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We analyze two standard methods to compute the diffusion coefficient of a tracer parti-
cle in a medium from molecular dynamics (MD) simulation, the velocity autocorrelation 
function (VACF) method, and the mean-squared displacement (MSD) method. We show 
that they are equivalent in the sense that they provide the same mean values with the 
same level of statistical errors. We obtain analytic expressions for the level of the statisti-
cal errors present in the time-dependent diffusion coefficient as well as the VACF and the 
MSD. Under the assumption that the velocity of the tracer particle is a Gaussian process, 
all results are expressed in terms of the VACF. Hence, the standard errors of all relevant 
quantities are computable once the VACF is obtained from MD simulation. By using analytic 
models described by the Langevin equations driven by Gaussian white noise and Poissonian 
white shot noise, we verify our theoretical error estimates and discuss the non-Gaussianity 
effect in the error estimates when the Gaussian process approximation does not hold ex-
actly. For validation, we perform MD simulations for the self-diffusion of a Lennard-Jones 
fluid and the diffusion of a large and massive colloid particle suspended in the fluid. Our 
theoretical framework is also applicable to mesoscopic simulations, e.g., Langevin dynamics 
and dissipative particle dynamics.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of transport coefficients is one of the most notable applications of the molecular dynamics (MD) simu-
lation technique [1–5]. They can be calculated through nonequilibrium MD simulation methods [5], which are direct and 
intuitive but require the generation of nonequilibrium steady states. Alternatively, the transport coefficients can be estimated 
from equilibrium MD simulations by using relations derived from statistical mechanics [1–4].

For diffusion, the corresponding transport coefficient is the diffusion coefficient D . Phenomenologically, D is defined 
through Fick’s law, which leads to the diffusion equation:

∂

∂t
ρ(x, t) = D�ρ(x, t), (1)
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Fig. 1. Typical MD simulation results for the evaluation of the diffusion coefficient of a tracer particle in a fluid by the VACF and MSD methods. The 
diffusion coefficient is calculated either from the time integral of the VACF or from the long-time slope of the MSD, see Eq. (5). For detailed description of 
the system, see Section 4.1. The standard errors are estimated from 16 independent MD runs and the error bars denote two standard deviations.

where ρ(x, t) is the (normalized) concentration of a diffusing species. Then, the second moment of ρ(x, t) increases linearly 
with time [3]:

d

dt

〈
x2(t)

〉
ρ

= d

dt

∫
x2ρ(x, t)dx = 2dD, (2)

where d is the dimensionality of the space. Microscopically, the diffusion coefficient D of a tracer particle in a medium is 
defined by the long-time slope of its mean-squared displacement (MSD) 〈[x(t) − x(0)]2〉:

D = 1

2d
lim

t→∞

〈
[x(t) − x(0)]2

〉
t

= 1

2d
lim

t→∞
d

dt

〈
[x(t) − x(0)]2

〉
, (3)

where x(t) denotes the position vector of the particle and the brackets denote the equilibrium average. In this case, diffusion 
occurs in the absence of concentration gradient (i.e., in equilibrium) and it is due to a spontaneous mixing of molecules. 
It is also noted that although Eq. (3) looks similar to Eq. (2), on the microscopic time scale, it takes time for the MSD to 
exhibit linear growth with time. Since the MSD can be expressed as a double time integral of the velocity autocorrelation 
function (VACF) 〈v(0) · v(t)〉 [3], D is also expressed as

D = 1

d

∞∫
0

〈v(0) · v(t)〉dt, (4)

where v(t) denotes the velocity vector of the particle. Hence, in equilibrium MD simulation, the diffusion coefficient is 
calculated either by calculating the MSD and using Eq. (3) or by calculating the VACF and using Eq. (4). More specifically, 
the time-dependent diffusion coefficient D(t), which is defined as

D(t) = 1

2d

d

dt

〈
[x(t) − x(0)]2

〉
= 1

d

t∫
0

〈
v(0) · v(t′)

〉
dt′, (5)

is calculated either from the MSD or from the VACF and then D is estimated from the long-time plateau value of D(t), see 
Fig. 1.

Similarly, other transport coefficients can be estimated by equilibrium MD simulation through the following two types of 
relations. In the Green–Kubo relations [6,7], the transport coefficients are expressed as the time integrals of corresponding 
time autocorrelation functions (as in Eq. (4)). On the other hand, in the Einstein–Kubo–Helfand relations [8–10], they are 
expressed as the long-time slopes of the mean-squared differences of corresponding Helfand moments (as in Eq. (3)).

1.1. Computational considerations

When transport coefficients are computed from an equilibrium MD simulation, various types of errors may be involved. 
One possible source of errors is inaccuracy of the MD simulation model [11], which is due to approximate interaction 
potential function [12], finite system size [13,14], large time step size, and insufficiently equilibrated initial configuration, 
to name but a few. Another source of errors comes from evaluation methods for transport coefficients: truncation of the 
time integral in the Green–Kubo relations or evaluation of the slope at a finite time in the Einstein–Kubo–Helfand relations. 
These two types of errors are reproducible and called systematic errors. On the other hand, the estimated values of transport 
coefficients are subject to random fluctuations as the estimated time correlation functions or mean-squared differences are. 
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Since the latter quantities are defined in terms of equilibrium averages of the system and the equilibrium MD simulation 
technique is based on sampling method, finite-sampling inevitably introduces statistical errors.

The sampling uncertainty can be quantified in terms of the standard error (i.e., the standard deviation of the statistical 
error). It has been known that when the length of a sample trajectory, T , or the number of independent sample trajectories, 
N , increases, the standard error of an averaged quantity decreases like T −1/2 or N−1/2 [1,3,15,16]. It is noted that, in order 
to computationally investigate systematic errors, the level of statistical errors should be suppressed by increasing the values 
of T and/or N . Also, quantifying statistical errors is crucial for the accurate estimation of transport coefficients. More 
generally, for a total uncertainty quantification analysis, we need to account both for parametric uncertainties, e.g., the form 
of potentials, boundary conditions, etc., as well as sampling errors. Recently, an uncertainty quantification framework based 
on ANOVA (analysis of variance) and Sobol’s variance decomposition has been proposed for the separation of parametric 
uncertainty from statistical uncertainty due to intrinsic fluctuations of the system [17].

In the present paper, we mainly investigate statistical errors by theoretical and computational means. We demonstrate 
our approach by analyzing the VACF and MSD methods for the diffusion coefficient D of a tracer particle in a fluid. We 
introduce the motivating questions for the present paper by answering a natural question at this point: which method is 
better? To this end, in Fig. 1, we compare typical MD simulation results obtained by the two methods. The standard errors 
of each method were estimated from a number of independent MD runs. These results suggest that the VACF and MSD 
methods seem to produce the same mean values with the same level of the statistical errors. In fact, the coincidence is not 
accidental but is typically observed in various molecular systems.

We shall confirm the equivalence of the two methods by addressing the following two questions.

• How are the statistical errors in the original MD data (i.e., the VACF or the MSD) propagated into the time-integrated 
or time-differentiated data (i.e., D(t))?

It is important to note that, in principle, even if we know the standard errors (i.e., error bars) of the VACF or the MSD, 
we cannot calculate the standard errors (i.e., error bars) of D(t). This is because the statistical errors, ε(t1) and ε(t2), at 
different times in the original data are correlated with each other and thus we need to know the error correlation function
〈ε(t1)ε(t2)〉. We shall derive relations between the standard errors of D(t) and the error correlation functions of the VACF 
and the MSD. Hence, from the latter functions, we can calculate the standard errors of D(t) as well as the VACF and the 
MSD.

• Can we calculate the error correlation functions of the VACF and the MSD from the VACF under some reasonable 
assumptions?

If this is the case, once the VACF is calculated in order to estimate D(t), the standard errors of both quantities can be 
readily estimated without an additional MD ensemble run. For various averaging procedures such as time-averaging and 
ensemble-averaging, we shall derive expressions for the error correlation functions of the VACF and the MSD. Combining 
these expressions with the aforementioned relations, we shall obtain expressions for the standard errors of D(t).

1.2. Theoretical considerations

Theoretical analysis on the statistical errors in MD simulation data dates back to early days of MD simulations. Zwanzig 
and Ailawadi [16] have investigated the statistical errors occurring in the evaluation of time correlation function 〈A(0)A(t)〉
for a general property A. For time-averaging procedure over a long time interval of length T , they have obtained an expres-
sion for the error correlation function of 〈A(0)A(t)〉 in terms of 〈A(0)A(t)〉. As expected, the error correlation function has 
been shown to be inversely proportional to T . In the derivation, they have introduced the Gaussian process approximation 
(GPA) of the underlying process A(t). Since all high-order statistics can be expressed in terms of the second-order statis-
tics under the GPA, they have expressed the four-time correlation function 〈A(0)A(t1)A(t2)A(t3)〉 in terms of 〈A(0)A(t)〉. 
Frenkel [18] has applied their results to two types of correlation functions for a system consisting of N identical particles. 
For a correlation function of a single-particle property (e.g., the VACF), he has shown that averaging over particles also intro-
duces the N−1/2-scaling behavior in the standard errors. However, for an N-particle property (e.g., the total dipole moment), 
he has concluded that such a scaling behavior is not expected. Recently, Jones and Mandadapu [19] have employed the error 
analysis of Zwanzig and Ailawadi [16] and Frenkel [18] and investigated the statistical errors present in the time integral of 
a time correlation function. They have obtained an upper bound for the variance of the statistical error and employed it for 
the development of an adaptive Green–Kubo methodology to calculate transport coefficients. To the best of our knowledge, 
despite extensive use of the MSD method, systematic error analysis of the method has not been available.

Through our theoretical approach, we present a complete systematic analysis of the statistical errors occurring in the 
VACF and MSD methods. By assuming the GPA and following Zwanzig and Ailawadi [16] and Frenkel [18], we obtain explicit
expressions for the standard errors of the time-dependent diffusion coefficient D(t) as well as the VACF and the MSD. 
Besides the time-averaging procedure over a single sample trajectory, we analyze various averaging procedures, including 
averaging over independent sample trajectories and averaging over identical particles.
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1.3. Comparison

In our computational approach, we confirm our theoretical results as follows. First, we consider the Langevin equations 
driven by Gaussian white noise (GWN) and Poissonian white shot noise (PWSN) [20,21], which allow closed-form expres-
sions for the standard errors. Since the GWN-driven Langevin model corresponds to the case that the GPA is exactly valid, 
we verify our theoretical error estimates by comparing them with the simulation results. For the PWSN-driven Langevin 
model, where the GPA does not hold completely, we observe the deviation in our theoretical error estimates. By changing 
a parameter of PWSN so that it converges to GWN, we investigate the deviation and discuss a non-Gaussianity indicator 
for our theoretical predictions. Then, we validate our theoretical error estimates by performing MD simulations for the self-
diffusion in a Lennard-Jones (LJ) fluid and the tracer diffusion of a large and massive colloidal particle in the fluid. In other 
words, for these molecular systems, we computationally investigate the validity of the GPA and the agreement of our theory 
with the simulation results. These systems have been extensively investigated and the diffusion coefficient has been re-
ported for various fluid states and various tracer-particle parameters. For recent MD simulation studies on the self-diffusion 
of pure LJ fluids, we refer the reader to Refs. [22,23]. For the tracer diffusion in LJ fluids, we refer to Refs. [24–27]. We note 
that, despite extensive MD studies on these systems, systematic estimation of the standard errors in estimated transport 
coefficients has not been performed.

