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We develop numerical methods for stochastic reaction-diffusion systems based on approaches used
for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally
described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we
consider, our model becomes similar to the reaction-diffusion master equation (RDME) description
when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson
fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing
number of molecules, our FHD-based description naturally extends from the regime where fluctuations
are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak
fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the
severe restriction on time step size that limits all methods based on explicit treatments of diffusion
and construct numerical methods that are more efficient than RDME methods, without compromising
accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the
linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes,
where diffusion is treated using a stochastic Crank–Nicolson method, and reactions are handled by
the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We
find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized
setting and gives an accurate and stable structure factor for a time step size of an order of magnitude
larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our
methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium.
We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of
a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional
chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion
simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems
and lead to a qualitatively different disordered pattern behind a traveling wave. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4978775]

I. INTRODUCTION

While deterministic reaction-diffusion models have been
successfully applied to explain various spatiotemporal phe-
nomena such as pattern formation, and to gain insight into
nonequilibrium transitions, it is now widely appreciated that
spatiotemporal fluctuations in the concentration of chemical
species play an essential role. Such internal or thermody-
namic fluctuations, which arise from both reaction and diffu-
sion processes, have molecular origin; microscopically, those
processes occur through the movement and collision of indi-
vidual molecules under thermal fluctuations. Hence, the deter-
ministic macroscopic description eventually fails at smaller
scales where the fluctuations are significant, and a stochastic
mesoscopic description is needed. Examples include
fluctuation-induced instabilities,1 reversal of direction of front

propagation,2 violation of the law of mass action,3 long-time
tails in kinetics,4 emergence of new steady states5 and pat-
terns,6 acceleration of pattern formation,7 enhanced induction
time for ignition,8 and the onset of homogeneous oscilla-
tions.9 Due to a small number of proteins involved in cellular
functions,10 processes in cell biology are good examples11–14

where the stochastic reaction-diffusion description provides
an indispensable modeling tool.15,16

A microscopic picture of reaction-diffusion, dating back
to the work of Smoluchowski,17 assumes that molecules
undergo independent Brownian motions and reactions can
occur only when two molecules are close to each other.
Based on this picture, the particle-based approach to sim-
ulate a reaction-diffusion system tracks the trajectories of
diffusing molecules and uses the intermolecular distance to
determine whether a reaction occurs. Exact sampling of the

0021-9606/2017/146(12)/124110/22/$30.00 146, 124110-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4978775
http://dx.doi.org/10.1063/1.4978775
http://dx.doi.org/10.1063/1.4978775
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4978775&domain=pdf&date_stamp=2017-03-24


124110-2 Kim et al. J. Chem. Phys. 146, 124110 (2017)

Smoluchowski model can be performed by first-passage
kinetic Monte Carlo type algorithms;18–20 approximate reac-
tive Brownian dynamics (BD) using a fixed time step size
forms another class of algorithms.21,22 While molecular
schemes, such as molecular dynamics (MD) and direct simula-
tion Monte Carlo (DSMC), can be used for reaction-diffusion
problems,23,24 they are computationally even more expen-
sive. Hybrid methods combining particle and coarse-grained
descriptions, either using operator splitting25 or domain
decomposition,26,27 have also been proposed.

For the mesoscopic description of a reactive system, the
master equation approach is commonly used. For a well-
mixed (i.e., spatially homogeneous) system, the time evo-
lution of the system (i.e., the number of molecules of each
chemical species) is described by the chemical master equa-
tion (CME). Exact sampling of the CME can be performed
by the stochastic simulation algorithm (SSA) of Gillespie,28

whereas the tau leaping method29 can be employed as an
approximate algorithm with a given time step size. Several
variants of these methods have been proposed.30,31 For a
spatially inhomogeneous system, the time evolution of the
system is commonly described by the reaction-diffusion mas-
ter equation (RDME), which is also known as the multi-
variate master equation.32,33 In this approach, the system
is divided into homogeneous subsystems or cells and the
number of molecules of each chemical species in each cell
is tracked. Changes in the molecule numbers occur either
through hopping events of a molecule between adjacent cells
or through chemical reactions within a cell. Hopping events
correspond to diffusive transport and are treated as first-order
reactions. Since the RDME is a spatial extension of the CME,
exact sampling of the RDME can be performed by SSA-
type algorithms,34,35 which are called inhomogeneous SSA
(ISSA).

While conceptually simple and still widely used,6,7,36 the
traditional approach of solving the RDME by ISSA has the
computational issue that the method becomes prohibitively
slow as the number of molecules or cells increases. Since
the cell volume should be chosen sufficiently small to ensure
homogeneity over each cell, large, finely resolved grids are
required for two- or three-dimensional problems. As the spa-
tial resolution increases, the time interval between successive
events becomes very short due to rapid diffusive transfer,
and hopping events greatly outnumber reaction events, which
slows down ISSA.30 Several approaches have been proposed
to improve the performance of stochastic sampling of the
RDME, such as the next subvolume method35 and its par-
allel simulation version.37 Various implementations of the
tau leaping method in a spatial context,38–40 and the time-
dependent propensity for diffusion method,41 have also been
proposed. A more aggressive approach to reduce the computa-
tional cost by avoiding the sampling of the individual diffusion
events is to split diffusion and reaction in each time step and
to treat diffusion in a more efficient manner. Various sam-
pling methods for diffusion have been proposed, including
the Gillespie multi-particle method,42 the multinomial sim-
ulation algorithm,43 the adaptive hybrid method on unstruc-
tured meshes,44,45 and the diffusive finite-state projection
algorithm.46,47

In this paper, we propose a numerical algorithm for
stochastic reaction-diffusion systems based on approaches
used for fluctuating hydrodynamics (FHD). To incorporate
the effects of thermal fluctuations in a fluid, in FHD one
assumes that the dynamics of the fluid can be described by
the usual hydrodynamic equations (e.g., the Navier–Stokes
equations), augmenting each dissipative flux with a stochastic
flux.48 Those stochastic fluxes are modeled by spatiotempo-
ral Gaussian white noise (GWN) and the resulting governing
equations are written as stochastic partial differential equa-
tions (SPDEs). FHD was originally developed for equilibrium
fluctuations by Landau and Lifshitz49 and its validity has been
justified for nonequilibrium systems50 through the theory of
coarse graining.51 For further discussion of FHD compared to
MD, see Ref. 52. Various extensions and generalizations of
FHD theory have been developed and successfully applied to
fluctuation-induced phenomena; see Ref. 53 and references
therein. Recent work by the authors has focused on FHD
models of hydrodynamic transport54,55 in binary fluid mix-
tures,56,57 multiphase flows,58 multispecies fluid mixtures,59,60

multispecies reactive mixtures,61 and electrolytes.62

Compared to our previous work,61 where the coupling
effects of fluid hydrodynamic and chemical fluctuations have
been investigated, here we focus on reaction and diffusion
and neglect all other hydrodynamic processes (advection, vis-
cous dissipation, thermal conduction, and cross term effects).
Rather than using a Langevin description (i.e., based on Gaus-
sian fluctuations) of chemistry, which is only valid in the
limit of vanishing fluctuations,61 here we employ a more
accurate description of reactions based on Poisson fluctua-
tions. As pointed out in Ref. 51, even though a formal SPDE
description is employed, the actual interpretation of FHD
always requires the notion of a coarse-graining over a cer-
tain length scale. The FHD equations are discretized using
a finite volume approach63,64 that represents the solution in
terms of the average over cells, which provides an effec-
tive coarse-graining. Therefore, reactions can be treated in
a similar manner to the RDME approach when the SPDEs
are spatially discretized and integrated in time using SSA or
a weakly second-order tau leaping method.65,66 Recent rel-
evant work by others includes Ref. 67 in which the FHD
approach has been applied to reaction-diffusion systems. How-
ever, only fluctuations arising from diffusion have been con-
sidered (i.e., no fluctuations from chemical reactions) and
modeled as additive noise. The FHD approach has been also
applied to concentration fluctuations in a ternary liquid mix-
ture in equilibrium68 and the Model H equations for binary
mixtures.69

The key difference between the FHD and RDME descrip-
tions lies in the more efficient treatment of fast diffusion. A
number of approximate numerical methods for the RDME42–47

are based on operator splitting using first-order Lie or second-
order Strang splitting.70 In Appendix A we review and discuss
in more detail a split scheme that uses multinomial diffu-
sion sampling71 for diffusion and SSA for reactions. These
RDME-based schemes use a time step size ∆t comparable
to the hopping time scale τh =∆x2/(2dD) with d being the
spatial dimension, ∆x being the grid spacing, and D being a
typical diffusion coefficient. Even though τh is much larger
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than the mean duration between successive events in ISSA,
using ∆t comparable to τh is still very restrictive for large
D or small ∆x. In our FHD formulation, we treat diffusion
implicitly using backward Euler or Crank–Nicolson, so that
the time step size can be significantly larger (e.g., an order
of magnitude larger for a given accuracy tolerance) than the
hopping time scale. Since the time steps used in RDME
simulations are already (usually an order of magnitude or
more) larger than those in BD simulations, our approach
allows even larger time step size compared to particle-based
methods.

While the development of numerical schemes for stochas-
tic reaction-diffusion systems described by spatiotemporal
GWN dates back to the 1990s,72,73 much of the prior work has
not been guided by numerical analysis or extensive experience
from deterministic computational fluid dynamics (CFD). With
the help of well-established techniques for numerical solution
of PDEs and SPDEs, we construct numerical schemes in a
systematic manner to ensure that accuracy is maintained for a
large time step size. To this end, we employ two-stage (i.e.,
predictor-corrector) Runge–Kutta temporal integrators.64,74

Rather than using operator splitting, we treat reaction and
diffusion together in each stage in a manner that is second-
order weakly accurate for general linearized FHD equations.
The construction of these schemes is guided by a stochastic
accuracy analysis of the (static) structure factor for linearized
FHD.63,64 The structure factor is the steady-state spectrum
of the concentration fluctuations, i.e., the covariance matrix
in Fourier space, see Eq. (8). We apply the techniques in
Refs. 63 and 64 to predict the discrete structure factors for
our scheme and compare them to analytical predictions of the
continuum structure factors for our model in the linearized
setting.

The FHD approach inherently outperforms the RDME
approach as the number of molecules per cell increases in
exactly the same way that multinomial diffusion outperforms
diffusion by hopping, or tau leaping outperforms SSA. In fact,
the computational cost of FHD methods does not significantly
change as the magnitude of the fluctuations changes. This is an
obvious advantage of the FHD approach since the macroscopic
limit cannot be efficiently simulated by the RDME approach.
However, the validity of the FHD approach cannot be taken for
granted when there are only a small number of molecules in
each cell, since in FHD the number of molecules in each cell is
a continuous real-valued variable, rather than a discrete non-
negative integer variable as in the RDME. We investigate this
issue carefully and propose techniques to improve the accu-
racy of the FHD description for the case of a small number
of molecules per cell, making our numerical schemes robust
even for large fluctuations. In particular, we develop a spa-
tial discretization that significantly mitigates non-negativity
of the species number densities and closely reproduces the
Poisson thermodynamic equilibrium distribution for the num-
ber of molecules in a cell. For numerical examples considered
in this paper, we show that the mean number of molecules in a
cell can be as low as 10. However, if one is specifically inter-
ested in systems with only a small number of molecules per
cell, one should use an integer-based description like RDME.
Moreover, in very dilute cases, a particle-based description like

BD is actually fastest since most cells will have essentially no
molecules in them. However, for practical stochastic simula-
tion of reaction-diffusion systems, where the populations of
chemical species may have different orders of magnitude, this
kind of robustness is required; even if there are a large number
of molecules in a cell, some species may have a small number
of molecules.

The rest of the paper is organized as follows. Section II
presents the background for our approach, including the FHD
description of reaction-diffusion systems and linearized anal-
ysis in a Gaussian approximation. Section III explains how
the FHD reaction-diffusion equations can be spatially dis-
cretized using a finite-volume approach. Section IV presents
temporal integrators for the spatially discretized equations
that handle diffusion using existing FHD techniques and treat
reactions using SSA or second-order tau leaping. Section V
presents simulation results of several reaction-diffusion sys-
tems. In Section V A, for testing and validation of our numer-
ical schemes, we use a one-species Schlögl model.75,76 In
Section V B, to compare our methods to each other and to
RDME-based methods, we study two-dimensional Turing-
like pattern formation in the three-species Baras–Pearson–
Mansour (BPM) model.77,78 In Section V C, to demonstrate
the ability of our approach to scale to larger systems, we
present numerical simulation results for three-dimensional
front propagation in a two-species model.7 In Section VI, we
offer some concluding remarks and suggest future research
directions.

