·

(
ρ0vv

T
)n

+
1
2
∇ ·

(
ηn
∇̄vn + ηn

∇̄vn+1,∗
)

+∇ · *
,

√
ηnkBT
∆V∆t

(
Wmom)n+

-
+ f n, (42a)

∇ · vn+1,∗ = 0. (42b)

2. Calculate predictor mass densities ρn+1/2,∗
s at the midpoint using the total diffusive mass fluxes Fn as well as

the reaction source term Rn
s evaluated over the first half time step:

ρn+1/2,∗
s = ρn

s +
∆t
2

(
−∇ · Fn

s + msRn
s
)
−
∆t
2
∇ ·




ρn
s

(
vn+vn+1,∗

2

)
(centered),

BDS
(
ρn

s , vn+vn+1,∗

2 ,∇ · Fn
s , ∆t

2

)
(BDS),

(43)

∇ · Fn ≡ ∇ ·

[
−
(
ρ0WχΓ∇x

)n +
√

2m̄ρ0
∆V∆t/2

(
Wχ

1
2
)n

(
Wmass

(1)

)n
]
, (44)

Rn
s ≡

1
∆V∆t/2

∑
r

∑
α=±

∆ναsrP(1)
(
(aαr )n

∆V∆t/2
)
. (45)

3. Calculate corrector mass densities ρn+1
s at time tn+1 using the total diffusive mass fluxes ∇ · Fn+1/2,∗ as well as

the reaction source term Rn+1/2,∗
s evaluated over the full time step:

ρn+1
s = ρn

s + ∆t
(
−∇ · Fn+1/2,∗

s + msRn+1/2,∗
s

)
−∆t∇ ·




ρn+1/2,∗
s

(
vn+vn+1,∗

2

)
(centered),

BDS
(
ρn

s , vn+vn+1,∗

2 ,∇ · Fn+1/2,∗
s ,∆t

)
(BDS),

(46)

∇ · Fn+1/2,∗ ≡ ∇ ·


−
(
ρ0WχΓ∇x

)n+1/2,∗ +
√

2m̄ρ0
∆V∆t (Wχ

1
2 )n+1/2,∗*.

,

(
Wmass

(1)

)n
+
(
Wmass

(2)

)n

√
2

+/
-


, (47)

Rn+1/2,∗
s ≡

1
2

[
Rn

s + 1
∆V∆t/2

∑
r
∑
α=± ∆ν

α
srP(2)

((
2(aαr )n+1/2,∗ − (aαr )n

)+
∆V∆t/2

)]
. (48)

4. Solve a corrector Stokes problem for the updated velocity vn+1 and mechanical pressure πn+1/2:

ρ0v
n+1 − ρ0v

n

∆t
+ ∇πn+1/2 = −

1
2
∇ ·

[(
ρ0vv

T
)n

+
(
ρ0vv

T
)n+1,∗

]
+

1
2
∇ ·

(
ηn
∇̄vn + ηn+1

∇̄vn+1
)

+
1
2
∇ ·


*
,

√
ηnkBT
∆V∆t

+

√
ηn+1kBT
∆V∆t

+
-

(
Wmom)n


+ f n+1/2,∗, (49a)

∇ · vn+1 = 0. (49b)
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in time for the linearized FHD equations, and treats reactions
in a manner consistent with the CME.4 As explained below in
detail, we treat viscous momentum dissipation implicitly and
species diffusion explicitly. This is because in liquids the time
step size is limited by the viscous Courant–Friedrichs–Lewy
(CFL) condition (i.e., momentum diffusion) due to the large
Schmidt number.

To combine a second-order midpoint tau-leap reaction
sampling29,39 with a predictor-corrector scheme for FHD,
we adopt mass density updates from the ExMidTau (explicit
midpoint tau leaping) scheme we previously developed for
reaction-diffusion systems.4 Hence, our new scheme uses a
midpoint predictor for mass densities, which differs from our
earlier trapezoidal scheme for non-reactive FHD systems.3,26

We have compared several combinations of mass and momen-
tum updates to identify the variant of the scheme that gives
the most accurate spectrum of the fluctuations (structure fac-
tors) in both equilibrium and giant fluctuation settings. In
Sec. III C, we provide an analysis of the structure factors,
which both guides and verifies the design decisions we made to
ultimately choose this particular temporal integration scheme,
and demonstrate the advantages of the midpoint scheme. One
important observation is that our temporal integrator is robust
in the large Schmidt number limit, Sc = ν/D → ∞, where
ν = η/ρ0, unlike the trapezoidal scheme used in Refs. 3
and 26.

We advance the system from time tn = n∆t to time
tn+1 = (n + 1)∆t in four steps:

1. Perform a predictor Stokes solve for the velocity vn+1,∗

at tn+1.
2. Calculate predictor mass densities ρn+1/2,∗

s at the midpoint
time t = tn + 1

2∆t.
3. Calculate corrector mass densities ρn+1

s at time tn+1.
4. Perform a corrector Stokes solve for velocity vn+1

at tn+1.

These steps are elaborated in detail in Algorithm 1. In the Algo-
rithm 1 description, superscripts are used to denote the time
level where a given quantity is evaluated, e.g., f n = f (wn). Also,(
Wmom)n and

(
Wmass

(i)

)n
(i = 1, 2) denote the collections of

i.i.d. (independent and identically distributed) standard normal
random variables generated on control volume faces indepen-
dently at each time step, and Wmom

≡Wmom +
(
Wmom)T. We

denote collections of independent Poisson random variables
generated at cell centers independently at each time step with
P(i) (i = 1, 2) and denote [•]+ ≡ max(•, 0).

In our time-advancement scheme, each Stokes problem
couples a Crank–Nicolson discretization of viscous dissipa-
tion to the divergence-free constraint on velocity, to simul-
taneously solve for the velocity and mechanical pressure. To
solve the Stokes system, we use a variable-coefficient (ten-
sor) multigrid-preconditioned GMRES (generalized minimal
residual) solver,28 as we have done previously.3,26 The dif-
ference between the predictor and corrector Stokes solves
is the temporal discretization of the advective term (explicit
vs. trapezoidal) and the forcing term (explicit vs. midpoint);
both Stokes solves are required for second-order deterministic
accuracy.

