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We study two types of intrinsic uncertainties, statistical errors and system size effects, in estimating
shear viscosity via equilibrium molecular dynamics simulations, and compare them with the corre-
sponding uncertainties in evaluating the self-diffusion coefficient. Uncertainty quantification formulas
for the statistical errors in the shear-stress autocorrelation function and shear viscosity are obtained
under the assumption that shear stress follows a Gaussian process. Analyses of simulation results for
simple and complex fluids reveal that the Gaussianity is more pronounced in the shear-stress process
(related to shear viscosity estimation) compared with the velocity process of an individual molecule
(related to self-diffusion coefficient). At relatively high densities corresponding to a liquid state, we
observe that the shear viscosity exhibits complex size-dependent behavior unless the system is larger
than a certain length scale, and beyond which, reliable shear viscosity values are obtained without
any noticeable scaling behavior with respect to the system size. We verify that this size-dependent
behavior is configurational and relate the characteristic length scale to the shear-stress correlation
length. Published by AIP Publishing. https://doi.org/10.1063/1.5035119

I. INTRODUCTION

Shear viscosity is an essential transport property, which
measures the internal resistance of fluid. Its theoretical esti-
mation dates back to the early days of molecular dynamics
(MD) simulations in the 1970s.1–4 Thereafter, numerous MD
simulation studies have been performed for various fluid sys-
tems ranging between simple fluids,5–11 water,12–17 ionic liq-
uids,18–22 polymer melts,23–26 liquid metals,27–30 and blood.31

Accurate and precise MD estimation of shear viscosity is
important both from the practical perspective, e.g., Ref. 32,
and theoretical perspective, e.g., Refs. 33–35. Moreover, its
importance has been recently recognized in the development
of coarse-grained models36 and force fields,37 where a new
fluid model is assessed by how closely it reproduces correct
dynamic fluid properties.

In equilibrium MD simulations, transport coefficients are
computed using the Green–Kubo formulas.38,39 The shear vis-
cosity coefficient is expressed as η = limt→∞η(t) with the
time-dependent shear viscosity

η(t) =
V

kBT

∫ t

0
〈pxy(0)pxy(t ′)〉dt ′. (1)

Here, 〈pxy(0)pxy(t)〉 is the shear-stress autocorrelation function
(SACF), where pxy denotes the xy-component of the stress
tensor and the brackets indicate an equilibrium average. V
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and T indicate the volume and temperature of the system and
kB denotes Boltzmann’s constant, respectively. Alternatively,
the shear viscosity can also be calculated from the long-time
slope of the mean squared difference of the Helfand moment
through the generalized Einstein relation.40,41 In nonequilib-
rium MD simulations, an external perturbation is applied to
fluid systems and the shear viscosity is estimated from the
resulting steady states42–47 or time-transient behavior.48,49 In
addition, approaches based on Onsager’s thermodynamic for-
malism50 and the large deviation theory51 have been recently
proposed.

In the Green–Kubo method, two main sources of uncer-
tainty hinder the accurate estimation of transport coefficients.
The first originates from insufficient sampling. While any
quantity obtained from MD simulations is blurred by statisti-
cal errors, a characteristic feature in the Green–Kubo method
is that statistical errors accumulate through time integration,
making it difficult to verify the convergence of the Green–
Kubo integral.52,53 Figures 1 and 2 demonstrate these diffi-
culties when the shear viscosity is estimated from insufficient
sampling averages for a Lennard-Jones (LJ) fluid and a star-
polymer melt, respectively. Even if the SACF appears to show
barely meaningful values beyond a certain time due to sta-
tistical errors, its time integral η(t) needs to be computed
up to time t∗ such that η(t∗) ≈ η. However, t∗ is not known
a priori and is hard to determine from the data with insuf-
ficient sampling. Figure 2 clearly shows that a good result
from the SACF may not be sufficient to estimate t∗. Thus,
the resulting value of η may be inaccurate, especially for a
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FIG. 1. (a) SACF, 〈pxy(0)pxy(t)〉, and
(b) time-dependent shear viscosity,η(t),
of an LJ fluid. Results obtained from 16
samples (depicted by black solid lines)
and 16 384 samples (dashed colored
lines) are compared. For the 16-sample
results, error bars corresponding to two
standard deviations are drawn. The error
bars of the 16 384-sample results are not
drawn since they are too small to be vis-
ible. Simulation details are provided in
Sec. III.

complex fluid in which constituent molecules have various
internal motions.