II. BACKGROUND

In Section II A, we present the continuous-time
continuous-space FHD description of reaction-diffusion sys-
tems. Here, we assume that fluctuations in chemistry are
described by GWN (i.e., Langevin type). A more accurate
description of chemistry based on Poisson fluctuations is incor-
porated in the continuous-time discrete-space description in
Section III. In Sections II B and II C, we introduce the structure
factor and the Schlögl reaction-diffusion model, respectively.
As one of the criteria for the development and analysis of
numerical schemes, later in the paper, we investigate how accu-
rately a numerical scheme produces the structure factor for the
Schlögl model.

In this section, we introduce several GWN vector
and scalar random fields and denote them by Z(x, t)
= (Z1(x, t), . . . ,Zd(x, t)) and Z(x, t), respectively, with addi-
tional superscripts to distinguish the different fields. We
assume that any two distinct processes are independent
and that the noise intensity of each process is normalized:
〈Zj(x, t)Zj′(x′, t ′)〉 = δjj′δ(x−x′)δ(t− t ′) and 〈Z(x, t)Z(x′, t ′)〉
= δ(x − x′)δ(t − t ′). Similarly, we denote GWN vector and
scalar random processes by W(t) and W(t), respectively,
and assume 〈Wj(t)Wj′(t ′)〉= δjj′δ(t − t ′) and 〈W(t)W(t ′)〉
= δ(t − t ′).

A. FHD description

We consider a reaction-diffusion system having N s

species undergoing N r reactions in d-dimensional space. By
denoting the number density of species s by ns(x, t), the
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equations of FHD for n(x, t)= (n1(x, t), . . . , nNs (x, t)) are writ-
ten formally as the SPDEs61

∂

∂t
ns = ∇ ·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
+

Nr∑
r=1

νsr

(
ar(n) +

√
ar(n)Z(R)

r

)
, (1)

where Ds is the diffusion coefficient of species s, ar(n) is
the propensity function indicating the rate of reaction r, and
νsr is the stoichiometric coefficient of species s in reaction
r. In the macroscopic limit of vanishing fluctuations, Eq. (1)
approaches the deterministic reaction-diffusion PDE (law of
large numbers),

∂

∂t
ns = Ds∇

2ns +
Nr∑

r=1

νsrar(n). (2)

We explain below how the diffusion and reaction parts are
obtained by considering the diffusion-only (i.e., no-reaction)
and reaction-only (i.e., well-mixed) cases.

1. Diffusion

The diffusion-only SPDE

∂

∂t
ns = ∇ ·

(
Ds∇ns +

√
2DsnsZ(D)

s

)
(3)

can be justified by considering a microscopic system where
each molecule i undergoes independent Brownian motion,

ẋs,i =
√

2DsWs,i. (4)

In this formal derivation,79 one defines the instantaneous num-
ber density field ns(x, t) =

∑
i δ(x − xs,i(t)) and uses Ito’s rule

to obtain Eq. (3). This equation can also be obtained from
the diffusion portion of the general multispecies FHD equa-
tions,60,61 given by nonequilibrium statistical mechanics,80

by assuming a dilute solution and considering only solute
species. In addition, the linearized version of Eq. (3) can be
obtained from the multivariate master equation model (i.e.,
diffusion by hopping) near the macroscopic limit.32 How-
ever, although relations to those equations reaffirm Eq. (3)
near the macroscopic limit, it is important to note that Eq. (3)
is formally exact even in the case where fluctuations are
large, since it is simply a rewriting of Eq. (4), in a rep-
resentation in which the particle numbering (identity) is
lost.81

We note that the FHD equations (1) and (3) are not math-
ematically well-defined because the solution needs to be inter-
preted as a distribution (or a generalized function), and the
square root of a distribution is not well-defined in general.
The linearized FHD equation does not suffer from such an
issue and is well-defined; the problems arise due to the mul-
tiplicative noise in Eq. (3). However, even though Eq. (3) is
ill-defined, it is formally consistent with the law of large num-
bers (given by the deterministic reaction-diffusion equation
(2)), the central limit theorem (given by the linearized FHD
equation (12)), and large deviation theory for a collection of
Brownian walkers. In this sense, Eq. (3) is a meaningful rep-
resentation of the physical model that is useful in constructing

well-defined mesoscopic descriptions via spatial discretization
of the formal SPDEs. Compared to obtaining a mesoscopic
model by directly coarse-graining the microscopic model, the
spatial discretization of the SPDE is easier in general and can
be done in a systematic manner.82

2. Reaction

To see how the reaction part of Eq. (1) is obtained, consider
a well-mixed system with volume ∆V . By assuming that the
time evolution of n(t) follows the CME, we express the change
over the infinitesimal time interval dt as follows:30

dns = ns(t + dt) − ns(t) =
1
∆V

Nr∑
r=1

νsrP(ar(n)∆Vdt), (5)

where P(m) denotes a Poisson random variable having mean
m. Note that Eq. (5) is equivalent to the CME if interpreted in
the Ito sense. The specific form of the chemical rate function
ar(n) that we use in this work is described in Section III C.
Henceforth, we will formally write Eq. (5) in the differential
form,

d
dt

ns =

Nr∑
r=1

νsrP(ar(n)∆Vdt)
∆Vdt

. (6)

For a more mathematically precise representation, see Refs. 83
and 84.

The chemical Langevin equation (CLE)85 is obtained
under the assumption that the mean number of reaction occur-
rences is large.30 That is, the assumption enables one to replace
P(m) by a Gaussian random variable having the same mean
and variance, to give the CLE,

d
dt

ns =

Nr∑
r=1

νsr


ar(n) +

√
ar(n)
∆V

Wr


. (7)

Since reaction is assumed to be local, the reaction part of
Eq. (1) is obtained from the spatial extension of Eq. (7).

One of the important conclusions of our previous work61

was that the Langevin description (7) is not consistent with
equilibrium statistical mechanics. Alternative formulations
based on a Langevin diffusion description86,87 that are con-
sistent at thermodynamic equilibrium fail to correctly model
relaxation toward equilibrium.61 Instead, in order to correctly
capture both small fluctuations and large deviations in equilib-
rium and non-equilibrium contexts, one must retain a descrip-
tion of chemical reactions as a Markov jump process. That
is, one must describe reactions using a stochastic differential
equation driven by Poisson rather than Gaussian noise.

B. Structure factor

The structure factor is the steady-state spectrum of the
concentration fluctuations,

Ss(k) = V
〈
δn̂s,kδn̂∗s,k

〉
, (8)

i.e., the variance of the Fourier mode of the number density of
species s,

n̂s,k(t) =
1
V

∫
ns(x, t)e−ik ·xdx. (9)

Here we have assumed a periodic domain of volume V and
defined δn̂s,k = n̂s,k −

〈
n̂s,k

〉
, where the brackets 〈 〉 denote the
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equilibrium average. Here we derive an analytic expression
of the structure factor from the linearized FHD equation. We
assume that there is only one species, N s = 1, and drop the
subscript s for species, to write Eq. (1) as

∂

∂t
n = D∇2n + ∇ ·

(√
2DnZ(D)

)
+ a(n) +

√
2Γ(n)Z(R), (10)

where

a(n) =
Nr∑

r=1

νrar(n), Γ(n) =
1
2

Nr∑
r=1

ν2
r ar(n), (11)

and we have expressed fluctuations arising from all reactions
by a single GWN field Z(R). At a spatially uniform stable
steady state, n(x, t) fluctuates around mean number density
n̄≡ 〈n〉, where a(n̄)= 0 and a′(n̄) < 0. The linearization of
Eq. (10) around this equilibrium state is given by the central
limit theorem,

∂

∂t
n = D∇2n +

√
2Dn̄∇ ·Z(D) − r(n − n̄) +

√
2Γ̄Z(R), (12)

where r =−a′(n̄)> 0 is the effective reaction rate near equilib-
rium and Γ̄ = Γ(n̄).

The Fourier transform of Eq. (12) gives

d
dt
δn̂k = −Dk2δn̂k +

√
2Dn̄ ik · Ẑ(D)

k − rδn̂k +
√

2Γ̄Ẑ(R)
k . (13)

Since Eq. (13) has the form of the Ornstein–Uhlenbeck
equation,32 the structure factor is easily obtained as

S(k) =
Dn̄k2 + Γ̄

Dk2 + r
=

n̄k2 + Γ̄/D

k2 + `−2
, (14)

where ` =
√

D/r denotes the penetration depth. From Eq. (14),
we observe that there are two limiting cases. In the small wave
number limit k` � 1, S(k) becomes Γ̄/r and does not depend
on diffusion. In fact, the result S(0)= Γ̄/r is also obtained
from the CME assuming the whole system is well-mixed. On
the other hand, in the large wave number limit k` � 1, S(k)
becomes n̄, which is the result for the diffusion-only system.
Hence, fluctuations are reaction-dominated at a length scale
larger than ` and are diffusion-dominated at a length scale
smaller than `.

We also observe that if the system is in detailed balance
at its steady state, i.e., it is in thermodynamic equilibrium,
then Γ̄= n̄r and S(k)= n̄, consistent with a product Poisson
distribution with mean number density n̄. Therefore, in true
thermodynamic equilibrium, the statistics of the fluctuations
are independent of any kinetic parameters, as they must be
according to equilibrium statistical mechanics.88 In particu-
lar, the presence of the reactions does not change the Pois-
son statistics of the state of thermodynamic equilibrium. In
Section V A, we use this property to judge the quality of
numerical schemes.

C. Schlögl model

The Schlögl model75,76 is given by the chemical reactions
for species X,

2X
k1


k2

3X, ∅
k3


k4

X. (15)

Hence, we have N s = 1, N r = 4, ν1 = ν3 = 1, ν2 = ν4 = − 1,
a(n) = k1n2

� k2n3 + k3 � k4n, and Γ(n) = 1
2 (k1n2 + k2n3 + k3

+ k4n). Due to the cubic nonlinearity of a(n), the well-mixed
system exhibits several kinds of distributions depending on
the values of the rate constants. If detailed balance is satisfied,
that is, k1n2

eq = k2n3
eq and k3 = k4neq, the system is in ther-

modynamic equilibrium and the distribution follows Poisson
statistics with mean number density neq. Otherwise, depending
on the number of real roots of a(n) = 0, the system exhibits a
monostable distribution (for a single positive root) or a bistable
distribution (for three positive roots).76

The structure factor of the spatially extended Schlögl
model can be calculated from Eq. (14). As expected from the
fact that the equilibrium distribution of the system follows
Poisson statistics, S(k)= neq in the case of thermodynamic
equilibrium. Note, however, that having a monostable distribu-
tion does not imply thermodynamic equilibrium. The structure
factor of the out-of-equilibrium monostable case is not flat
but exhibits a transition near k` ∼ 1. For the bistable case
exhibiting metastability, the linearized theory is still appli-
cable if one looks at fluctuations around one of the two
peaks. However, in this work, we focus on the equilibrium
and out-of-equilibrium cases where a(n) has a single positive
root.

III. SPATIAL DISCRETIZATION

In this section, we discuss spatial discretization of the
FHD equation using a finite-volume approach63,64 that con-
verts the SPDE into stochastic ordinary differential equations
(SODEs) for the cell number density ns,i(t). We develop numer-
ical schemes to solve these SODEs in Section IV. In Sec-
tion III A, we first discretize the diffusion-only SPDE (3). In
Section III B, we add reactions and present the continuous-time
discrete-space description of the reaction-diffusion system. In
Section III C, we discuss techniques to handle a small number
of molecules per cell.

For simplicity, in this paper we only consider periodic
systems. However, our methods can be straightforwardly gen-
eralized to standard types of physical boundary conditions
(Dirichlet, Neumann, or Robin). In particular, since chem-
istry is local and does not require boundary conditions, one
can rely on methods we have developed in prior work without
chemistry; see, for example, the discussion in Ref. 89.