As mentioned above, Steps 2 and 3 of the present scheme
become essentially the same as the ExMidTau scheme in the
dilute limit in the absence of advection. The only difference
is a Stratonovich-type update of the stochastic mass flux in
(47). While our previous analysis for RDME systems4 adopted
the Ito interpretation, we choose the Stratonovich-type update
here since a general analysis for weak fluctuations (linearized
FHD)40 guarantees second-order weak accuracy of the overall
scheme for this choice. It can be shown that the Stratonovich
and Ito interpretations become identical in the dilute limit.
Hence, our numerical method not only achieves second-order
weak accuracy for weak fluctuations but also inherits nice fea-
tures of the ExMidTau scheme carefully designed for strong
fluctuations.

C. Structure factor analysis

We analyze our new temporal integrator by investigating
time integration errors in the spectrum of giant concentration
fluctuations for a binary mixture undergoing a dimerization
reaction. We assume that a weak uniform concentration gra-
dient is applied along the y-axis with gravity pointing in the
positive y-direction. The Fourier-transformed linearized equa-
tions for δv‖ ≡ δvy and δw (see Appendix C in Ref. 12) take
the form

∂t(δv̂‖) = −νk2(δv̂‖) +
√

2νkBT ρ−1
0 ik · Ẑmom

+ gζ(δŵ),

(50a)

∂t(δŵ) = −h(δv̂‖) − Dk2(δŵ) +
√

2DkBT ρ−1
0 µ−1

w ik · Ẑmass

− r(δŵ) +
√

2rkBT ρ−1
0 µ−1

w Ẑreact
. (50b)

Here k ≡ k⊥ is a wavevector in the plane perpendicular to the
gradient, g is the gravitational acceleration, ζ = ρ−1(∂ρ/∂w)
is the solutal expansion coefficient, and h is the concentra-
tion gradient, ∇w = hey. Using the method developed in Ref.
24, we analytically compute the resulting structure factors
when our temporal integrator is used to solve (50a). For the
non-reactive case (r = 0), we also compute structure fac-
tors obtained from two schemes developed in our previous
work.3,26 The overdamped scheme (see Algorithm 2 in Ref.
26) uses the steady Stokes equation, i.e., it eliminates the iner-
tial term ∂t v = 0 by taking an overdamped limit. We refer
to the previous scheme for solving the inertial equation as
the inertial trapezoidal scheme (see Algorithm 1 in Ref. 26)
and to our new scheme as the inertial midpoint scheme (see
Algorithm 1).

We set∆x = 1 and kBT /ρ0 = 1. To denote how fast momen-
tum diffusion, species diffusion, and reaction are, we define
the following dimensionless Courant numbers:

α =
ν∆t

∆x2
, β =

D∆t

∆x2
, γ = r∆t. (51)

To consider the case of a relatively large ∆t with a large
Schmidt number Sc = 103 (as is typical of liquid mixtures),
we set α = 250 and β = 0.25. For the reactive case, we con-
sider two reaction rates γ = 0.025 and γ = 0.1, corresponding
to penetration depths ξ =

√
D/r =

√
10∆x and ξ = 1

2

√
10∆x,
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FIG. 2. Structure factors for giant concentration fluctuations. Panel (a) shows Sw,w for the non-reactive case with gravity. Results from our numerical scheme
(inertial midpoint) and two earlier schemes are compared with the exact result. Panel (b) shows Sneq

w,w = Sw,w − Seq
w,w for the reactive case with no gravity. For

two rate constants, results from our numerical scheme are compared with the exact result. The x-axis is the dimensionless wavenumber K = k∆x.

respectively. Other parameters are chosen so that µwh2∆t2

= 100, and gζh∆t2 = 0.025 if gravity is present.
The structure factor can be decomposed into the sum

Sw,w = Seq
w,w + Sneq

w,w , where Seq
w,w is the equilibrium struc-

ture factor (31) and Sneq
w,w is the nonequilibrium enhancement.

In the non-reactive case with no gravity, the nonequilibrium
enhancement exhibits a k−4 power law in the entire range of
wavenumbers k,

Sneq
w,w =

kBT

ρ0D(D + ν)k4
h2. (52)

However, the power law is suppressed at small k by gravity27

or reaction.12

For the non-reactive case with gravity, we compare Sw,w

obtained from the three schemes with the exact result in
Fig. 2(a). A power-law spectrum Sw,w ∼ k−4 develops for
intermediate wavenumbers k. At small wavenumbers, Sw,w

becomes constant due to gravity. At large wavenumbers, the
k−4 decay in the nonequilibrium part is hidden due to the
flat equilibrium structure factor Seq

w,w . Our numerical scheme
reproduces Sw,w accurately for all but the largest k values,
whereas both earlier schemes exhibit significant deviations
at either large or small k values. Significant deviations of
the previous inertial scheme at large k are due to temporal
integration errors in the nonequilibrium part Sneq

w,w , as can be
seen more clearly by examining the cross correlation between
fluctuations of w and v (not shown). The divergence of Sw,w

for the overdamped scheme at small k demonstrates that the
overdamped limit does not apply for sufficiently small k with
gravity. Thus, our new scheme combines the favorable features
of our previous trapezoidal inertial scheme (correct behavior
for small k with gravity) and the overdamped scheme (correct
behavior for large k).

In Fig. 2(b), we show the nonequilibrium enhancement
Sneq
w,w in the structure factor for the reactive case with no grav-

ity. We obtain the exact Sneq
w,w by analyzing (50a) without the

stochastic mass fluxes and with deterministic reaction [see also
Eq. (58) in Ref. 22 or Eq. (44) in Ref. 23],

Sneq
w,w =

kBT

ρ0(Dk2 + r)[(D + ν)k2 + r]
h2. (53)

Our midpoint scheme reproduces Sneq
w,w accurately for

both rate constants. We emphasize that these results are
remarkable given that α = O(102). Our new scheme remains
accurate for α = βSc � 1 because the relative error in Sneq

w,w
for our midpoint scheme has the form [1 + O(Sc−1)]O(∆t2),
indicating robust behavior for large Schmidt numbers. On the
other hand, the relative error for the trapezoidal scheme has
an O(Sc)O(∆t4) term, which results in significant deviations
at large k, as observed in Fig. 2(a).