The statistical uncertainty is usually quantified in terms
of the standard error (i.e., the standard deviation of the statisti-
cal error). For the number of independent sample trajectories
N and the length of each sample trajectory T, Zwanzig and
Ailawadi54 and Frenkel55 have shown that the standard error
in an averaged quantity decreases proportional to N−1/2 and
T−1/2. Jones and Mandadapu52 have extended these analyses
to obtain an upper bound of the standard error in the time
integral of an autocorrelation function. Recently, some of the
co-authors of the present paper have derived general formulas
estimating the standard errors in an autocorrelation function
and its time integral.53 These analyses are all based on the
assumption that the underlying process is Gaussian. Thus, any
higher moment can be calculated from its first and second
moments. While the Gaussian process approximation (GPA)
is believed to hold well for the description of various physi-
cal and chemical stochastic processes,56 its validity needs to
be confirmed for each process. In Ref. 53, through an exten-
sive and systematic MD study, the validity of the GPA was
tested for the velocity process of a tagged particle in a three-
dimensional simple fluid. Consequently, the statistical error
estimates for the velocity autocorrelation function (VACF) and
the self-diffusion coefficient were validated.

The finite system size effect, resulting from the use of
artificial boundaries such as periodic boundary conditions to
mimic an infinite system, is another source of uncertainty.
Among transport coefficients, the self-diffusion coefficient of
a three-dimensional fluid is the one for which the system
size effects have been most thoroughly investigated. Theo-
retical investigations based on the hydrodynamic theory have
revealed that, for a simulation box with side length L, the

leading-order correction term in the self-diffusion coefficient
has an L−1 scaling behavior.12,57,58 Subsequently, this scaling
behavior has been verified for various fluid systems, includ-
ing LJ fluids,12,59,60 Weeks–Chandler–Andersen (WCA) flu-
ids,58,61,62 hard-sphere fluids,61,63 water,12,17 ionic liquids,22,64

polymer melts,58,65 and molten alkali halides.21 For the self-
diffusion coefficient of a two-dimensional fluid, known to
diverge logarithmically with increasing L,35,66,67 system size
effects have been recently analyzed based on the long-time tail
of the VACF,35 for which a valid hydrodynamic description is
available.68

Shear viscosity is known to be less dependent on system
size than the self-diffusion coefficient in three-dimensional
fluid systems. However, the existence of any clear scaling
behavior is still debatable since most observations were based
on limited computational results with considerable statistical
uncertainties. While size effects have been reported insignif-
icant (within statistical uncertainties) for LJ fluids,12,58,69

water,12 liquid sodium,30 liquid iron,28 and molten alkali
halides,21 a weak scaling law, proportional to L−3, has been
presumed for the correction term to estimate the shear vis-
cosity of the infinite system,7,8,61 yet without theoretical
substantiation.

Different system size effects on the self-diffusion coeffi-
cient and shear viscosity suggest that the latter should have an
additional mechanism causing the size effects other than the
one with the hydrodynamic origin.70 The shear-stress relax-
ation due to configurational changes is such a mechanism.
In fact, the slow structural relaxation in dense fluids leads to
the “molasses tail” (stretched exponential decay),11,33,34 which
is different from the long-time tail decaying algebraically.70

By defining a shear-stress correlation length measuring the
size of a region in a liquid that can rearrange independent

FIG. 2. (a) SACF and (b) time-
dependent shear viscosity of a
star-polymer melt. Results obtained
from 16 samples are depicted by
black solid lines with error bars corre-
sponding to two standard deviations,
whereas results from 16 384 samples
are depicted by dashed colored lines.
For the simulation details, see Sec. III.
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of environment, Petravic9,71 has demonstrated that complex
(i.e., non-scaling) size effects observed in small dense liq-
uid systems can be understood through a concept similar
to “cooperatively rearranging regions” of the Adam–Gibbs
theory of glass transition. Büchner and Heuer72 have asso-
ciated system size effects with the limited number of
inherent structures (i.e., local energy minima) in finite
systems.

The present paper investigates the nature of the two afore-
mentioned types of uncertainties inherent in the estimation
of shear viscosity. To this end, we perform an extensive and
systematic MD study for LJ fluid and star-polymer melt mod-
els and compare the case of the shear viscosity estimation
with that of the self-diffusion coefficient estimation. For the
statistical uncertainty, we validate the uncertainty quantifica-
tion formulas and investigate the origin of pronounced Gaus-
sianity observed in the shear viscosity estimation. For the
uncertainty due to finite system size, we observe the sys-
tem size-dependent behavior of shear viscosities of the two
models and investigate their relations to atomic and molec-
ular rearrangements. We also propose an entity from which
Petravic’s shear-stress correlation length9,71 can be readily
estimated. We impose high-density and ambient-temperature
conditions so that the fluid models are in a typical liquid
state. The knowledge acquired through this study is practi-
cally useful for the accurate estimation of shear viscosity and
theoretically important for the understanding of the underlying
shear-stress relaxation process in a fluid. In a broader context, it
contributes to the recent advancement of uncertainty quantifi-
cation techniques for MD simulation studies73–79 by providing
more accurate characterization of intrinsic uncertainties in MD
simulations.78,80

The rest of the paper is organized as follows. In Sec. II,
we briefly review statistical uncertainty quantification formu-
las and theoretical accounts of the system size effects in the
estimation of transport coefficients. In Sec. III, we present the
details of our MD simulations for the LJ fluid and star-polymer
melt models. In Sec. IV, we present the statistical error anal-
ysis regarding the evaluation of shear viscosity. In Sec. V,
we provide the analysis on the system size-dependent behav-
ior of shear viscosity. We conclude the paper by providing a
summary and discussion in Sec. VI.