A. Diffusion-only case

Due to the lack of regularity of Z(D)
s (x, t) in Eq. (3), point-

wise values of ns(x, t) are not physically meaningful. Hence,
we consider instead the spatial average of ns(x, t) over a cell.
We partition the system domain L1 ×L2 × · · · ×Ld into cells of
volume ∆V = ∆x1 · · ·∆xd and denote the cell number density
of species s in cell i = (i1, . . . , id) as

ns,i(t) =
1
∆V

∫
cell i

ns(x, t)dx. (16)

We denote the face of a cell using the index f . If two contiguous
cells have indices i and i + ej (with ej being the unit vector
along the j-axis), the face f shared by the cells is denoted by
i + 1

2 ej.
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FIG. 1. Finite-volume spatial discretization in two dimensions. The cell-
averaged number density ns,i(t) is associated with the circles, and the face-
averaged stochastic diffusive flux is associated with the crosses. The stochastic
diffusive flux between the two cells having the red circles at the center is
depicted by the blue arrow.

To obtain a spatial discretization of Eq. (3) that
ensures discrete fluctuation-dissipation balance,63,64 we use
the standard second-order discrete Laplacian operator for the
deterministic diffusion part Ds∇

2ns and introduce a staggered
grid for the stochastic diffusive flux term∇·

(√
2DsnsZ(D)

s
)
, see

Fig. 1. For d = 1, a formally second-order spatial discretization
of Eq. (3) is written as

d
dt

ns,i = Ds
ns,i+1 − 2ns,i + ns,i−1

∆x2

+

√
2Ds

∆V

√
ñs,i+ 1

2
Ws,i+ 1

2
−

√
ñs,i− 1

2
Ws,i− 1

2

∆x
. (17)

The spatial average of ns(x, t) over the interval of length ∆x
around face i ± 1

2 is approximated by ñs,i± 1
2
(t), whereas that

of Zs(x, t) is modeled by 1√
∆V

Ws,i± 1
2
(t). To close the equation,

ñs,i± 1
2
(t) is approximated by an average of ns ,i(t) and ns,i±1(t),

that is, ñs,i± 1
2
= ñ

(
ns,i, ns,i±1

)
. Natural candidates for the aver-

aging function ñ(n1, n2) would be the Pythagorean means: the
arithmetic, geometric, and harmonic means. We choose a mod-
ified arithmetic average for ñ(n1, n2) described in Section III C,
for reasons detailed in Appendix B.

Generalization of the spatial discretization (17) to higher
dimensions is straightforward. For each face, a GWN process
Ws,f is defined and ñs,f (t) is calculated from the cell number
densities of the two cells sharing the face by using the aver-
aging function ñ(n1, n2), see Fig. 1. By introducing notations
ns(t) ≡ {ns,i(t)}, Ws(t) ≡ {Ws,f (t)}, and ñs(t) ≡ ñ (ns(t)), we
express the resulting SODEs for {ns,i(t)} as

d
dt

ns = Ds∇
2
dns +

√
2Ds

∆V
∇d ·

(√
ñsWs

)
, (18)

with the understanding that ∇2
d denotes the standard (2d + 1)-

point discrete Laplacian operator, and ∇d· denotes a discrete
divergence operator.

B. Reaction-diffusion system

By combining Eqs. (6) and (18), we obtain the spatial
discretization of the reaction-diffusion FHD equations as a

system of Ito SODEs,

d
dt

ns = Ds∇
2
dns +

√
2Ds

∆V
∇d ·

(√
ñsWs

)
+

Nr∑
r=1

νsrP (ar(n)∆Vdt)
∆Vdt

.

(19)
In Eq. (1), fluctuations in the reaction rate are modeled as
GWN, while in Eq. (19), we assume Poisson fluctuations.
Since the latter fluctuations are consistent with discrete nature
of reactions based on the CME, the description in Eq. (19) is
physically more accurate. In fact, it has been shown that the
CLE description can give physically incorrect results since it
is not consistent with a Gibbs–Boltzmann or Einstein equi-
librium distribution, even for the case of a single well-mixed
cell.61 As shown above, the inclusion of Poisson fluctuations
for reaction, however, requires the notion of a mesoscopic
cell and thus can be realized only after the SPDE is spatially
discretized.

The choice of appropriate cell size is a delicate issue for
the RDME and FHD descriptions. An upper bound on the cell
size is given by the penetration depth due to the underlying
assumption that each cell is homogeneous and reactions occur
within a cell. In fact, there is not only an upper bound of the cell
size for a valid description but also a lower bound. This can be
seen by considering the fact that bimolecular reactions would
become increasingly infrequent as the cell size decreases.90,91

Several criteria for choosing the cell size have been proposed
based on physical arguments90,92,93 and mathematical analy-
sis.94 For a small value of the cell size, corrections in the rate
constants of bimolecular reactions have been proposed.90,95,96

However, these corrections do not fix the underlying prob-
lem which comes from the fact that reactions are treated as a
purely local process with no associated spatial length scale.
In microscopic (particle) models of reaction-diffusion such
as the Smoluchowski17 model or the Doi model,90 a micro-
scopic reactive distance appears and controls the reaction rate
for diffusion-limited reactions. By introducing a reactive dis-
tance into the model, and relaxing the restriction that a reaction
should occur among the molecules in the same cell, a modi-
fied convergent RDME having well-defined limiting behavior
for small cell size can be developed97 and could be com-
bined with our FHD description of diffusion. The dependence
of stochastic Turing patterns on the grid size has been also
investigated.98

C. Maintaining non-negative densities

The spatially discretized FHD equation (18) or (19) is
well defined but suffers from two issues that we now address.
First, the number of molecules in a cell (i.e., ns,i∆V ) is
not an integer. Second, the cell number density can become
negative. When there are a small number of molecules
per cell in the system, the behavior of the FHD descrip-
tion (19) depends sensitively on the averaging function ñ
and the propensity functions ar that appear in the multi-
plicative noise terms. Hence, we carefully modify the form
of ñ and ar for negative or very small densities in order
to greatly reduce the chances of producing future negative
densities.

In Section V A, we demonstrate that the arithmetic
mean produces more accurate results for the equilibrium
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distribution than the other Pythagorean means. Based on
the analysis given in Appendix B, we use the following
modification to the arithmetic mean:

ñ(n1, n2) =
n1 + n2

2
H0(n1∆V )H0(n2∆V ), (20)

where

H0(x) =




0 (x ≤ 0)

x (0 < x < 1)

1 (x ≥ 1)

(21)

is a smoothed Heaviside function. The smoothed Heaviside
function H0 is introduced to ensure the continuity of ñ at n1

= 0 or n2 = 0. As explained in Appendix B, this averaging func-
tion guarantees non-negativity for the diffusion-only system
(18) in the continuous-time description. In our simulations,
we find this modification greatly reduces the occurrence of
negative density while closely matching the true equilibrium
distribution, noting that in our formulation the stochastic dif-
fusive flux is continuously turned off at n1 ≤ 0 or n2 ≤ 0.
We also note that the smoothing is based on the number of
molecules in a cell and if both cells have at least one molecule
(i.e., ni∆V ≥ 1), ñ becomes exactly the arithmetic mean. As
shown in Appendix B, the local modification near n = 0 does
not cause any noticeable unphysical behavior for ni∆V ≥ 1.
In Section V, we demonstrate that our numerical schemes
based on Eq. (20) work very well even for a small number
of molecules per cell.

For the propensity functions ar(n), we use the following
correction to the law of mass action, which is usually included
in the RDME description: if the deterministic rate expression
contains n2

s (or n3
s , · · · ), then replace it by ns(ns −

1
∆V ) (or

ns(ns −
1
∆V )(ns −

2
∆V ), · · · ). With this correction, at thermo-

dynamic equilibrium, the mean reaction rate becomes equal
to the one calculated from the deterministic rate expression
with the mean number density. This can be seen from the
fact that if ns∆V follows Poisson statistics with mean n̄s∆V ,
〈ns(ns −

1
∆V )〉 = n̄2

s and 〈ns(ns −
1
∆V )(ns −

2
∆V )〉 = n̄3

s .
When reactions are combined with an FHD treatment of

diffusion, number densities are no longer restricted to non-
negative integers and special treatment is required to make
reaction rates non-negative and physically sensible for small
numbers of molecules. In this work, we evaluate the rate ar(n)
by using continuous-range number densities n (i.e., without
trying to round n∆V to integers) and ensure that each term in
the rate of each reaction is non-negative. For example, we take
the rate expression of the Schlögl model (see Section II C) to
be

a(n) = k1n+
(
n −

1
∆V

)+

− k2n+
(
n −

1
∆V

)+ (
n −

2
∆V

)+

+ k3 − k4n+, (22)

where n+ = max(n, 0). We note that more mathematically jus-
tified algorithms have been proposed to handle reactions in
regard to negative densities using operator splitting and exact
solutions of reaction subproblems;99,100 these methods cannot
be used to address negative densities due to stochastic diffusive
fluxes.

IV. TEMPORAL INTEGRATORS

In this section, we develop temporal integrators for the
spatially discretized FHD equation (19). Our goal is twofold.
First, we construct numerical methods that allow for a large
time step size even in the presence of fast diffusion. By treat-
ing diffusion implicitly, the severe restriction on time step size
can be bypassed. Second, we construct methods that maintain
accuracy even if the time step size is much larger than the diffu-
sive hopping time. Since it is quite difficult to achieve second-
order weak accuracy for general multiplicative noise,101 our
goal here is to ensure second-order accuracy wherever pos-
sible. In the limit in which the number of molecules per cell
is very large and one can replace random numbers by their
means, our schemes reduce to standard second-order schemes
for deterministic reaction-diffusion PDEs. For linearized FHD,
our midpoint tau leaping-based schemes are second-order
weakly accurate, and all midpoint schemes reproduce at
least second-order accurate static correlations, i.e., structure
factors.

We build on previous work by some of us in Refs. 63, 64,
and 74 and propose two (semi-) implicit schemes as an alter-
native numerical method to conventional RDME methods. We
mainly consider the case where diffusion is much faster than
reaction and molecules on average diffuse more than a cell
length per time step (i.e., 2dD∆t � ∆x2). We focus here on
unsplit schemes that do not rely on operator splitting. This
is because we found that unsplit schemes give notably more
accurate structure factors than corresponding split schemes in
our case. In addition, including other transport processes (e.g.,
advection) and handling boundary conditions102 to second
order is not straightforward for split schemes.

It is convenient to introduce dimensionless numbers, α
and β, which measure how fast diffusion and reaction are rel-
ative to the given time step size∆t, respectively. For the single-
species Equation (12), assuming ∆x1 = · · · = ∆xd = ∆x, we
define

α = r∆t, β =
D∆t

∆x2
, (23)

where r is the chemical relaxation rate appearing in the lin-
earized equation (12). Hence, we can express the well-mixed
condition (i.e., the penetration depth ` =

√
D/r � ∆x) as

α � β. In addition, the numerical stability condition of a
scheme can also be given in terms of α and β. That is, if reac-
tion and/or diffusion are treated explicitly in a scheme, values
of α and/or β larger than a stability threshold cause numerical
instability. For α � β, the stability limit is mainly determined
by fast diffusion,

β ≤
1

2d
⇐⇒ ∆t ≤ ∆tmax ≡

∆x2

2dD
. (24)

Note that the stability limit becomes severe for large diffu-
sion coefficients and small grid spacing and worsens with
increasing dimension.

In Section IV A, we present several numerical schemes for
the FHD equation (19), including two implicit schemes, and
analyze the temporal orders of accuracy for the structure fac-
tors using the linearized analysis described in Appendix C. In
Section IV B, we analyze the stochastic accuracy of the numer-
ical schemes for large ∆t by investigating the structure factor
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of the one-dimensional Schlögl model at different wavenum-
bers. Since analysis for the nonlinear equations is lacking at
present, we numerically justify the handling of multiplicative
noise in Section V A.

A. Schemes

The simplest method for integrating Eq. (19) in time is
the Euler–Maruyama tau leaping (EMTau) scheme,

nk+1
s = nk

s + Ds∆t∇2
dnk

s +

√
2Ds∆t
∆V

∇d ·

(√
ñk

s W k
s

)
+

Nr∑
r=1

νsrP(ak
r∆V∆t)
∆V

, (25)

where superscripts denote the point in time at which quanti-
ties are evaluated, e.g., nk

s = ns(k∆t) and ak
r = ar(n(k∆t)), and

we have used the compact notation for spatial discretization
introduced in Section III B. Here, ∫

(k+1)∆t
k∆t W(t ′)dt ′ has been

replaced by
√
∆tW k , where W k denotes a collection of stan-

dard random Gaussian variables sampled independently for
each species on each grid face at each time step. That is, the
stochastic diffusive flux of species s on face f at time step k is
proportional to W k

s,f .
We also construct numerical schemes where reactions are

treated by SSA, which is an exact (exponential) integrator
for reactions. We denote by Rs(n, τ) the (random) change in
the number density of species s for a cell with initial state
n obtained from SSA over at time interval τ (in the absence
of diffusion). We can then write the Euler–Maruyama SSA
(EM-SSA) scheme as

nk+1
s = nk

s + Ds∆t∇2
dnk

s +

√
2Ds∆t
∆V

∇d ·

(√
ñk

s W k
s

)
+Rs(nk ,∆t).