In order to accurately estimate the level of the statistical errors, we perform large-sized MD ensemble runs. With the 
help of parallel computing techniques, independent sample trajectories are concurrently simulated, MD simulation results 
are collected, and the mean values and standard errors are computed. We do not use the block averaging technique [28], 
which has been used for estimating the standard error of a simple (i.e., time-independent) equilibrium average [1,3,4]. 
However, we shall discuss a relevant concept, which is similar to the statistical inefficiency in correlated data [29]. The latter 
indicates the time difference of two time points in a time series which can be considered to be effectively uncorrelated.

The rest of the present paper is organized as follows. In Section 2, we present our theoretical results, including the 
statistical error estimates for the VACF, the MSD, and the time-dependent diffusion coefficient. In Section 3, we verify 
our theoretical results by using the Langevin models driven by GWN and PWSN. In Section 4, we perform two kinds of 
MD simulations and validate the GPA and our theoretical estimates. Finally, we conclude the paper by providing a brief 
summary and discussion in Section 5.

2. Theoretical error estimates

In this section, we obtain theoretical estimates for the level of the statistical errors present in the VACF, the MSD, and 
the time-dependent diffusion coefficient D(t), which are summarized in Main Results 1, 2, and 3 in Section 2.5.

We obtain our theoretical error estimates as follows. After setting up notations and defining the VACF, the MSD, and 
the time-dependent diffusion coefficient D(t) in Section 2.1, we consider three types of averaging procedures and formulate 
our problem by defining estimators representing the VACF and MSD methods in Section 2.2. In Section 2.3, by using these 
estimators, we derive relations between the standard error of D(t) and the error correlation functions of the VACF and the 
MSD. In Section 2.4, we discuss the assumptions of our theoretical approach, including the GPA. In Section 2.5, under the 
GPA, we obtain the error correlation functions of the VACF and the MSD and, by using the relations derived in Section 2.3, 
we finally obtain expressions for the standard errors of D(t) for the VACF and MSD methods.

2.1. VACF, MSD, and time-dependent diffusion coefficient D(t)

For a tracer particle undergoing free Brownian motion, we introduce notations and define its VACF, MSD, and time-
dependent diffusion coefficient D(t). Then, we show that the two definitions of D(t) given in terms of the VACF and the 
MSD are equivalent.

In the rest of the paper, we consider diffusion in one direction. In other words, rather than using the position and 
velocity vectors x and v, we use their components x and v in that direction. Then, the MSD and the VACF are denoted as 
〈[x(t) − x(0)]2〉 and 〈v(0)v(t)〉, respectively, where the ensemble average over the equilibrium distribution of the system is 
denoted by the brackets. Later, we also use Var [ ] and Cov [ , ] to denote the variance and covariance over the equilibrium 
distribution. In a d-dimensional isotropic case, we have 〈[x(t) − x(0)]2〉 = d〈[x(t) − x(0)]2〉 and 〈v(0) · v(t)〉 = d〈v(0)v(t)〉.

The time-dependent diffusion coefficient is defined as

D(t) = 1

2

d

dt

〈
[x(t) − x(0)]2

〉
=

t∫
0

〈
v(0)v(t′)

〉
dt′. (6)

The equality of the two expressions in Eq. (6) can be readily shown as follows. First, we note that

ẋ(t) = v(t), x(t) − x(0) =
t∫

v(t′)dt′. (7)
0



C. Kim et al. / Journal of Computational Physics 302 (2015) 485–508 489
Table 1
Summary of the estimators to be analyzed in the present paper. For three types of averaging 
procedures, their definitions and physical meanings are listed. x(k) and v(k) denote the position 
and velocity of the kth sample, respectively.

Time-averaging

ŷtime(t) = 1
T
∫ T

0 v(t′)v(t′ + t)dt′ VACF

b̂time(t) = 1
T
∫ T

0

[
x(t′ + t) − x(t′)

]2
dt′ MSD

ẑtime(t) = ∫ t
0 ŷtime(t′)dt′ time integral of VACF

âtime(t1, t2) = b̂time(t2)−b̂time(t1)
t2−t1

average slope of MSD

D̂VACF
time (t) = ẑtime(t) D(t) from VACF

D̂MSD
time(t) = 1

2 lim�t→0 âtime(t, t + �t) D(t) from MSD

Ensemble-averaging

ŷens(t) = 1
N
∑N

k=1 v(k)(0)v(k)(t) VACF

b̂ens(t) = 1
N
∑N

k=1

[
x(k)(t) − x(k)(0)

]2
MSD

ẑens(t) = ∫ t
0 ŷens(t′)dt′ time integral of VACF

âens(t1, t2) = b̂ens(t2)−b̂ens(t1)
t2−t1

average slope of MSD

D̂VACF
ens (t) = ẑens(t) D(t) from VACF

D̂MSD
ens (t) = 1

2 lim�t→0 âens(t, t + �t) D(t) from MSD

Hybrid ensemble/time-averaging

ŷhybrid(t) = 1
NT

∑N
k=1

∫ T
0 v(k)(t′)v(k)(t′ + t)dt′ VACF

b̂hybrid(t) = 1
NT

∑N
k=1

∫ T
0

[
x(k)(t′ + t) − x(k)(t′)

]2
dt′ MSD

ẑhybrid(t) = ∫ t
0 ŷhybrid(t′)dt′ time integral of VACF

âhybrid(t1, t2) = b̂hybrid(t2)−b̂hybrid(t1)

t2−t1
average slope of MSD

D̂VACF
hybrid(t) = ẑhybrid(t) D(t) from VACF

D̂MSD
hybrid(t) = 1

2 lim�t→0 âhybrid(t, t + �t) D(t) from MSD

In addition, by the invariance of an equilibrium average under the shift of time origin, we have 〈[x(t) − x(0)]2〉 =
〈[x(0) − x(−t)]2〉. Then, after differentiating both sides with respect to t and applying the time shift invariance again, we 
obtain

〈[x(t) − x(0)] v(t)〉 = 〈[x(t) − x(0)] v(0)〉 . (8)

By noting that putting the differential and integral operators inside the brackets on both sides of Eq. (6) leads to those of 
Eq. (8), we show the equality in Eq. (6).

2.2. Formulation: Estimators for VACF, MSD, and D(t)

Here, we formulate our problem by introducing estimators that correspond to various procedures performed in MD 
simulations, such as the calculation of the VACF and the MSD and the time integration and differentiation of these functions. 
Then, the standard errors in the MD simulation results become equal to the standard deviations of these estimators, which 
will be calculated in the subsequent subsections.

For three types of standard averaging methods, we first explain how the averaging procedures are performed in practice 
and then introduce corresponding estimators. After defining estimators for the time integral of the VACF and the average 
slope of the MSD, we finally introduce estimators for D(t) and show that all estimators are unbiased. In Table 1, we 
summarize the estimators to be defined in this subsection. In Fig. 2, we present schematic diagrams for three types of 
averaging procedures to be considered in this subsection.

Time-averaging. In an MD simulation, the VACF and the MSD are usually estimated through time-averaging as follows:

〈v(0)v(n�t)〉 ≈ 1

N

N−1∑
i=0

v(i�t)v((i + n)�t), (9a)

〈
[x(n�t) − x(0)]2

〉
≈ 1

N

N−1∑
i=0

[x((i + n)�t) − x(i�t)]2 , (9b)

where 0 ≤ n ≤ nmax and N is the number of sample pairs used for time-averaging. We note that N is usually much larger 
than nmax and the sample trajectory needs to be calculated up to (N + nmax − 1)�t = O(N�t), see Fig. 2(a). In order to 
analyze these time-averaging procedures, we define the following estimators ŷtime(t) and b̂time(t), respectively, for the VACF 
and the MSD:
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Fig. 2. Schematic diagrams for three types of averaging procedures in VACF/MSD evaluation. The straight lines represent MD sample trajectories and the 
points on them indicate discrete times i�t (i = 0, 1, 2, · · ·). We depict the case that VACF/MSD for t = n�t (with n = 3) is calculated. The pairs of two time 
points connected by curly lines are used to calculate the average. In (a) and (c), the value of T is chosen as 10�t . In (b) and (c), a total of N (with N = 3) 
line segments represent independent MD trajectories. The sample trajectories needed for the calculation of VACF/MSD up to time nmax�t (with nmax = 4) 
are drawn.

ŷtime(t)
def= 1

T

T∫
0

v(t′)v(t′ + t)dt′, (10a)

b̂time(t)
def= 1

T

T∫
0

[
x(t′ + t) − x(t′)

]2
dt′. (10b)

We note that, by taking �t → 0 in Eq. (9) with T = N�t fixed, we retrieve Eq. (10). In practice, slightly different definitions 
may be used: for a sample trajectory of length T , 1

T −t

∫ T −t
0 v(t′)v(t′ + t)dt′ and 1

T −t

∫ T −t
0

[
x(t′ + t) − x(t′)

]2
dt′ . However, 

under the usual assumption t 
 T , these definitions produce identical asymptotic results for large T .

Ensemble-averaging. By generating a total of Nsample independent equilibrated samples and simulating them up to time 
nmax�t , the VACF and the MSD can be estimated through ensemble-averaging as follows:

〈v(0)v(n�t)〉 ≈ 1

Nsample

Nsample∑
k=1

v(k)(0)v(k)(n�t), (11a)

〈
[x(n�t) − x(0)]2

〉
≈ 1

Nsample

Nsample∑
k=1

[
x(k)(n�t) − x(k)(0)

]2
, (11b)

where the subscript (k) indicates that the labeled quantities belong to the kth sample, see Fig. 2(b). We analyze these 
ensemble averages by defining the following estimators ŷens(t) and b̂ens(t):

ŷens(t)
def= 1

N

N∑
k=1

v(k)(0)v(k)(t), (12a)

b̂ens(t)
def= 1

N

N∑
k=1

[
x(k)(t) − x(k)(0)

]2
. (12b)

We have replaced Nsample with a general finite-sampling parameter N in order to also consider averaging over identical 
particles later. But, in this section, we assume that the processes {x(k)(t), v(k)(t)}Nk=1 are independent of one another.