II. BACKGROUND
A. Statistical uncertainty quantification

Here we summarize the statistical uncertainty for-
mulas53 for the Green–Kubo method. According to the

Green–Kubo relation, the time-dependent transport coeffi-
cient, γ(t), is expressed as a time integral of the autocorrelation
function of a corresponding process, a(t),

γ(t) = A
∫ t

0
〈a(0)a(t ′)〉dt ′, (2)

where A denotes a prefactor and γ = limt→∞γ(t). In prac-
tice, the time autocorrelation function, C(t) = 〈a(0)a(t)〉,
is estimated from sample trajectories through the ensem-
ble average of time average, which can be expressed
as

ŷ(t) =
1
N

N∑
k=1

1
T

∫ T

0
a(k)(t ′)a(k)(t ′ + t)dt ′. (3)

Here, N and T denote the number of independent sample tra-
jectories and the length of each sample trajectory, respectively.
The superscript (k ) indicates that the quantity is obtained from
the kth sample trajectory. Accordingly, the estimator, ẑ(t), of
γ(t) is expressed as

ẑ(t) = A
∫ t

0
ŷ(t ′)dt ′. (4)

The quantities of interest are the standard errors, σa(t)
and σγ(t), in the estimators, ŷ(t) and ẑ(t), respectively. In
other words, for the statistical errors, εa(t) = ŷ(t) −〈ŷ(t)〉
and εγ(t) = ẑ(t) − 〈ẑ(t)〉, we want to quantify their error
levels by computing σ2

a(t) = 〈ε2
a(t)〉 and σ2

γ(t) = 〈ε2
γ(t)〉.

Since εγ is correlated with εa via Eq. (4), σγ(t) is expressed
in terms of the error correlation function, 〈εa(t ′)εa(t′′)〉,
of ŷ,

σ2
γ(t) =

∫ t

0
dt ′

∫ t

0
dt ′′〈εa(t ′)εa(t ′′)〉. (5)

While Eq. (5) is exact, we note that the error correlation
function is a fourth-order correlation function of a(t), and its
direct calculation through MD simulation is computationally
impractical.

Under the GPA, i.e., a(t) is a Gaussian process,81 the
error correlation function is approximated using the prop-
erty that higher-order moments of a Gaussian process can be
expressed in terms of the first two lowest-order moments. The
approximation

〈a(0)a(t1)a(t2)a(t3)〉 ≈ C(t1)C(t3 − t2) + C(t2)C(t3 − t1)

+ C(t3)C(t2 − t1) (6)

yields the following expressions for the respective standard
errors in C(t) and γ(t):

σa(t) =

√
1
NT

∫ ∞
−∞

dτ
[
C2(τ) + C(τ − t)C(τ + t)

]
, (7)

σγ(t) = A

√
1
NT

∫ ∞
−∞

dτ

[
C(τ)

∫ t

0
dt ′

∫ τ+t

τ

dt ′′C(t ′ − t ′′) +
∫ τ+t

τ

C(t ′)dt ′
∫ τ

τ−t
C(t ′)dt ′

]
. (8)
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In the case of shear viscosity, a(t) and A correspond to
pxy(t) and V (kBT )−1, respectively. Hence, once the SACF
is computed from MD simulations, both the standard errors
in the SACF and shear viscosity can be estimated from
Eqs. (7) and (8). For the self-diffusion coefficient defined as
D = limt→∞D(t) with

D(t) =
∫ t

0
〈vx(0)vx(t ′)〉dt ′, (9)

a(t) corresponds to the velocity component, vx(t), of a tagged
particle with A = 1.

The following observations can be made from Eqs. (7) and
(8). First, the standard errors,σ•, are proportional to (NT)−1/2.
Hence, one can define the normalized standard errors

σ̃• =
√
NTσ•. (10)

Second, for a C(t) decaying to zero, one can easily show that
σa(t) converges to a positive constant, satisfying

lim
t→∞

σa(t) =
1
√

2
σa(0). (11)

Third, as shown in the Appendix, the standard error of a time-
dependent transport coefficient grows asymptotically as fast
as
√

t, satisfying

lim
t→∞

σ̃γ(t)

2γ
√

t
= 1. (12)

An identical asymptotic expression has been derived in the
Appendix of Ref. 52.