(26)
The EMTau scheme is explicit in the sense that all terms

on the right-hand side of Eq. (25) can be evaluated without
knowing nk+1

s . However, a simple analysis shows that the time
step size is constrained by a stability condition (for derivation,
see Eq. (C7))

β +
α

4d
≤

1
2d

, (27)

which reduces to condition (24) for α � β. Since the EM-
SSA scheme treats reactions using an exponential integrator,
it is only subject to the stability limit (24) without a restriction
on α.

The stability limit imposed by fast diffusion can be over-
come by using standard implicit methods such as the second-
order implicit midpoint or Crank–Nicolson method, which
gives a system of linear equations for nk+1

s ,

nk+1
s = nk

s + Ds∆t∇2
d

(
nk

s + nk+1
s

2

)
+

√
2Ds∆t
∆V

∇d ·

(√
ñk

s W k
s

)
+

Nr∑
r=1

νsrP(ak
r∆V∆t)
∆V

. (28)

The linear system (28) can be solved efficiently iteratively
using multigrid relaxation;103 for β . 1, solving the linear sys-
tem is not much more expensive than a step of a second-order

explicit time stepping scheme. Note, however, that scheme (28)
is only first order accurate overall for reaction-diffusion sys-
tems. Hence, in addition to improved stability, it is important
to develop higher-order schemes to improve accuracy. Note
that this is not as simple as replacing tau leaping in Eq. (28)
with SSA as in Eq. (26); this would still be only first-order
accurate even in the deterministic limit.

Here we construct numerical schemes based on the
second-order temporal integrators for the linearized equa-
tions of FHD developed in Refs. 64 and 74. Those tempo-
ral integrators are second-order accurate in the weak sense
for additive noise and are used here as the basis for han-
dling diffusion. In order to add reactions into diffusion-only
schemes, we consider two types of sampling methods: tau
leaping and SSA. For tau leaping, we use the weakly second-
order tau leaping method;65,66 a similar two-stage scheme has
been originally proposed for the CLE104 to achieve second-
order weak accuracy. Here we combine predictor-corrector
midpoint schemes proposed in Ref. 64 (for diffusion) and
the second-order tau leaping method (for reaction). Owing
to the similar two-stage structures of those schemes, they
fit together in a rather natural manner. In addition, since
the resulting schemes still fit the framework of the implicit-
explicit algorithms analyzed in Ref. 64, they are second-
order weakly accurate for additive noise and an additional
order of accuracy (i.e., third order) is gained for the structure
factor.

We also develop midpoint schemes that use SSA instead of
tau leaping for reactions. Unlike tau leaping-based schemes,
the SSA-based schemes do not suffer from instability even
in the presence of rapid reactions. The use of SSA may also
help prevent the development of negative densities, which
is one of the main numerical issues for large fluctuations.
Hence, while SSA-based numerical schemes are computa-
tionally more expensive, they work better than tau leaping-
based schemes when reactions are fast or when the number of
molecules is small. The SSA-based schemes we propose here
belong to a class of exponential Runge–Kutta schemes, and
we construct them to ensure second-order deterministic accu-
racy, as well as second-order accuracy for the structure factor;
a detailed analysis of their weak accuracy is at present missing
even for linearized FHD.

1. Explicit midpoint schemes

As a prelude to constructing two-stage implicit methods,
we first consider improving the accuracy of the explicit EMTau
scheme (25) by using an explicit two-stage Runge–Kutta
(predictor-corrector) approach. By combining the explicit mid-
point predictor-corrector scheme from Refs. 64 and 74 (for
diffusion) and the midpoint tau leaping scheme from Refs. 65
and 66 (for reaction), we obtain the explicit midpoint tau
leaping (ExMidTau) scheme,

n?s = nk
s +

Ds∆t
2
∇2

dnk
s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

Nr∑
r=1

νsrP(1)(ak
r∆V∆t/2)
∆V

, (29a)
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nk+1
s = nk

s + Ds∆t∇2
dn?s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

√
Ds∆t
∆V
∇d ·

(√
ñ•s W (2)

s

)
+

Nr∑
r=1

νsrP(1)(ak
r∆V∆t/2)
∆V

+
Nr∑

r=1

νsrP(2)
(
(2a?r − ak

r )
+
∆V∆t/2

)
∆V

, (29b)

where the superscripts (1) and (2) indicate that the terms corre-
spond to the first and second half of the time step, respectively.
That is, P(1) (and similarly for W (1) and other random incre-
ments) denotes the same random number in both predictor and
corrector stages and is only sampled once per time step. Fol-
lowing Refs. 65 and 66, the mean reaction rate for the second
half step is corrected to (2a?r − ak

r )
+
, where a+ = max(a, 0).

For the magnitude of the stochastic diffusive fluxes over
the second half of the time step, we consider the following
three options for the face average value ñ•s :

ñ•s = ñ
(
nk

s

)
, (30a)

ñ•s = ñ
(
n?s

)
, (30b)

ñ•s = ñ
(
(2n?s − nk

s )
+)

.‘ (30c)

While all options are consistent with the Ito interpretation, the
effect of this choice on accuracy requires a nonlinear analy-
sis that is not available at present. The option (30b) is used
in Ref. 74 and shown to lead to second-order weak accu-
racy for FHD equations linearized around a time-dependent
macroscopic state. The option (30c) is inspired by the mid-
point tau leaping scheme.65,66 However, it does not actually
lead to second-order weak accuracy for multiplicative noise
because the fluctuating diffusion equation does not have the
simple noise structure that the CLE has.104 For all our simu-
lations, we use option (30c), as justified by numerical results
in Section V A.

The reactions can also be treated using SSA, to give the
explicit midpoint SSA (ExMidSSA) scheme,

n�s = nk
s +

Ds∆t
2
∇2

dnk
s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
, (31a)

n?s = n�s + R(1)
s

(
n�,

∆t
2

)
, (31b)

nk+1
s = nk

s + Ds∆t∇2
dn?s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

√
Ds∆t
∆V
∇d ·

(√
ñ•s W (2)

s

)
+R(1)

s

(
n�,

∆t
2

)
+ R(2)

s

(
n?,

∆t
2

)
. (31c)

Here the predictor stage (31a) + (31b) is a split reaction-
diffusion step, but the corrector is not split. Note that two R(1)

appearing in Eqs. (31b) and (31c) are the same random incre-
ment computed using SSA. In other words, the SSA algorithm
is called once for each half of the time step; this has the same
computational cost as calling SSA once to computeRs

(
nk ,∆t

)
in the EM-SSA scheme (26).

Since both ExMidTau and ExMidSSA schemes treat dif-
fusion explicitly, they are subject to stability limits. The
ExMidTau scheme has the same stability limit (27) as the
EMTau scheme, whereas the ExMidSSA scheme is subject
to the same limit (24) as the EM-SSA scheme. The ExMid-
Tau scheme with the option (30b) is an instance of the explicit
midpoint scheme analyzed in Ref. 74 for weak noise (i.e., lin-
earized FHD) and therefore achieves second-order weak accu-
racy for linearized FHD and gives third-order accurate equi-
librium structure factors. On the other hand, the ExMidSSA
scheme gives only second-order accurate structure factors.

2. Implicit midpoint schemes

Here we present two implicit midpoint schemes, where
diffusion is treated implicitly based on the implicit midpoint
predictor-corrector scheme.64,74 By treating reactions using
the second-order midpoint tau leaping scheme,65,66 we obtain
the implicit midpoint tau leaping (ImMidTau) scheme,

n?s = nk
s +

Ds∆t
2
∇2

dn?s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

Nr∑
r=1

νsrP(1)(ak
r∆V∆t/2)
∆V

, (32a)

nk+1
s = nk

s + Ds∆t∇2
d

(
nk

s + nk+1
s

2

)
+

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

√
Ds∆t
∆V
∇d ·

(√
ñ•s W (2)

s

)
+

Nr∑
r=1

νsrP(1)(ak
r∆V∆t/2)
∆V

+
Nr∑

r=1

νsrP(2)((2a?r − ak
r )

+
∆V∆t/2)

∆V
, (32b)

where the three options for ñ•s are given in Eqs. (30). When
SSA is used for the reactions, we obtain the implicit midpoint
SSA (ImMidSSA) scheme,

n?s = nk
s +

Ds∆t
2
∇2

dn?s +

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
, (33a)

nk+1
s = nk

s + Ds∆t∇2
d

(
nk

s + nk+1
s

2

)
+

√
Ds∆t
∆V
∇d ·

(√
ñk

s W (1)
s

)
+

√
Ds∆t
∆V
∇d ·

(√
ñ•s W (2)

s

)
+ Rs

(
n?,∆t

)
. (33b)

In the corrector stage, both schemes treat diffusion using
the Crank–Nicolson method since this gives the most accu-
rate structure factors for diffusion-only systems.64 For the
predictor step to the midpoint, we have chosen to use back-
ward Euler for diffusion because this was found to be optimal
using the structure factor analysis discussed in more detail in
Section IV B.

We point out again that the difference in how reactions
are included in the ImMidTau and ImMidSSA schemes stems
from the fact that SSA is an exponential integrator whereas
the midpoint tau leaping method is only a second-order inte-
grator. This difference must be taken into account when
analyzing the accuracy of SSA-based schemes both in the
deterministic limit and in structure factor analysis. Like the
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explicit midpoint schemes in Section IV A 1, for linearized
FHD, the ImMidTau scheme is second-order weakly accu-
rate and gives a third-order accurate structure factor, whereas
the ImMidSSA scheme gives only a second-order accurate
structure factor. Since diffusion is treated implicitly in both
schemes, they are not subject to a stability limit depending
on β. However, due to the explicit treatment of reactions, the
ImMidTau scheme is subject to the stability condition α ≤ 2.
The ImMidSSA scheme is unconditionally linearly stable and
has no stability restrictions on α and β but can be consid-
erably more expensive for systems with a large number of
molecules.

A key element of this work that distinguishes it from our
previous work based on the CLE61 is that here we replaced
the GWN in the chemical noise with Poisson noise and used a
weakly second-order tau leaping method65,66 to account for the
non-Gaussian nature of the chemical fluctuations. It is impor-
tant to note that Poisson noise does not have a continuous range
limit, i.e., the Poisson distribution remains integer-valued even
as the number of molecules per cell becomes very large.
Although it is tempting to replace the Poisson distribution
with a Gaussian distribution, this changes the large devia-
tion functional and therefore we recommend using tau leaping
even in the case of weak fluctuations; we note that sampling
from a Poisson distribution can be done with a cost essen-
tially independent of the mean using well-designed rejection
Monte Carlo methods. Because of the use of Poisson variates,
which cannot be split into a mean and a fluctuation like a Gaus-
sian variate can, there is no strict “deterministic limit” for our
FHD discretizations. While the handling of diffusion degen-
erates to a standard second-order deterministic scheme in the
absence of the noise, the chemical noise is always present and
increments or decrements the number of molecules by integer
numbers.

B. Structure factor analysis

Analyzing the accuracy of temporal integrators for
stochastic differential equations is notably nontrivial, espe-
cially if driven by multiplicative noise. As mentioned above,
because of the multiplicative noise, all of our midpoint
schemes are formally only first-order weakly accurate. How-
ever, traditional weak-order accuracy is not the most impor-
tant goal in FHD simulations. As first argued in Ref. 63
and then elaborated in Refs. 64 and 74, for FHD it is more
important to attain discrete fluctuation-dissipation balance
and higher-order accuracy for the spectrum of the equilibrium
fluctuations.

Here, we analyze the accuracy of our numerical schemes
by investigating the structure factor S(k) for the one-
dimensional linearized FHD equation (12). The analytic
expression for S(k) produced by a given scheme can be
obtained as a function of ∆x and ∆t following the proce-
dure described in Appendix C. Of specific interest to us is
how accurately the implicit schemes reproduce S(k) at large
wavenumbers corresponding to length scales comparable to
∆x (i.e., k & (D∆t)−1/2) when diffusion is the fastest process,
β � 1 � α. This is because incorrect diffusive dynamics at
grid scales for ∆t � ∆x2/D can lead to gross errors in the
magnitude of the fluctuations at large wavenumbers.

