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ABSTRACT
Dissociative adsorption onto a surface introduces dynamic correlations between neighboring sites not found in non-dissociative absorption.
We study surface coverage dynamics where reversible dissociative adsorption of dimers occurs on a finite linear lattice. We derive analytic
expressions for the equilibrium surface coverage as a function of the number of reactive sites, N, and the ratio of the adsorption and desorption
rates. Using these results, we characterize the finite size effect on the equilibrium surface coverage. For comparable N’s, the finite size effect is
significantly larger when N is even than when N is odd. Moreover, as N increases, the size effect decays more slowly in the even case than in the
odd case. The finite-size effect becomes significant when adsorption and desorption rates are considerably different. These finite-size effects
are related to the number of accessible configurations in a finite system where the odd-even dependence arises from the limited number
of accessible configurations in the even case. We confirm our analytical results with kinetic Monte Carlo simulations. We also analyze the
surface-diffusion case where adsorbed atoms can hop into neighboring sites. As expected, the odd-even dependence disappears because more
configurations are accessible in the even case due to surface diffusion.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171207

I. INTRODUCTION

Adsorption and desorption processes provide an essential
mechanism for mass transport at fluid–solid interfaces.1,2 For exam-
ple, heterogeneous catalysis3,4 relies on this mechanism to transport
reactants from a gas onto a catalytic surface where chemical reac-
tions occur and bring products back to the gas phase. Therefore,
developing a correct description of adsorption and desorption pro-
cesses is a crucial step in the computational modeling of gas–solid
interfacial systems requiring appropriate modeling assumptions and
careful analysis.5–8 While the inclusion of lateral interactions (also
referred to as adsorbate–adsorbate interactions) is important for
realistic modeling of the phenomenon, it makes the analytic inves-
tigation of the behavior of the resulting system intractable. In this
paper, we consider a theoretical model of reversible dissociative
adsorption based on Langmuir adsorption modeling and show that,

even without lateral interactions, the phenomenon of reversible dis-
sociative adsorption exhibits rich dynamics that requires detailed
analysis.

The Langmuir adsorption model1,2,9 has served as the most
influential theoretical model for reversible adsorption processes.
Despite its simplicity, the model not only captures key molecular fea-
tures but also gives analytical expressions for adsorption isotherms.
One of the fundamental assumptions of the model is that there are
no interactions between adsorbates on adjacent sites. This assump-
tion implies another assumption, namely, that the occupancy of
each site becomes uncorrelated in the infinite equilibrium system,
from which one can derive the Langmuir isotherms for both non-
dissociative (or one-site) and dissociative (or two-site) adsorption.
However, we note that, for the dissociative adsorption case, the
validity of the uncorrelated site occupancy assumption may not
be guaranteed in a general situation (i.e., finite or nonequilibrium
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system) because adsorption and desorption events can lead to
dynamic correlations between neighboring sites. These kinetically
induced correlations present in the dissociative adsorption case
make the analysis of system behaviors nontrivial. This is contrasted
with the non-dissociative adsorption case, where the uncorrelated
site occupancy assumption always holds and the system exhibits triv-
ial exponential kinetics because the occupancy of each site can be
modeled by an independent stochastic process under the assumption
of no lateral interactions.

Theoretical investigations of kinetically induced correlations in
a system undergoing two-site adsorption events date back to at least
the 1939 study by Flory10 where intramolecular reactions on poly-
mer chains were modeled by irreversible two-site adsorption events
(i.e., without desorption events). This study has led to various anal-
yses of emerging behavior in the random and cooperative sequential
adsorption models.11 For the reversible dissociative adsorption case,
a systematic analysis was performed in the context of deposition and
evaporation of k-mers (k = 2, 3, . . .) on a linear lattice.12,13 Using
an equivalent formulation based on a quantum-spin model, it was
shown that the autocorrelation function for the number of adsorbed
atoms exhibits a power-law decay in time (i.e., ∼ t−1/2). To this end,
in the context of the Goldstone theorem,14 a family of conservation
laws was identified by dividing the lattice into k sublattices and con-
sidering the number of atoms adsorbed on each sublattice. While
this approach provides an insightful explanation for the origin of the
nontrivial power-law decay observed in the infinite-system limit, we
note that the approach is not fully applicable to a finite system, par-
ticularly if the size of the lattice is not a multiple of k. Liu and Evans15

analyzed spatial correlations in one- or two-dimensional lattice sys-
tems undergoing reversible dissociative adsorption using a similar
formulation with sublattices. They showed that the magnitude of
nearest-neighbor and other short-range correlations decay like t−d/2

where d is the dimensionality of the lattice. This analysis for the
dimer (O2) adsorption–desorption process was performed as part
of a broader study of a CO oxidation model16 and strong spatial cor-
relations appearing in some quasi-steady states during the evolution
of surface coverage dynamics were used to explain why phenomeno-
logical kinetics (e.g., mean-field description) may fail to provide
an adequate description of heterogeneous catalysis.17,18 We note
that previous studies12,13,15 mostly considered the infinite-system
limit and analyzed the power-law decay of dynamic correlations
to demonstrate the intriguing nature of the reversible dissociative
adsorption dynamics.

In this paper, we perform a systematic analysis of reversible dis-
sociative adsorption occurring on a finite linear lattice. The main
quantity of interest is the equilibrium surface coverage. We show
that, contrary to the infinite system case, the effect of kinetically
induced correlations can be seen in this static quantity because
the occupancy of each site is not completely uncorrelated in a
finite system. We also show that the finite system-size effect on the
equilibrium surface coverage exhibits interesting behavior depend-
ing on whether the lattice has an odd or even number of sites
and this can be explained by the number of accessible configu-
rations that a finite system can have. Analyzing finite system-size
effects and investigating their physical origins are crucial to under-
standing emerging behaviors in finite-sized physical systems (e.g.,
nano-engineered materials)19,20 or perform reliable simulation stud-
ies using finite-sized computational models (e.g., with periodic

boundary conditions).21–24 In fact, considering that even high-
quality single crystal surfaces have terraces that seldom exceed a
size of a few hundred sites in one direction, we note that most
real catalytic systems are nano-structured without any particular
engineering.