Hybrid ensemble/time-averaging. From an ensemble of sample trajectories, the VACF and the MSD can be estimated 
through the ensemble averages of the time averages, see Fig. 2(c). We call them the hybrid ensemble/time-averages. In this 
case, estimators for the VACF and the MSD are defined as follows:
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ŷhybrid(t)
def= 1

NT

N∑
k=1

T∫
0

v(k)(t′)v(k)(t′ + t)dt′, (13a)

b̂hybrid(t)
def= 1

NT

N∑
k=1

T∫
0

[
x(k)(t′ + t) − x(k)(t′)

]2
dt′. (13b)

Note that if we set N = 1, the hybrid ensemble/time-averaging case becomes the time-averaging case.

Estimators for D(t). Now we define estimators for the time-dependent diffusion coefficient D(t) by considering two types 
of operations on the VACF and MSD estimators. For estimators ŷens(t), ŷtime(t), and ŷhybrid(t) for the VACF, we define their 
time integral estimators ẑens(t), ẑtime(t), and ẑhybrid(t) as follows:

ẑ•(t)
def=

t∫
0

ŷ•(t′)dt′, (14)

where the bullets indicate that for any type of averaging procedure, including the three averages defined above, its time 
integral is correspondingly defined. Similarly, for the estimators b̂•(t) for the MSD, we define their average slope estimators 
over the interval [t1, t2] as follows:

â•(t1, t2)
def= b̂•(t2) − b̂•(t1)

t2 − t1
. (15)

Then, following Eq. (6), we define estimators for D(t) from the VACF and MSD methods as follows:

D̂VACF• (t)
def= ẑ•(t), (16a)

D̂MSD• (t)
def= 1

2
lim

�t→0
â•(t, t + �t). (16b)

Unbiasedness of estimators. Before closing this subsection, we show that all estimators are unbiased. In other words, for 
the three types of averaging procedures, we have

〈 ŷ•(t)〉 = 〈v(0)v(t)〉 , (17)

〈b̂•(t)〉 =
〈
[x(t) − x(0)]2

〉
, (18)

〈D̂VACF• (t)〉 = 〈D̂MSD• (t)〉 = D(t). (19)

All we need to do is taking the ensemble average on the definition of each estimator and using 
〈
v(t′)v(t′ + t)

〉 =〈
v(k)(0)v(k)(t)

〉= 〈v(0)v(t)〉 for ŷ•(t) and 〈[x(t′ + t) − x(t′)]2〉 = 〈[x(k)(t) − x(k)(0)]2〉 = 〈[x(t) − x(0)]2〉 for ẑ•(t).

2.3. Relations between the standard error of D(t) and the error correlation functions of the VACF and the MSD

Here, we investigate how the standard errors of ẑ•(t) and â•(t) are expressed in terms of the error correlation functions 
of ŷ•(t) and b̂•(t), respectively. In other words, we derive expressions indicating how the standard errors of D(t) obtained 
from the VACF and MSD methods can be estimated from the error correlation functions of the VACF and the MSD, re-
spectively. In fact, in Section 2.5, by using these expressions, we shall obtain the standard errors of D(t) from the error 
correlation functions.

Since the resulting relations do not depend on which type of averaging procedure is employed, we drop the subscripts 
on the estimators in this subsection. After presenting the relations between ŷ(t) and ẑ(t) and between b̂(t) and â(t), we 
also consider a linear regression estimator Â , which generalizes the estimator â. Then, we discuss the resulting relations.

Relation for time integration. For estimators ŷ(t) and ẑ(t) satisfying

ẑ(t) =
t∫

0

ŷ(t′)dt′, (20)

their statistical errors, defined as ε ŷ(t) = ŷ(t) − 〈
ŷ(t)

〉
and εẑ(t) = ẑ(t) − 〈

ẑ(t)
〉
, satisfy the following relation:

〈
ε2

ẑ (t)
〉
=

t∫
dt′

t∫
dt′′ 〈ε ŷ(t

′)ε ŷ(t
′′)
〉
. (21)
0 0
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Hence, the standard error of ẑ(t), σ [ẑ(t)] =
√〈

ε2
ẑ
(t)
〉
, can be calculated from the double time integral of the error correlation 

function of ŷ(t).

The derivation of Eq. (21) is straightforward. By substituting Eq. (20) into 
〈
ε2

ẑ
(t)
〉
= 〈

ẑ2(t)
〉− 〈

ẑ(t)
〉2, we obtain 

〈
ε2

ẑ
(t)
〉
=∫ t

0 dt′ ∫ t
0 dt′′ Cov

[
ŷ(t′), ŷ(t′′)

]
. Then, we obtain the relation from 

〈
ε ŷ(t

′)ε ŷ(t
′′)
〉= Cov

[
y(t′), y(t′′)

]
.

Relation for average slope. For estimators b̂(t) and â(t) satisfying

â(t1, t2) = b̂(t2) − b̂(t1)

t2 − t1
, (22)

their statistical errors, defined as εb̂(t) = b̂(t) − 〈
b̂(t)

〉
and εâ(t1, t2) = â(t1, t2) −

〈
â(t1, t2)

〉
, satisfy the following relation:

〈
ε2

â (t1, t2)
〉
=
〈[

εb̂(t2) − εb̂(t1)
]2
〉

(t2 − t1)2
. (23)

Eq. (23) is obtained as follows. By substituting Eq. (22) into 〈ε2
â
(t1, t2)〉 = 〈â2(t1, t2)〉 − 〈â(t1, t2)〉2, we obtain

〈ε2
â (t1, t2)〉 = Var[b̂(t1)] − 2Cov[b̂(t1), b̂(t2)] + Var[b̂(t2)]

(t2 − t1)2
. (24)

Then, from Var[b̂(ti)] = 〈ε2
b̂
(ti)〉 (i = 1, 2) and Cov[b̂(t1), ̂b(t2)] = 〈εb̂(t1)εb̂(t2)〉, we obtain the relation.

Relation for linear regression. The above result for the average slope can be generalized to the simple linear regression of 
an m-point data set {ti, ̂b(ti)}m

i=1. For the least squares estimator for the slope, which is written as

Â(t1, t2, · · · , tm) =
∑m

i=1
∑m

j=i+1

[
b̂(t j) − b̂(ti)

]
(t j − ti)∑m

i=1
∑m

j=i+1(t j − ti)
2

, (25)

the variance of its statistical error 〈ε2
Â
(t1, t2, · · · , tm)〉 = Var[ Â(t1, t2, · · · , tm)] is expressed as

m∑
i=1

m∑
j=i+1

m∑
k=1

m∑
l=k+1

〈[
εb̂(t j) − εb̂(ti)

] [
εb̂(tl) − εb̂(tk)

]〉
(t j − ti)(tl − tk)

[∑m
i=1

∑m
j=i+1(t j − ti)

2
]2

. (26)

We note that, as expected, Eq. (26) reduces to Eq. (23) for m = 2.
Eq. (26) is obtained as follows. By using Var[∑i Xi] =∑

i, j Cov[Xi, X j], the variance of Â is expressed as a weighted sum 
of Cov[b̂(t j) − b̂(ti), ̂b(tl) − b̂(tk)]. Then, after replacing the latter by 

〈[
εb̂(t j) − εb̂(ti)

] [
εb̂(tl) − εb̂(tk)

]〉
, Eq. (26) is obtained.

Discussion. Before closing this subsection, we discuss the resulting relations, Eqs. (21), (23), and (26), in a more general 
context. We note that these relations are valid for any time integration and differentiation procedure performed in MD sim-
ulation. Most importantly, these relations demonstrate that the level of statistical errors in the processed data is determined 
by the error correlation function of the original data, i.e., 〈ε ŷ(t

′)ε ŷ(t
′′)〉 or 〈εb̂(t

′)εb̂(t
′′)〉. Since the statistical errors in the 

original data at different times are correlated, the levels of their statistical uncertainties at each time, i.e., 〈ε2
ŷ
(t)〉 or 〈ε2

b̂
(t)〉, 

provide insufficient information. As mentioned in the Introduction, this implies that even if the error bars are available in 
the VACF or MSD data obtained from MD simulations, we cannot, in principle, estimate the error bars in the estimated 
values of D(t) unless we estimate the error correlation function from MD simulations, which requires huge computational 
overhead. In Section 2.4, we shall see that this issue can be circumvented by introducing the GPA.

In the definition of D̂MSD(t), the instantaneous slope of b̂ at time t , i.e., lim�t→0 â(t, t +�t) is used. The level of statistical 
error in the instantaneous slope is expressed in terms of the error correlation function as follows. By applying L’Hôpital’s 
rule twice to Eq. (23), we obtain

lim
�t→0

〈ε2
â (t, t + �t)〉 = lim

�t→0

d2

d�t2

[
1

2
〈ε2

b̂
(t + �t)〉 − 〈

εb̂(t)εb̂(t + �t)
〉]

. (27)

We use this later to calculate the standard errors of D̂MSD(t).
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2.4. Assumptions

Before presenting our theoretical error estimates in Section 2.5, we summarize the assumptions to be introduced. In 
Section 2.4.1, we discuss the GPA of the underlying process, which is the most important assumption in our theoretical 
approach. In Section 2.4.2, we clarify other assumptions to be made for the derivation of the theoretical error estimates.

2.4.1. Gaussian process approximation (GPA)
We shall see in Section 2.5 that the error correlation functions are expressed in terms of fourth-order cross moments 

of x and v , e.g., Cov[v(0)v(t′), v(0)v(t′′)] = 〈v(0)v(t′)v(0)v(t′′)〉 − 〈v(0)v(t′)〉〈v(0)v(t′′)〉, see Eqs. (55), (56), (57), and (58). 
Compared to the VACF and the MSD, the calculation of these moment functions from MD simulation is very expensive. 
Hence, in order to approximate the fourth-order cross moments by using the VACF and the MSD, we introduce the GPA of x
and v . We first define a Gaussian process and mention some relevant properties. Then, we explain how the GPA is used to 
approximate fourth-order cross moments of x and v in our theoretical approach.