IV. NUMERICAL EXAMPLES

In this section, we consider four examples that demon-
strate the capabilities of our numerical methodology. In
Sec. IV A, we model the hydrolysis of sucrose in an aqueous
solution with very dilute solutes. In Sec. IV B, we investigate
a binary liquid mixture undergoing a dimerization reaction at
thermodynamic equilibrium. In Sec. IV C, to verify the cor-
rect coupling of mass and momentum fluctuations, we study
nonequilibrium giant fluctuations in a mixture undergoing a
dimerization reaction. In Sec. IV D, to demonstrate the scal-
ability and practical utility of our method, we investigate the
effects of fluctuations for a reactive fingering instability.

A. Hydrolysis of sucrose

We consider a dilute solution of sugar in water at equilib-
rium, undergoing the reversible hydrolysis reaction

sucrose + H2O
 glucose + fructose. (54)

Sucrose is particularly dilute, with only ∼10 molecules per
computational cell, whereas there are ∼107 glucose and fruc-
tose molecules and ∼1010 water molecules per cell. We inves-
tigate the equilibrium distribution of the number of sucrose
molecules in a cell to demonstrate that our approach correctly
models the dilute limit.

We use cgs units and choose physical parameters assum-
ing T = 293, atmospheric pressure, ρ0 = 1, and η = 0.01. The
four species are glucose (s = 1), fructose (s = 2), sucrose (s =
3), and water (s = 4). Using the trace diffusion coefficients of
the solutes, Ds (s = 1, 2, 3),41,42 and the self-diffusion coeffi-
cient of water Dwater,43 the Maxwell–Stefan binary diffusion
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coefficients are assigned as in Ref. 44,

−Ds4 = Ds, −Dss′ =
DsDs′

Dwater
(s, s′ = 1, 2, 3). (55)

Since we consider the dilute limit, we assume that the sys-
tem is an ideal mixture and obeys the traditional LMA, with
a forward rate a+ = k+n3, a reverse rate a− = k−n1n2, and
an equilibrium constant K = neq

1 neq
2 /n

eq
3 . The reaction equi-

librium lies almost completely in the direction of the for-
mation of glucose and fructose,45 but uncatalyzed sucrose
hydrolysis is extremely slow (with a half-life of 500 years).46

While we use an experimental value of K,45 we artificially
increase the reaction rates to k+ = 10 and k− = K /k+ so
that the forward reaction occurs about 100 times per cell per
simulation.

We set up a two-dimensional system consisting of 32× 32
cells with dimensions ∆x = ∆y = 10−4 and periodic boundary
conditions. The thickness of the system is ∆z = 10−4 and the
cell volume ∆V = ∆x∆y∆z. We consider the case where there
are ten sucrose molecules per cell. Hence, neq

3 is determined
from neq

3 ∆V = 10 and neq
1 = neq

2 are subsequently determined
from equilibrium. The resulting equilibrium mass fractions are
w

eq
1 = w

eq
2 = 4.9× 10−03,weq

3 = 5.7× 10−09, andweq
4 = 0.990.

We use two time step sizes, ∆t = 10−5 and 10−4, to check
the continuous-time limit and quantify time integration errors.
Note that the larger ∆t corresponds to diffusive CFL numbers
Ds ,max∆t/∆x2 = 0.07 for species diffusion and ν∆t/∆x2 = 100
for momentum diffusion. For each value of ∆t, we ran 16
independent samples up to time T = 1, collecting data every
t = 10−4 for t ≥ T/10.

We recall that the number of sucrose molecules in a cell
N = n3∆V has a continuous range in FHD simulations. We

define its discrete distribution as P(N) = ∫
N+ 1

2

N− 1
2

ρ(N ′)dN ′,

where ρ(N) is the continuous distribution of N. Figure 3
shows that for the smaller ∆t, P(N) is remarkably close to
the physically correct Poisson distribution PPoisson(N), and

FIG. 3. Equilibrium distribution for a dilute sugar solution undergoing a
hydrolysis reaction. Numerical results for the distribution (histogram) P(N)
of the number of sucrose molecules in a cell N are compared with the physi-
cally correct Poisson distribution PPoisson(N) and its Gaussian approximation
PGauss(N). In the inset, numerical results for the continuous distribution ρ(N)
are shown near N = 0. Results from a smaller time step size ∆t = 10−5 are
plotted with error bars corresponding to two standard deviations, whereas
those from a larger time step size ∆t = 10−4 are plotted without errorbars for
clarity.

ρ(N) is essentially zero for negative values of N. We note
that PPoisson(N) is significantly different from its Gaussian
approximation PGauss(N). For the larger ∆t, while the remark-
able agreement with the Poisson distribution is still observed,
negative values of N start to appear, yielding ∫

0
−∞ ρ(N)dN

≈ 3× 10−5; see the inset of Fig. 3. The same results were
obtained in our previous reaction-diffusion model of dilute
solutions,4 confirming that our treatment of the stochastic mass
flux coefficients (see Sec. III A) is consistent with the dilute
limit, even in the presence of random advection. We have also
confirmed that the equilibrium structure factor of each species
(not shown) has a flat spectrum (as predicted by theory3),
indicating that there are no spurious correlations between
cells.

B. Dimerization: Equilibrium distribution

We next consider a liquid mixture undergoing the dimer-
ization reaction (20). This binary system contains monomers
A (s = 1) and dimers A2 (s = 2) and is representative of cyclic
dimer formation in pure liquid acetic acid. We demonstrate
here our ability to model a system with strong fluctuations
in the absence of a dominant solvent by considering a small
number of molecules (∼10) of each species per cell. As in the
sugar solution example, we investigate the equilibrium distri-
bution of monomers and dimers; however, since the system is
not dilute, the distribution of each species is not Poisson. The
numbers of monomers and dimers in a cell (N1 and N2) do not
vary independently due to the constant density assumption N1

+ 2N2 = ρ0∆V /m, where m is the mass of a monomer. There-
fore, we investigate the equilibrium distribution of N2, P(N2),
for N1 + 2N2 = 40.