We formulate a continuous-time Markov chain model25 for
a linear lattice undergoing reversible dissociative adsorption and
investigate the dynamics of this system using the following two
methods. First, we develop an analytic approach based on the
chemical master equation (CME). The CME is a set of first-order
differential equations that describe the probabilistic time evolution
of the system in state space.26,27 We derive analytical expressions for
the equilibrium surface coverage as a function of system size and
the ratio of the adsorption and desorption rates. Second, we perform
lattice kinetic Monte Carlo (KMC) simulations28–30 to confirm the
validity of our analytical results for the equilibrium surface coverage.
KMC numerically solves the CME in the sense that the distribu-
tion of sample trajectories is the solution of the CME. Furthermore,
we investigate the time evolution of the surface coverage dynam-
ics to discuss how the equilibrium surface coverage is reached. In
addition, using both CME and KMC approaches, we investigate
the effect of surface diffusion, which is known to reduce spatial
correlations.15,31

The rest of the paper is organized as follows. In Sec. II, we
introduce our lattice system and reversible dissociative adsorption
and derive the Langmuir isotherm. In Sec. III, we formulate a
continuous-time Markov chain model and derive analytic results for
the equilibrium surface coverage and the correlation coefficient for
the occupancy of neighboring sites. Using these results as well as
KMC simulations, we analyze finite system-size effects on equilib-
rium surface coverage. In Sec. IV, we analyze the effect of surface
diffusion. In Sec. V, we conclude the paper with a summary and an
outline for future work.

II. SYSTEM
We consider a theoretical model of reversible dissociative

adsorption based on Langmuir adsorption modeling. The surface
is represented as a linear lattice with N reactive sites, see Fig. 1(a).
We assume that all reactive sites are identical and each site has two
neighboring sites. In other words, the terminal sites are connected
via a periodic boundary. One can consider this lattice system with a
sufficiently large number of sites as an approximation to an infinite
lattice. One may also view this linear lattice model with a small num-
ber of sites as a simple theoretical model for active sites adjacent to
doped sites,32 see Fig. 1(b).

As a reaction model, we consider reversible dissociative adsorp-
tion of diatomic gas molecules X2 between the gas phase and the
lattice:

∅∅ + X2(g)
raÐ⇀↽Ð
rd

XX. (1)

A molecule X2 in the gas phase dissociates into atoms that are
adsorbed onto two neighboring empty sites (denoted as ∅∅) and
vice versa. The rates of the forward reaction (dissociative adsorp-
tion) and the reverse reaction (associative desorption) are denoted
as ra and rd, respectively. ra and rd have units of inverse time and are
taken as constant. Note that the dependence on the partial pressure
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FIG. 1. (a) An example of a linear lattice with N = 6 sites and a typical configuration with two occupied sites (marked with an X). (b) A linear lattice with a periodic boundary
can be viewed as a simple theoretical model for active sites (in yellow) adjacent to doped sites (in black) on a surface of inert sites (in white). Two cases with N = 6 and 9 are
shown.

of X2 is included in ra and no lateral interactions are assumed. In
addition we will consider surface diffusion of the adsorbed atom X
in Sec. IV, see Eq. (21). The main quantity of interest in this paper
is the surface coverage of the system. The surface coverage θN(t) is
defined as the ratio of the mean number of occupied sites at time t
to the number of reactive sites, N. We assume that the lattice is ini-
tially unoccupied, i.e., θN(0) = 0. We define the equilibrium surface
coverage θ̄N as the long-time (or steady-state) limit of θN(t), i.e.,
θ̄N = limt→∞θN(t).

Before closing this section, we derive the Langmuir isotherm,
which is the equilibrium surface coverage in the infinite system,
i.e., θ̄∞ = limN→∞θ̄N . We let brackets denote the probability that
a certain n-site cluster (n = 1, 2, 3) is found in the lattice system.
Specifically, [X] and [∅] denote the probabilities that a site is occu-
pied by X and unoccupied, respectively, whereas [XX], [X∅], [∅X],
and [∅∅] denote the probabilities that a nearest-neighbor pair of
sites is in states of XX, X∅, ∅X, and ∅∅, respectively. By the
hierarchical rate equations, the time evolution of [X] is given as15

d
dt
[X] = 2ra[∅∅] − 2rd[XX]. (2)

Although Eq. (2) is exact, it cannot be solved as an initial value
problem because the equation is not closed. The two-site cluster
quantities, [∅∅] and [XX], are not determined by the one-site clus-
ter quantities, [X] and [∅] = 1 − [X]. However, assuming an infinite
equilibrium system, one can derive the steady-state value of [X],
which is θ̄∞, from Eq. (2). Since we assume there are no lateral
interactions, the occupancy of each site becomes uncorrelated in the
thermodynamic equilibrium9 and thus one has [XX] = [X][X] = θ̄2

∞

and [∅∅] = [∅][∅] = (1 − θ̄∞)2. By combining these with the
condition that d

dt [X] becomes zero in the steady state, one finally
obtains9

θ̄∞ =
1

1 +
√

k
, where k = rd

ra
. (3)

Note that Eq. (3) cannot be used to derive any finite-system or
nonequilibrium results, such as θN(t), θ̄N , or θ∞(t), because the
uncorrelated site occupancy assumption is not guaranteed to hold
and [AB] ≠ [A][B] in general.

III. FINITE-SIZE EFFECTS: EVEN AND ODD N
In this section, we develop a continuous-time Markov chain

description for the system described in Sec. II and investigate finite

system-size effects on equilibrium surface coverage θ̄N using both
analytical and simulation approaches. The analytical approach is
based on the master equation description, for which a complete
characterization of all accessible configurations is a prerequisite. As
briefly mentioned in the Introduction, the finite-size effect is related
to the number of accessible configurations. We present a combi-
natorial argument to characterize all accessible configurations in
Sec. III A. We then describe our master-equation-based approach
in Sec. III B. We present analytic results for the equilibrium surface
coverage and the correlation coefficient for the occupancy of neigh-
boring sites in Secs. III C and III D, respectively. We finally present
KMC simulation results in Sec. III E.

