
Journal of Computational Physics 463 (2022) 111288
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Projection method for the fluctuating hydrodynamics 

equations

Marc Mancini a, Maxime Theillard b, Changho Kim b,∗
a Département de Mathématiques Appliquées, Ecole polytechnique, 91128 Palaiseau, France
b Department of Applied Mathematics, University of California, Merced, CA 95343, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 November 2021
Received in revised form 3 May 2022
Accepted 4 May 2022
Available online 11 May 2022

Keywords:
Fluctuating hydrodynamics
Projection method
Structure factor
Staggered grid
Thermal fluctuations

Computational fluctuating hydrodynamics aims at understanding the impact of thermal 
fluctuations on fluid motions at small scales through numerical exploration. These fluc-
tuations are modeled as stochastic flux terms and incorporated into the classical Navier–
Stokes equations, which need to be solved numerically. In this paper, we present a novel 
projection-based method for solving the incompressible fluctuating hydrodynamics (FHD) 
equations. By analyzing the equilibrium structure factor spectrum of the velocity field for 
the linearized FHD equations, we investigate how the inherent splitting errors affect the 
numerical solution of the stochastic partial differential equations in the presence of non-
periodic boundary conditions, and how iterative corrections can reduce these errors. Our 
computational examples demonstrate both the capability of our approach to reproduce 
correctly stochastic properties of fluids at small scales as well as its potential use in the 
simulations of multi-physics problems.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper presents a projection-based method for solving the incompressible fluctuating hydrodynamics equations, with 
the dual intent to provide an alternative simulation strategy and illustrate how traditional computational fluid dynamics 
techniques can be adapted to incorporate thermal fluctuations.

1.1. Fluctuating hydrodynamics approach

Owing to the perpetual miniaturization of engineered systems, the smallest scale of interest for engineers and scien-
tists has been continuously shrinking, leading to the emergence of nanometric devices and a growing curiosity into the 
fundamental properties of nanofluidic systems [1]. This trend has brought various exciting perspectives and novel ideas to 
the scientific community, including bioengineered kinesin-microtubule systems [42], nanofabricated devices for biomolecule 
applications [46], nano heat transport technologies [48,66], brain-on-a-chip platforms [30], and micro-sensing devices [54], 
to name but a few. These systems display exotic behaviors and acquire unique features because their characteristic length 
scales are small, for example, comparable to the Debye length, the size of biomolecules, or even the slip length [2].

In particular, since the characteristic length and time scales of the systems investigated are no longer widely separated 
from those of the underlying molecular systems, the validity of any deterministic continuum models is questionable and 
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should be investigated. Surprisingly, experimental [18,31,53,41,44,11], theoretical [16], and numerical [33,61,15,40] studies 
have found that the Navier–Stokes equations remain largely valid down to a few nanometers. Specifically, the classical hy-
drodynamics equations can predict the average nanofluidics behavior near the equilibrium or in simple steady states even at 
the nanometer scale. However, thermal fluctuations appearing in the instantaneous continuum fields are no longer negligible 
as the system size becomes smaller. When these fluctuations interact with nonlinearity in the system, the entire dynamics 
of the fluid system may not be correctly captured by the deterministic continuum description. For example, in the giant 
fluctuation experiment in space [63,62], concentration fluctuations have been observed to grow to the macroscale (i.e. sizes 
ranging up to millimeters and relaxation times as large as hundreds of seconds) under the presence of the concentration 
gradient due to the coupling with random advection. Therefore, for a complete and accurate representation of nanofluidic 
and sub-nanofluidic systems, thermal fluctuations must be accounted for.

The use of stochastic partial differential equations (SPDEs) to describe fluid dynamics dates back to Landau and Lif-
shitz [39]. They proposed to incorporate stochastic fluxes to each dissipative process (e.g. momentum diffusion) in the 
Navier–Stokes equations to correctly model the effects of thermal fluctuations. This fluctuating hydrodynamics (FHD) ap-
proach has been successfully applied to describe various phenomena induced by hydrodynamic fluctuations. Until significant 
progress in the computational FHD approach has been made for the past two decades (see below), most accomplishments of 
the FHD theory were made by analytical methods [49]. While analytical approaches have provided insightful explanations, 
they are mostly limited to simple nonequilibrium situations and moreover, they rely on several assumptions (e.g. lineariza-
tion and periodic boundary conditions). We note that stochastic terms can also be added to the deterministic fluid equations 
in the context of uncertainty quantification [45,65] to represent a large variety of noisy contributions (e.g. uncertainty on 
the boundary conditions [43]).