A process Xt is Gaussian if and only if, for any finite set of time points {t1, . . . , tk}, the joint distribution of {Xt1 , . . . , Xtk }
follows a multivariate normal distribution [30]. One useful property of a Gaussian process, which is relevant to our theoret-
ical approach, is that all higher-order cross moments are expressed as the sum of the products of the first two lowest-order 
moments (i.e., 〈Xt〉 and 〈Xt Xs〉), which is referred to as Isserlis’ theorem or Wick’s theorem. For example, the fourth-order 
cross moment of a zero-mean Gaussian process Xt is decomposed as

〈Xt Xs Xu Xv〉 = 〈Xt Xs〉〈Xu Xv〉 + 〈Xt Xu〉〈Xs Xv〉 + 〈Xt Xv〉〈Xs Xu〉. (28)

A Gaussian process can also be characterized by its cumulants [31]: all joint cumulants of order greater than two are zero. 
For example, since the fourth-order joint cumulant of a zero-mean process Xt is defined as

κ[Xt, Xs, Xu, Xv ] def= 〈Xt Xs Xu Xv〉 − 〈Xt Xs〉〈Xu Xv〉 − 〈Xt Xu〉〈Xs Xv〉 − 〈Xt Xv〉〈Xs Xu〉, (29)

it becomes zero if the process is Gaussian.
Based on these properties of a Gaussian process, we have the following identity for the fourth-order cross moment of a 

zero-mean process Xt :

〈Xt Xs Xu Xv〉 = 〈Xt Xs Xu Xv〉GPA + κ[Xt, Xs, Xu, Xv ], (30)

where

〈Xt Xs Xu Xv〉GPA = 〈Xt Xs〉〈Xu Xv〉 + 〈Xt Xu〉〈Xs Xv〉 + 〈Xt Xv〉〈Xs Xu〉. (31)

In the present paper, under the GPA of Xt , we assume that 〈Xt Xs Xu Xv〉 ≈ 〈Xt Xs Xu Xv〉GPA or κ[Xt, Xs, Xu, Xv ] ≈ 0. Hence, 
under the GPA of x and v , we shall use the following approximations:

〈v(0)v(t1)v(t2)v(t3)〉 ≈ 〈v(0)v(t1)〉 〈v(0)v(t3 − t2)〉
+ 〈v(0)v(t2)〉 〈v(0)v(t3 − t1)〉 + 〈v(0)v(t3)〉 〈v(0)v(t2 − t1)〉 ,

(32)

〈
[x(t1) − x(0)]2[x(t3) − x(t2)]2

〉
≈
〈
[x(t1) − x(0)]2

〉 〈
[x(t3 − t2) − x(0)]2

〉
+ 2 〈[x(t1) − x(0)][x(t3) − x(t2)]〉2 .

(33)

In addition, we note that the GPA of v implies that of x since a linear transform of a Gaussian process is also Gaussian.
It is important to note that the GPA is not always exactly valid even if the marginal distribution of v(ti ) is Gaussian at 

each time ti . Hence, the GPA needs to be validated for each case. One plausible explanation for the GPA in particle diffusion 
phenomena is given by the generalized Langevin equation [32], which is a formally exact equation for the dynamics of a 
tracer particle:

mv̇(t) = −
t∫

0

K (t − t′)v(t′)dt′ + f +(t), (34)

where f +(t) is the fluctuating force and K (t) is the memory function. In the case of a large tracer particle suspended in a 
dense fluid, where the distribution of the fluctuating force becomes Gaussian [33], the linearity of Eq. (34) implies that v(t)
also becomes a Gaussian process. The limiting case of this argument is the Langevin equation, where the fluctuating force 
becomes GWN and the memory function becomes a delta function.

Although analyzing the force on the tracer particle seems useful for investigating the validity of the GPA, it is also im-
portant to note that our theoretical framework does not rely on any assumption on the form of the force. For the dynamics 
of the system, we only assume the relation between x and v , see Eq. (7), and the GPA of v . Hence, our theoretical approach 
is applicable not only to MD systems where the force is fully deterministic but also to mesoscopic simulation methods such 
as the Langevin dynamics [32] and the dissipative particle dynamics [34], where stochastic forces are introduced.
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2.4.2. Other assumptions
Assumptions on averaging procedures. For time-averaging, we assume that the VACF eventually decays to zero and the 
length T of the time-averaging interval is much longer than the characteristic decay time scale of the VACF. We need these 
assumptions to obtain the T −1-dependence of the error correlation functions. We use the following approximation, which 
becomes asymptotically valid for large T :

1

T 2

T∫
0

dt′
T∫

0

dt′′ h(t′ − t′′) ≈ 1

T

∞∫
−∞

h(α)dα, (35)

where h(t) is an integrable function decaying sufficiently fast. This approximation has been heuristically introduced in 
Refs. [3,16,18]. In Appendix A, we provide the error term of the approximation and a condition for the decay rate of h(t).

For ensemble-averaging, we assume that {x(k)(t), v(k)(t)}Nk=1 are independent of one another and each of them has the 
same statistical properties as {x(0), v(0)}. In other words, they are independent replicas. Since we are interested only in aver-
age values, we actually need a weaker condition: uncorrelatedness rather than independence. When we take particle-average 
in an MD simulation of a system consisting of identical particles, we shall investigate the uncorrelatedness assumption.

Finally, we assume that �t is sufficiently small that any systematic error due to discretization is negligible. For the errors 
due to insufficient equilibration and early truncation of the time integral of the VACF, we refer the reader to Ref. [19].

2.5. Main theoretical results

Here, we present main theoretical results of the present paper, which are summarized below as Main Results 1, 2, and 3. 
The definitions of the estimators employed in the present paper are summarized in Table 1, and the three types of averaging 
procedures considered in the paper are schematically depicted in Fig. 2.

In Sections 2.5.1 and 2.5.2, we explain how these results are obtained. As mentioned in the preceding sections, after 
obtaining the error correlation functions of the VACF and the MSD under the GPA, we express the standard error of D(t)
by using the relations obtained in Section 2.3, and conclude that the standard errors of D̂VACF• (t) and D̂MSD• (t) are identical. 
In Section 2.5.3, we compare our theoretical results with previous results. Finally, we discuss non-Gaussianity effect in 
Section 2.5.4.

Main Result 1 (Error correlation function of VACF). For the VACF estimators ŷtime(t), ŷens(t), and ŷhybrid(t) defined in Eqs. (10a), 
(12a), and (13a), denote the sampling errors as

ε ŷ•(t) = ŷ•(t) − 〈v(0)v(t)〉 , (36)

where • = time, ens, and hybrid. If the velocity process of a diffusing particle is Gaussian, the error correlation functions of the estima-
tors are expressed as

〈ε ŷtime
(t′)ε ŷtime

(t′′)〉 = 1

T

∞∫
−∞

dα
[〈v(0)v(α)〉〈v(0)v(α + t′′ − t′)〉 + 〈v(0)v(α − t′)〉〈v(0)v(α + t′′)〉] , (37)

〈ε ŷens
(t′)ε ŷens

(t′′)〉 = 1

N

[
〈v2〉 〈v(0)v(t′′ − t′)

〉+ 〈
v(0)v(t′)

〉 〈
v(0)v(t′′)

〉]
, (38)

〈ε ŷhybrid
(t′)ε ŷhybrid

(t′′)〉 = 1

N
〈ε ŷtime

(t′)ε ŷtime
(t′′)〉. (39)

Main Result 2 (Error correlation function of MSD). For the MSD estimators b̂time(t), b̂ens(t), and b̂hybrid(t) defined in Eqs. (10b), (12b), 
and (13b), denote the sampling errors as

εb̂•(t) = b̂•(t) −
〈
[x(t) − x(0)]2

〉
, (40)

where • = time, ens, and hybrid. If the velocity process of a diffusing particle is Gaussian, the error correlation functions of the estima-
tors are expressed as

〈εb̂time
(t′)εb̂time

(t′′)〉 = 2

T

∞∫
−∞

dα 〈[x(t′) − x(0)][x(α + t′′) − x(α)]〉2, (41)

〈εb̂ens
(t′)εb̂ens

(t′′)〉 = 2

N
〈[

x(t′) − x(0)
] [

x(t′′) − x(0)
]〉2

, (42)

〈εb̂hybrid
(t′)εb̂hybrid

(t′′)〉 = 1

N
〈εb̂time

(t′)εb̂time
(t′′)〉. (43)
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Main Result 3 (Standard error of diffusion coefficient). For the estimators of the time-dependent diffusion coefficient, D̂VACF• (t) and 
D̂MSD• (t) (• = time, ens, hybrid), defined through Eqs. (14), (15), and (16), denote the standard errors of the estimators as

σ [D̂�• (t)] =
√〈

[D̂�• (t) − D(t)]2
〉
, (44)

where � = VACF or MSD. If the velocity process of a diffusing particle is Gaussian, the standard errors are expressed as

σ [D̂VACF
time (t)] = σ [D̂MSD

time(t)] =
√

c1(t)

T
, (45)

σ [D̂VACF
ens (t)] = σ [D̂MSD

ens (t)] =
√

c2(t)

N
, (46)

σ [D̂VACF
hybrid(t)] = σ [D̂MSD

hybrid(t)] =
√

c1(t)

NT
, (47)

where

c1(t) =
∞∫

−∞
dα

⎡
⎣ f (α)

t∫
0

dt′
α+t∫
α

dt′′ f (t′ − t′′) +
α+t∫
α

f (t′)dt′
α∫

α−t

f (t′)dt′
⎤
⎦ , (48)

c2(t) =
t∫

0

dt′
t∫

0

dt′′ [ f (0) f (t′′ − t′) + f (t′) f (t′′)
]
, (49)

and f (t) = 〈v(0)v(t)〉.

Remark 1. All expressions containing T (i.e., in the time-averaging and hybrid ensemble/time-averaging cases) are asymp-
totically valid for large T . In fact, they are derived through Eq. (A.1). See also Section 2.4.2.

Remark 2. If we set N = 1, all results of the hybrid ensemble/time-averaging case are reduced to the time-averaging case.

Remark 3. The standard error σ(t) of an estimator at each time can be calculated from its error correlation function 
〈ε(t′)ε(t′′)〉 by setting t′ = t′′ = t . In other words, σ(t) = √〈ε2(t)〉. From Main Results 1 and 2, we obtain the following 
expressions for the variance of sampling error:

〈ε2
ŷtime

(t)〉 = 1

T

∞∫
−∞

dα
[
〈v(0)v(α)〉2 + 〈v(0)v(α − t)〉 〈v(0)v(α + t)〉

]
, (50)

〈ε2
ŷens

(t)〉 = 1

N

[
〈v2〉2 + 〈v(0)v(t)〉2

]
, (51)

〈ε2
b̂time

(t)〉 = 2

T

∞∫
−∞

dα 〈[x(t) − x(0)] [x(α + t) − x(α)]〉2 , (52)

〈ε2
b̂ens

(t)〉 = 2

N

〈
[x(t) − x(0)]2

〉2
. (53)

For 〈ε2
ŷhybrid

(t)〉 and 〈ε2
b̂hybrid

(t)〉, replace T with NT in Eq. (50) and (52).