A. Accessible configurations
As described in Sec. II, we consider a periodic linear strip with

N sites and label these sites from 1 to N. We assume that each site
in the system is initially unoccupied. We define a configuration of
the system by specifying whether each site is occupied (denoted
by X) or unoccupied (denoted by ∅). We say that a configura-
tion is accessible from another configuration if the former can be
obtained from the latter via a sequence of reactions. For example,
for N = 5, configuration {X∅∅X∅} is accessible from the initial
configuration {∅∅∅∅∅} because the former is obtained from the
latter via two adsorption events at sites 1-2 and 3-4 followed by a
desorption event at sites 2-3. Using a combinatorial argument, we
count the total number of accessible configurations, denoted by ntot.
We also determine the number of accessible configurations with 2l
occupied sites, denoted by ñl, which will be used to derived θ̄N in
Sec. III C.

Since each site is either occupied or unoccupied, there are a
total of 2N configurations. However, it is important to note that all
configurations are not accessible to each other. This is because of
properties that must continue to hold when the system undergoes
a sequence of dissociative adsorption and associative adsorption
events. We first note that the parity (i.e., whether odd or even) of
the number of occupied sites does not change because the num-
ber of occupied sites increases (or decreases) by 2 via a dissociative
adsorption (or associated desorption) event.

For the odd case of N = 2m + 1, this parity can completely
characterize the two groups of configurations within which all con-
figurations are accessible from each other. The 2N−1 configurations
with an even number of occupied sites are accessible from the com-
pletely unoccupied configuration {∅∅ ⋅ ⋅ ⋅∅}, whereas the other
2N−1 configurations with an odd number of occupied sites are
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accessible from the completely occupied configuration {XX ⋅ ⋅ ⋅X}.
Hence, we will consider only the former group of configurations in
the continuous-time Markov chain description for the odd case. One
can easily see that the number of configurations with 2l occupied
sites (l = 0, 1, . . . , m) is given by (N

2l ) where (m
j ) =

m!
j!(m− j)! denotes

a binomial coefficient. The total number of accessible configurations,
ntot = 2N−1, is then given by the sum of ñl:

ñl = (
2m + 1

2l
), ntot =

m

∑
l=0

ñl = 22m = 2N−1. (4)

For the even case of N = 2m, there is an additional conserved
quantity.12,13,15 To define this quantity, we consider the two alter-
nating sublattices. The (+) sublattice only has sites with an odd site
number, whereas the (−) sublattice only contains sites with an even
site number. We denote the number of occupied sites in the (+)
and (−) sublattices by N+ and N−, respectively. Since dissociative
adsorption and associative desorption events occur at two neighbor-
ing sites, one of the sites belongs to the (+) sublattice and the other
belongs to the (−) sublattice. As a result, the quantity N+ −N− is
conserved when adsorption or desorption occurs. Hence, contrary
to the odd case, all 2N−1 configurations with an even number of
occupied sites are not accessible from the initial unoccupied config-
uration. For example, for N = 6, {XXX∅X∅} is not accessible from
{∅∅∅∅∅∅} because the N+ −N− values of the former and latter
configurations (2 and 0, respectively) are different.

Combinatorial expressions for ñl and ntot in the even case are
obtained as follows. Since we only consider configurations accessi-
ble from the initial unoccupied configuration, those configurations
have N+ −N− = 0. Thus, if a configuration has 2l occupied sites (i.e.,
N+ +N− = 2l), we know N+ = N− = l. We note that there are (m

l )
ways to arrange N+ = l atoms in the (+) sublattice with m sites and
the same expression holds for the (−) sublattice. Hence, we obtain

ñl = (
m
l
)

2
, ntot =

m

∑
l=0

ñl = (
2m
m
) = ( N

N/2). (5)

Note that the conservative quantity, N+ −N−, was identified using
sublattices in previous studies.12,13,15 However, the main focus in

these works was to explain the power-law decay of time-correlation
functions observed in the infinite system limit and combinatorial
arguments were not developed.

B. Continuous-time Markov chain description
We construct a continuous-time Markov chain model for the

system described in Sec. II by considering all accessible configura-
tions and defining transition rates between each pair of configu-
rations. If two configurations are obtained from each other by an
adsorption or desorption event, the transition rates are set to ra and
rd, respectively; otherwise, zero transition rates are set. To describe
the time evolution of the continuous-time Markov chain model, one
can use the chemical master equation (CME), which is a set of first-
order differential equations whose solution gives the probability that
the system is in a certain configuration at a certain time. However,
the dimension of the CME, which is equal to ntot, grows quickly, see
Eqs. (4) and (5). Moreover, even for small values of N, the values of
ntot are rather large (e.g., ntot = 16 and 20 for N = 5 and 6, respec-
tively), which makes it difficult to investigate the CME analytically.
Instead of the standard approach which keeps track of all acces-
sible configurations separately, we group configurations with the
same characteristics into an aggregated state and write the CME for
those aggregated states. Owing to the periodic boundary or the ring
structure, configurations obtained via cyclic translation belong to
the same aggregated state. We introduce a notation C(α) to denote
an aggregated state containing the configuration α and all the other
configurations that are reached from α via cyclic translation.