As mentioned above, significant progress in the computational FHD approach has been made for the past two decades. 
Here we focus on the PDE-based (as opposed to particle-based) approaches for homogeneous fluids. The Landau–Lifshitz 
Navier–Stokes equations (i.e. compressible FHD equations) were numerically solved for the one-species [20,12] and binary 
mixture [13] cases as well as the multi-species case [8], which was extended to include stochastic reactions [14]. The in-
compressible FHD formulation [9] was extended to quasi-incompressible fluids by the low Mach number formulation for 
the binary mixture [24,47] and multi-species cases [23]. The quasi-incompressible case was extended to include stochas-
tic reactions [36] as well as charges (i.e. electrolyte ions) [51,25]. To construct and analyze numerical schemes for FHD 
equations, various advanced deterministic PDE and computational fluid dynamics (CFD) techniques have been applied and 
extended. Spatial discretization based on the finite-volume approach and the stochastic version of the method of lines were 
introduced, and the structure factor analysis technique was developed for the systematic construction of stochastic nu-
merical methods [26]. For (quasi-)incompressible FHD equations, staggered spatial discretization schemes (i.e. using a grid 
with staggered momenta) were developed [9,64]. In addition, to solve the stochastic Stokes problem, which is a saddle-
point linear system, using the generalized minimal residual method (GMRES), an efficient variable-coefficient finite-volume 
Stokes solver was developed [17]. Several time integrators for FHD equations (e.g. semi-implicit schemes [47]) were also 
constructed and analyzed [22]. While it is not possible to give a complete summary of applications and extensions of the 
FHD approach here, we note that the FHD approach has been applied to reaction-diffusion systems [3,5,35] and coupled 
to kinetic Monte Carlo [55] and molecular dynamics [64]. Hydrodynamic couplings between microstructures or ions were 
also considered using direct numerical simulations [56], the stochastic Eulerian-Lagrangian method [4,5,67,58], the boundary 
integral formulation [10], and the immersed boundary approach [7,6,38].

1.2. Projection method

The projection method [19] uses the Hodge decomposition to decouple the fluid equations and update the solution in two 
steps. First, the momentum contributions are used to advance the velocity field, which is then projected on the divergence-
free space to enforce the incompressibility condition and recover the pressure field. Owing to this decoupling, the projection 
method alleviates the need for constructing and solving a monolithic system containing the coupled hydrodynamic equations 
by forming and solving two smaller systems. Using traditional data structures and discretization strategies [32], one can 
guarantee that these systems are symmetric positive definite and therefore can efficiently solve them using classical iterative 
methods, which can be accelerated using parallel architectures [29]. On periodic domains, particularly in the context of FHD 
calculations [5,7], the projection operator can be efficiently computed using fast Fourier transforms. However, when physical 
boundary conditions such as the no-slip boundary condition are used, it is well known that decoupling causes errors near 
the boundaries [27,28]. To avoid this issue, (semi-)implicit schemes for solving the incompressible FHD equations have been 
developed mostly by solving the coupled system [47] (note, however, that the projection approach is still employed as a 
preconditioner [17]). Nevertheless, since the computational advantage of using the projection method in FHD simulations 
is expected to be significant, particularly for large-scale simulations, we propose a projection-based method with iterative 
boundary corrections and perform a systematic numerical analysis based on the equilibrium structure factor.

Analytic structure factor analysis studies for incompressible FHD equations on staggered grids with non-periodic bound-
ary conditions have been limited (see Appendix B of Ref. [9]). Using the static structure factor for the linearized FHD 
equations in equilibrium, we develop a semi-analytic approach to investigate projection-based methods. While we present 
our projection method for the linearized FHD equations in equilibrium for the sake of a clear presentation and analysis, 
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this method can be used to solve incompressible FHD equations that include the advection term and are coupled with 
concentrations in a nonequilibrium setting. To demonstrate this, we present giant fluctuation simulation results.