Errors in the structure factor arise from two sources: spa-
tial and temporal discretization. As explained in Appendix C,
the predominant contribution of spatial discretization is to
replace �k2 with the symbol of the standard discrete Lapla-
cian. In one dimension, this simply amounts to replacing k in
the continuum expressions with the modified wavenumber k̃
defined by

k̃ =
sin

(
k∆x

2

)
∆x
2

. (34)

Note that exactly the same expression applies to the RDME,
where diffusion is simulated by lattice hops. In order to focus
our attention on temporal integration errors, we will plot dis-
crete structure factors as a function of k̃ instead of k, which
effectively removes the spatial errors.

Figure 2 illustrates how S(k) deviates from the exact
result (14) at different wavenumbers for large ∆t. We com-
pare S(k) obtained from the four schemes by using values
α = 0.025, β = 10α = 0.25 for the explicit schemes and
α = 0.5, β = 10α = 5 for the implicit schemes. Note that
these values correspond to a case where the time step size
is chosen as half of the stability limit ∆tmax for the explicit
schemes, and it is increased by a factor of 20 (∆t = 10∆tmax)
for the implicit schemes. As described below, the accuracy at
diffusion-dominated scales k` � 1 and reaction-dominated
scales k` � 1 largely depends on how diffusion (i.e., explicit
or implicit) and reaction (i.e., tau leaping or SSA) are treated,
respectively.

As the time step size approaches the diffusive stabil-
ity limit, β → 1/2 in one dimension, the explicit schemes
become inaccurate and eventually numerically unstable at the
largest wavenumbers, as seen in the figure for β = 1/4. Due
to the small values of α, both schemes give accurate results
for reaction-dominated scales. Note, however, that the SSA-
based schemes give exact S(0) and they are in general more
accurate at reaction-dominated scales than the corresponding
tau leaping-based schemes. Hence, we see that, for β � α,
the accuracy of the explicit schemes is largely affected by
numerical instability arising from diffusion.

On the other hand, both implicit schemes give fairly good
S(k) in the overall range of k even though ∆t is twenty times
larger and β = 5. As expected, the ImMidSSA scheme is more

FIG. 2. Discrete structure factors S(k̃) for the ExMidTau, ImMidTau,
ExMidSSA, and ImMidSSA schemes for the one-dimensional linearized FHD
equation (12) with Γ̄/n̄r = 2 (e.g., an out-of-equilibrium monostable Schlögl
model). Note that different values of β are chosen for the explicit schemes
(β = 0.25) and the implicit schemes (β = 5) and α is chosen as α = 0.1β.
The exact continuum result (14) is depicted by the dotted line.
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accurate for reaction-dominated scales k` � 1, for which the
ImMidTau scheme shows some errors because of the relatively
large value ofα = 0.5. However, for intermediate scales k` ∼ 1,
the ImMidTau scheme is more accurate because it attains third-
order accuracy for static covariances.

At diffusion-dominated scales k`� 1, both implicit
schemes give accurate results. This is not accidental, for we
have selected these schemes from a family of schemes param-
eterized in Ref. 64 exactly for this reason. Specifically, the
treatment of diffusion in both schemes is based on the implicit
midpoint scheme (Crank–Nicolson), which gives the exact
S(k) in the absence of reactions.64 In addition, the reaction
is incorporated in such a way that maintains fluctuation-
dissipation balance for k` � 1 even for relatively large values
of α. For small α, the time integration error of the ImMidTau
scheme for the structure factor at the maximum wavenumber
kmax` = π

√
β/α is estimated as

S(kmax) − S0(kmax)
S0(kmax)

≈ −
β

2(1 + 2β)2
α2, (35)

where S0(k) = lim∆t→0 S(k) is the structure factor in the
absence of temporal integration errors (see Appendix C).
Hence, for a given value of α, S(k) gives accurate results at
k` � 1 for large β. For the ImMidSSA scheme, β in the
numerator is replaced by β + (1 + 2β)( Γ̄n̄r − 1) and a sim-
ilar stable behavior for large β is observed. By expanding
S(kmax) � S0(kmax) for small ∆t, we also see that the error
is O(α2 β)=O(∆t3) for the ImMidTau scheme, whereas it is
O(∆t2) for the ImMidSSA except at thermodynamic equi-
librium (i.e., except when Γ̄= n̄r), where it is third-order
accurate.

V. NUMERICAL RESULTS

We perform numerical simulations for the following
three stochastic reaction-diffusion systems. The simula-
tion code is available at https://github.com/BoxLib-Codes/
FHD ReactDiff.git. In Section V A, we use the equilibrium
Schlögl model in one, two, and three dimensions to vali-
date our numerical methods. The analysis in Section IV B
assumed additive noise, reflecting a large number of molecules
per cell. Here we present numerical results demonstrating
that the methodology continues to work when there are a
small number of molecules per cell and the effects of mul-
tiplicative noise are significant. In particular, we show that
our numerical methods, including the modified arithmetic-
mean averaging function discussed in Section III C, accurately
reproduce the Poisson statistics that characterize the thermo-
dynamic equilibrium distribution. In Sections V B and V C,
we study the effects of fluctuations on chemical pattern for-
mation. In Section V B, we test our numerical methods on a
time-dependent problem: two-dimensional Turing-like pattern
formation in the three-species BPM model.77,78 We inves-
tigate how accurately both time-transient and steady state
behaviors are captured for the ImMidTau and ImMidSSA
schemes when a large time step size is used. We consider the
case where the populations of chemical species have differ-
ent orders of magnitude, which is a frequently encountered
situation where a conventional RDME-based method may not

work efficiently. We demonstrate that the ImMidTau scheme
scales very well with an increasing number of molecules per
cell so that even the deterministic limit of vanishing fluc-
tuations can be explored. In Section V C, we demonstrate
the scalability to large systems and computational efficiency of
our FHD approach by presenting a three-dimensional numer-
ical simulation of chemical front propagation in a two-species
model.7

As a reference method for comparison, we use an RDME-
based method, as proposed in Appendix A, which is con-
structed via a standard operator splitting technique by combin-
ing multinomial diffusion sampling71 and SSA. Such a split
scheme is notably more efficient than ISSA when there are
a large number of molecules per cell and becomes an exact
sampling method for the RDME in the limit ∆t→ 0. This
RDME-based scheme works with non-negative integer popu-
lations and reproduces correct fluctuations at thermodynamic
equilibrium. However, diffusion imposes the same restriction
(24) on ∆t, and the split scheme produces only a first-order
accurate structure factor in general.

In order to set a desired magnitude of fluctuations with-
out changing any parameters for the macroscopic limit (e.g.,
penetration depth), we introduce a factor A, which scales the
cell volume ∆V = A∆x1 · · ·∆xd . It can be interpreted as the
surface cross section in one dimension and the thickness of a
system in two dimensions, and as a rescaling of the number
density in three dimensions. Since the number of molecules in
a cell is ns,i∆V , the larger A is, the more molecules in a cell
there are and the weaker the fluctuations become. However, the
corresponding macroscopic system is unaffected by the value
of A.

A. Schlögl model at thermodynamic equilibrium

In this section, we test the numerical schemes constructed
in Sections III and IV on the Schlögl reaction-diffusion model,
which is first introduced in Section II C. Simulation parame-
ters are chosen to correspond to a system in thermodynamic
equilibrium, so that the equilibrium fluctuations are Poisson
and the structure factor S(k) = neq is constant, both with and
without (i.e., diffusion only) chemical reactions. Specifically,
we set the rate constants as k1 = k2 = k3 = k4 = 0.1 (see Eq.
(15)), which gives neq = 1 and α = 0.2∆t. We set the diffusion
coefficient D = 1 and the grid spacing to unity for d = 1, 2, 3
and thus β = ∆t. We consider the case where the mean number
of molecules per cell is 10 by setting A = 10.

1. Continuous-time FHD equation

Prior to evaluating the different temporal integration
strategies, we first focus our attention on the continuous-time
discrete-space FHD equation (19) to establish a baseline for
comparison and to evaluate the effectiveness of the choice
of averaging function (20). To eliminate temporal integration
errors, we use the EMTau scheme (25) with a very small time
step size ∆t = 10−3; results from the other FHD schemes are
similar for sufficiently small ∆t. The left panel of Fig. 3 shows
the structure factors S(k) computed for Nc = 512 grid cells
in one dimension for the arithmetic, geometric, and harmonic
mean (AM, GM, HM) averaging functions ñ(n1, n2). The cor-
rect flat spectrum is accurately reproduced by the modified AM

https://github.com/BoxLib-Codes/FHD_ReactDiff.git
https://github.com/BoxLib-Codes/FHD_ReactDiff.git
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FIG. 3. Static fluctuations of the spatially discretized FHD equation (19) at thermodynamic equilibrium. (Left) Structure factors S(k̃) calculated by using different
averaging functions ñ. The solid lines depict the results from the equilibrium Schlögl model (neq∆V = 10), whereas the dotted lines are from the corresponding
diffusion-only system. Note that the exact result for both systems is S(k̃) = neq independent of k̃, which corresponds to Poisson equilibrium fluctuations. (Right)
Empirical histograms P(N) of the number of molecules per cell for the Schlögl model (red circles) and the diffusion-only system (blue crosses), computed using
the arithmetic mean averaging function. For comparison, we show the correct Poisson distribution PPoisson(N) and its Gaussian approximation PGauss(N). The
inset shows the errors P(N) � PPoisson(N) with error bars corresponding to two standard deviations.

averaging function (20). On the other hand, the GM and HM
averaging functions give smaller S(k) at diffusion-dominated
scales k` � 1. This can be also observed from the diffusion-
only system for all wavenumbers, as theoretically explained in
Appendix B. Henceforth, we use the modified AM averaging
function (20).

The right panel of Fig. 3 shows that using the AM averag-
ing function, the correct Poisson distribution for the number
N of molecules in a cell is accurately reproduced for both
reaction-diffusion and diffusion-only systems at thermody-
namic equilibrium. From the equilibrium number density dis-
tribution ρ(n), we construct a discrete distribution for integer
number of molecules N per cell,

P(N) =
∫ (N+ 1

2 )/∆V

(N− 1
2 )/∆V

ρ(n)dn, (36)

and compare it with a Poisson distribution PPoisson(N) with
mean neq∆V , as well as a Gaussian distribution PGauss(N)
having the same mean and variance as PPoisson(N). The agree-
ment between P(N) and PPoisson(N) is remarkable in the sense
that FHD was originally proposed to account for only second
moments of (small) Gaussian fluctuations. Since PPoisson(N) is
significantly different from PGauss(N) for neq∆V = 10, we con-
firm that our spatially discretized FHD equation (19) describes
(large) Poisson fluctuations faithfully.

2. Time integration errors

In order to investigate time integration errors of our
numerical schemes, we compare the numerical equilibrium
distribution for a given time step size∆t with the target Poisson
distribution PPoisson(N) by using the following measures. First,
we compute the Kullback–Leibler (KL) divergence (distance),

DKL =

∞∑
N=0

P Poisson(N) log
PPoisson(N)

P(N)
. (37)

Second, we compute the probability of negative number
densities,

Pneg =

∫ 0

−∞

ρ(n)dn. (38)

Third, we compute the correlation coefficient ζ between
neighboring cells,

ζ =
Cov

[
ni, ni±ej

]

Var [n]
. (39)

Note that all three measures should be zero at thermodynamic
equilibrium, as they would be for RDME.

We considered the three options for the stochastic flux
amplitude ñ•s in Eqs. (30). For ζ , the three options give sim-
ilar values within standard errors of estimation. For DKL and
Pneg, option (30a) gives the largest values (i.e., least accu-
rate) and option (30c) the smallest (not shown). Based on this
result, we will adopt (30c) and use it for all of the simula-
tions. Figure 4 shows how these measures deviate from zero
as ∆t increases for Nc = 64 cells in one dimension for the
different schemes. As expected, for small values of ∆t, all
schemes give similar values. DKL converges to a small value,
which is consistent with the good agreement between P(N) and
PPoisson(N) seen in the right panel of Fig. 3. Pneg is observed
to converge to zero as ∆t → 0, which demonstrates the effec-
tiveness of the approach described in Section III C and agrees
with the analysis in Appendix B. Also, no correlation between
neighboring cells is observed for small ∆t within statistical
errors, which is consistent with the flat spectrum S(k) shown
in the left panel of Fig. 3. As ∆t approaches the explicit sta-
bility limit ∆tmax, rapid worsening is observed in both explicit
schemes in all three measures. While Pneg and ζ behave sim-
ilarly for both schemes, DKL remains small for larger values
of ∆t for the ExMidSSA scheme compared to the ExMidTau
scheme.