We use a five-site system as an example to explain how to
construct the transition diagram and write the CME for aggre-
gated states. Figure 2(a) shows all 16 accessible configurations and
the transition diagram for the standard approach. As shown in
Fig. 2(b), they are grouped into the following four aggregated
states: C({∅∅∅∅∅}), C({XX∅∅∅}), C({X∅∅X∅}), and
C({XXXX∅}). For each state i, we introduce li so that each config-
uration in the state has 2li X atoms. For the current example, we have
(l1, l2, l3, l4) = (0, 1, 1, 2). The transition rate from state i to state i′ is
given as a multiple of ra or rd when adsorption (for li′ = li + 1) or des-
orption (for li′ = li − 1) occurs, respectively. The multiplicity factor is

FIG. 2. Transition diagrams for a five-site system. Panel (a) shows the standard approach, where 16 configurations accessible from the initial unoccupied configuration are
considered separately. A double-sided arrow between two configurations indicates that one configuration is obtained from the other configuration via either adsorption or
desorption and vice versa. The transition rate is ra (or rd) for the direction increasing (or decreasing) the number of occupied sites. Panel (b) shows our approach based on
aggregated states. Note that the transition rates between aggregated states are multiples of ra and rd. See the main text for how the multiplicities are determined.
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determined by counting how many configurations in state i′ can be
obtained from each configuration in state i. Thus, the transition rates
for 1→ 2, 2→ 4, and 3→ 4 are 5ra, 2ra, and ra, respectively, whereas
the transition rates for 2→ 1, 4→ 2, and 4→ 3 are rd, 2rd, and rd,
respectively. Using these transition rates, we obtain the following
CME:

ṗ1 = −5rap1 + rdp2,
ṗ2 = 5rap1 − (2ra + rd)p2 + 2rdp4,

ṗ3 = −rap3 + rdp4,
ṗ4 = 2rap2 + rap3 − 3rdp4,

(6)

where pi denotes the probability that the system is in state i.
Equivalently, we have a matrix form:

ṗ = Rp. (7)

Once we have written down a CME (7) for an N-site sys-
tem, its solution can be expressed using a matrix exponential:
p(t) = etRp(0). While obtaining an analytic expression
of p(t) is not a trivial task even for small N, one can
determine p(t) accurately using a numerical method
(e.g., Runge–Kutta). The equilibrium probability distribu-
tion p∗ is then given as the long-time limit of p(t), i.e.,
p∗ = limt→∞p(t). Alternatively, the equilibrium probability
distribution p∗ can be obtained as the unique invariant probability
distribution satisfying Rp∗ = 0 and ∑i p∗i = 1. Note that p∗ is the
(right) eigenvector associated with zero eigenvalue satisfying the
probability normalization condition; uniqueness is guaranteed
because the system is finite and irreducible as formulated.25 Unlike
computing the matrix exponential eRt , determining p∗ analytically
is a feasible task for small N. For N = 5, we obtain

p∗1 =
k2

k2 + 10k + 5
, p∗2 = p∗3 =

5k
k2 + 10k + 5

, p∗4 =
5

k2 + 10k + 5
.

(8)

In Appendix A, we provide the transition matrix R and the equilib-
rium distribution p∗ for a six-site system, where six aggregated states
are used.

C. Equilibrium surface coverage
1. Analytic formulas

Using the solution p(t), one can compute the surface cov-
erage θN(t) by a weighted sum of the components of p(t),
where each weight is given as the respective surface coverage
that the corresponding configurations represent (i.e., 2li/N). Since
p∗ = limt→∞p(t), the equilibrium coverage θ̄N can be obtained as
θ̄N = limt→∞θN(t). Alternatively, we can directly compute θ̄N by a
weighted sum of the components of p∗. We thus have

θ̄N =∑
i

2li
N

p∗i . (9)

For N = 5, using the equilibrium distribution of p∗ from Eq. (8), we
obtain

θ̄5 =
4k + 4

k2 + 10k + 5
, (10)

since (l1, l2, l3, l4) = (0, 1, 1, 2). Using a similar procedure, we obtain
analytic expressions of θ̄N for 2 ≤ N ≤ 8, see Appendix B. These
expressions satisfy the following general formulas, depending on
whether N is even or odd,

θ̄2m =

m−1
∑
j=0
(m−1

j )(
m
j )k

j

m
∑
j=0
(m

j )
2
kj

, θ̄2m+1 =

m−1
∑
j=0
( 2m

2j+1)k
j

m
∑
j=0
( 2m+1

2j+1 )k
j
. (11)

In Sec. III E, we numerically confirm these formulas by performing
KMC simulations for larger values of N.

2. Derivation
Before investigating various behaviors of θ̄2m and θ̄2m+1 in

Eq. (11), we note that these analytic results can be actually derived
by observing that detailed balance is satisfied in the continuous-
time Markov chain system. For any pair of configurations α (with 2l
atoms) and β (with 2l + 2 atoms) that are connected by a certain pair
of adsorption and desorption events, their equilibrium probabilities
q∗α and q∗β satisfy raq∗α = rdq∗β , and equivalently, q∗β /q∗α = 1/k. This
implies that the equilibrium probability of a configuration depends
on the number of adsorbed atoms and is proportional to k−l if there
are 2l atoms in the configuration. Hence, the equilibrium probability
of the aggregated state i can be written as

p∗i = c(k) ni

kli
, (12)

where ni is the number of configurations in the state i and c(k) is
the normalization constant for ∑i p∗i = 1. Using Eqs. (9) and (12),
we obtain

θ̄N =
2c(k)

N ∑
i

lini

kli
= 2c(k)

N

m

∑
l=0

lñl

kl . (13)

Note that we rewrote the summation by using index l for possible
values of li (l = 0, 1, . . . , m for both N = 2m and N = 2m + 1) and
ñl = ∑i niδl,li (i.e., total number of configurations with 2l occu-
pied sites) with the Kronecker delta δl,l′ . Similarly, we rewrite the
normalization condition as

1 =∑
i

p∗i = c(k)∑
i

ni

kli
= c(k)

m

∑
l=0

ñl

kl . (14)

Therefore, by combining Eqs. (13) and (14), we obtain

θ̄N =
2
N
(

m

∑
l=0

lñl

kl )/(
m

∑
l=0

ñl

kl ). (15)

By substituting the expressions of ñl for the odd and even cases,
Eqs. (4) and (5), into Eq. (15), one can retrieve θ̄2m+1 and θ̄2m in
Eq. (11).