2.5.1. Derivation: Main Results 1 and 2
We divide the derivation into two steps. First, we express the error correlation functions in terms of covariance. Then, 

we apply the GPA of x and v , see Eqs. (32) and (33), to the covariance expressions. For the time-averaging case, we also 
apply the asymptotic relation (A.1) for large T . Since the scaling behavior with respect to N in Eqs. (39) and (43) is trivial, 
we omit the hybrid ensemble/time-averaging case.

In the first step, we use the following basic properties of covariance:

Cov[X, Y ] = 〈[X − 〈X〉][Y − 〈Y 〉]〉, (54a)

Cov
[ ∫ t

0 X(t′)dt′,
∫ t

0 Y (t′′)dt′′]= ∫ t
0 dt′ ∫ t

0 dt′′ Cov[X(t′), Y (t′′)], (54b)

Cov
[∑

i Xi,
∑

j Y j
]=∑

i, j Cov[Xi, Y j], (54c)

Cov[X, Y ] = 0, if X and Y are uncorrelated. (54d)
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By using Eqs. (54a) and (54b), we obtain

〈ε ŷtime
(t1)ε ŷtime

(t2)〉 = Cov[ ŷtime(t1), ŷtime(t2)]
= 1

T 2

∫ T
0 dt′ ∫ T

0 dt′′Cov[v(t′)v(t′ + t1), v(t′′)v(t′′ + t2)],
(55)

〈εb̂time
(t1)εb̂time

(t2)〉 = Cov[b̂time(t1), b̂time(t2)]
= 1

T 2

∫ T
0 dt′ ∫ T

0 dt′′Cov
[ (

x(t′ + t1) − x(t′)
)2

,
(
x(t′′ + t2) − x(t′′)

)2 ]
.

(56)

Similarly, by using Eqs. (54a), (54c), and (54d), we obtain

〈ε ŷens
(t′)ε ŷens

(t′′)〉 = 1
N Cov[v(0)v(t′), v(0)v(t′′)], (57)

〈εb̂ens
(t′)εb̂ens

(t′′)〉 = 1
N Cov

[ (
x(t′) − x(0)

)2
,
(
x(t′′) − x(0)

)2 ]
. (58)

In the second step, we replace the covariance terms in Eqs. (55), (56), (57), and (58) with terms obtained from the GPA of 
x and v by using Eqs. (32) and (33). Then, we obtain Eqs. (38) and (42). As mentioned above, by further applying Eq. (A.1), 
we obtain Eqs. (37) and (41).

2.5.2. Derivation: Main Result 3
We first derive the expressions for the VACF method, which are more easily obtained through Eq. (21). Since

σ [D̂VACF• (t)] =
√

〈ε2
ẑ•(t)〉, (59)

by substituting Eqs. (37), (38), and (39) into Eq. (21), we obtain Eqs. (45), (46), (47), respectively, with Eqs. (48) and (49).
For the expressions for the MSD method, we use Eq. (27) and

σ [D̂MSD• (t)] = 1

2

√
lim

�t→0
〈ε2

â•(t, t + �t)〉. (60)

In the ensemble-averaging case, by substituting Eq. (42) to Eq. (27) and simplifying the result using Eqs. (7) and (8), we 
obtain

lim
�t→0

〈ε2
âens

(t, t + �t)〉 = 4

N

[
〈v2〉〈[x(t) − x(0)]2〉 + 〈[x(t) − x(0)]v(0)〉2

]
. (61)

Then, by expressing 〈[x(t) − x(0)]2〉 and 〈v(0)[x(t) − x(0)]〉 in terms of the VACF (i.e., 
∫ t

0 dt′ ∫ t
0 dt′′ 〈v(t′)v(t′′)

〉
and ∫ t

0

〈
v(0)v(t′)

〉
dt′ , respectively), we obtain Eq. (46) with Eq. (49). Following the same procedure, for the time-averaging 

case, we obtain Eq. (45) with Eq. (48). Then, the result for the hybrid ensemble/time-averaging case also follows.

2.5.3. Comparison with previous results
We compare our results for the time-averaging case with previous results by Zwanzig and Ailawadi [16], by Frenkel [18], 

and by Jones and Mandadapu [19]. Only Zwanzig and Ailawadi have considered the error correlation function of ŷtime rather 
than directly calculating the mean-squared error 〈ε2

ŷtime
(t)〉. However, they have estimated the error correlation function very 

roughly as a constant: 〈ε ŷtime
(t′)ε ŷtime

(t′′)〉 ≈ 2
T
∫∞
−∞〈v(0)v(t)〉2dt . Frenkel and also Jones and Mandadapu have shown that

〈ε2
ŷtime

(t)〉 = a(t)

T

∞∫
−∞

〈v(0)v(α)〉2dα, (62)

where a(0) = 2 and limt→∞ a(t) = 1. By using Eq. (50), we can easily show Eq. (62).
We can also re-derive the following result obtained by Jones and Mandadapu:

lim
t→0

d

dt
〈ε2

ẑtime
(t)〉 = 0, lim

t→∞
d

dt
〈ε2

ẑtime
(t)〉 = 4D2

T
. (63)

By differentiating 〈ε2
ẑtime

(t)〉 = c1(t)/T with respect to t , we have

d

dt
〈ε2

ẑtime
(t)〉 = 2

T

∞∫
−∞

dα

t∫
0

dt′ [ f (α) f (α + t − t′) + f (α) f (α + t + t′)]

= 2

T

∞∫
dα

2t∫
dt′ f (α) f (α + t′),

(64)
−∞ 0
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where f (t) = 〈v(0)v(t)〉. Hence, the first result in Eq. (63) is easily obtained and the second one is obtained from

lim
t→∞

d

dt
〈ε2

ẑtime
(t)〉 = 4

T

⎛
⎝

∞∫
0

f (t′)dt′
⎞
⎠

2

. (65)

In addition, from Eq. (64), we can also obtain the second derivative of the mean-squared error of ẑtime as follows:

d2

dt2
〈ε2

ẑtime
(t)〉 = 4

T

∞∫
−∞

f (α) f (α + 2t)dα. (66)

2.5.4. Effect of non-Gaussianity
Here, we discuss the deviation of our theoretical error estimates from the true error estimates. Based on Eq. (30), 

when the covariance terms in Eqs. (55), (56), (57), (56) are approximated by the GPA, the resulted errors are expressed 
as the fourth-order cumulants of x and v . Since the error correlation functions are obtained from some linear transforms of 
the covariance terms, the deviation 〈ε(t1)ε(t2)〉true − 〈ε(t1)ε(t2)〉GPA is linearly proportional to the corresponding cumulant 
function. Following a similar argument, we can show that the deviation in the standard error estimates of D(t), which is 
characterized by σ 2[D̂(t)]true − σ 2[D̂(t)]GPA, is linearly proportional to the cumulant function.

3. Verification: Langevin equation

In this section, we investigate the statistical errors occurring in the simulation of the following Langevin equation:

ẋ(t) = v(t),

mv̇(t) = −γ v(t) + ξ(t),
(67)

where m and γ are the mass and friction coefficient of the particle, respectively. We consider two types of noise process 
ξ(t): Gaussian white noise (GWN) ξG(t) and Poissonian white shot noise (PWSN) ξP(t). For the definition of PWSN, see 
Section 3.2. Both noise processes are delta-correlated and we impose the same noise intensity

〈ξ(t′)ξ(t′′)〉 = 2kBTγ δ(t′ − t′′), (68)

where T is the temperature of the system.
Then, the GWN and PWSN cases have the same VACF, MSD, D(t), which are expressed as

〈v(0)v(t)〉 = kBT

m
e− γ

m |t|, (69)

〈[x(t) − x(0)]2〉 = 2kBT

γ
|t| − 2mkB T

γ 2

(
1 − e− γ

m |t|) , (70)

D(t) = kBT

γ

(
1 − e− γ

m t
)

, for t ≥ 0, (71)

respectively. This is because the two-time noise correlation function 〈ξ(0)ξ(t)〉 completely determines the VACF, and thus 
the MSD and D(t) as well. More specifically, since v(t) is a stationary process expressed as

v(t) = 1

m

t∫
−∞

e− γ
m (t−s)ξ(s)ds, (72)

the VACF is determined from Eq. (68) and the MSD and D(t) are determined from the VACF by using Eq. (6).
When we investigate the sampling uncertainty on these quantities, however, the two cases exhibit different behaviors. 

Since the GPA is satisfied exactly in the GWN case, it is expected that our theoretical error estimates obtained in Section 2
hold perfectly. On the other hand, in the PWSN case, some deviations are expected. In Section 3.1, we verify our theoretical 
error estimates by comparing simulation results. In Section 3.2, we observe non-Gaussianity effect, which is discussed in 
Section 2.5.4.

3.1. Langevin equation driven by Gaussian white noise

In Section 3.1.1, we summarize closed-form expressions for the theoretical error estimates, which are obtained by sub-
stituting Eqs. (69) and (70). In Section 3.1.2, we present simulation results and compare numerical error estimates with the 
theoretical ones. Since the GPA is exactly valid, they are expected to match, from which we verify our theoretical results.
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3.1.1. Closed-form expressions for the error estimates
Here, we assume 0 ≤ t1 ≤ t2. Since the explicit expression of the error correlation function of b̂time is complicated, 

we only present its mean-squared error. For the hybrid ensemble/time-averaging case, replace T with NT in the time-
averaging case.

Ensemble-averaging case.

〈ε ŷens
(t1)ε ŷens

(t2)〉 = 1
N

(
kB T
m

)2 (
e− γ

m (t2−t1) + e− γ
m (t1+t2)

)
(73)

〈εb̂ens
(t1)εb̂ens

(t2)〉 = 2
N

(
kB T
γ

)2 [
2t1 − m

γ

(
1 − e− γ t1

m − e− γ t2
m + e− γ (t2−t1)

m

)]2
(74)

σ 2[D̂ens(t)
]= 1

N

(
kB T
γ

)2 [ 2γ t
m − 1 + e− 2γ t

m

]
(75)

Time-averaging case.