We simulate a two-dimensional system consisting of 32
× 32 cells under periodic boundary conditions. Here we use
arbitrary units that give ∆x = ∆y = ∆z = 1, −D12 = 1, and m = 1
with kB = 1. We set ρ0 = 40 with weq

1 = w
eq
2 = 0.5 so that N1

+ 2N2 = 40 with Neq
1 = 20 and Neq

2 = 10. We set the reaction
rates a± as in (26) with a modification

a+ = κ+
(

N+
1

N+
1 + N+

2

) (
(N1 − 1)+

N+
1 + N+

2 − 1

)
, (56)

where N+ = max(N, 0). Note that (56) turns off unphysical reac-
tions when 0 < N1 < 1. The rate constants κ+ = 0.8724 and
κ− = 1.125 are chosen as follows. The ratio K = κ+/κ− = 0.7755
is determined so that the resulting theoretical distribution gives
〈N2〉 =

∑
N2

N2P(N2) = Neq
2 . The magnitude of κ± is deter-

mined so that the linearized reaction rate r = 0.1 [see (33)]
gives a penetration depth ξ ≡

√
−D12/r =

√
10∆x. We set η

= 103 and T = 103. We use a small ∆t = 10−2 to minimize
temporal integration errors. For 16 independent samples with
105 time steps, we collect data every 102 time steps, discarding
the first 104 time steps.

In Fig. 4, we compare the simulation result for the equi-
librium distribution P(N2) with theoretical results obtained in
Sec. III A. We denote the exact Einstein distribution obtained
from the entropy expression (22) by Pexact, Stirling’s approxi-
mation result obtained from (27) by PStirling ∼ exp(SStirling/kB),
and the Gaussian approximation of PStirling by PGauss. Note that
Pexact is a discrete distribution, whereas PStirling and PGauss have
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FIG. 4. Equilibrium distribution for a binary ideal mixture undergoing a
dimerization reaction. The distribution P(N2) of the number of dimers in
each cell N2 is computed using our numerical method and compared with
various theoretical results (see text). Error bars correspond to two standard
deviations.

continuous ranges, 0 < N2 < 20 and −∞ < N2 < ∞, respec-
tively. Significant deviations of PGauss from Pexact indicate
that the system is subject to strong fluctuations, as expected
from the small number Neq

2 = 10. Over a remarkably wide
range, our numerical method accurately matches Pexact. Even
beyond this range, it gives sensible values with accuracy bet-
ter than or comparable to PStirling. Measurable deviations are
observed only for larger values N2 = 19 and 20, for which
the occupation probabilities are already very small (Pexact(N2)
< 10−6).

It is important to note that statistically identical results
for P(N2) are obtained from the corresponding non-reactive
system with κ± = 0 (not shown). This confirms thermodynamic
consistency of our overall formulation. In addition, this also
confirms the validity of our overall numerical treatment for
diffusion with strong fluctuations. In particular, considering
that our multiplicative GWN modeling for strong fluctuations
was developed in the dilute limit4 and analyzed only for this
case, the validity of its extension to non-dilute solutions cannot
be taken for granted.

C. Dimerization: Giant fluctuations

We now investigate a system where velocity fluctuations
are coupled to diffusion. We consider the same dimeriza-
tion reaction but examine giant fluctuations in the presence
of a weak concentration gradient with no gravity. We focus
on the nonequilibrium contribution to the structure factor,
Sneq
w1,w1 = Sw1,w1 − Seq

w1,w1 , for wavevectors perpendicular to the
concentration gradient. We neglect stochastic mass fluxes and
use deterministic chemistry so that we eliminate the equilib-
rium fluctuations and thus obtain Sneq

w1,w1 with greater statistical
accuracy. We have previously considered a gas mixture in a
similar setting;12 here we consider a liquid mixture with a
large Schmidt number Sc = 103, which quantitatively changes
the spectrum of giant fluctuations.

A detailed theoretical analysis of giant fluctuations using
linearized FHD first appeared in Ref. 22 assuming that the
system is near chemical equilibrium everywhere. It was later
extended in Ref. 23 to account for the nonlinearity caused by

the fact that the system is not everywhere in chemical equi-
librium; this theoretical analysis assumes a liquid mixture, so
it was not applicable for the gas mixture we considered in
Ref. 12. In these theoretical studies, the concentration gradi-
ent was imposed via the Soret effect by applying a temperature
gradient, unlike the case we consider here where the con-
centration is fixed at the y-walls using reservoir boundary
conditions. Furthermore, the theoretical studies in Refs. 12
and 22 did not account for the boundary conditions for the
fluctuating fields.

We consider a two-dimensional square domain of side
length Lx = Ly = 64 (in arbitrary units) and periodic boundary
conditions in the x-direction. The system is divided into 128
× 128 grid cells with grid spacing ∆x = ∆y = 0.5. To remain
in the linearized FHD regime, we increase the cell depth to
∆z = 106 so that there are sufficiently many monomers and
dimers in a cell, N1 + 2N2 = 2.5 × 105 for ρ0 = 1 and m = 1.
We set −D12 = 1, η = 103, and kBT = 103. For the dimerization
reaction, the equilibrium constant K = κ+/κ− = 0.75 is chosen to
give a reference equilibrium state with weq

1 = w
eq
2 = 0.5. Two

sets of reaction constants are considered: (κ+, κ−) = (8.438
× 10−2, 0.1125), corresponding to linearized reaction rate
r = 0.4 and penetration depth ξ =

√
10∆x, and (κ+, κ−)

= (8.438 × 10−3, 1.125 × 10−2), corresponding to r = 0.04
and ξ = 10∆x. The time step size is set to ∆t = 0.025, which
gives Courant numbers −D12∆t/∆x2 = 0.1 and ν∆t/∆x2 = 100.
We ran 105 steps discarding the first 104 steps and computed
the steady-state monomer concentration profile w̄1(y) and
Sneq
w1,w1 (kx).

To impose a concentration gradient in the y-direction,
no-slip reservoir conditions27 are imposed with (w1, w2)
= (0.49, 0.51) at y = 0 and (w1, w2) = (0.51, 0.49) at y = Ly.
While a linear concentration profile is formed in the steady
state for the non-reactive case, a nonlinear profile is gener-
ated by the dimerization reaction. In Fig. 5(a), the profiles of
w̄1(y) for reaction rates r = 0.4 and 0.04 are compared with
the one for the non-reactive case. As r increases, the non-
linearity in w̄1(y) becomes more evident. This is because a
larger region around y = Ly/2 is constrained to be in chem-
ical equilibrium due to faster reactions, resulting in larger
concentration gradients at the boundaries. Identical concentra-
tion profiles are obtained from the corresponding deterministic
reaction-diffusion systems (not shown).