3. Finite system-size effect
We now analyze the behavior of θ̄2m and θ̄2m+1. Figure 3 shows

the curves of θ̄N for several small values of N as a function of k.
We first confirm that both the even and odd formulas give the same
infinite-system limit, i.e., limm→∞θ̄2m = limm→∞θ̄2m+1 = θ̄∞, which
coincides with the Langmuir isotherm given in Eq. (3). This shows
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FIG. 3. The equilibrium surface coverage θ̄N of an N-site system is shown as a function of k = rd/ra for various values of N. The curves of θ̄N are plotted for even values of N
in panel (a) and for odd values of N in panel (b) using Eq. (11). To clearly show the finite system-size effect in θ̄N , the curves with small values of N (solid lines) are compared
with the infinite-limit case θ̄∞ given in Eq. (3) (dashed lines).

that, even without infinitely fast surface diffusion of X, each site
in the infinite system becomes uncorrelated at equilibrium. In a
finite system, however, reactive sites are not completely uncorre-
lated, causing finite system-size effects on the equilibrium surface
coverage θ̄N . We investigate this correlation in Sec. III D.

While both the even and odd cases converge to the same value
of θ̄∞, they exhibit remarkably different convergence behaviors.
Figure 3 shows that finite system-size effects are more significant and
persist longer when N is even. In the odd case, we observe that for
each value of N there is a range of k centered around k = 1 where
the θ̄N values are close to θ̄∞. The width of this region increases
as N increases. In the even case, the discrepancy between θ̄N and
θ̄∞ is significantly larger and convergence as N →∞ is slower over
the entire range of k.

Figure 4 shows a more detailed analysis of the finite system-
size effect as measured by ε = ∣θ̄N − θ̄∞∣. As N increases, ε decreases
like ε ∼ N−1 in the even case, whereas ε decreases exponentially [i.e.,
ε ∼ e−a(k)N ] in the odd case. Interestingly, we find that the odd case,
θ̄2m+1 in Eq. (11) is equal to the Padé approximation33 of Eq. (3)
around k = 1 of orders (m − 1, m), meaning that it is the best rational
approximation around k = 1 up to a given order in the power series
expansion. We also observe that the sign and magnitude of the finite
system-size effect depend on the value of k. Figure 3 shows that if
N is even then θ̄N > θ̄∞ (or θ̄N < θ̄∞) for k < 1 (or k > 1), while if N
is odd then θ̄N < θ̄∞ for all k ≠ 1. When the magnitudes of ra and

rd are comparable (i.e., k is close to unity), finite system-size effects
become less significant. In fact, when k is exactly equal to unity, both
formulas match the infinite-limit value θ̄∞ = 1

2 and thus there is no
finite system size effect on θ̄N .

4. Symmetry and limiting behaviors
Figure 3 also shows that the curve of θ̄2m has a reflection sym-

metry around (k = 1, θ̄ = 1
2). In other words, 1 − θ̄2m( 1

k) = θ̄2m(k)
is satisfied, implying that the identical equilibrium surface cover-
age is obtained when switching the notions of X (occupied) and ∅
(unoccupied) and the values of ra and rd. However, this symmetry
property does not hold for θ̄2m+1. In fact, if the fully occupied con-
figuration is chosen as the initial configuration, the resulting equilib-
rium surface coverage θ̄∗2m+1 is different from θ̄2m+1 in Eq. (11) and
given as θ̄∗2m+1(k) = 1 − θ̄2m+1( 1

k).
We also notice that θ̄2m exhibits correct limiting behaviors for

both k→ 0 and k→∞,

lim
k→0

θ̄2m = 1, lim
k→∞

θ̄2m = 0, (16)

whereas θ̄2m+1 shows the correct limiting behavior only for k→∞;
however, there is a significant system-size effect for k→ 0,

lim
k→0

θ̄2m+1 =
2m

2m + 1
, lim

k→∞
θ̄2m+1 = 0. (17)

FIG. 4. Convergence behavior of the equilibrium surface coverage θ̄N in the limit N →∞. For even values [shown in panel (a)] and odd values [panel (b)] of N, the finite
system-size effect ε(N) = ∣θ̄N − θ̄∞∣ is plotted. Panel (a): to show ε ∼ N−1 for the even case, the curves of ε are plotted in the log–log scale for various values of k and a
straight line with slope −1 is also plotted for comparison. Panel (b): to show ε ∼ e−a(k)N for the odd case, the curves of ε are plotted in the semi-log scale for the same values
of k as in panel (a).
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This system-size effect reflects the fact that for odd N there is always
at least one empty site. Likewise, if the fully occupied configuration
is chosen as the initial configuration, a correct limiting behavior is
expected for k→ 0 but a significant system-size effect is expected for
k→∞ because there is always at least one occupied site:

lim
k→0

θ̄∗2m+1 = 1, lim
k→∞

θ̄∗2m+1 =
1

2m + 1
. (18)

Disparate behaviors shown in the odd and even cases can be
related to different accessibility of configurations. As mentioned in
Sec. III A, in the odd case, the set of all configurations accessible from
the unoccupied configuration is disjoint from the set of all configu-
rations accessible from the fully occupied configuration. In the even
case, the unoccupied and full occupied configurations belong to the
same set characterized by N+ −N− = 0.

D. Correlations between neighboring sites
Using the equilibrium probability distribution of accessible

configurations, we quantitatively investigate correlations between
neighboring sites. To this end, we first define a random variable Zn
for the occupancy of the nth site (n = 1, . . . , N), that is, Zn = 1 if the
nth site is occupied and 0 otherwise. We then define the correlation
coefficient ρ̄N between Z1 and Z2. Note that any pair of two neigh-
boring sites gives the same result of ρ̄N . As shown in Appendix C, we
express ρ̄N in terms of [X] and [XX]:

ρ̄N =
Cov[Z1, Z2]√

Var [Z1]
√

Var [Z2]
= [XX] − [X]2
[X](1 − [X]) , (19)

where [X] = θ̄N is given in Eq. (11) and

[XX] =

m−1
∑
j=0
(m−1

j )
2
kj

m
∑
j=0
(m

j )
2
kj

for N = 2m,

[XX] =

m−1
∑
j=0
( 2m−1

2j+1 )k
j

m
∑
j=0
( 2m+1

2j+1 )k
j

for N = 2m + 1. (20)

Figure 5 shows the curves of ρ̄N as a function of k for small
values of N. When N is an odd number, ρ̄N is an odd function in
log k about k = 1. Except for N = 3, there is a range of k values cen-
tered around k = 1 where the values of ρ̄N are very close to zero,
that becomes wider as N increases. As k→ 0, ρ̄N → − 1