The rest of the present paper is organized as follows. We start in section 2 by introducing the stochastic incompressible 
Stokes equation and its spatial discretization on uniform staggered grids. In section 3, we introduce the steady-state covari-
ance and static structure factor that will be used to analyze our numerical schemes. Our projection method is presented in 
section 4, analyzed in section 5, and numerically validated in section 6. In section 7, we employ our method to simulate 
giant fluctuations. We conclude in section 8.

2. Linearized fluctuating hydrodynamic equations

We introduce here an SPDE for the velocity field of an incompressible fluid and discuss its spatial and temporal dis-
cretizations. We consider the equilibrium case, where the SPDE can be linearized. The resulting stochastic incompressible 
Stokes equation is presented in section 2.1. Its spatial discretization based on the finite-volume approach is described in 
section 2.2. As an example of a numerical scheme that does not use the projection method approach, a temporal integration 
scheme based on the Crank–Nicolson approximation is given in section 2.3.

2.1. Continuum equation

The fluctuating behavior of an incompressible fluid in equilibrium can be modeled by the following FHD equations:

ρ
∂u

∂t
+ ρu · ∇u = μ�u − ∇π + √

2kBTμ∇ · �, (1a)

∇ · u = 0, (1b)

where u(r, t) and π(r, t) denote respectively the velocity and pressure fields, ρ and T are respectively the mass density 
and temperature of the fluid and are taken as constant, kB is the Boltzmann constant, and μ is the dynamic viscosity. The 
tensor field 

√
2kBTμ� denotes the stochastic momentum flux.

When velocity fluctuations can be assumed to be small, the self-advected term u · ∇u, which is of second order in u, 
can be neglected (see e.g. [58] for in-depth analysis). Under this assumption, using the kinematic viscosity ν = μ/ρ and the 
orthogonal projection P onto the space of divergence-free velocity fields, we linearize equation (1) as

∂u

∂t
= P

[
ν�u +

√
2kBTν

ρ
∇ ·W

]
. (2)

Here, we assume that W is a spatiotemporal Gaussian white noise tensor field with independent components having 
covariance

〈Wi j(r, t)Wi′ j′(r′, t′)〉 = δii′δ j j′δ(r − r′)δ(t − t′). (3)

In principle, the symmetrized form (i.e. � = 1√
2
(W +W T ) should have been used. However, what matters in the Fokker–

Planck description is the covariance of the projected stochastic forcing P [∇ · �] (see (4) below) and the use of the 
symmetrized form is not necessary for incompressible flow with constant viscosity [9,22]. We also assume that the ini-
tial velocity u(r, 0) is divergence-free, i.e. Pu(0) = u(0). This assumption implies that u(r, t) remains to be divergence-free 
for all t ≥ 0.

In this paper, we consider the periodic boundary condition and the no-slip boundary condition (i.e. u = 0 on the bound-
ary). For both boundary conditions, the divergence operator D and gradient operator G satisfy D∗ = −G , where star denotes 
an adjoint of a matrix or linear operator. Hence, the vector Laplacian operator L = DG is self-adjoint, i.e. L∗ = L, and the 
projection operator P = I − G(DG)−1D with I being the identity operator is indeed an orthogonal projection, i.e. P2 = P
and P∗ =P . In addition, using 〈W(t)W∗(t′)〉 = δ(t −t′)I and L = −DD∗ , the covariance of the projected stochastic forcing 
is expressed as [9]

〈(PDW(t))(PDW(t′))∗〉 = −δ(t − t′)PLP. (4)

Therefore, it can be seen in (2) that the stochastic term is linked to the viscous term [39] by the fluctuation-dissipation 
balance [37].
3
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Fig. 1. Data layout for the two-dimensional periodic case. The velocity components (Ux and U y ) are stored at the faces ( and respectively). The pressure 
and Hodge variable components are stored at the cell centers ( ). The diagonal components of the stochastic stress (W xx and W yy ) are stored at the cell 
centers, whereas the off-diagonal components (W xy and W yx) are stored at the nodes ( ). All discrete differential operators are defined using the standard 
second-order centered finite differences.