In Fig. 5(b), we show numerical results of Sneq
w1,w1 . To

account for errors in the discrete approximation to the con-
tinuum Laplacian, the modified wavenumber36

k̃x =
sin(kx∆x/2)
∆x/2

(57)

is used instead of kx. For the non-reactive case (r = 0), a
clear k−4 power law is observed until the confinement effect
becomes significant for small kx � L−1

y . For the reactive cases,
the k−4 power law is only observed at large kx �

√
r/−D12.

For larger r, the k−4 power law appears in a narrower range
of kx values and the prefactor of the power law becomes
larger.

For the non-reactive case, the prefactor of the power law
is accurately predicted by the theoretical prediction (53). By
multiplying (53) by the confinement factor47
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FIG. 5. Giant fluctuations with a dimerization reaction. (a) Steady-state monomer concentration profile w̄1(y). Results from two linearized reaction rates r and
the non-reactive case are compared. (b) Nonequilibrium enhancement Sneq

w1 ,w1
in the structure factor of the monomer mass fraction. Numerical results (depicted

by symbols) are compared with theoretical predictions obtained under a linear gradient setting (depicted by a solid line for r = 0.4, dashed line for r = 0.04,
and dotted line for r = 0). A slope marker for the k−4 decay is drawn and arrows denoting kx =

√
10r/−D12 are depicted for r = 0.4 (solid) and r = 0.04

(dashed). Note that nonlinear gradients develop in reactive cases, which explains discrepancies between numerical and theoretical results at small to intermediate
wavenumbers.

1 +
4

[
1 − cosh(kxLy)

]

kxLy

[
kxLy + sinh(kxLy)

] , (58)

the theoretical prediction is further improved at small kx,
as shown in Fig. 5(b). We note, however, that this factor is
obtained for impermeable walls and the resulting correction is
not exact for our reservoir boundaries. For the reactive cases,
the validity of (53) is questionable due to the nonlinear con-
centration gradients. In fact, how to estimate the value of h2 is
not obvious. Considering that Sneq

w1,w1 is an averaged structure
factor for different values of y, we estimate the value of h2

from the profile of w̄1(y) using a spatial average,

h2 =
1
Ly

∫ Ly

0

(
dw̄1

dy

)2

dy. (59)

Theoretical results obtained from (53), (58), and (59) are
shown in Fig. 5(b). Remarkably, the k−4 power law region
is accurately predicted. However, the theoretical prediction
overestimates Sneq

w1,w1 at small kx by several orders of magni-
tude for the reactive cases. This is expected since the local
linear gradient approximation eventually fails at large length
scales. The FHD equations linearized around a nonlinear sta-
tionary profile were studied in Ref. 23; however, an explicit
result for the static structure factor that we could compare with
our numerical result was not obtained.

D. Fingering instability with a neutralization reaction

In this section, we examine the development of asym-
metric fingering patterns arising from a diffusion-driven
gravitational instability in the presence of a neutralization reac-
tion. We perform three-dimensional large-scale simulations
of a double-diffusive instability occurring during the mixing
of HCl and NaOH solution layers in a vertical Hele-Shaw
cell (two parallel glass plates separated by a narrow gap).
This system has been studied experimentally and theoretically
using a two-dimensional Darcy advection-diffusion-reaction
model.2,48 Thermal fluctuations may play a key role in trig-
gering the instability. To the best of our knowledge, our sim-

ulations are the first ones to use a three-dimensional model
and the first to include thermal fluctuations. We investigate
the effects of each stochastic component (mass flux, momen-
tum flux, and chemistry) on the evolution of the system. We
initialize our simulations with natural mass and momentum
fluctuations without any artificial perturbation, and therefore
our simulation can be regarded as an ideal experiment.

1. Model setup

For the model setup and physical parameters, we follow
the experiment of Lemaigre et al.2 We use cgs units unless
otherwise specified and assume T = 293 and atmospheric pres-
sure. The isothermal approximation has been justified by a
linear stability analysis showing that the heat generated by the
neutralization reaction

HCl + NaOH→ NaCl + H2O (60)

plays a negligible role in this problem.48 We consider a Hele-
Shaw cell with side lengths Lx = Ly = 1.6 and Lz = 0.05,
with the y-axis pointing in the vertical direction, and the z-
axis being perpendicular to the glass plates. The domain is
divided into grid cells with grid spacing ∆x = ∆y = ∆z = 6.25
× 10−3, so there are 256 × 256 × 8 cells. We impose periodic
boundary conditions in the x-direction and no-slip walls in the
z-direction. In the y-direction, we impose free-slip reservoir
boundary conditions with concentrations that match the initial
conditions of each layer.

We start with a gravitationally stable initial configura-
tion, where an aqueous solution of NaOH with a molarity of
0.4 mol/l is placed on top of a denser aqueous solution of HCl
with a molarity of 1 mol/l. Each reactant and product is treated
as a single charge-neutral species, giving the four species HCl
(s = 1), NaOH (s = 2), NaCl (s = 3), and water (s = 4). Under the
approximation that the solution density ρ is linearly dependent
on the solute concentrations,2 the buoyancy force is expressed
as

f (w) = −ρ0*
,

3∑
s=1

αs

Ms
ws

+
-
gey, (61)
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where αs is the solutal expansion coefficient and Ms is the
molecular weight (in g/mol) of the solute s. We set g = 981,
ρ0 = 1, and η = 0.01. The initial density difference between
the two layers is approximately 4 × 10−4. The Maxwell–
Stefan binary diffusion coefficients are determined using (55)
from the known trace diffusion coefficients of the solutes and
the self-diffusion coefficient of water. The values of αs and
the trace diffusion coefficients are obtained from Table II of
Ref. 2.

Since the neutralization equilibrium lies far to the product
side, we only consider the forward reaction. We assume that
the rate is given by the traditional LMA for a dilute solution,
a+ = kn1n2. However, we note that neutralization is a diffusion-
limited reaction. In other words, reaction occurs extremely
fast (with rate λ ∼ 1011 s−1), as soon as reactants encounter
each other. Because of this, the validity of the local LMA is
questionable.5 The estimated value of k ∼ 10−11 cm3 s−1 is
impractically large [converted using (31) in Ref. 49] and would
require an unreasonably small ∆t for numerical stability. For
our simulations, we choose a smaller value k = 10−18 and ∆t
= 10−3 based on a deterministic numerical study presented in
Appendix B.