For both implicit schemes, it can be clearly seen that not
only is the diffusion instability bypassed but also the accu-
racy is well maintained for large ∆t. For comparable accuracy,
an order of magnitude larger time step size than the explicit
schemes can be chosen. The ImMidTau scheme gives smaller
DKL than the ImMidSSA scheme if∆t is smaller than a certain
value. This is consistent with the observation that the former
scheme has a higher temporal order of accuracy in S(k). How-
ever, due to inaccurate handling of reactions by tau leaping for
large ∆t, the ImMidTau scheme eventually gives larger DKL.
For Pneg and ζ , a similar behavior is observed.
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FIG. 4. Deviations from the correct equilibrium distribution PPoisson(N) as ∆t increases for the four midpoint schemes applied to the one-dimensional Schlögl
model at thermodynamic equilibrium. The left panel shows the KL divergence (37), the middle panel shows the probability of negative density (38), and the right
panel shows the correlation coefficient (39) between neighboring cells. The red and green solid lines denote the ImMidTau and ExMidTau schemes, respectively,
whereas the blue and purple dotted lines denote the ImMidSSA and ExMidSSA schemes, respectively. The arrows denote the stability limit ∆tmax of the explicit
schemes, see Eq. (24). The error bars correspond to two standard deviations.

A similar behavior is observed for higher spatial dimen-
sions d = 2 and d = 3 (not shown). However, for a given target
accuracy tolerance, we find that a smaller time step size should
be chosen, which is inversely proportional to the dimension-
ality d. This should not come as a surprise since the explicit
stability limit ∆tmax ∼ 1/d, see Eq. (24). Therefore, we con-
clude that ∆t can be chosen as an order of magnitude larger for
the implicit schemes than for the explicit schemes independent
of the spatial dimension. As mentioned, the computational
overhead for solving linear systems can be reduced by an effi-
cient iterative solver. Using multigrid relaxation,103 the overall
computational efficiency gain was roughly estimated to be a
factor of 3. However, this factor largely depends on the prob-
lem as well as the implementation, especially on the linear
solver used.

B. Turing-like pattern formation

In this section, we investigate pattern formation in the
three-species Baras–Pearson–Mansour (BPM) model,77,78

U + W
k1
→ V + W, 2V

k2


k3

W,

U
k4


k5
∅, V

k6


k7
∅.

(40)

We choose the rate constants so that the deterministic reaction-
only system attains a limit cycle as its stable attractor, and
we choose the diffusion coefficients so that a Turing-like pat-
tern forms in the reaction-diffusion system.61 Specifically,

we set k1 = k2 = 2 × 10−4, k3 = 1, k4 = 3.33 × 10−3, k5

= 16.7, k6 = 3.67 × 10−2, k7 = 4.44, and DU = 0.1, DV = DW

= 0.01. We note that on the limit cycle, number densities of
the three species oscillate in significantly different ranges:
nU ∈ (999, 2024), nV ∈ (302, 645), and nW ∈ (18.2, 83.2).
For a physical domain with side lengths Lx = Ly = 32, we use
three spatial resolutions with grid sizes Nc = 642, 1282, and
2562 cells. For the initial number densities, we choose a point
on the limit cycle (n0

U, n0
V, n0

W) = (1686, 534, 56.4) and gener-
ate the initial number of molecules of each species s in each
cell from a Poisson distribution with mean n0

s∆V = n0
s A∆x∆y.

We use our implicit schemes in order to bypass the stiff sta-
bility limit imposed by the fast diffusion of U molecules. To
obtain reference FHD results having minimal time integra-
tion errors, we use the ImMidTau scheme with ∆t = 0.1.
To test the importance of fluctuations, a deterministic version
of the ImMidTau scheme is used with ∆t = 0.1, with ran-
dom initial conditions generated from a Poisson distribution
corresponding to thickness A = 10.

Figure 5 shows snapshots of a final Turing pattern formed
for A = 1 and 642 cells. While the pattern is qualitatively cor-
rect, the quantitative behavior of our FHD formulation may be
questioned since the mean number of W molecules in a cell
can be as low as 4.5 at small t in this case. To confirm that
the FHD description applies even for relatively small numbers
of molecules per cell, we compare the FHD results to refer-
ence RDME results obtained using the SSA/2+MN+SSA/2
scheme (A3) with ∆t = 0.01. We find that the FHD reference

FIG. 5. Two types of steady-state Turing-like patterns observed in the two-dimensional BPM model with 642 cells and A = 1. Snapshots of nU are obtained at
t = 5 × 104 from FHD (left two panels) and RDME (right two panels) simulations with a small time step size. Panels (a) and (c) show a hexagonal structure
(with 12 dots), whereas panels (b) and (d) exhibit a monoclinic structure (with 11 dots).
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FIG. 6. Turing-like pattern formation
in the two-dimensional BPM model
with 642 cells. (Left) Spatially aver-
aged density n̄U(t) of species U for
domain thickness A = 1 and A = 10
(RDME results), as well as determinis-
tic reaction-diffusion started from ran-
dom initial conditions corresponding to
A = 10. (Right) Snapshots of nU for A
= 10 at four different times t at which
n̄U(t) attains a local minimum, indicated
by circles in the left panel.

simulations are qualitatively very similar to the RDME refer-
ence simulations over a wide range of thicknesses A, as we
illustrate in Fig. 5. For our setup, after the initial formation
of a disordered pattern of dots with low concentration of U
molecules (blue dots in Fig. 5), the dots split and merge and
diffuse to eventually form a stable regular pattern; note that
the final patterns are nearly periodic lattice structures but their
geometry is affected to some extent by the finite size of the
domain. For A = 1, by t = 5 × 104, almost all samples had
formed a steady pattern. Most samples formed a hexagonal (12
dots, see panels (a) and (c) in Fig. 5), and a few formed a mon-
oclinic (11 dots, see panels (b) and (d) in Fig. 5) lattice of dots,
for both FHD and RDME. Note that while FHD simulations
using the ImMidTau scheme are equally efficient independent
of A, RDME simulations become prohibitively expensive for
large A & 100 due to the very large number of U molecules (as
many as 2 × 106 A) in the system. For weaker fluctuations, A
= 1000, FHD simulations reveal that the annealing of the lat-
tice defects takes much longer and we see several disordered
or defective patterns even at t = 5 × 104 (not shown). There-
fore, not only do fluctuations accelerate the formation of the
initial (disordered) pattern, but they also appear to accelerate
the annealing of the defects.

Since the formation of the pattern is driven by instability,
it is itself a random process and a proper quantitative compari-
son between the different methods requires a careful statistical

analysis of an ensemble of trajectories. In order to capture the
time transient behavior of pattern formation, illustrated in the
right panel of Fig. 6, we calculate the spatially averaged den-
sity n̄U(t) = 1

Nc

∑
i nU,i(t). In the left panel, we compare sample

trajectories of n̄U(t) for A = 1 and A = 10 for RDME (similar
results are obtained for FHD) and for deterministic reaction-
diffusion. While n̄U(t) initially oscillates as in the limit cycle, as
the Turing-like pattern begins to form, the oscillation ampli-
tude decays and n̄U(t) eventually attains a steady value. By
comparing A = 1 and 10, we see that larger fluctuations facili-
tate faster pattern formation, as observed in prior work61 by us
and others. By comparing RDME results for thickness A = 10
with deterministic reaction-diffusion started from the same ini-
tial condition, we see that the effect of fluctuations on pattern
formation is not just due to random initial conditions.

We generate 16 sample trajectories for each set of param-
eter values, fit each realization of n̄U(t) using seven fitting
parameters a1, . . . , a7 to

n̄U(t) =

(
1 − tanh

t − a1

a2

) (
a3 sin(a4t + a5) + a6

)
+ a7, (41)

and compare the distributions of the fitting parameters. Note
that a1 and a7 correspond to the decay onset time and the steady
spatial average density, respectively. In the left panel of Fig. 7,
we compare the empirical distributions of (a1, a7) from the
RDME and FHD results for different values of the thickness

FIG. 7. (Left) Scatter plots of the decay onset time a1 and the steady spatial average density a7 for several values of the cell thickness A and two grid resolutions.
RDME and FHD results are compared for A = 1 and A = 10, whereas only the FHD results (using the ImMidTau scheme) are shown for A = 100 and A = 1000
since RDME simulations are prohibitively expensive. (Right) Average values ā7 of a7 over 16 samples for the ImMidTau and ImMidSSA schemes with 642 cells
as a function of time step size ∆t, for cell thicknesses A of 0.1, 1, and 10. For comparison, the RDME results for ∆t = 0.01 are shown on the left with error bars
corresponding to two standard deviations. Error bars are omitted for the implicit schemes; they are comparable to the RDME results. Note that ai are normalized
by the average values ādet

i for deterministic reaction-diffusion started with random initial conditions corresponding to A = 10.
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A and spatial resolutions. For each value of A, we observe
that distributions obtained from different methods and/or
resolutions coincide. For A = 1 and A = 10, we reconfirm
that the RDME approach produces statistically very similar
results for three resolutions and the FHD results are statis-
tically indistinguishable from the RDME results. It is quite
remarkable that FHD works even for A = 1 and 2562 cells,
which can have as low as 0.3 molecules per cell at small t,
and this demonstrates the robustness of our treatment for a
small number of molecules per cell. As the magnitude of the
fluctuations increases (i.e., as A decreases), the pattern begins
to form earlier (i.e., a1 decreases), as already seen in Fig. 6,
while the steady spatial average density a7 becomes smaller.
In addition, while the variance of a1 does not change sig-
nificantly as A varies, the variance of a7 becomes larger for
smaller A.

Finally, we investigate time integration errors of our
implicit schemes for the Turing-like pattern formation. For
the ImMidTau scheme, we increase ∆t up to the stability limit
arising from reactions ∆t(R)

max ≈ 1.3. The right panel of Fig. 7
shows the mean values ā7 of the steady spatial average den-
sity a7 over 16 samples versus ∆t for 642 cells. While both
schemes give similar values to the RDME results for small
∆t, they show a different behavior for large ∆t, which also
depends on A. As expected, in the ImMidTau scheme, the value
of ā7 rapidly deviates from the RDME result as ∆t approaches
∆t(R)

max, especially if there are few molecules per cell, A = 0.1 or
A = 1. On the other hand, in the ImMidSSA scheme, ∆t can be
increased beyond∆t(R)

max, and deviations from the RDME results
remain small even for the smallest value of A. Hence, han-
dling reactions by SSA not only removes the reaction stability
constraint but also improves the accuracy for a small number
of molecules per cell. However, it should be noted that this
improvement comes at a significant computational cost, since
the SSA scheme is much more expensive than tau leaping espe-
cially as the number of molecules per cell increases. Therefore,

the SSA-based schemes are impractical in the regime of weak
fluctuations due to poor scaling. We discuss some alternatives
to SSA that may significantly improve the computational cost
for weaker fluctuations in the Conclusions.

C. Front propagation

As a final example, we simulate three-dimensional front
propagation in a two-species stochastic reaction-diffusion
system having the following reaction network:

A
k1
→ ∅, 2A + B

k2
→ 3A, B

k3


k4

∅. (42)

This model has been proposed to reproduce axial segmentation
in Ref. 7, where ISSA simulations have been performed for the
one-dimensional case. Following Ref. 7, we set k1 = 0.4, k2

= 0.137, k3 = 0.1, k4 = 1 and DA = 1, DB = 10. For a physical
domain with side lengths Lx = Ly = Lz = 512, we use 2563

cells. To initiate front propagation, we generate initial number
densities as follows. We first assign to each cell i and species
s a mean number density,

n0
s,i = n(1)

s +
1
2

(
1 + tanh

ri − R
ξ

) (
n(2)

s − n(1)
s

)
, (43)

where ri is the distance from the cell center to the cen-
ter of the domain. This initializes a spherical region of
radius R in the first uniform equilibrium state of the
model, (n(1)

A , n(1)
B )= (2.16, 1.35), while the rest of the domain

is initialized in the second uniform equilibrium state,
(n(2)

A , n(2)
B )= (0, 10), with a smooth transition region between

the two states of width≈2ξ. Then, as in Section V B, we gener-
ate the initial number of molecules of each species in each cell
from a Poisson distribution with mean n0

s,i∆V = n0
s,iA∆x∆y∆z.