2.2. Spatial discretization

To spatially discretize the stochastic incompressible Stokes equation (2), we employ the staggered-grid discretization on 
uniform mesh developed in [9]. While we consider the two-dimensional case in this paper for clarity, the three-dimensional 
case is essentially the same. We denote the spatially discretized equation as

dU

dt
= P

[
νLU +

√
2kBTν

ρ�V
DW W

]
, (5)

where U and W are respectively the discretizations of u and the stochastic tensor field W ; P and L are respectively the 
discrete projection and vector Laplacian operators; DW is the discrete divergence operator acting on W ; and �V = �x ×�y
is the volume of a cell. The data layout and discrete operators are illustrated in Fig. 1 and described next. In section 2.2.1, 
we first describe variables and operators, assuming periodic boundary conditions. In section 2.2.2, we explain modifications 
needed to impose the no-slip boundary condition.

2.2.1. Variables and operators
According to the marker-and-cell layout [34], the velocity components (Ux and U y) are stored at the faces, whereas the 

pressure and Hodge variable (denoted as �) components are stored at the cell centers. The discrete divergence operator 
D and discrete gradient operator G are defined as follows. At a cell center c, the divergence of the velocity, (DU )c , is 
constructed using the second-order centered finite difference. At face f , the Hodge gradient (G�) f is also computed using 
the second-order centered finite difference. With these definitions, desired relations that hold in the continuous case are 
still valid. First, the discrete gradient and divergence operators obey the duality relation D∗ = −G . From the definition of 
the discrete projection operator P = I − G(DG)−1 D , it can be easily seen that P is indeed an orthogonal projection, i.e.
P 2 = P and P∗ = P .1 The discrete Laplacian of the velocity at face f , denoted by (LU ) f , is computed using the standard 
second-order 5-point stencil.

The diagonal components of the stochastic stress tensor (W xx and W yy) are stored at the cell centers, while the off-
diagonal components (W xy and W yx) are stored at the nodes of the mesh (see Fig. 1). These stochastic terms are constructed 
as follows. Since each component of the stochastic noise Wi j is a distribution, it cannot simply be evaluated at any given 
point and must be interpreted in the integral form. That is, its discretization W ij is constructed as the spatial average over 
the volume V ij of size �V , centered where W ij is stored:

W ij(t) = 1

�V

∫
V ij

Wi j(r, t)dr. (6)

Hence, each component W ij defined at each cell center or node is an independent Gaussian white noise process with 
variance �V −1. To explicitly express the dependence of the magnitude of fluctuations on �V , we introduce normalized 
stochastic processes W (t) = W (t)/

√
�V . The covariance of W (t) is expressed as

〈W (t)W (t′)〉 = CW δ(t − t′). (7)

1 The duality relation between the discrete gradient and divergence operators is essential for the projection property and ultimately for the stability of 
the method. The relation is easily satisfied here because the grid is uniform. On adaptive grids, it requires careful discretization (see e.g. [32,59,60]) or 
adequate function basis selection (see e.g. [52]).
4
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Fig. 2. Data layout for the two-dimensional no-slip boundary case around the left-bottom corner. Velocity components contained in U are denoted by filled 
triangles, whereas empty triangles depict velocity components belonging to ghost cells. Normal velocity components at the boundaries, set to be zero, are 
shown as empty circles. Empty squares denote tangential velocity components prescribed at the boundaries.

While CW is simply the identity matrix in the periodic boundary case, we will see that CW needs to be modified for the 
no-slip boundary condition.

One of the crucial issues for spatial discretization is that the discrete system should reproduce a correct equilibrium 
distribution that is expected from the continuous case. Since the fluctuation-dissipation balance principle dictates the equi-
librium in the continuous case, it is required that its discrete version should be satisfied when a spatial discretization is 
constructed [7,50]. In other words, the discrete fluctuation-dissipation balance dictates the choice of DW . Since DW is a dis-
cretization of a divergence operator, it is natural to base its construct on D , keeping in mind that D acting on U is defined at 
the cell centers, while DW acting on W is defined at the faces. Using the second-order centered finite differences, the dis-
crete stochastic divergence DW is constructed. Then it can easily be seen that the following discrete fluctuation-dissipation 
balance

L = L∗ = −DW CW D∗
W (8)

is satisfied. The properties of the discretized operators L and P are important for computing the steady-state covariance in 
sections 3 and 5.