B. Transport coefficients in finite periodic systems
1. Self-diffusion coefficient

The self-diffusion coefficient, DL, of a three-dimensional
fluid in a periodic simulation box with side length L is
known to satisfy the following relation with the self-diffusion
coefficient, D∞, in an infinite system:12,57,58

DL = D∞ −
2.837kBT

6πηL
. (13)

A physical interpretation of this relation is as follows. The
diffusion of a tagged particle is influenced by the long-range
hydrodynamic interaction between the tagged particle and the
surrounding fluid.2,35,68 In a finite periodic system, the hydro-
dynamic interaction developing in a given cell is interrupted
by that developing in neighboring images, resulting in system
size dependence.

2. Shear viscosity

For a periodic molecular system where atoms interact
pairwise via central pair-potentials, φij(r), the stress tensor is
expressed as69,82

pαβ =
1
V



∑
i

mivi,αvi,β −
1
2

∑
i

∑
j,i

rij,αrij,βφ
′
ij(rij)

rij


, (14)

where mi and vi,α are the mass and α-component (α = x,
y, z) of the velocity vector of the ith atom, respectively. rij

and rij ,α are the interatomic distance and α-component of the

displacement vector from atom j to atom i, respectively. From
Eq. (14), pαβ is decomposed into kinetic and potential con-
tributions. While the resulting kinetic contributions in the
SACF and shear viscosity are believed to have a hydro-
dynamic origin as theoretically studied,70 recent MD stud-
ies11,33,34 have revealed that the potential counterpart due
to structural relaxation becomes more significant in dense
fluids.

To demonstrate that a critical system size exists below
which the shear viscosity estimation suffers from significant
system size effects, Petravic9,71 has shown that a small dense
liquid system under shifted periodic boundary conditions (i.e.,
subject to constant strain) can sustain unphysical shear-stress.
For the total unrelaxed shear-stress, defined as

κ =



∑
α

∑
β

〈Παβ〉〈Πβα〉



1/2

(15)

with Παβ denoting the traceless stress tensor, an overall yet a
non-monotonic decay of κ was observed with increasing sys-
tem size. The shear-stress correlation length was defined as
a characteristic side length of the periodic cell for which κ
vanishes irrespective of the boundary strain. Correspondingly,
this length scale was related to that of a liquid subsystem
(or cooperatively rearranging region) over which the shear-
stress fluctuations are spatially correlated. The observed sys-
tem size effect was shown to be configurational, which results
from the scarcity of possible configurations in a small dense
system.

III. MD SIMULATIONS

As a simple fluid model, we consider a three-dimensional
LJ fluid at number density ρLJ = 0.8442 and temperature
TLJ = 0.722. The interaction between particles is described
via the LJ potential given by

VLJ(r) = 4ε

[(
σ

r

)12
−

(
σ

r

)6
]
. (16)

We use the reduced units of mass, length, and energy, i.e.,
m = σ = ε = 1 with kB = 1. The cutoff radius of the potential is
set to rc = 2.5. MD simulations of various system sizes were
performed under periodic boundary conditions. The small-
est system has an NLJ = 128 particles and the largest with
NLJ = 65 536 particles. The side length of a cubic simula-
tion box is accordingly determined as L = (NLJ/ρLJ)1/3. NV
E simulations were conducted using the velocity Verlet algo-
rithm implemented in LAMMPS83 with time step ∆t = 0.002.
Each equilibrium sample was obtained through equilibration
for period Tequil = 105∆t = 200. The subsequent production
run was performed for period T = 105∆t = 200. For each
set of simulation parameters, a total of N = 16 384 sample
trajectories were calculated.

We also consider a star-polymer melt model used in
Ref. 84 and adopt the same notations and parameters therein.
Each star-polymer has Na arms with Nb beads per arm.
The arms are linked to a central bead. Hence, there are
Nc = NaNb + 1 beads per molecule. We set Na = 10 and
vary Nb = 1, 2, 3 to investigate the influence of effective
molecular size. Typical configurations of star-polymers with



044510-5 Kim et al. J. Chem. Phys. 149, 044510 (2018)

FIG. 3. Comparison of the actual stan-
dard errors observed in MD simu-
lations with those in the theoreti-
cal predictions for the LJ fluid (NLJ
= 2048). The normalized standard
errors, σ̃ =

√
NTσ, are shown as the

level of statistical uncertainty. The top
row displays the shear viscosity cases
[(a) SACF; (b)η(t)], whereas the bottom
row shows the self-diffusion coefficient
cases [(c): VACF; (d) D(t)]. The time
profiles of the VACF and D(t) are shown
in the insets of panels (c) and (d), respec-
tively. The SACF and η(t) are shown in
Fig. 1.