〈ε ŷtime
(t1)ε ŷtime

(t2)〉 = 1
T

(
kB T
m

)2
e− γ (t1+t2)

m

[
m
γ

(
1 + e

2γ t1
m
)+ t1

(
1 − e

2γ t1
m
)+ t2

(
1 + e

2γ t1
m
)]

(76)

〈ε2
b̂time

(t)〉 = 1
T · 4(kB T )2

3γ 5

[
15m3

(
3 − 4e− γ t

m + e− 2γ t
m
)− 6m2γ t

(
4 + 2e− γ t

m − e− 2γ t
m
)+ 4γ 3t3

]
(77)

σ 2[D̂time(t)
]= 1

T

(
kB T
γ

)2 [(
4 + 2e− 2γ t

m
)
t − 3m

γ

(
1 − e− 2γ t

m
)]

(78)

3.1.2. Simulation results and discussion
By numerically generating sample trajectories of the Langevin equation (67), we calculate the VACF, the MSD, and time-

dependent diffusion coefficient D(t) through ensemble-averaging and time-averaging, and estimate the standard errors in 
the VACF, the MSD, and D(t). The system parameters are chosen as m = γ = kBT = 1. Sample trajectories are generated by 
the Euler scheme [35] with �tLE = 0.001. The initial condition of v is sampled from the equilibrium distribution of v ,

ρeq(v) =
√

m

2πkBT
exp

(
− mv2

2kBT

)
, (79)

by a standard Gaussian random number generator. The VACF, MSD, and D(t) are calculated up to time Tmax = 10 with 
�t = 10�tLE = 0.01. The finite-sampling size parameters are chosen as N = 1000 and T = 1000 for ensemble-averaging
and time-averaging, respectively. In order to estimate the standard errors of the estimators ŷ• , D̂VACF• , b̂• , and D̂MSD• , a total 
of Nr = 32 768 realizations for each estimator are obtained. In other words, a total of N Nr trajectories of length Tmax are 
calculated for ensemble-averaging, whereas a total of Nr trajectories of length T are calculated for time-averaging. For each 
quantity, the mean-squared error 〈ε2(t)〉 is estimated from Nr realizations and the normalized standard error σ̄ is calculated 
as follows:

σ̄ens =
√
N 〈ε2

ens(t)〉, σ̄time =
√
T 〈ε2

time(t)〉. (80)

Then, the normalized standard error is expected to have little dependence on the sampling size parameters N and T and 
the mean value obtained from averaging over Nr realizations has standard error σ̄ens/

√
NrN in the ensemble-averaging 

case and σ̄time/
√

NrT in the time-averaging case. Simulation results are compared with theoretical results in Fig. 3. The 
agreement is excellent, so we verify our results in this case.

We make several observations on the time profile of the standard errors of the estimators. As expected from Eq. (62), the 
initial value of the standard error of ŷtime eventually decreases by factor of 1√

2
. Although the same ratio of the long-time 

value to the initial value is observed for ŷens, the time profile at short times is different from the former case and the 
transition is faster than the former case. This is because the time average uses correlated sample points and the statistical 
errors at different times are more correlated. By comparing Eqs. (37) and (38), we see that the same expression is obtained 
as the coefficient of N−1 dependence in Eq. (38), if α = 0 is substituted into the integrand in Eq. (37). This implies that the 
integration with respect to α in the time-averaging case blurs the temporal dependence in the error correlation function. 
In the MSD calculation, the standard error asymptotically increases like t in the ensemble-averaging case and t3/2 in the 
time-averaging case. For the evaluation of D(t), even after D(t) attains a plateau, the standard deviations of the estimators 
increase asymptotically as 

√
t in both averaging cases.

Based on these observations, we discuss the long-time behavior of the relative errors. Since the VACF decays rapidly as 
t → ∞ but its standard error decreases only by factor 1√

2
, the relative error increases rapidly. Hence, in order to guarantee 

statistical reliability of the long-time tail of the VACF, one needs to severely increase the values of sampling size parameters 
such as N and T . For the MSD, the long-time behaviors of the relative errors are very different depending on the type of 
averaging procedure. Since the MSD asymptotically becomes proportional to t , the relative error becomes constant in the 
ensemble-averaging case, but it asymptotically increases like 

√
t in the time-averaging case. Since the standard errors of 

D(t) asymptotically increase like 
√

t in both cases, the relative errors also increase like 
√

t .
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Fig. 3. Numerical simulation results of the Langevin equation (67) with m = γ = kB T = 1. The VACF, MSD, and time-dependent coefficient D(t) and their 
standard errors are calculated through either ensemble-averaging with N = 1000 or time-averaging with T = 1000 by generating a total of Nr = 32 768
realizations. The time profiles of the three quantities are shown in the plots in the top row. The normalized standard errors (SE) are presented in the 
middle row for ensemble-averaging and in the bottom row for time-averaging. The standard errors are normalized by 

√
N for the ensemble-averaging case, 

whereas they are normalized by 
√
T for the time-averaging case, see Eq. (80). Hence, the standard errors of the mean values in the top row are estimated 

from the normalized standard errors σ̄ as σ̄ /
√

NrN in the ensemble-averaging case and σ̄ /
√

NrT . The red lines depict analytic results, whereas four 
different symbols depict simulation results: filled green squares (VACF method, ensemble-averaging), empty green squares (VACF method, time-averaging), 
filled blue circles (MSD method, ensemble-averaging), and empty blue circles (MSD method, time-averaging). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Before closing this section, we consider a time scale τ ∗ such that a sample point after time τ ∗ can be regarded as an 
uncorrelated sample point. Then, we may consider a time average over a trajectory of length T as an ensemble average over 
a total of N ∗ = T /τ ∗ uncorrelated samples. By denoting the coefficients of N−1- and T −1-dependence for the ensemble-
and time-averaging, respectively, as Iens(t) and Itime(t) (see, e.g., Eqs. (50) and (51)), we equate 1

T Itime(t) with 1
N ∗ Iens(t), 

which yields

τ ∗ = Itime(t)

Iens(t)
. (81)

For the VACF, the MSD, and D(t), the time profiles of τ ∗ calculated from Eq. (81) are shown in Fig. 4. For the VACF and 
D(t), τ ∗ maintains consistent values over the time interval, meaning that τ ∗ is well-defined for these quantities. On the 
other hand, τ ∗ increases linearly for the MSD, so τ ∗ is not well-defined in this case. From the closed-form expressions for 
the error estimates, we obtain the long-time limits of the ratio Itime(t)/Iens(t) for the three quantities:

IVACF
time (t)

IVACF
ens (t)

→ m

γ
,

IMSD
time(t)

IMSD
ens (t)

→ ∞,
I D
time(t)

I D
ens(t)

→ 2m

γ
. (82)

We note that the time scale for the exponential decay of the VACF (see Eq. (69)) is m/γ . Hence, Eq. (82) shows that 
the time scale τ ∗ for uncorrelated sample points depends on the quantity to be averaged and may not always be well-
defined.

3.2. Langevin equation driven by Poissonian white shot noise

We consider the following PWSN [20,30] ξP(t):

ξP(t) =
N(t)∑

ziδ(t − τi), (83)

i=1
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Fig. 4. For the VACF, MSD, and time-dependent diffusion coefficient, the ratio of Itime(t) to Iens(t) is plotted. For the definition of Itime(t) and Iens(t), see 
the text. The ratio can be considered as a time scale τ ∗ such that two points in a sample trajectory are effectively uncorrelated if their time difference is 
greater than τ ∗ .

where N(t) is a homogeneous Poisson process with rate λ (i.e., N(t) obeys a Poisson distribution with mean λt), and τi
and zi denote the arrival time and amplitude of the ith delta peak, respectively. We also assume that {zi} are independent 
and identically distributed with distribution ρz(z). Note that PWSN is the (formal) time derivative of a compound Poisson 
process �P(t) =∑N(t)

i=1 zi .
By increasing the rate λ and decreasing the magnitude of the delta peaks accordingly, PWSN converges to GWN [20,36]. 

More specifically, if ρz(z) depends on λ and satisfies

〈z〉 = 0, λ〈z2〉 = 2kBTγ , lim
λ→∞λ〈zn〉 = 0 for n ≥ 3, (84)

ξP converges to ξG as λ → ∞. This can be shown by calculating the joint cumulants of ξP(t) as follows [20]. For all λ > 0, the 
first two cumulants are 〈ξP(t)〉 = 0 and 〈ξP(t1)ξP(t2)〉 = 2kBTγ δ(t1 − t2). On the other hand, as λ → ∞, all higher cumulants 
become zero. For example, the fourth-order joint cumulant, which is expressed as

κ [ξP(t1), ξP(t2), ξP(t3), ξP(t4)] = λ〈z4〉δ(t1 − t2)δ(t2 − t3)δ(t3 − t4), (85)

shrinks to zero in the limit.
In this subsection, we assume that ρz(z) is the uniform distribution on [−a, a]. Then, from λ〈z2〉 = 2kBTγ , we have 

a =
√

6kB Tγ
λ

. From Eq. (85), the fourth-order cumulant of ξP(t) is proportional to λ−1. By substituting Eq. (72) into Eq. (30)
(with Xt = v(t)), we obtain the following expression:

κ[v(t1), v(t2), v(t3), v(t4)] = 1

m4

⎛
⎝ 4∏

i=1

ti∫
−∞

dsie
− γ

m (ti−si)

⎞
⎠κ[ξP(s1), ξP(s2), ξP(s3), ξP(s4)]. (86)

Hence, the fourth-order joint cumulant of v(t) is also proportional to λ−1. Based on the discussion in Section 2.5.4, we can 
use λ−1 as a non-Gaussianity parameter and expect that the deviation between the true error estimate and the GPA-based 
error estimate satisfies

〈ε2〉true − 〈ε2〉GPA ∝ 1

λ
. (87)

To confirm this prediction, we perform numerical simulation of Eq. (67) with Eq. (83). A sample trajectory is calculated 
as follows [21]. First, we generate the arrival times {ti} and between two time points solve the deterministic equation 
analytically. The sampling procedure is the same as the GWN case, which is described in Section 3.1.2. The only exception 
is that after sampling the initial velocity from the Maxwell–Boltzmann distribution (i.e., Eq. (79)), the initial trajectory up 
to t = 10 is discarded. This is because the equilibrium distribution is no more Gaussian in the PWSN case and hence the 
trajectory has to be equilibrated.