2.2.2. Boundary conditions
In the presence of non-periodic boundaries, the discrete operators defined above need to be modified near the bound-

aries. For the no-slip boundary condition, the velocity component normal to the boundary is zero at the boundary. Hence, 
the velocity components at faces on the boundary are set to zero and not included as independent degrees of freedom (see 
Fig. 2). Then, no values in cells outside the physical domain (i.e. ghost cells) are needed to define D . For the projection step, 
this zero normal velocity condition implies that the homogeneous Neumann boundary condition should be chosen for the 
Hodge variable [27]. Hence, ghost cell values for the Hodge variable are set to be equal to the values in the neighboring 
interior cells, and the resulting G operator satisfies the duality relation with D [9]. Therefore, P 2 = P and P∗ = P continue 
to hold for P = I − G(DG)−1 D .

To define the discrete vector Laplacian L, ghost cells are needed for parallel velocity components that are half a grid 
spacing away from the boundary (see Fig. 2). When the tangential velocity is prescribed at the nodes on the boundary, the 
corresponding ghost cell value is determined by the linear extrapolation [9]. Then, L can be constructed using the 5-point 
stencil, and LU can be expressed as

LU = L0U + BŪ , (9)

where Ū denotes the prescribed tangential velocity. Since we consider the homogeneous Dirichlet boundary condition (i.e.
Ū = 0), LU becomes L0U , and thus B does not appear. However, it is noted that the intermediate velocity appearing in a 
projection method may not satisfy the prescribed boundary condition. To develop and analyze our numerical schemes, we 
will use this representation for nonzero tangential velocities. We note that the size of B depends on how Ū is represented. 
For the data layout of Ū , we use the same one as U , where each tangential velocity prescribed on the boundaries (empty 
squares in Fig. 2) is stored at the location of the face (the closest filled triangle) half a grid spacing inward from the actual 
location of the prescribed velocity on the boundaries. In this setting, the size of B is identical to that of L0.

Finally, since L is modified, CW also needs to be modified to satisfy the discrete fluctuation-dissipation balance (8). This 
can be achieved by setting the variance of stochastic fluxes W ij (affecting the tangential velocity components) at nodes on 
the boundary to twice that used for the interior fluxes [9]. In other words, CW is still a diagonal matrix with most diagonal 
elements being one but diagonal elements corresponding to those nodes on the boundary become two.
5
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2.3. Temporal discretization

Following [22], we discretize (5) in time as

Un+1 = P

[
Un + ν�tL

(
Un + Un+1

2

)
+

√
2kBTν�t

ρ�V
DW W n

]
. (10)

Here, superscripts denote timesteps. Since the covariance of 
∫ tn+�t

tn W (t)dt is proportional to �t , the collection of the 
Gaussian white noise processes W (t) has been replaced by 

√
�tW n , where each component of W n defined at each spatial 

point at each time step is an independent standard normal random variate. As explained in section 2.2.2, the variance of 
W n needs to be doubled on the no-slip boundary to satisfy the discrete fluctuation-dissipation balance (8).

This scheme is obtained from the Crank–Nicolson approximation with the assumption P Un = Un . Note that the resulting 
Un+1 also stays in the projected space. As explained in section 3.2, this scheme does not introduce any time discretiza-
tion error in the equilibrium covariance (or equivalently, the equilibrium structure factor) [22]. In order to implement this 
scheme, however, a linear solver [17] for the following coupled system is required [22]:(

I − 1

2
ν�tL

)
Un+1 + �tG	n+ 1

2 =
(

I + 1

2
ν�tL

)
Un +

√
2kBTν�t

ρ�V
DW W n, (11a)

DUn+1 = 0. (11b)

The main goal of this paper is to solve (10) not using a linear solver for the saddle-point system (11) but using a projection 
method.