We simulate the system for parameters A = 1000, R = 16, and
ξ = 4 = 2∆x using the ImMidTau scheme with ∆t = 0.25. For
comparison, we also simulate the corresponding deterministic
system using a deterministic version of the ImMidTau scheme

FIG. 8. Three-dimensional FHD simulation of front propagation in a two-species stochastic reaction-diffusion model (42) using the ImMidTau scheme. The
number density of species A is shown at four different times t for the stochastic reaction-diffusion system (in the top row) and the corresponding deterministic
case (in the bottom row). The same initial conditions with Poisson fluctuations are used in both simulations.
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with the same time step size and (random) initial conditions.
Simulations are performed using a parallel implementation of
the algorithm using the BoxLib software framework.105 We
emphasize that a corresponding RDME system is too large to
simulate with conventional RDME-based methods; while the
total number of molecules in the system varies as the front
propagates, it is of the order of 1012 for A = 1000.

Figure 8 shows the growth of the spherical region as the
more stable phase propagates into the less stable phase via a
spherical traveling wave. While the phase boundary having a
peak population of species A propagates, a Turing-like pat-
tern develops behind the wave front; in one dimension this
pattern is periodic and more pronounced in the presence of
fluctuations.7 In two and three dimensions, fluctuations not
only enhance the pattern but they also make it disordered,
as seen in the figure by comparing the stochastic and deter-
ministic cases. In addition, the phase boundary becomes more
irregular under fluctuations. Note that the numerical results for
the deterministic case are not perfectly radially symmetric not
only due to the noisy initial conditions but also due to grid
artifacts introduced by the standard discrete Laplacian, which
is not perfectly isotropic106 on length scales compared to the
front width (i.e., the penetration depth); one would require
an even finer grid to correct for this spatial discretization
artifact.

VI. CONCLUSIONS

In this work, we have formulated a fluctuating hydro-
dynamics (FHD) model for reaction-diffusion systems and
developed numerical schemes to solve the resulting stochastic
ordinary differential equations (SODEs) (19) for the number
densities ns,i(t) of chemical species in each cell. We obtained
the diffusion part of the SODEs from an FHD description
of a microscopic system consisting of molecules undergo-
ing independent Brownian motions and added reactions in
an equivalent manner to the reaction-diffusion master equa-
tion (RDME). We presented two implicit predictor-corrector
schemes, the ImMidTau (32) and ImMidSSA (33) schemes,
that treat reactions using tau leaping and SSA, respectively. In
these schemes, diffusion is treated implicitly so that the sta-
bility limit imposed by fast diffusion can be bypassed and the
time step size can be chosen to be significantly larger than
the hopping time scale of diffusing molecules. In addition,
two-stage Runge–Kutta temporal integrators are employed to
improve the accuracy. To confirm the validity of our FHD for-
mulation and demonstrate the performance of our numerical
schemes, we numerically investigated not only a system at
steady state (Schlögl reaction-diffusion model) but also time-
dependent two-dimensional Turing-like pattern formation and
three-dimensional front propagation.

Based on our analytical and numerical investigation, we
conclude that the ImMidTau scheme is an efficient and robust
alternative numerical method for reaction-diffusion simula-
tions. The reason is threefold. First, the cost of the scheme
does not increase for increasing number of molecules per cell
(weaker fluctuations). For small numbers of molecules per cell
(large fluctuations), the integer-valued RDME description is
more appropriate than the continuous-range FHD description.

However, by using the approach proposed in Section III C,
we ensured that the FHD description remains robust and gives
accurate results even for a small number of molecules per cell,
as shown in Section V A. Hence, as shown in Section V B,
our numerical methods can efficiently simulate reaction-
diffusion systems over a broad range of relative magnitude
of the fluctuations. Second, the scheme allows a significantly
larger time step size without degrading accuracy compared
to existing RDME-based numerical methods,42–47 which use
a fixed time step size for diffusion that is comparable to the
hopping time scale. In particular, we found that the time step
size could be chosen as an order of magnitude larger for the
implicit schemes than for explicit methods, independent of
the spatial dimension. Lastly, FHD can take advantage of
the development of efficient parallel algorithms developed
for computational fluid dynamics (CFD) that enable effective
use of high-performance parallel architectures while provid-
ing the framework for treating more complex problems with
additional physical phenomena. This enabled us to perform
three-dimensional simulations of chemical front propagation
involving as many as 1012 molecules using the BoxLib CFD
software framework.105

The explicit tau leaping methods used here are quite sim-
ple to implement but are subject to a stability limit for fast
reactions, and can lead to negative densities when fluctuations
are large. While some implicit tau leaping methods have been
developed, as an alternative we developed methods that use
SSA for reactions. The ExMidSSA and ImMidSSA methods,
however, do not scale as the fluctuations become weaker. This
deficiency can be corrected by replacing SSA by a recently
developed hybrid algorithm termed asynchronous tau leap-
ing107 that combines SSA and tau leaping in a dynamic manner
by simulating multiple events with asynchronous time steps.
Future work should develop FHD-based numerical schemes
that are accurate and robust even for a small number of
molecules per cell and also scale to the deterministic limit
efficiently.

One of the advantages of the FHD approach for reaction-
diffusion systems is its natural generalization to more compli-
cated and realistic applications. Chemical reactions of interest
usually occur in liquid solution, and often in a dense crowded
environment such as the cytoplasm.108–110 It is well-known
that Brownian motion of liquid molecules or suspended macro-
molecules in liquids is dominated by hydrodynamic effects
related to viscous dissipation.81,110,111 This means that the dif-
fusion model commonly used in reaction-diffusion models,
including this work, which assumes that reactants are inde-
pendent non-interacting Brownian walkers diffusing with a
constant diffusion coefficient, does not apply in the majority
of practical problems of interest. Notably, crowding or steric
interactions affect the local hydrodynamic mobility of indi-
vidual reactants, and hydrodynamic interactions (HI) among
the diffusing reactants introduce strong correlations among
the diffusive motions of the reacting particles (and also among
reactants and passive crowding agents).110 Excluded volume
due to steric repulsion introduces cross-diffusion effects, i.e.,
coupling between the diffusive fluxes for different species,112

as well as concentration-dependent diffusion coefficients. Fur-
thermore, it has been observed that cross-diffusion may lead to
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qualitatively different Turing instabilities.113–115 Long-ranged
contributions of hydrodynamic interactions can be captured by
accounting for the advection of concentration fluctuations by
the thermal velocity fluctuations, which follow a fluctuating
Stokes equation.81,111 Additional thermodynamic contribu-
tions to the diffusive fluxes such as cross-diffusion, barod-
iffusion, and thermodiffusion do not seem straightforward in
the RDME but are easily included in our FHD formulation.61

In future work, we will investigate these hydrodynamic effects
on stochastic reaction-diffusion phenomena.
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APPENDIX A: RDME-BASED SPLIT SCHEME

As a reference algorithm for stochastic reaction-diffusion
simulation, we construct a numerical scheme for the RDME
through a standard operator splitting technique, as done in a
number of prior works.25,44,45,47 This technique allows one
to obtain a numerical scheme for the reaction-diffusion sys-
tem by combining numerical methods for the diffusion-only
and reaction-only systems. Here we combine multinomial dif-
fusion sampling43,71 for diffusion and SSA for reaction via
Strang splitting.70

One distinguishing feature of the resulting scheme, com-
pared to exact sampling methods such as ISSA, is the use of
a fixed time step size ∆t for diffusion, which facilitates an
efficient numerical simulation if diffusion is fast. As shown
below, while there are several advantages of this scheme over
ISSA, the choice of ∆t is constrained as it is for explicit FHD
schemes.

In Appendix A 1, after reviewing the multinomial dif-
fusion sampling method, we present an RDME-based split
scheme and discuss its advantages and disadvantages. In
Appendix A 2, we present a stochastic accuracy analysis for
this scheme.

1. Split scheme

In the multinomial diffusion (MN) sampling method, the
number of molecules in each cell after time ∆t is calculated
by sampling how many molecules have moved from a cell
to a neighboring cell. Here we follow the simple algorithm
described by Balter and Tartakovsky71 and only allow particles
to move to nearest-neighbor cells. More complicated but also
more accurate algorithms that allow particles to jump to further
than nearest-neighbor cells are described by Lampoudi et al.43

We use the notation introduced in the body of the paper.

By denoting the number of molecules of species s diffus-
ing from cell i to cell i′ over the time interval ∆t as Ns,i→i′ , the
change in the number density ns,i can be expressed in terms of
the sum of the inward and outward fluxes,

ns,i(t + ∆t) = ns,i(t) +
1
∆V

d∑
j=1

(
Ns,i+ej→i + Ns,i−ej→i

−Ns,i→i+ej − Ns,i→i−ej

)
(A1a)

= ns,i(t) +Di(ns(t),∆t), (A1b)

where ns(t)= {ns,i(t)}. For each cell i, the outward fluxes
(Ns,i→i+e1 , Ns,i→i−e1 , . . . , Ns,i→i+ed , Ns,i→i−ed , Ns,i→i) are ran-
dom variables sampled from the multinomial distribu-
tion with

∑
i′ Ns,i→i′ = ns,i(t)∆V total trials and probabilities

(ps, ps, . . . , ps, ps, 1 − 2dps), where ps = Ds∆t/∆x2, where we
have assumed ∆x1 = · · · = ∆xd = ∆x.

For fast diffusion, this method becomes more efficient
than treating hoping events one by one (as in ISSA). However,
it is an approximate method since the actual distribution of the
outward fluxes deviates from the multinomial distribution as∆t
increases. In fact, ∆t cannot be arbitrarily large and is limited
by condition (24) because of the requirement 1−2dps ≥ 0. We
also note that the number of molecules in a cell never becomes
negative due to the constraint

∑
i′ Ns,i→i′ = ns,i(t)∆V . Hence,

the fluxes on disjoint faces are correlated, which is different
from the FHD description (18). In the deterministic limit, this
scheme converges to a standard forward Euler scheme for the
diffusion equation and is therefore only first-order accurate in
time. In the stochastic setting, this scheme adds correlations
between the fluxes through different faces of a given cell in
such a way as to ensure discrete fluctuation-dissipation bal-
ance for any allowable time step size. In fact, for a system
with diffusion only, this method ensures that the equilibrium
fluctuations are strictly Poisson, as desired for independent
Brownian walkers.

In order to handle chemical reactions, we use the SSA
algorithm locally and independently in each cell, without any
diffusive events. Let Rs(n, τ) denote the (random) change in
the number density of species s when a cell with initial state n
is simulated using SSA over a time interval τ. In the absence
of diffusion, the SSA-based reaction scheme can be written as

ns,i(t + ∆t) = ns,i(t) + Rs(ni(t),∆t). (A2)

If we combine the diffusion-only (A1) and reaction-only
(A2) schemes using a Strang splitting approach,70 we obtain
the SSA/2+MN+SSA/2 scheme

n?s,i = nk
s,i + Rs(nk

i ,∆t/2), (A3a)

n??s,i = n?s,i +Di(n
?
s ,∆t), (A3b)

nk+1
s,i = n??s,i + Rs(n??i ,∆t/2), (A3c)

where superscripts denote time step or intermediate stage. (We
note that a number of different splitting variants are possible;
the version presented here gave the most accurate structure fac-
tor.) This split scheme has a number of advantages. It becomes
an exact sampler (solver) for the RDME in the limit ∆t → 0,
just like ISSA. It is notably more efficient than ISSA if there are



124110-18 Kim et al. J. Chem. Phys. 146, 124110 (2017)

many events per time interval ∆t, and it can be parallelized in
a straightforward manner using domain decomposition. Since
the number of molecules is always a non-negative integer both
in multinomial diffusion sampling and in SSA, this property is
also preserved for this scheme. Moreover, since both sampling
methods preserve the thermodynamic equilibrium distribution
(i.e., the Poisson statistics), the split scheme also preserves it
for any allowable time step size.

However, this scheme has some disadvantages. First, the
time step size restriction (24) for diffusion becomes severe
for fast diffusion. Second, SSA exhibits poor scalability with
respect to the number of molecules in a cell. This can be
resolved by replacing SSA with the tau leaping method, but the
non-negativity is no longer guaranteed. Third, since the multi-
nomial diffusion method used here is only first-order accurate,
the accuracy of the scheme is first order even though Strang
splitting is used. Constructing RDME-based diffusion meth-
ods that are more accurate is possible43,46 but nontrivial and is
not the focus of our work.