The initial mass fractions in each cell are generated as the
sum of mean values w0 and natural fluctuations δw. The mean
mass fractions w0 are set to w0,upper = (0, 0.0157, 0, 0.9843)
in the upper half-domain and w0,lower = (0.0358, 0, 0, 0.9642)
in the lower half-domain. Assuming that natural fluctuations
are Gaussian, we sample them using the known equilibrium
structure factor at the mean state [Eq. (D4) in Ref. 3],

δw =
1√
ρ0∆V

(I − w01T)(W0M)
1
2 zmass, (62)

where W0 = diag(w0
s ), M = diag(ms), and zmass is a vector with

i.i.d. standard normal random variables. The initial momentum
fluctuations are generated in a similar manner,

δv =

√
kBT
ρ0∆V

zmom, (63)

where zmom is a vector with i.i.d. standard normal random
variables, followed by an L2 projection onto the space of
divergence-free vector fields.

We use the Langevin chemistry description given in (19)
and the BDS advection scheme. We can justify the use of
the CLE by noting that the system is near the macroscopic
limit because fluctuations are weak. For centered advection,
we observe oscillations around the interface of fingers (not
shown) for the chosen grid spacing as expected due to the
high cell Péclet number. When the grid spacing is reduced to
half, oscillations become less pronounced without changing
the results significantly (not shown).

2. Effects of thermal fluctuations

We perform four FHD simulations changing how chem-
istry is treated, whether natural mass/momentum fluctuations
are initially imposed, and whether subsequently stochas-
tic mass/momentum fluxes are included, as summarized in
Table I.

TABLE I. Four simulations performed for the buoyancy-driven instability
with an acid-base neutralization reaction.

Initial fluctuations Stochastic fluxes

Chemistry Mass Momentum Mass Momentum

Simulation A Stochastic On On On On
Simulation B No reaction On On On On
Simulation C Deterministic Off On Off On
Simulation D Deterministic Off Off Off On

By comparing the results of simulations A, B, C, and D,
we can assess the effects of chemo-hydrodynamic coupling
and thermal fluctuations on the fingering pattern formation.
For a perfectly flat initial interface, thermal fluctuations play an
essential role in perturbing the interface at early times, but once
an uneven interface appears, the dynamic instability dominates
and thermal fluctuations are expected to play a secondary role
in subsequent pattern formation, as we previously confirmed
in the absence of reactions.3

We compare the reactive case (simulation A) with the
non-reactive case (simulation B) in Fig. 6. As also seen in the
experiment,2 an asymmetric growth of fingers is observed in
the reactive case. In addition, the growth of fingers is much
faster when the reaction is present. This is due to the coupling
of the fast neutralization reaction and the fast diffusion of the
acid species. Disparities between the acid and base species can
also be seen in the concentration profiles around the fingers;
such disparities are not observed in the non-reactive case. We
point out that the concentration develops three-dimensional
profiles that are not constant across the thickness of the Hele-
Shaw cell, as can be seen from the side bars (y-z cross sections)
in the figure. Such a structure would not be captured by the two-
dimensional Darcy approximation used in prior computational
studies.2,48

In Fig. 7, we compare simulations C and D with sim-
ulation A to investigate the contribution of each stochastic
component. Compared with the full fluctuating hydrodynam-
ics (simulation A), all stochastic mass components are omitted
in simulation C. However, the resulting fingering patterns are
essentially the same as in simulation A. This indicates that con-
tributions of stochastic mass fluxes and stochastic chemistry
are negligible in this example. Instead, concentration fluctu-
ations driven by the stochastic momentum flux dominate the
formation of an uneven interface. This can be confirmed by
the comparison of simulation A with simulation D, where
initial velocity fluctuations are turned off compared with sim-
ulation C, and only stochastic momentum fluxes are included.
The resulting fingering patterns are virtually the same with
slight differences caused by differences in the initial veloc-
ity conditions. This is consistent with the fact that any initial
momentum conditions are quickly damped out in a liquid
with a high Schmidt number. In fact, in a simulation similar
to simulation C but without subsequent stochastic momen-
tum fluxes, it takes more time (∼5 s longer) for fingering
patterns to start to grow. Hence, we confirm that velocity
fluctuations driving giant composition fluctuations dominate
the triggering of the instability starting from a perfectly flat
interface.
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FIG. 6. Asymmetric growth of convective chemo-hydrodynamic fingering patterns in a Hele-Shaw cell, induced by a double-diffusive instability in the presence
of a neutralization reaction. The left and middle columns, (a) and (b), depict the mass density profiles of chemical species at t = 25 and t = 40 (simulation A),
whereas the right column (c) displays the non-reactive case at t = 40 (simulation B). The top, middle, and bottom rows show ρHCl, ρNaOH, and ρNaCl, respectively.
For each species, two-dimensional slices of the three-dimensional field ρs(x, y, z) are shown. The square images show ρs(x, y, z = Lz/2) (halfway between the
glass plates), and the thin vertical side bars show the slice ρs(x = 0, y, z) corresponding to the left edge of the square images. Both simulations were initiated
with natural mass and momentum fluctuations without any artificial perturbation.

FIG. 7. Influence of different types of thermal fluctuations on the formation of fingering patterns. We compare the mass density profiles ρs(x, y, z = Lz/2) of
NaCl at t = 30 halfway between the glass plates for three simulations. Simulation A (left) corresponds to the full fluctuating hydrodynamics equations. Compared
with simulation A, all stochastic mass components (stochastic mass flux and stochastic chemistry) are omitted in simulation C (middle). Simulation D (right) is
similar to simulation C but with initial velocity fluctuations also removed. Red circles indicate the areas with the biggest differences.
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It is important to note that our simulation results show
that the thermal fluctuations are sufficiently large to kick off
the instability on a time scale comparable to that when a macro-
scopic initial perturbation is imposed. The fingering patterns
observed in simulation A at t = 40 s are quite comparable to
the experimental result shown in Fig. 1(e) of Ref. 2 at t = 30 s.
Of course, in the actual experiments, the initial interface is not
perfectly flat due to imperfections in the preparation of the
initial configuration.