Nc = 11, 21, 31 are illustrated in Fig. 1 of Ref. 84. Excluded
volume interactions between beads are described via the WCA
potential given by

VWCA(r) =



4ε
[(
σ
r

)12
−

(
σ
r

)6
+ 1

4

]
, r ≤ 21/6σ,

0, r > 21/6σ.
(17)

We use the reduced units of mass, length, and energy, i.e.,
m = σ = ε = 1 with kB = 1. Bond interactions are given by the
finitely extensible nonlinear elastic (FENE) potential

VFENE(r) =



−
1
2

kr2
0 ln

[
1 − ( r

r0
)2

]
, r ≤ r0,

∞, r > r0,
(18)

where the spring constant is set to k = 30 and the maximum
spring length to r0 = 1.5. NVE simulations were performed
at the bead number density ρstarpoly = 0.4 and temperature
T starpoly = 1, under periodic boundary conditions for N starpoly

= 10, . . ., 2048 star-polymers. Hence, the side length of a cubic
simulation box is set to L = (NcNstarpoly/ρstarpoly)1/3. As in the
simple fluid case, N = 16 384 samples were calculated using
∆t = 0.002 for T = 105∆t = 200. However, since the complex
geometry of a star-polymer may cause slower equilibration, a
longer period of equilibration, Tequil = 5× 105∆t = 1000, was
employed.

The SACF and η(t) were computed as follows. For
each sample trajectory, pxy was collected at every five time
steps to calculate the SACF until t = 100 using a stan-
dard time-averaging procedure.53 Moreover, a numerical time-
integration of the SACF was performed using the trapezoidal
rule to obtain η(t). Then, the sample means and standard
deviations of both SACF and η(t) over N = 16 384 samples
were calculated. The standard error, σ, in a sample mean was

estimated by σ = σsample/
√
N, where σsample denotes the

standard deviation over the samples. Figures 1 and 2 show
the time profiles of the SACF and η(t) for the LJ fluid
(NLJ = 2048) and the star-polymer melt (Nc = 21 and
N starpoly = 1024), respectively. For the LJ fluid, the VACF,
〈vx(0)vx(t)〉, and time-dependent self-diffusion coefficient,
D(t), were also computed from the same procedure. The time
profiles of these quantities are, respectively, shown in the insets
of panels (c) and (d) in Fig. 3.

IV. STATISTICAL UNCERTAINTY

In Sec. IV A, we perform a statistical uncertainty anal-
ysis for the LJ fluid and star-polymer melt models and vali-
date the statistical uncertainty quantification formulas given in
Sec. II A. In Sec. IV B, we further examine the Gaussianity of
the shear-stress process.

A. Estimation of statistical uncertainties

Here, we compare the actual statistical uncertainty level
observed in MD simulations with that in the theoretical pre-
diction based on the GPA. We report the normalized standard
error, σ̃, defined in Eq. (10). Theoretically predicted error lev-
els are computed from Eqs. (7) and (8) using MD data of the
corresponding autocorrelation function. We also compare the
long-time growth of the error levels in η(t) and D(t) with that
of the asymptotic expression (12).

Figures 3(a) and 3(b) show statistical uncertainties
involved in the shear viscosity estimation of the LJ fluid with
NLJ = 2048. For the SACF, the agreement between the MD
result and theoretical prediction is remarkable. The slight dis-
crepancy at t = 0 decreases with time and becomes negligible
after t = 0.1. The standard error becomes constant around
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FIG. 4. System size dependence on the statistical uncertainty level in the
SACF of the LJ fluid. To compare MD results of three different system
sizes, NLJ = 512, 1024, and 2048, with the GPA-based theoretical predic-
tions, the standard error is also normalized by the prefactor V (kBT )−1 (i.e.,
≈
σ= V (kBT )−1

√
NTσ is used). Since the theoretical predictions computed

from the SACFs of the three system sizes are essentially the same, only the
case with NLJ = 2048 is shown.

t = 1, and its ratio to the initial error is approximately 1/
√

2,
as predicted by Eq. (11). For η(t), the theoretical error esti-
mate completely predicts the monotonic growth of the actual
error level with time. As shown in Figs. 3(c) and 3(d), theo-
retical error estimates for the evaluation of the self-diffusion
coefficient are fairly good but not as accurate as the shear
viscosity case. For the VACF, while the actual error level
appears to monotonically decrease with time until attain-
ing long-time values, the theoretical error estimate exhibits
a dip at short periods due to the negative tail in the VACF
(see the inset). The latter underestimates the error level for
t < 1 but correctly predicts the long-time behavior. For D(t),
the error level is underestimated, but its monotonic growth is
predicted.

Since the discrepancy between MD results and theoreti-
cal predictions is attributed to the violation of the GPA, the
notable agreement observed in the shear viscosity case reveals
that the Gaussianity is more pronounced in the shear-stress
process. A possible explanation is that the latter is represented
by the collective dynamics of the whole system, see Eq. (14),
whereas the velocity process only requires the information
of a single particle. This argument is based on a heuristic
application of the central limit theorem. One supporting obser-
vation is that theoretical error estimates for the shear viscosity
become more accurate as the system size increases (see Fig. 4),
while those for the self-diffusion coefficient do not exhibit any
system size-dependent improvement. Hence, it is observed

FIG. 6. Long-time growth of the statistical uncertainty error level in the esti-
mation of γ(t). To check the validity of the asymptotic expression (12), the
ratio, σ̃γ (t)/(2γ

√
t), is shown for the following three cases of γ(t): η(t) and

D(t) of the LJ fluid (NLJ = 2048) and η(t) of the star-polymer melt (Nc = 21
and Nstarpoly = 1024).

that the validity of the GPA for the shear-stress process is
enhanced with increasing system size, which is consistent with
our central limit theorem-based argument.