2. Structure factor analysis

In this section, we investigate the stochastic accuracy of
the SSA/2+MN+SSA/2 scheme (A3). To this end, we consider
the structure factor S(k) of an out-of-equilibrium monostable
Schlögl model in one dimension (see Sections II B and II C).
In the limit of many molecules per cell, an asymptotic expres-
sion of S(k) can be obtained for the scheme as a function of
∆x and ∆t. The multinomial fluxes can be approximated by
correlated Gaussian ones and the type of analysis summarized
in Appendix C can be applied; we do not give the details here
for brevity. Note that we present a similar structure factor anal-
ysis for our FHD-based schemes with some background and
details in Section IV B.

Figure 9 illustrates how S(k) deviates from the exact result
(14) as ∆t is increased to ∆tmax (equivalently, to β = 0.5), for
α = 0.1β, see Eq. (23). While S(k) is accurately reproduced
at the reaction-dominated scales k` � 1 for all values of β, it
becomes inaccurate for smaller scales as ∆t approaches ∆tmax.
We recall that for a system at thermodynamic equilibrium, the
split scheme exactly preserves the correct equilibrium distribu-
tion for any∆t < ∆tmax. This property ensures that, for α � β,
good structure factors are obtained even for systems out-
side of thermodynamic equilibrium, which exhibit a nonzero

FIG. 9. Structure factors S(k̃) obtained from the SSA/2+MN+SSA/2 scheme
(A3) for the one-dimensional linearized FHD equation (12) with Γ̄/n̄r = 2
(e.g., an out-of-equilibrium monostable Schlögl model). Different values of β
are compared, with α = 0.1β, see Eq. (23). The exact result (14) is depicted
by the dotted line. Note that the modified wavenumber k̃ is used, see Eq. (34).

correlation length. For example, for β = 0.25, the SSA/2+MN
+SSA/2 scheme in Fig. 9 gives a notably more accurate
S(k) than the FHD-based explicit schemes in Fig. 2. Hence,
even though this split scheme is found to give only first-
order accurate S(k), the resulting structure factor is rela-
tively insusceptible to increasing ∆t until the stability limit
is approached.

APPENDIX B: AVERAGING FUNCTION ñ

In this appendix, we show that the arithmetic mean should
be chosen as the averaging function ñ(n1, n2). Here we con-
sider the diffusion-only case for a single species and investigate
the equilibrium distribution of the spatially discretized FHD
equation (18). Since the true equilibrium distribution for a
bulk (infinite) system is known to be a product Poisson distri-
bution from the corresponding microscopic system consisting
of molecules undergoing independent Brownian motions, we
choose ñ so that the resulting equilibrium distribution is as
close as possible to the true distribution. In addition, since
the prevention of negative cell number densities is one of
the essential issues for the development of a robust FHD
numerical scheme, special care is taken to modify the form of
ñ(n1, n2) for small values of n1 and n2. Here we focus on the
continuous-time case and do not assume any specific temporal
integrator.

The corresponding microscopic system has Ncn̄∆V
molecules, where n̄ is the mean number density and Nc is the
number of cells. The equilibrium distribution of the numbers
of molecules in each cell follows the multinomial distribu-
tion with equal probabilities 1/Nc. Hence, it is straightforward
to obtain the following second-order statistics of cell number
density ni:

Var [ni] =
Nc − 1

Nc

n̄
∆V

, (B1)

Cov
[
ni1 , ni2

]
= −

1
Nc

n̄
∆V

for i1 , i2. (B2)

Equivalently, from Eqs. (B1) and (B2), the structure factor is
also obtained as

S(k) = n̄ for nonzero k. (B3)

If the FHD system (18) attains an equilibrium state, it
can be shown that its second-order statistics are completely
characterized by 〈ñ〉, which is the equilibrium average of ñ
over all faces,

Var [ni] =
Nc − 1

Nc

〈ñ〉
∆V

, (B4)

Cov
[
ni1 , ni2

]
= −

1
Nc

〈ñ〉
∆V

for i1 , i2, (B5)

S(k) = 〈ñ〉 for nonzero k. (B6)

Comparing Eqs. (B4)–(B6) to the correct result
Eqs. (B1)–(B3) suggests that one needs to choose ñ so
that 〈ñ〉 is as close as possible to n̄. It is easy to
see that the arithmetic mean (AM) would give the right
answer: 〈ñAM〉= 〈 1

2 (n1 + n2)〉= n̄. On the other hand, to cal-
culate 〈ñ〉 for the geometric mean ñGM =

√
n1n2 or the har-

monic mean ñHM = 2/(n−1
1 + n−1

2 ), one needs to know the
equilibrium distribution ρ(n1, n2) of two neighboring cells.
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However, under the reasonable assumption that all three aver-
aging functions give similar distributions ρ(n1, n2) allowing
only non-negative number densities, it can be easily shown that
〈ñHM〉 ≤ 〈ñGM〉 ≤ 〈ñAM〉 from the well-known inequalities
among the Pythagorean means. In fact, in Fig. 3, this order-
ing is observed from the structure factor of the diffusion-only
system, see Eq. (B6). Hence, we conclude that the arithmetic
mean is the right choice for ñ.

However, if the arithmetic mean is employed without
modification, Eq. (18) does not attain an equilibrium state.
This is because almost surely at some point on some grid face
we will have ñ < 0 so that the stochastic diffusive flux becomes
undefined. The non-negativity of cell number densities is guar-
anteed if the stochastic diffusive flux through a face is turned
off when the number density of either cell sharing the face
becomes zero. Specifically, under some technical assumptions,
it can be proven that if ñ(n1, n2) is a non-negative function that
satisfies

ñ(n1, n2) = 0 for n1 ≤ 0 or n2 ≤ 0, (B7)

then the number density of each cell never becomes negative.
The non-negative arithmetic mean averaging function,

ñ(n1, n2) =



1
2

(n1 + n2) if n1 > 0 and n2 > 0,

0 otherwise,
(B8)

does not allow negative density (i.e., ρ(n) = 0 for n < 0). How-
ever, due to the discontinuity of ñ at n1 = 0 or n2 = 0, ρ(n) does
not decrease to zero as n becomes zero (i.e., limn→0+ ρ(n) > 0)
and a delta function is formed at n = 0, see Fig. 10.

To understand this behavior, we consider numerically inte-
grating Eq. (18) with a small time step size ∆t > 0. Even if
the density in a given cell n1(t) has a small positive value,
ñ can be large if the density in the neighboring cell n2(t) is
large. In this case, n1(t + ∆t) can become negative due to the
stochastic diffusive flux. But, once n1 has become negative,
the stochastic diffusive flux is turned off, and due to the deter-
ministic diffusion, n1 increases and becomes positive again.
Hence, as shown in Fig. 10, ρ(n) attains a peak in the negative
density region near n = 0. The width and height of the peak are

FIG. 10. The equilibrium cell number density distributions ρ(n) near n = 0
obtained from the arithmetic mean averaging function (B8) (depicted by
the red solid line), which uses the discontinuous Heaviside function H, and
Eq. (20) (depicted by the blue dashed line), which uses the smoothed Heaviside
functions H0. The results are obtained from the one-dimensional diffusion-
only FHD system (18) having D = n̄ = ∆x = 1, A = 5, and Nc = 512 by using
the EMTau scheme (25) with ∆t = 10−3.

proportional to ∆t1/2 and ∆t−1/2, respectively, and the peak
becomes a delta function in the limit ∆t → 0.

We note that the averaging in Eq. (B8) can be expressed
as ñ = 1

2 (n1 + n2)H(n1∆V )H(n2∆V ), where H is the Heav-
iside function. To avoid a discontinuity in ñ, we can use a
smoothed Heaviside function to arrive at Eq. (20). Note that
the smoothing is based on the number of molecules in a cell
(N = n∆V ) and the smoothing region 0 ≤ N ≤ 1 is chosen so
that the stochastic diffusive flux is modified only when there
is less than one molecule in a cell. In Fig. 10, we show the
distribution ρ(n) near n = 0 obtained by the averaging func-
tion (20), for a rather small mean number of molecules per
cell, n̄∆V = 5. With the use of a smoothed Heaviside function,
the spurious delta function at n = 0 as ∆t → 0 is removed,
and the probability of negative density is greatly reduced for
small ∆t.

APPENDIX C: LINEARIZED EQUATION ANALYSIS

In this appendix, we summarize how the discrete struc-
ture factor is obtained as a function of ∆x and ∆t when
a given spatiotemporal discretization is applied to the lin-
earized FHD equation (12), following the Fourier-space anal-
ysis developed in Ref. 63. For simplicity, we consider here the
one-dimensional case.

Applying the spatial discretization given in Section III to
Eq. (12) and taking a discrete Fourier transform, we obtain
an Ornstein–Uhlenbeck equation for the Fourier coefficient
δn̂k(t),

d
dt
δn̂k = −Dk̃2δn̂k +

√
2Dn̄k̃2

V
W(D)

k −rδn̂k +

√
2Γ̄
V

W(R)
k , (C1)

where the modified wavenumber k̃ is defined in Eq. (34), and
W(D)

k (t) andW(R)
k (t) are independent standard GWN processes.

Compared to the continuous-space case (see Eq. (13)), k is
replaced by k̃ due to the discrete Laplacian and divergence
operators. Note that in this linearized analysis, Poisson pro-
cesses have been replaced by Gaussian ones with the mean
evaluated at the ensemble average (i.e., macroscopic) values
of the density. For convenience, we have replaced complex-
valued GWN processes by real-valued ones having the same
noise intensities.

When the EMTau scheme (25) is used to solve Eq. (C1),
we have the recursion

δn̂k(t + ∆t) =
[
1 − (Dk̃2 + r)∆t

]
δn̂k(t)

+

√
2Dn̄k̃2∆t

V
W1 +

√
2Γ̄∆t

V
W2, (C2)

where W1 and W2 are independent standard normal random
variables. We write this as

δn̂k(t + ∆t)
d
= Mkδn̂k(t) + NkW , (C3)

where
d
= denotes being equal in distribution. For any given

temporal integrator, we can straightforwardly obtain analytic
expressions for Mk and NkN∗k . For example, for the EMTau
scheme,

Mk = 1 − (Dk̃2 + r)∆t, (C4a)
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NkN∗k =
2
V

(Dn̄k̃2 + Γ̄)∆t. (C4b)

The covariance of the noise NkN∗k for multinomial diffusion
(A1) can most easily be obtained from Eq. (C8) from the obser-
vation that, in the absence of reactions, the exact structure
factor S(k) = n̄ is obtained for any stable time step.

A similar procedure is applicable to numerical schemes
having SSA for reactions. Since SSA is an exact integrator,
the linearized reaction part in Eq. (C1) is exactly solved. For
example, for the EM-SSA scheme (26), we have (cf. Eq. (C2))

δn̂k(t + ∆t) =
[
−Dk̃2

∆t + e−r∆t
]
δn̂k(t) +

√
2Dn̄k̃2∆t

V
W1

+

√
Γ̄(1 − e−2r∆t)

rV
W2. (C5)

While the expressions of Mk and NkN∗k become complicated
for the predictor-corrector midpoint schemes, a theoretical
analysis is still tractable with the help of symbolic algebra
tools.

By calculating Mk and NkN∗k for a given numerical
scheme, the stability condition and the structure factor can be
obtained as follows. From the condition that the amplification
factor Mk should satisfy

|Mk | ≤ 1 for all k, (C6)

the stability condition is obtained. For the EMTau scheme, we
obtain

D∆t

∆x2
+

r∆t
4
≤

1
2

. (C7)

The analytic expression for S(k)=V〈δn̂kδn̂∗k〉 can be calculated
from

S(k) =
VNkN∗k
1 −M2

k

, (C8)

which is obtained from the time invariance relation
〈δn̂k(t)δn̂∗k(t)〉= 〈δn̂k(t + ∆t)δn̂∗k(t + ∆t)〉 and Eq. (C3).63

From the analytical expressions of S(k) and S0(k)= lim∆t→0

S(k), [S(kmax) � S0(kmax)]/S0(kmax) is easily obtained, the
series expansion of which for small α (and fixed β) gives
Eq. (35) for the ImMidTau scheme. Similarly, series expan-
sions for small ∆t (i.e., fixed ratio α/β) reveal the temporal
order of accuracy of S(k).
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