In fact, the equilibrium distribution of v demonstrates non-Gaussianity of v(t). As shown in Fig. 5, in the limit λ → ∞, 
the non-Gaussian distribution converges to the Gaussian distribution corresponding to the GWN case. This behavior can also 
be confirmed by observing 〈v4〉. From Eq. (86), we obtain

〈v4〉 = 〈v4〉GPA + κ[v, v, v, v] = 3 (kBT )2

m2
+ 9γ (kBT )2

5m3
· 1

λ
. (88)

As expected, the non-Gaussianity of 〈v4〉 is proportional to λ−1.
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Fig. 5. The equilibrium velocity distribution ρ(v) of the PWSN-driven Langevin model (see Eqs. (67) and (83)) is plotted for λ = 1 and 10. For comparison, 
the GWN case with the same noise intensity is plotted by the dashed line. For the larger value of λ, the distribution becomes similar to the GWN case.

Fig. 6. For the PWSN-driven Langevin model, the time profiles of the normalized standard errors (SE) for ensemble-averaging are plotted for λ = 1 and 10. 
For comparison, the GWN case with the same noise intensity is plotted by the dashed lines. For the larger value of λ, the time profiles become similar to 
the GWN case. For the interpretation of the normalized standard errors, see the caption of Fig. 3.

We finally confirm our theoretical prediction on the non-Gaussianity effect, which is given in Eq. (87). As shown in Fig. 6, 
the standard errors of the VACF, the MSD, and D(t) converge to the GWN case in the limit λ → ∞. We observe that Eq. (87)
is perfectly satisfied.

4. Validation: MD simulation

In this section, we investigate the error statistics involved in the estimation of the diffusion coefficient for two kinds 
of MD systems: a pure LJ fluid and a colloidal particle suspended in a LJ fluid. We observe the self-diffusion of a fluid 
particle in the former case and the tracer diffusion of a colloidal particle in the latter case. We call the two systems 
as the pure LJ fluid system vs. the colloidal system or the self-diffusion case vs. the tracer-diffusion case. Based on the 
discussion given in Section 2.4.1, see Eq. (34), the GPA is expected to be better satisfied in the tracer diffusion of a larger 
and heavier colloidal particle. We investigate the validity of the GPA in the MD systems by calculating the covariance 
function Cov[v(0)v(t1), v(0)v(t2)] and comparing both sides of the following relation, which holds under the GPA:

Cov[v(0)v(t1), v(0)v(t2)] GPA= 〈v2〉〈v(0)v(t1 − t2)〉 + 〈v(0)v(t1)〉〈v(0)v(t2)〉. (89)

Then, we assess the agreement of our theoretical predictions with the actual standard errors estimated from MD simulations 
and relate the level of agreement with the level of validity of the GPA. In addition, for the pure LJ fluid system, we consider 
averaging over identical particles and investigate the scaling behavior of the standard errors on the number of averaged 
particles. For accurate estimation, all calculations are carried out with a large-sized MD ensemble of 32 768 independent 
sample trajectories.

4.1. Simulation details

We report all simulation quantities in the LJ reduced units. In other words, we choose the mass of a fluid particle mfl, 
the diameter of a fluid particle σfl, and the energy parameter of the LJ potential εfl as the units of mass, length, and energy, 
respectively.

System parameters. The pure LJ fluid system is defined as follows. The number density and temperature of the system are 
chosen as ρfl = 0.8442 and T = 0.722, which is close to the triple point of the fluid. This state has been frequently used 
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as a reference state after investigation in Ref. [37]. The number of fluid particles is set Nfl = 2048, so the side of the cubic 
simulation box Lbox is 13.44. Periodic boundary conditions are imposed for all directions. A sufficiently long cutoff radius 
rcut = 5 is used.

For the colloidal system, a colloidal particle of mass Mtracer = 60 is placed in the LJ fluid system described above. The 
interaction potential between a colloidal particle and a fluid particle is given as the Week–Chandler–Andersen potential with 
σfl-tracer = 2.5 and εfl-tracer = 1. In other words, the interaction potential is a shifted LJ potential with cutoff 21/6σfl-tracer, 
which contains only a repulsive contribution. From the values of σfl and σfl-tracer, we can infer that the radius of the colloidal 
particle is Rtracer = 2 and the density ratio is ρtracer/ρfl = 2.1.

MD simulation procedures. The same simulation procedures are performed for the pure LJ fluid system and the colloidal 
system. A total of Nr = 32 768 sample trajectories are calculated by the velocity Verlet algorithm with time step size �t =
0.0025. The initial configurations for the samples in equilibrium are prepared as follows. After the position and velocity of 
each particle are randomly sampled from the uniform distribution and the Maxwell–Boltzmann distribution, respectively, a 
total of 20 velocity scaling procedures are performed after every run of 104�t = 25. So, the whole equilibration procedure 
is performed through the period of 2 × 105�t = 500.

The evaluation procedures of the VACF and the MSD are performed as follows. They are calculated up to time 10 through 
the ensemble-averaging and time-averaging procedures. In the ensemble-averaging case, the normalized standard error (see 
Eq. (80)) is calculated for N = 1 with Nr = 32 768 realizations. This is because the generation of equilibrium samples 
through long equilibration is expensive. In the time-averaging case, the normalized standard error is calculated for T = 500
with the same number of realizations. We note that all simulation parameters are chosen so that all assumptions mentioned 
in Section 2.4.2 are satisfied. Hence, the deviation in our theoretical error estimates, which will be observed in this section, 
is due to the GPA.

For the calculation of the covariance function Cov[v(0)v(t1), v(0)v(t2)], the correlation function 〈v(0)v(t1)v(0)v(t2)〉
(t1, t2 ∈ [0, tmax]) is additionally calculated in an ensemble-averaging manner as follows:

1

mNr

Nr∑
k=1

m−1∑
i=0

v(k)(itmax)v(k)(itmax + t1)v(k)(itmax)v(k)(itmax + t2). (90)

For both systems, it is roughly calculated with m = 1 and tmax = 10 and. Then, it is more accurately calculated with m = 64
and tmax = 1 for the pure LJ fluid and tmax = 4 for the colloidal system.

For averaging over identical particles in the pure LJ fluid, the number of averaged particles n varies from 1 to 2048. 
Since the calculation of the VACF and the MSD for each fluid particle requires large memory and computational time in the 
time-averaging case, we reduce the computation size by simulating a smaller number of sample trajectories, Nr = 512.

Mean-squared velocity 〈v2〉. In order to confirm that the equilibration is well performed and the temperature is well 
maintained during production runs, the mean-squared velocity 

〈
v2
〉

is monitored. For the pure LJ fluid system, we obtain 
〈v2〉 = 0.7218 with standard error 9.7 × 10−5 from time-averaging, which is consistent with the equipartition theorem 
〈v2〉 = kBT /mfl with the target temperature T = 0.722. For the colloidal particle system, we obtain 〈v2

tracer〉 = 1.1684 × 10−2

with standard error 3.7 × 10−6 from time-averaging. In this case, we need to compare this value with the value estimated 
from the following expression for NVEPG ensemble [38]:

〈
v2

tracer

〉
= kBT

Mtracer

Nflmfl

Mtracer + Nflmfl
. (91)

In other words, for a finite multi-component system, if a microcanonical-ensemble (i.e., NVE) MD simulation is per-
formed under periodic boundary conditions, the equipartition theorem 〈v2

tracer〉 = kBT /Mtracer does not exactly hold. This 
is attributed to constraints on P (total linear momentum) and G (generator of infinitesimal Galilean boosts), which are ad-
ditionally imposed on the system. Since the values of the mean-squared velocity predicted by Eq. (91) and the equipartition 
theorem are 1.1691 × 10−2 and 1.2033 × 10−2, respectively, the simulation result accurately confirms Eq. (91).

4.2. Simulation results

Validity of GPA. As mentioned above, the validity of the GPA is investigated by the covariance function Cov[v(0)v(t1),

v(0)v(t2)]. For each system, the MD result calculated from the direct calculation of 〈v(0)v(t1)v(0)v(t2)〉 is compared with 
the GPA result calculated through Eq. (89) by using the VACF. Fig. 7 shows the time profile of the VACF and the comparison 
of the MD and GPA results for the covariance function. Although the VACF of the tracer particle decays more slowly due to 
its large mass than the VACF of a fluid particle, the time profiles of the two VACFs have similar shapes containing a negative 
tail. While the agreement of the MD and GPA results for the covariance function is overall good in the self-diffusion case, 
the agreement is excellent in the tracer-diffusion case. This observation is consistent with the physical explanation of the 
GPA based on the generalized Langevin equation given in Section 2.4.1, see Eq. (34). We also note that the tracer-diffusion
case, where the GPA holds very accurately, is different from the Langevin model system since its VACF has a negative tail.
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Fig. 7. For the self-diffusion of the pure LJ fluid and the tracer diffusion of the colloidal system, the time profiles of the VACF and the contour plots of 
covariance function Cov[v(0)v(t1), v(0)v(t2)] are presented. In the contour plots, the GPA predictions from Eq. (89) are also plotted by the dashed lines.

Time profiles of VACF, MSD, and D(t). Before analyzing the error statistics, we observe the time profiles of the VACF, the 
MSD, and D(t), which are shown in the top row of Fig. 8 for the self-diffusion case and in Fig. 9 for the tracer-diffusion
case. As mentioned above, the time scale for the decay of the VACF is larger in the tracer-diffusion case due to large mass 
of the tracer particle. This time scale can be also found in the asymptotic linear increase of the MSD and the long-time 
saturation of D(t). However, except different magnitudes of the time scales, the overall shapes of the three quantities are 
more or less similar for the two cases. Hence, we may not predict the level of validity of the GPA by investigating the VACF 
or the MSD.

Since the time profiles of the VACF, the MSD and D(t) presented in Fig. 8 and Fig. 9 are obtained from the time-averaging, 
their statistical errors are estimated as σ̄ /

√
NrT from the normalized standard errors σ̄ . From the plateau values of D(t), 

the diffusion coefficients are estimated from time interval [9, 10] as 3.303 × 10−2 ± 5.3 × 10−5 in the self-diffusion and 
6.083 × 10−3 ± 9.6 × 10−6 in the tracer-diffusion case. The value of the self-diffusion coefficient is consistent with the value 
3.2619 × 10−2 obtained by using 1372 fluid particles in Ref. [22].

Validity of theoretical error estimates. In Fig. 8 and Fig. 9, the standard errors estimated from the MD ensemble runs 
are compared with our theoretical error estimates derived in Section 2.5. While the agreement is overall good in the self-
diffusion case, the agreement is perfect in the tracer-diffusion case. This is consistent with the observation for the level of 
validity of the GPA in the two systems. Considering that even rough error estimates are useful in practice, our theoreti-
cal error estimates provide fairly accurate information for the level of the statistical errors even if the GPA does not hold 
exactly.