Figure 5 shows that the structural complexity of a star-
polymer molecule does not reduce the accuracy of the statisti-
cal uncertainty quantification formulas for the shear viscosity
estimation. However, the time profile of the error level itself
becomes much more complicated due to the molecular struc-
ture. That is, the complex short-time behavior of the SACF
shown in Fig. 2(a) is reflected in the error level of the SACF
and η(t), and the growth of the error level in η(t) is not mono-
tonic at short periods. In addition, as in the LJ fluid case, the
enhanced accuracy of theoretical error estimates for a larger
system is observed for all three sizes, Nc = 11, 21, and 31 of a
star-polymer molecule.

We finally observe the long-time growth of the standard
errors in η(t) and D(t). Since the growth is expected to be
proportional to

√
t under the GPA and more explicitly (see

Sec. II A and the Appendix)

σγ(t) ≈ 2γ

√
t

NT
, (19)

where γ is either η or D, we show the time profiles of the
ratio σ̃γ(t)/(2γ

√
t) in Fig. 6. The ratio converges to unity in

all three cases, but the actual convergence time appears to
depend on the time scale of t∗ satisfying γ(t∗) ≈ γ. This is
roughly estimated as 2 and 1 for η and D of the LJ fluid,

FIG. 5. Comparison of the actual stan-
dard errors observed in MD simulations
with the theoretical predictions for the
shear viscosity estimation of the star-
polymer melt (Nc = 21 and Nstarpoly
= 1024). The normalized standard errors
of the SACF and η(t) are shown in pan-
els (a) and (b), respectively. The time
profiles of the SACF and η(t) are shown
in Fig. 2.
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FIG. 7. Verification of the GPA of
pxy(t) and vx(t) using three- and four-
time correlation function tests. In (a)
and (c), scatter plots of the three-time
correlation functions in both sides of
Eq. (21) are presented with the auxil-
iary lines y = x. In (b) and (d), contour
plots of the covariance in Eq. (22) are
shown. Colored solid lines depict the
actual MD results, whereas dashed gray
lines denote the GPA results. Numbers
in the plots correspond to the values of
each level curve.

respectively, and 10 for η of the star-polymer melt. We note that
the ratio is already approximately unity at t∗ in all three cases,
suggesting that the simple estimate (19) can be reasonable in
a practical computation.

B. Verification of GPA

We have so far shown the validity of the GPA from the
consistency between MD results and the theoretical error esti-
mates. Here we examine it more directly. That is, for the under-
lying processes a(t) = pxy(t) and vx(t), we perform two tests
involving three- and four-time correlation functions. These
tests have been used in Refs. 85 and 53, respectively.

In the three-time correlation function test, the following
property of a stationary Gaussian process g(t) is used:

〈F(g(0))F(g(t1))F(g(t1 + t2))〉 = 〈F(g(0))F(g(t2))

×F(g(t1 + t2))〉, (20)

where F(x) is an arbitrary function. We choose g(t) = ã(t)
≡ a(t)/

√
〈a2(t)〉 and F(x) = ex and thus want to check whether

〈eã(0)eã(t1)eã(t1+t2)〉 = 〈eã(0)eã(t2)eã(t1+t2)〉. (21)

To this end, for the LJ fluid with NLJ = 2048, three-time cor-
relation functions in both sides of Eq. (21) are computed for
various values of t1 and t2, and a scatter plot of the two cor-
relation functions is drawn. As shown in Figs. 7(a) and 7(c),

the two correlation functions lie near the line y = x, which
proves the validity of the GPA of both pxy(t) and vx(t). Also,
better conformity is observed for the shear-stress process
exhibiting more pronounced Gaussianity.

For the four-time correlation function, we choose the fol-
lowing covariance function and compare the MD results with
the GPA results:

Cov[a(0)a(t1), a(0)a(t2)] ≈ 〈a2(0)〉〈a(0)a(t1 − t2)〉

+ 〈a(0)a(t1)〉〈a(0)a(t2)〉. (22)

In Figs. 7(b) and 7(d), excellent agreement is observed for the
shear-stress process, and overall good agreement is observed
for the velocity process. Hence, we reconfirm the Gaussianity
approximation of the shear-stress process.