V. SUMMARY AND DISCUSSION

We have developed a fluctuating hydrodynamics (FHD)
formulation and numerical methodology for stochastic sim-
ulation of reactive liquid mixtures. Our approach robustly
models a wide range of microliquids, including dilute solu-
tions as well as mixtures with no single dominant solvent. Our
multispecies transport model is based on the Maxwell–Stefan
cross-diffusion, incorporates a stochastic chemistry descrip-
tion based on the chemical master equation (CME), and cou-
ples reaction-diffusion with a stochastic Navier–Stokes equa-
tion for the fluid velocity. Our numerical method is based on
several techniques that helped us gain computational efficiency
without compromising accuracy. Specifically, the implicit
treatment of momentum dissipation allowed us to avoid the
severe restriction on time step size imposed by the small
Reynolds number and large Schmidt number. The use of the tau
leaping method enabled us to sample CME-based chemistry
efficiently while correctly sampling large deviations from
chemical equilibrium.34 For a binary liquid mixture under-
going a dimerization reaction, we demonstrated the thermo-
dynamic consistency of our overall formulation beyond the
Gaussian approximation and accurately reproduced the equi-
librium Einstein distribution for both dilute solutions and
liquid mixtures. Owing to a careful treatment of strong con-
centration fluctuations and vanishing species, our numerical
method remained robust even for cells with as few as ten
molecules; coarse-graining at such small scales is at the limits
of fluctuating hydrodynamics.

Our numerical results for the spectrum of giant nonequi-
librium fluctuations in a binary mixture undergoing a dimer-
ization reaction were not in good agreement with theoretical
predictions for smaller wavenumbers. We believe that this mis-
match is due to the fact that we used a very simple theory
which assumes that the gradient is constant and weak. A more
accurate theory requires linearizing the FHD equations around
the nonlinear steady-state solution of the macroscopic equa-
tions and proper treatment of the boundary conditions. Such
a linearization was carried out in Ref. 23 without account-
ing for the boundary conditions [see in particular Eq. (15) of
Ref. 23]. Nevertheless, analytical computation of the struc-
ture factor proved too difficult and the authors used a per-
turbative analysis for which the zeroth-order approximation
is the simple approximation that the applied gradient is con-
stant and weak and the system is everywhere near chemical
equilibrium. An explicit formula for the next-order correction
was not obtained for the static structure factor. Our computa-
tions showed that the simple zeroth-order theory, while giving
a qualitatively correct picture of how reactions affect giant

fluctuations, overestimates the fluctuations by orders of mag-
nitude at small wavenumbers.

We performed the first three-dimensional simulations of
a buoyancy-driven instability in the presence of an acid-base
neutralization reaction. Our results demonstrate that velocity
fluctuations generate giant concentration fluctuations that are
sufficiently large to drive the initial growth of the instability,
even when the initial interface is perfectly flat. In particular, we
found that thermal fluctuations can trigger the instability on a
time scale comparable to that observed in recent experiments,
although a direct comparison is not possible because the exact
initial condition in experiments is hard to control or measure.

In our prior work on reaction-diffusion systems,4 we
treated diffusion implicitly. This allowed us to use time step
sizes an order of magnitude larger than the stability limit
imposed by species diffusion. In this work, we treated diffu-
sion explicitly because momentum diffusion is much faster
than mass diffusion in liquids, and thus the time step size
was primarily limited by the requirement to accurately resolve
momentum dynamics at small scales. Nevertheless, in a num-
ber of problems, such as catalytic micropumps50 or electro-
convective instabilities at large applied voltages,51 the time
scales of interest are those at which diffusion reaches a quasi-
steady state in at least one direction. In this case, one must
treat diffusion implicitly. This is straightforward in principle
but requires the development of several nontrivial components.
First, because the diffusion of all species is coupled in generic
mixtures, one must develop either temporal integrators that
treat only the diagonal part of the diffusion matrix implicity or
develop a multispecies multigrid solver for coupled implicit
discretizations. Second, the semi-implicit temporal integra-
tors developed in Ref. 4 must be modified to integrate the
momentum equation in a way that is robust for large Schmidt
numbers. Third, boundary conditions need to be handled, both
in the diffusion solver and in the coupling between diffusion
and advection for reservoir boundaries.

In this work, we assumed the validity of a Boussinesq
approximation, neglecting the change in density with com-
position at a given pressure and temperature, as dictated by
the equation of state (EOS) of the mixture. This is a limiting
approximation in practice, especially for reactive mixtures in
which reactions can rapidly change density locally. In prior
work,3 we accounted for the density dependence on composi-
tion using low Mach asymptotics. It is important to observe that
the multispecies low Mach model proposed in Ref. 3 applies
even to ideal gas mixtures, not just liquid mixtures. There are
several difficulties with extending the formulation and algo-
rithms we developed in prior work to reactive low Mach num-
ber models. First, reactions can lead to local changes in pres-
sure which, in the low Mach limit, must get instantaneously
distributed throughout the system as a global adjustment of
the background thermodynamic pressure. It is anticipated that
barodiffusion will have to be accounted for to achieve ther-
modynamic consistency when the chemical potentials depend
nontrivially on pressures. Second, enforcing the EOS will
require a nonlinear iteration of a coupled mass-momentum
diffusion system, unlike the simpler case considered in Ref. 3
where we could enforce a linear EOS with only a decoupled
linear Stokes solve. Both of these difficulties are compounded
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if one wishes to treat diffusion implicitly or to account for
energy transport in a non-isothermal generalization.