Scaling behavior of standard errors for particle-averaging. Finally, we consider averaging over identical particles and inves-
tigate the scaling behavior of the statistical errors for the number of averaged particle n. If n is much smaller than the total 
number N of identical particles in the system, then we expect that the velocity processes of the averaged particles are al-
most uncorrelated and thus the statistical errors decrease by factor of n−1/2. However, if n is comparable to N , then we may 
not neglect the correlation among the velocity processes and the scaling behavior n−1/2 may fail to hold. In Appendix B, 
under the GPA of the velocity processes, we show that this scaling behavior still holds for the NVEPG ensemble of a pure 
fluid system. We test this prediction for the pure LJ fluid system. For various values of n from 1 to Nfl = 2048, we calculate 
the normalized standard errors by additionally multiplying the factor 

√
n. As shown in Fig. 10, the scaling behavior of the 

standard errors is well maintained up to n = 256 for all quantities. However, beyond this value of n, the scaling behavior 
fails in some cases. In the ensemble-averaging case, it is well maintained for the VACF and D(t). Even for the MSD, it is 
still valid for short times. In the time-averaging case, it is roughly valid for the VACF and only valid at short times for D(t). 
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Fig. 8. For the pure LJ fluid system, the time profiles of the VACF, the MSD, and the time-dependent diffusion coefficient and their normalized standard 
errors (SE) are presented. The MD simulation data obtained from the time-averaging procedure with T = 500 and Nr = 32 768 realizations are plotted in 
the top row and their normalized standard errors σ̄ (see Eq. (80)) are plotted in the middle row. The standard errors of the three quantities plotted in the 
top row are estimated by σ̄ /

√
NrT . In the bottom row, the normalized standard errors estimated from the ensemble-averaging procedure with N = 1 and 

the same number of realizations are plotted. The red lines with the triangles indicates the GPA prediction estimated from the VACF and the MSD through 
our theoretical error estimates derived in Section 2.5. The green lines with the squares and the blue lines with the circles indicate the MD simulation 
results obtained by the VACF and MSD methods, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

We guess that the failure of the prediction given in Appendix B is due to the failure of the GPA for the velocity processes, 
which is even stronger than the GPA for a single velocity process.

5. Summary and discussion

For the evaluation of the diffusion coefficient D from MD simulations, we have investigated the uncertainty due to 
finite sampling (i.e., statistical errors). We have analyzed two standard methods, which use the time integral of the VACF 
and the long-time slope of the MSD. By using theoretical and computational approaches, we have presented a complete 
systematic analysis on the standard errors of all quantities involved in both methods. We have concluded that the VACF 
and MSD methods are equivalent in the sense that they provide the same mean values with the same standard errors. The 
equivalence of the VACF and MSD methods can be understood as follows: although the quality of the MSD data is much 
better than that of the VACF data, the former becomes worse through time differentiation and the latter becomes better 
through time integration.

In our theoretical approach, we have derived explicit expressions for the standard errors of the VACF, the MSD, and the 
time-dependent diffusion coefficient D(t), see Section 2.5. It is the error correlation functions of the VACF and the MSD 
that play a crucial role. Compared with the standard errors of the VACF and the MSD, they contain additional information 
on the error statistics between different times. We have derived relations (21) and (23), which have enabled us to calculate 
the standard errors of D(t) from the error correlation functions. However, since the direct calculation of the error corre-
lation functions from MD simulations is impractical due to huge computational overhead, we have introduced the GPA of 
the velocity process. By using the property that all higher-order statistics of a Gaussian process can be expressed in terms 
of the second-order statistics, we have expressed all theoretical error estimates in terms of the VACF. In fact, since the 
fourth-order cross moments of x and v are needed to be approximated by the GPA, we have shown that the deviation 
in our theoretical error estimates due to the GPA is proportional to the fourth-order cumulant of v . Since the error cor-
relation functions depend on the type of averaging procedure, we have defined estimators representing several averaging 
procedures and calculated their error correlation functions. We have considered time-averaging, ensemble-averaging, hybrid 
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Fig. 9. For the colloidal system, the time profiles of the VACF, the MSD, and the time-dependent diffusion coefficient and their normalized standard errors 
(SE) are presented. Since the plots are presented in the same manner as in Fig. 8, see the caption of Fig. 8.

Fig. 10. For the pure LJ fluid system, the normalized standard errors (SE) estimated from the ensemble-particle and time-particle averaging procedures are 
plotted. Due to additional averaging over identical particles, the standard errors are also normalized by √n, where n is the number of averaged particles. 
The accordance of the curves indicates the scaling behavior of the statistical error as n−1/2. Due to expensive computation, a smaller number of realizations 
Nr = 512 is used.

ensemble/time-averaging as well as averaging over identical particles. By considering the Langevin models driven by GWN 
and PWSN, we have verified our theoretical predictions.

In our computational approach, we have investigated the validity of our theoretical results. Most importantly, since the 
accuracy of our theoretical error estimates largely relies on the validity of the GPA, we have investigated the latter for two 
kinds of molecular systems: the pure LJ fluid system and the colloidal system. In both cases, we have observed that the 
GPA holds very well. As expected from the physical explanation of the GPA based on the generalized Langevin equation, see 
Eq. (34), we have also observed that the GPA holds almost perfectly for the tracer diffusion of a large and heavy colloidal 
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particle. Then, by comparing the standard errors estimated from MD simulations with our theoretical error estimates, we 
have confirmed the validity of our theoretical results. In order to accurately estimate the standard errors in a direct way 
from MD simulations, we have performed large-sized MD ensemble runs of size Nr = 32 678.

The practical implications of the present work are as follows. First of all, once the VACF is roughly estimated, the order 
of magnitude for the standard errors of all relevant quantities can be readily estimated from our theoretical estimates. This 
is useful especially when MD simulation is so expensive that the standard errors cannot be directly estimated from a large-
sized ensemble run. Second, for a pure fluid system, averaging over all identical particles is favorable for ensemble-averaging
but not so practical for time-averaging. While the all-particle-averaging is not so expensive for the ensemble-averaging pro-
cedure, it requires huge memory and computational time for the time-averaging. Furthermore, it has been observed that 
the n−1/2 scaling behavior of the standard errors on the number of averaged particle n quickly fails when n increases in the 
time-averaging case.

Our theoretical approach has the following advantageous features. First, it is applicable to particle-based methods such 
as the Langevin dynamics and the dissipative particle dynamics. As discussed in Section 2.4, it basically requires only the 
condition ẋ(t) = v(t) and the GPA of v . Second, it can be generalized to the evaluation of other transport coefficients such 
as the shear viscosity and the thermal diffusivity, which are computable from the Green–Kubo relations or the Einstein–
Kubo–Helfand relations. The most important issue may be the validity of the GPA for the underlying process.
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Appendix A. Asymptotic approximation for large T

For an arbitrary integrable function h(t), the following relation holds:

1

T 2

T∫
0

dt′
T∫

0

dt′′ h(t′ − t′′) = 1

T

∞∫
−∞

h(α)dα + ε (A.1)

where

ε = − 1

T 2

T∫
0

dt

∞∫
t

dα [h(α) + h(−α)] . (A.2)

We obtain Eq. (A.1) as follows. By introducing a new variable α = t′ − t′′ to the inner integral of the left-hand side of 
Eq. (A.1), we have 1

T 2

∫ T
0 dt′ ∫ t′

t′−T dα h(α). By approximating the latter by 1
T 2

∫ T
0 dt′ ∫∞

−∞ dα h(α) (i.e., by extending the 
integration range of its inner integral), we obtain the first term in the right-hand side of Eq. (A.1). The error of the approxi-
mation becomes the term ε defined in Eq. (A.2).

If h(t) becomes zero rapidly as t → ±∞, ε becomes negligible in Eq. (A.1) as T → ∞. More precisely, if Iε =
− 
∫∞

0 dt
∫∞

t dα [h(α) + h(−α)] is finite, then we have T 2ε → Iε as T → ∞ and, thus, T ε → 0. Hence, for large T , 
we can neglect the ε term in the right-hand side of Eq. (A.1), which is equal to 1

T
(∫∞

−∞ h(α)dα + T ε
)
. Two simple 

examples of h(t) having finite Iε are as follows: (1) If there is a time scale τ such that h(t) = 0 for |t| > τ , then 
Iε = − 

∫ τ
0 dt

∫ τ
t dα [h(α) + h(−α)]; (2) If h(t) decays exponentially, i.e., h(t) = Ae−|t|/τ , then Iε = −2Aτ 2.

Appendix B. Scaling behavior of standard errors for particle-averaging in a pure liquid

For a pure fluid system consisting of N identical fluid particles, we first investigate a scaling behavior of the standard 
errors for a particle-averaging estimator for the VACF and then discuss a general scaling behavior for an estimator including 
particle-averaging. The particle-averaging estimator for the VACF is defined as follows:

ŵ(t) = 1

n

n∑
i=1

vi(0)vi(t) (B.1)

where n is the number of identical particles to be included for averaging and vi is the velocity of the ith particle. Then, we 
have 

〈
ŵ(t)

〉= 〈v(0)v(t)〉 and

Var[ŵ(t)] = 1

n2

n∑ n∑
Cov[vi(0)vi(t), v j(0)v j(t)]. (B.2)
i=1 j=1
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Under the GPA of the processes {vi(t)}N
i=1, we have

Var[ŵ(t)] = 1

n

{
〈v2〉2 + 〈v(0)v(t)〉2

}
+ 1

n2

n∑
i=1

∑
j �=i

{
〈vi v j〉2 + 〈vi(0)v j(t)〉〈v j(0)vi(t)〉

}
. (B.3)

Hence, if the processes {vi(t)}n
i=1 are uncorrelated, then we obtain the same result as the ensemble-averaging case, see 

Eq. (51). However, in the NVEPG ensemble, we have 
∑N

j=1 v j(t) = 0. By multiplying vi(0) and taking average, we obtain

〈vi(0)v j(t)〉 = − 1

N − 1
〈v(0)v(t)〉, for i �= j. (B.4)

By substituting Eq. (B.4) into Eq. (B.3), we obtain

Var[ŵ(t)] = 1

n

[
1 + n − 1

(N − 1)2

]{
〈v2〉2 + 〈v(0)v(t)〉2

}
. (B.5)

The scaling factor behaves almost like 1
n for 1 ≤ n ≤ N; even in the case n = N , the scaling factor becomes 1

N−1 .
We note that the same argument is applicable to the error correlation function of ŵ , and hybrid estimators including 

particle-averaging for the VACF. Hence, almost-like 1√
n

scaling behavior of the standard errors is expected for the VACF 
method. Similarly, it is applicable to the MSD method. However, we note that the GPA of the processes {vi(t)}N

i=1 is even 
stronger than that of a single process v(t).
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