V. FINITE SYSTEM SIZE EFFECT

In Sec. V A, we investigate the system size dependence of
shear viscosity of both LJ fluid and star-polymer melt models
using MD simulation results with well-controlled statistical
uncertainty. Here we also discuss the system size effects on
the self-diffusion coefficient of LJ fluid. In Sec. V B, we pro-
pose a physical entity that captures the length scale of the
configurational rearrangement of the system and demonstrate
its predictability for the estimation of the system size effect on
shear viscosity.
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FIG. 8. System size effects on (a) shear
viscosity and (b) self-diffusion coeffi-
cient of the LJ fluid. Labeled numbers
indicate the number of LJ particles in
a simulation system. Error bars corre-
spond to two standard deviations. The
dotted line in panel (b) depicts the theo-
retical prediction using Eq. (13) with the
system size-dependent shear viscosities,
whereas the gray solid line denotes the
linear regression of the MD data.

A. Cooperatively rearranging regions

Figures 8(a) and 8(b) present the system size effects on
shear viscosity and the self-diffusion coefficient of the LJ
fluid. No noticeable sign of scaling behavior is found for shear
viscosity, whereas a clear L−1 scaling behavior predicted by
Eq. (13) is observed for the self-diffusion coefficient. Shear
viscosity is influenced by system size especially for small
systems, resulting in a complex oscillatory behavior which
dampens with increasing system size. The oscillatory behavior
becomes negligible above around NLJ = 1024. This behavior
indicates the presence of a certain length scale of cooperatively
rearranging regions, above which virtually all possible con-
figurational rearrangements become allowed independently
of the environment. In other words, the complex oscillatory
behavior of shear viscosity for small systems is a consequence
of limited space for configurational rearrangements in dense
fluids. For the self-diffusion coefficient, we observe an addi-
tional oscillatory behavior for small systems and identify this
behavior to be associated with that of shear viscosity. In fact,
using the system size-dependent viscosities with Eq. (13),
we confirm that the size-dependent self-diffusion coefficients
are accurately predicted for the entire range of the system
size.

Figure 9 compares the system size effects on shear vis-
cosity for the three star-polymer melt models with different
values of arm length (Nb = 1, 2, 3). As in the LJ fluid model,
an oscillatory behavior is observed for small systems. Notably,
the magnitude of oscillations and the length scale of cooper-
atively rearranging regions both depend on the effective size

FIG. 9. System size effects on shear viscosity of the star-polymer melt model.
Three different sizes of star-polymers are compared: Nc = 11, 21, 31. That
is, star-polymers have Na = 10 arms with Nb = 1, 2, 3 beads per arm, respec-
tively. Labeled numbers indicate the number of star-polymer molecules in a
simulation system. Error bars correspond to two standard deviations.

of star-polymers. Since larger star-polymers can be consid-
ered as coarse-grained particles with larger effective radii, the
length scale of cooperatively rearranging regions is expected
to increase for larger star-polymers. Larger magnitude of oscil-
lations and more complex patterns with increasing arm length
are attributed to molecular interactions of complex molecular
structures.

B. Length scale estimation of cooperatively
rearranging regions

We have so far observed that the system size dependence
of shear viscosity, η, can be understood by the length scale
of cooperatively rearranging regions, ξ. Here we propose an
entity, κ̃, from which one can accurately and easily estimate
the length scale ξ. It is defined as a normalized variance of
shear-stress process,

κ̃ =
V

kBT
〈p2

xy〉. (23)

Note that κ̃ and η are related to the SACF C(t) as follows:

κ̃ =
V

kBT
C(0), η =

V
kBT

∫ ∞
0

C(t)dt. (24)

Figure 10 compares the system size dependence of κ̃ and
η for the LJ fluid. As in η, the oscillatory behavior of κ̃ dimin-
ishes with increasing system size and becomes negligible when
the system size is sufficiently larger than ξ. The remarkable

FIG. 10. Comparison of the system size dependence of the normalized vari-
ance of the shear-stress process, κ̃, and shear viscosity, η, of the LJ fluid.
To visually compare the system size-dependent behaviors of the two quan-
tities, we plot a scaled version of κ̃, aκ̃ + b, using empirical parameters a
and b. The optimized values of a and b were obtained from the linear least
squares regression. Labeled numbers indicate the number of LJ particles in a
simulation system. Error bars correspond to two standard deviations.
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resemblance between the size-dependent behaviors of κ̃ and η
enables one to deduce some features of the system size effect
on shear viscosity from those of κ̃. This implies that the sys-
tem size effect on shear viscosity of a dense fluid is largely
determined by static equilibrium distribution and is mainly
configurational.

In practice, κ̃ can minimize the efforts required to identify
the system size effect on shear viscosity of a dense fluid. That
is, it is possible to compute an accurate value of η, without
the need of any trial and error, by simply choosing a sys-
tem size larger than the value of ξ estimated from κ̃. Since
κ̃ is a static equilibrium quantity, its evaluation is easier and
faster compared to the computation of the dynamical quan-
tity η. Moreover, its statistical error analysis is much simpler.
While Petravic’s κ [see Eq. (15)] can be similarly used to esti-
mate ξ, we note that periodic boundary conditions must be
modified to induce unrelaxed stress.9 Contrary to the first-
moment-based quantity κ, our second-moment-based quantity
κ̃ can be defined and obtained under the standard periodic
boundary conditions.