In future work, we will account for electrochemistry by
incorporating charged species into our model, similar to the
developments in Ref. 52 for the non-reactive case. By using
electroneutral asymptotics,53 we will be able to model the
species (HCl, NaOH, and NaCl) in the acid-base fingering
instability as separate ions (H+, OH−, Na+, and Cl−), which is
physically correct given that HCl and NaOH are both strong
electrolytes. Resolving the diffusion of each ion individu-
ally is required to correctly model electrodiffusion in mix-
tures with more than two ions. Incorporating charged species
will also allow us to simulate weak electrolyte solutions (in
which molecules do not fully disassociate into ions), catalytic
motors,50 and electrokinetic locomotion.54,55
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APPENDIX A: DIFFUSION MATRIX
WITH VANISHING SPECIES

In this appendix, we derive the analytic expressions (39)
for the matrix Wχ in the limit of vanishing species. For sim-
plicity, we consider a case where the last species among N
species vanishes,

wN → 0+, (A1a)

wi → w0
i > 0 (i = 1, . . . , N − 1) with

N−1∑
i=1

w0
i = 1. (A1b)

We show next that each component of Wχ converges to

(Wχ)ij → w0
i χ

sub
ij (i, j = 1, . . . , N − 1), (A2a)

(Wχ)NN →
mN DN

m̄0
, (A2b)

(Wχ)Ni → 0 (i = 1, . . . , N − 1), (A2c)

(Wχ)iN → w0
i DN



N−1∑
k=1

χsub
ik x0

k

−DkN
−

mN

m̄0


(i = 1, . . . , N − 1),

(A2d)

where χsub is the diffusion matrix of the subsystem consisting
of non-vanishing species with w0 = (w0

1 , . . . , w0
N−1), and x0

and m̄0 are computed from (7) and (8) using w0. We also show
that the trace diffusion coefficient DN of species N in the fluid
mixture with composition w0 is expressed as

DN =



N−1∑
k=1

x0
k

−DkN



−1

. (A3)

By rearranging the definition of χ,3

χ = (Λ + αwwT)−1 −
1
α

11T, (A4)

where α , 0, and using 1TΛ = 0, χw = 0, and 1Tw = 1, we
obtain

χΛ + 1wT = I. (A5)

Looking at the (N, N)-component of (A5) and using (10), we
have

xN χNN

N−1∑
i=1

xi

−DiN

(
1 −

χNi

χNN

)
+ wN = 1. (A6)

Noting that χNN = O(w−1
N ) and

χNi

χNN
→ 0, (A7)

we obtain (A2b) and (A3) by taking the limit of (A6) using
(7). Then (A2b) and (A7) imply (A2c). Applying the same
technique to the (i, N)-component of (A5) for i = 1, . . .,
N − 1, we obtain (A2d).

We also observe that (A2) gives

FN = −ρ0
mN DN

m̄0
∇xN . (A8)

Hence, the diffusion of the dilute species becomes decoupled
from those of other species and its trace diffusion coefficient
is given by (A3).

APPENDIX B: RATE CONSTANT
OF NEUTRALIZATION REACTION

In this appendix, we determine an appropriate value
for the rate constant k of the neutralization reaction (60)
for the simulations of the fingering example reported in
Sec. IV D. As mentioned in the main text, the estimated
value of k ∼ 10−11 is too large, as it requires impractically
small time step sizes. By performing deterministic simula-
tions, we investigate a range of values for k to determine at
what point increasing k stops changing the results. We also
examine the convergence of the results using different time step
sizes.

For these deterministic simulations, we use a smaller
domain (half the length in the x- and y-directions) with the
same grid spacing. To generate an initial configuration with
an uneven interface, we introduce random perturbations of
composition in each cell immediately above the interface and
set

w0
s = aUw0,lower

s + (1 − aU)w0,upper
s , (B1)

where a = 0.1 and U is a standard normal random number
generated independently in each cell. We compute fingering
patterns for several values of k from 10−23 to 10−15, with sev-
eral values of ∆t ranging from 10−3 to 10−2, using the same
random initial configuration. To assess the similarity of two
simulation results, we compute the gross NaCl production
ρ0 ∫ w3(r, t)dr, as well as the L1-norm of the vy field ‖vy‖

= ∫ |vy(r, t)|dr.



084113-18 Kim et al. J. Chem. Phys. 149, 084113 (2018)

FIG. 8. Effects of the reaction rate constant k on the fingering instability observed when a layer of NaOH is placed on top of HCl solution, for deterministic
simulations with a randomly perturbed initial interface. Panel (a) shows the time profiles of the norm of the vy field for various values of k. Panel (b) shows the
gross NaCl production up to time t as a function of k. Solid lines denote the results for ∆t = 10−3, whereas dotted lines in the same colors depict the results for
∆t = 10−2. Arrows indicate k = 4/(n0

HCl∆t) for ∆t = 10−2 (dotted line) and ∆t = 10−3 (solid line), where n0
HCl is the initial number density of HCl in the lower

layer.

Figure 8(a) shows the time evolution of ‖vy‖ for various
values of k for ∆t = 10−3. As k increases, ‖vy‖ grows faster,
indicating that fingers grow faster. For 10−22 . k . 10−19, time
profiles change significantly depending on the value of k. On
the other hand, for k & 10−19, the change becomes less signifi-
cant. Also, time profiles for k . 10−22 coincide with that of the
non-reactive case. This suggests that there are three different
regimes for k: slow, intermediate, and fast reaction regimes.
The gross NaCl production shown in Fig. 8(b) exhibits simi-
lar behavior. While more NaCl is produced as k increases, the
growth slows down around k ≈ 10−19 and a plateau is observed
beyond this value. Hence, from a modeling point of view, one
can simulate the neutralization reaction using a value of k from
the plateau region. It is important to note, however, that one
cannot choose an arbitrarily large value of k due to the sta-
bility limit imposed by our explicit tau-leaping treatment of
reactions. In fact, fingering patterns obtained using ∆t = 10−2

and 10−3 (not shown) are essentially the same for k . 10−18.
However, both results start to show unphysical behaviors for
k∆t > 4/n0

HCl, where n0
HCl is the initial number density of

HCl species in the lower layer, as can be seen from the abrupt
increase of the gross NaCl production in Fig. 8(b).

Based on these observations, we choose k = 10−18 and
∆t = 10−3. The value of ∆t is much smaller than the mass
diffusion stability limit. As shown in Fig. 8(b), ∆t . 10−2 is
required to guarantee stability when the reaction is stiff and
k ≈ 10−18. It is noted, however, that ∆t . 10−3 is required
to give a reasonable CFL number for momentum diffusion
ν∆t/∆x2 = 0.256. This is because small time-integration errors
in the velocity field at early times can cause significant pertur-
bations at later times because of the growing instability. If the
exact time evolution at early times is not important, one can
safely use ∆t = 10−2 without sacrificing physical fidelity.
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