N−1 whereas
as k→∞, ρ̄N → 1

N−1 . For an even number N > 2, as in the odd case,
there is a range of k values around k = 1 where the magnitude of
ρ̄N becomes smaller that increases as N increases. However, for the
even case, ρ̄N is an even function in ln k about k = 1, is positive for
all values of k, and has the minimum value 1

N−1 at k = 1. As k→ 0 or
k→∞, ρ̄N → 2

N .
The behavior of the correlation coefficient ρ̄N for the even and

odd cases explain why the finite system-size effect on the equilibrium
surface coverage becomes more significant and persistent in the even
case. In the odd case, correlations between neighboring sites are neg-
ligible in equilibrium in a neighborhood of k = 1, in contrast to the
even case where they are not. Furthermore, the range of k with neg-
ligible correlation increases as N increases. We revisit this relation
of the finite system-size effect and correlations between neighboring
sites in Sec. IV, where we consider surface diffusion.

E. Time-transient behavior of θN (t )
By performing KMC simulations, we numerically validate our

analytic results for the equilibrium surface coverage θ̄N given in
Eq. (11), and also observe the time-transient behavior of θN(t). For
the setup of KMC simulations, see the supplementary material.

In Fig. 6, we show the KMC and CME results for a large
value of k = 50. Panels (a) and (b) show the time profiles of θN(t)
for small values of N up to 8. Since the transition matrix R can
be explicitly given for these N values, θN(t) can be also obtained
by numerically solving the CME (7). We first confirm the agree-
ment between the KMC and CME results, which cross-validates
both approaches. Due to the large value of k, we observe significant
system-size effects on the long-time limit of θN(t) (i.e., θ̄N ). In addi-
tion, these effects are more severe when N is even. For example, the
result with N = 8 has larger system-size effects than N = 5. We also
investigate how these effects develop as time increases. Early in the
simulation θN(t) grows rapidly and its curves with different values
of N coincide. As later times, however, curves with smaller values of

FIG. 5. The correlation coefficient ρ̄N between two neighboring sites in an N-site system is shown as a function of k = rd/ra for various values of N. The curves of ρ̄N are
plotted by colored solid lines for even values of N in panel (a) and for odd values of N in panel (b) using Eq. (19). The infinite-limit case (i.e., ρ̄N → 0 as N →∞) is shown
by black dashed lines.
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FIG. 6. For a large value of k = 50 (ra = 1 and rd = 50), time-dependent surface coverages θN(t) obtained by KMC simulations (colored lines) are compared with the CME
results (black solid lines): for 2 ≤ N ≤ 8, the even case in panel (a) and the odd case in panel (b); for 9 ≤ N ≤ 16, the even case in panel (c) and the odd case in panel (d).
The curves of θN(t) computed by the CME are plotted in panels (a) and (b). For larger systems shown in panels (c) and (d), where CME results are not available, we plot the
values of θ̄N computed by Eq. (11). The infinite-system equilibrium coverage θ̄∞ is also shown by the dashed line. Error bars for KMC simulations are not shown for visual
clarity. The magnitude of error bars is comparable to that of fluctuations appearing in each curve.

N start to reach their equilibrium values and diverge from curves
corresponding to larger values of N, reflecting a lower long-time
limit value θ̄N = limt→∞θN(t) for smaller N. This behavior appears
in both even and odd cases. Panels (c) and (d) show the time pro-
files of θN(t) for larger values of N, 9 ≤ N ≤ 16 as obtained by KMC.
As expected, those curves converge to the values θ̄N predicted by
Eq. (11), which confirms the validity of these analytic results. The
characteristic behaviors appearing in panels (a) and (b) are also
observed. In particular, remarkably slow convergence of θN(t) to
θ∞(t) is observed for even values of N. In addition, for smaller val-
ues of N, θ̄N is smaller as a result of the earlier rollover of the θN(t)
curves compared to larger values of N for both even and odd cases.

IV. EFFECT OF SURFACE DIFFUSION
We now consider the case where the lattice system undergoes

not only reversible dissociative adsorption but also surface diffusion.
In other words, we allow an absorbed X to hop into a neighboring
site if the site is unoccupied as described by

X∅
rdiffÐÐ⇀↽ÐÐ
rdiff

∅X, (21)

where the rate is denoted by rdiff.
Including surface diffusion is expected to reduce correlations

between neighboring sites that are caused by reversible dissociative

adsorption. Hence, while each surface diffusion event itself does not
change the instantaneous value of surface coverage, the surface cov-
erage dynamics is modified by surface diffusion. In this section, we
investigate how surface diffusion affects the finite system-size effect
on surface coverage dynamics.

Before discussing analytic results, we first present KMC simula-
tion results to emphasize different behaviors of θ̄N and θN(t) when
surface diffusion is considered. Figure 7 shows the time profiles of
θN(t) for small values of N up to 8. The value of k is set to 50
using ra = 1 and rd = 50 whereas the rate for surface diffusion is set
to rdiff = 1. In contrast with the no-diffusion case shown in Fig. 6
the positions of the equilibrium surface coverage θ̄N are in order
(i.e., θ̄2 < θ̄3 < ⋅ ⋅ ⋅ < θ̄8 < θ̄∞). In other words, the significant finite
system-size effect in the even case that appears in the no-diffusion
case is absent. We also observe that, for each value of N, θN(t)
reaches its equilibrium value θ̄N faster due to surface diffusion.

In order to further investigate these behaviors, for each value
of N (3 ≤ N ≤ 8), we compute the time profiles of θN(t) for differ-
ent values of rdiff and compare them with the no-diffusion case (i.e.,
rdiff = 0) in Fig. 8. For each odd value of N, the equilibrium θ̄N is the
same for all values of rdiff, including zero. The main difference due
to the rdiff value is that θN(t) reaches θ̄N faster as rdiff increases. For
the even case, the same observations are made for all nonzero values
of rdiff. However, the no-diffusion case with rdiff = 0 is singular in the
sense that its equilibrium value is different from that obtained from
all nonzero values of rdiff.
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FIG. 7. For a lattice system undergoing reversible dissociative adsorption as well
as surface diffusion, time-dependent surface coverages θN(t) obtained by KMC
simulations (colored lines) are shown for small N values, 2 ≤ N ≤ 8. The value of
k is set to 50 using ra = 1 and rd = 50, whereas the rate for surface diffusion is set
to rdiff = 1. The black solid lines indicate the positions of the equilibrium surface
coverage θ̄N estimated by the analytic formulas in Eq. (23) for each N. The infinite-
system equilibrium coverage θ̄∞ is also shown by the dashed line. Note that the
simulation results without surface diffusion are shown in Fig. 6.