VI. CONCLUSION

We have investigated the statistical uncertainty and system
size effect present in the equilibrium MD evaluation of shear
viscosity, η, using the Green–Kubo formula. Analytic expres-
sions for statistical uncertainties in the SACF, 〈pxy(0)pxy(t)〉,
and time-dependent shear viscosity, η(t), were presented and
verified through MD simulations of three-dimensional LJ fluid
and star-polymer melt systems at relatively high densities. It
was observed that our statistical error estimates based on the
GPA predict the actual error levels with remarkable accuracy.
By comparing with the case of the self-diffusion coefficient,
D, it was confirmed that the shear-stress process, pxy(t), has
more pronounced Gaussianity than the velocity process, vx(t),
of a tagged fluid particle. We explained this pronounced Gaus-
sianity of pxy(t) by a central limit theorem argument; since the
shear-stress process is expressed as a sum depending on the
whole degrees of freedom [see Eq. (14)], it is expected to be
well approximated by a Gaussian process if there are suffi-
ciently many degrees of freedom. This argument implies the
enhancement of GPA for increasing system size, which was
also confirmed in this work.

With controlled statistical uncertainties, we have veri-
fied that the shear viscosities of both systems exhibit strong
size effects in small systems but without any overall scal-
ing behavior. The complex oscillatory behavior observed in
the shear viscosity values of small systems was identified to
result from limited space for configurational rearrangements.
Accordingly, the length scale of cooperatively rearranging
regions, ξ, was estimated from the minimum system size where
this behavior disappears and a reliable value of η is obtained.
It was also observed that both the magnitude of the oscilla-
tion and length scale ξ depend on the molecular structure of
the fluid. Besides the absence of scaling behavior in η (as
opposed to the L−1 correction in D), these observations indi-
cate that the main mechanism causing the size effects on η of
dense fluids has a configurational origin rather than a hydro-
dynamic one. Hence, we proposed the normalized variance of

the shear-stress process, κ̃, as a measure by which the min-
imum system size ξ for a reliable value of η can be readily
estimated.

Further investigation for other fluid states is, however,
required to gain a deeper understanding of the system size
effect on the SACF and η. It is well known that the potential
contribution is dominant in dense fluid, whereas the kinetic
contribution is influential in dilute fluid. In this work, we
mainly interpreted the size effects at relatively high densities
based on structure relaxation. For a dilute fluid (e.g., rar-
efied gas), however, different system size effects are expected,
which should be investigated based on hydrodynamic inter-
pretation. For future work, we plan to investigate various fluid
density regions, including dilute, intermediate, and dense flu-
ids. By decomposing the SACF into various components, we
will investigate the hydrodynamic nature of η and its con-
figurational aspect to improve our understanding of viscous
momentum relaxation in fluids.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF σγ(t)

We observe the long-time growth of the standard error
σγ(t) in Eq. (8) and confirm the asymptotic expression (12). To
this end, we consider the following analytic forms of autocor-
relation function C(t), which are commonly adopted to model
fluctuation correlations in molecular systems:

C1(t) = 2B1δ(t), (A1a)

C2(t) =
B1

B2
exp

(
−
|t |
B2

)
, (A1b)

C3(t) =
2B1√
2πB2

3

exp*
,
−

t2

2B2
3

+
-
. (A1c)

Here B1 denotes the time integral (i.e., B1 = ∫
∞

0 Ci(t)dt, i = 1,
2, 3) and B2 and B3 correspond to the correlation times of
C2(t) and C3(t), respectively (note that B−1

1 ∫
∞

0 tC2(t)dt = B2

and
[
B−1

1 ∫
∞

0 t2C3(t)dt
]1/2
= B3).

For C1(t), the multiple integral in Eq. (8) reduces to
4B2

1t, yielding the normalized standard error σ̃γ(t) = 2AB1
√

t
= 2γ

√
t. Hence, we have σ̃γ(t)/(2γ

√
t) = 1 for all t > 0. For
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FIG. 11. Time profiles of the ratio σ̃γ (t)/(2γ
√

t) for three model correlation
functions; see Eq. (A1). Results for two correlation times, Bi = 0.1 and 1, are
plotted for the exponential (i = 2) and Gaussian (i = 3) decays.

the exponential decay C2(t), we obtain

σ̃γ(t) = γ
√

4t − 3B2 + e−2t/B2 (2t + 3B2) (A2)

and hence confirm Eq. (12). For C3(t), it can be also shown that
Eq. (12) holds. In the latter two cases with nonzero correla-
tion times, it takes time for the ratio σ̃γ(t)/(2γ

√
t) to converge

to unity. As shown in Fig. 11, it takes more time for larger
correlation time.
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