The singular behavior of the no-diffusion case for an even value
of N results from an insufficient number of accessible configura-
tions, as discussed earlier. For an odd value of N, the total number
of configurations accessible from the initially unoccupied state is
equal to ntot = 2N−1 whether surface diffusion is included or not.
On the contrary, for an even value of N, if surface diffusion is not
included, some configurations become inaccessible due to the con-
served quantity N+ −N− = 0 and ntot = ( N

N/2), see Eq. (5). If surface

diffusion is included, however, all configurations with an even num-
ber of occupied sites become accessible. Hence, for both N = 2m and
N = 2m + 1, we have

ñl = (
N
2l
), ntot =

m

∑
l=0

ñl = 2N−1. (22)

Based on this observation, we derive analytic expressions for θ̄N
for the surface-diffusion case. Under the assumption that detailed
balance also holds in the presence of surface diffusion, Eq. (15) is
valid. By substituting Eq. (22) to Eq. (15), we obtain

θ̄2m =

m−1
∑
j=0
( 2m−1

2j )k
j

m
∑
j=0
( 2m

2j )k
j

, θ̄2m+1 =

m−1
∑
j=0
( 2m

2j+1)k
j

m
∑
j=0
( 2m+1

2j+1 )k
j
. (23)

Similarly, we obtain analytic expressions of the correlation coeffi-
cient ρ̄N using Eqs. (19) and (23) and

[XX] =

m−1
∑
j=0
( 2m−2

2j )k
j

m
∑
j=0
( 2m

2j )k
j

for N = 2m,

[XX] =

m−1
∑
j=0
( 2m−1

2j+1 )k
j

m
∑
j=0
( 2m+1

2j+1 )k
j

for N = 2m + 1. (24)

FIG. 8. For each system size N (3 ≤ N ≤ 8), the time profiles of the surface coverage θN(t) obtained from KMC simulations with k = 50 (ra = 1, rd = 50) and different
values of the surface-diffusion rate rdiff are plotted. The infinite-system equilibrium coverage θ̄∞ is also shown by the dashed line. Note that surface diffusion cannot be
considered for N = 2 and thus this case is omitted.
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FIG. 9. In panel (a), the equilibrium surface coverage θ̄N with surface diffusion is shown as a function of k for small even numbers N using Eq. (23). The infinite-system limit
θ̄∞ is also shown. In panel (b), the correlation coefficient ρ̄N with surface diffusion is shown for small even numbers N using Eqs. (19), (23), and (24). The infinite-system
limit (i.e., ρ̄∞ → 0 as N →∞) is also shown. The odd case is omitted because it is exactly same as the no-diffusion case, see Figs. 3(b) and 5(b).

See Appendix C for the derivation of Eq. (24). We note that, in the
odd case, the analytic expressions of θ̄N and ρ̄N are exactly the same
as the no-diffusion case, see Eqs. (11) and (20), and this is why the
singular behavior does not appear in the odd case in Fig. 8.

Figure 9 shows the curves of θ̄N and ρ̄N vs k for small even val-
ues N when surface diffusion is considered. We note that the odd
case is exactly the same as the no-diffusion case shown in Figs. 3
and 5. Contrary to the no-diffusion case, for each even value of
N, there is a range of k values where θ̄N is much closer to θ̄∞.
This explains why significant system-size effects observed in Fig. 5
for the even case do not appear here. In fact, for both even and
odd cases, it is observed that ε = ∣θ̄N − θ̄∞∣ decreases exponentially,
i.e., ε ∼ e−a(k)N ; the convergence plot is similar to Fig. 4(b) (see the
supplementary material). We also notice that, in the plot of the cor-
relation coefficient ρ̄N in Fig. 9(b), for each even value of N > 2
there is a corresponding range of k where ρ̄N is much closer to zero.
This demonstrates the close relation between the finite system-size
effect on the equilibrium surface coverage and correlations between
neighboring sites.

V. CONCLUSION
We have considered the surface coverage dynamics where

reversible dissociative adsorption occurs on an initially unoccupied
linear lattice. Unlike the molecular (or non-dissociative) adsorp-
tion case, this system exhibits finite system-size effects caused by
dynamic correlations between neighboring sites. We investigated
this finite size effect on the equilibrium surface coverage and relate
it to non-vanishing static site correlations introduced by reversible
dissociative adsorption. We also investigated the effects of surface
diffusion of adsorbed atoms, which reduces site correlations.

We modeled the equilibrium surface coverage θ̄N and time-
transient surface coverage θN(t) of a finite lattice with N reactive
sites using the chemical master equation (CME) and kinetic Monte
Carlo (KMC). We derived analytical expressions for θ̄N and verified
them numerically for the case without surface diffusion, see Eq. (11),
and the case with surface diffusion, see Eq. (23). Without surface
diffusion, finite system-size effects are significant for even N when
the ratio k = rd/ra is much larger or smaller than unity. By compar-
ing to the case with surface diffusion, the behavior observed for the
even case θ̄2m in Eq. (11) was explained by an insufficient number of

accessible configurations. We further related this behavior with the
persistent positive correlation coefficient ρ̄N for even N, and demon-
strated the close relation between the finite system-size effect on the
equilibrium surface coverage and correlations between neighboring
sites.

We draw the reader’s attention to the following points. First,
in our study, the equilibrium was defined as the steady state that
the system attains with a given initial configuration as opposed to
the one defined via a grand canonical distribution of configurations.
Our analysis relies on the fact that not every pair of configura-
tions is mutually accessible via reversible dissociative adsorption
and, as a result, configurations are partitioned into classes such
that only configurations in the same class are accessible to each
other. In the sense that the steady-state of the system depends on
the initial state, the system is not ergodic. Second, as discussed in
Ref. 15, the conservation of the quantity N+ −N− still holds in a
2D square lattice. Hence, a similar system-size effect is expected
when a square lattice has an even number of sites in each direc-
tion. Third, in a real system, the range of k = rd/ra can be much
wider than the range [10−2, 102] considered in our study. While the
considered range roughly corresponds to a range of [−0.1, 0.1] eV
for adsorption free energies at room temperature, a model with
strong binding can easily have a value beyond this range.34 Hence,
more significant finite-size effects can be expected. Although this
system-size effect may not be significant when surface diffusion or
other surface reactions are introduced, our study implies that cau-
tion should be exercised when lattice KMC modeling is used for a
surface lattice system undergoing reversible dissociative adsorption
of dimers.

This study has the following possible future directions. First,
one can investigate non-periodic systems or two-dimensional lat-
tice systems. Alternatively, since our model can be considered as a
simple theoretical model for active sites adjacent to doped sites,32

one can also consider a system consisting of several strips where
strip k has Nk sites and Nk follows, for example, a Poisson dis-
tribution. Second, one can also consider dissociative adsorption of
heteronuclear diatomic molecules, e.g., NO.35 Third, as mentioned
in Introduction, our findings will be useful for the development of
a multiscale simulation method for a fluid–solid interfacial system,
where KMC is coupled with a mesoscopic continuum method, for
example, fluctuating hydrodynamics.36,37
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SUPPLEMENTARY MATERIAL

KMC simulation setup; Convergence behavior of θ̄N in the
presence of surface diffusion.
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APPENDIX A: TRANSITION MATRIX AND EQUILIBRIUM
DISTRIBUTION FOR A SIX-SITE SYSTEM

For N = 6 there are 20 accessible configurations and we group
them into the following six aggregated states: C({∅∅∅∅∅∅})
(one configuration), C({XX∅∅∅∅}) (six configurations),
C({X∅∅X∅∅}) (three configurations), C({XXXX∅∅})
(six configurations), C({XX∅XX∅}) (three configurations),
C({XXXXXX}) (one configuration). The transition matrix R is
given as

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6ra rd 0 0 0 0

6ra −3ra − rd 0 2rd 2rd 0

0 0 −2ra rd 0 0

0 2ra 2ra −ra − 3rd 0 6rd

0 ra 0 0 −2rd 0

0 0 0 ra 0 −6rd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

The equilibrium probability distribution p∗ is given as

p∗1 =
k3

k3 + 9k2 + 9k + 1
, p∗2 =

6k2

k3 + 9k2 + 9k + 1
,

p∗3 =
3k2

k3 + 9k2 + 9k + 1
, p∗4 =

6k
k3 + 9k2 + 9k + 1

,

p∗5 =
3k

k3 + 9k2 + 9k + 1
, p∗6 =

1
k3 + 9k2 + 9k + 1

.

(A2)

APPENDIX B: EQUILIBRIUM SURFACE COVERAGE
FOR SMALL SYSTEMS

The equilibrium surface coverage of an N-site system, θ̄N , is
expressed in terms of k = rd/ra. The following formulas are derived
analytically from the corresponding N-site CME:

θ̄2 =
1

k + 1
, (B1a)

θ̄3 =
2

k + 3
, (B1b)

θ̄4 =
2k + 1

k2 + 4k + 1
, (B1c)

θ̄5 =
4k + 4

k2 + 10k + 5
, (B1d)

θ̄6 =
3k2 + 6k + 1

k3 + 9k2 + 9k + 1
, (B1e)

θ̄7 =
6k2 + 20k + 6

k3 + 21k2 + 35k + 7
, (B1f)

θ̄8 =
4k3 + 18k2 + 12k + 1

k4 + 16k3 + 36k2 + 16k + 1
. (B1g)

APPENDIX C: DERIVATION OF ρ̄N AND [XX]
The correlation coefficient of Z1 and Z2 is defined as

ρ̄N =
Cov[Z1, Z2]√

Var [Z1]
√

Var [Z2]
. (C1)

We express ρ̄N in terms of [X] and [XX]. By noting Z2
1 = Z1 (whether

Z1 has 0 or 1), we first obtain

Var [Z1] = E[Z2
1] − (E[Z1])2 = E[Z1] − (E[Z1])2

= E[Z1](1 − E[Z1]) = [X](1 − [X]), (C2)

and similarly Var [Z2] = [X](1 − [X]). We also obtain
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Cov[Z1, Z2] = E[Z1Z2] − E[Z1]E[Z2] = [XX] − [X]2, (C3)

and thus obtain Eq. (19).
We derive analytic expressions for [XX] given in Eq. (20).

Following a similar procedure to obtain Eq. (15), we first obtain

[XX] = c(k)
m

∑
l=0

ñl,XX

kl = (
m

∑
l=0

ñl,XX

kl )/(
m

∑
l=0

ñl

kl
). (C4)

Here, ñl,XX denotes the number of configurations with 2l occupied
sites, the first two sites of which are XX. For N = 2m + 1, counting
the number of configurations with 2l occupied sites that start with
XX is equivalent to counting the number of ways to choose 2l − 2
items from 2m − 1 items:

ñl,XX = (
2m − 1
2l − 2

) for l = 1, 2, . . . , m. (C5)

For N = 2m, ñl,XX is equal to the number of accessible configurations
with 2(l − 1) occupied sites for a finite system with 2(m − 1) sites:

ñl,XX = (
m − 1
l − 1

)
2

for l = 1, 2, . . . , m. (C6)

By substituting Eqs. (C5), (C6), (4), and (5) into Eq. (C4), one can
obtain Eq. (20).

In the surface-diffusion case, for both N = 2m and N = 2m + 1,
ñl,XX is given as

ñl,XX = (
N − 2
2l − 2

) for l = 1, 2, . . . , m. (C7)

By substituting Eqs. (22) and (C7) into Eq. (C4), we obtain Eq. (24).
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