3. Steady-state covariance and static structure factor

In this section, we introduce quantities that characterize the behavior of fluctuations in the equilibrium Stokes system 
and corresponding discretized systems. Since the mean velocity is zero at equilibrium, we focus on the second moment. The 
steady-state covariance measures the covariance of velocities at two physical locations for a system in equilibrium.2 Since 
the velocity fields are represented by u(t), U (t), and Un for the continuum, spatially discretized, and fully discretized cases, 
respectively, the corresponding steady-state covariances are defined as

Continuum R = lim
t→∞〈u(t)u∗(t)〉, (12a)

Spatially discretized R�x = lim
t→∞〈U (t)U∗(t)〉, (12b)

Fully discretized R�x,�t = lim
n→∞〈Un(Un)∗〉. (12c)

For each case, the static structure factor is defined as the Fourier transform of the steady-state covariance. We note that, for 
the no-slip boundary case, the velocity field is mirrored and the resulting field in the extended domain is used (see Fig. B.1) 
since the velocity field in the original domain is not periodic.

These quantities can be used to investigate the accuracy of spatial discretization and numerical schemes. In section 5, 
we analytically investigate our projection-method-based schemes by computing the steady-state covariance. In section 6, we 
numerically investigate those schemes by computing the static structure factor. In this section, we derive the main analytic 
results for the continuum and spatially discretized cases (i.e. R and R�x) as well as the Crank–Nicolson scheme (10) (i.e.
RCN

�x,�t ). While those results are known [9], we present them along with derivations, as both aspects are essential for the 
analysis of our projection-method-based schemes. In Appendix A, we develop a systematic procedure to construct and solve 
linear systems from which the steady-state covariance can be uniquely determined.

3.1. Continuum and spatially discretized cases

Using the result of Appendix A, the steady-state covariance R of the continuum equation (2) is given as the unique 
solution of

νPLR+ νRLP = −2kBTν

ρ
PDD∗P, (13a)

PR = RP = R. (13b)

2 One can also consider time-correlation functions, i.e. C(τ ) = limt→∞〈u(t)u∗(t + τ )〉, and their space-time spectra, so-called dynamic structure fac-
tor [26]. The dynamic structure factor gives more detailed information on the time evolution of the system. In the present paper, however, we focus the 
(semi-)analytic analysis of the static structure factor.
6
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The physical intuition that the equilibrium covariance must be proportional to the projection operator, suggests that

R = kBT

ρ
P. (14)

Using the properties of P and L mentioned in section 2.1 (i.e. P∗ = P , P2 = P , L∗ = L, L = −DD∗), it can be easily 
shown that (14) indeed satisfies (13).

The static structure factor is obtained from the Fourier transform of the steady-state covariance (with normalization [26]
with respect to the volume of the system V ):

S = V 〈̂u(t )̂u∗(t)〉 = kBT

ρ
P̂, (15)

where a hat denotes the Fourier transform. For the periodic boundary case, the structure factor has a compact form

S(k) = kBT

ρ

[
I − kk∗

k · k

]
. (16)

It is easy to see from (16) that all divergence-free modes have the same spectral power at equilibrium in the periodic 
boundary case. In fact, we note that (15) implies the same conclusion for a general case where aforementioned properties 
of P and L hold [9].

For the spatially discretized equation (5), a similar argument can be made since the discrete operators P and L are 
constructed so that they preserve all aforementioned properties of P and L. Because in this case the fluctuation-dissipation 
balance is given in the form of (8), the linear system that uniquely determines R�x is

ν P LR�x + νR�xL P = −2kBTν

ρ�V
P DW CW D∗

W P (17a)

P R�x = R�x P = R�x (17b)

and, similarly to the continuum steady-state expression (14), the discrete steady-state covariance is given as

R�x = kBT

ρ�V
P . (18)

3.2. Crank–Nicolson scheme

Introducing A± = I ± 1
2 ν�t P L, the Crank–Nicolson scheme (10) can be written as

Un+1 = A−1− A+Un +
√

2kBTν�t

ρ�V
A−1− P DW W n. (19)

Hence, using the result of Appendix A, the steady-state covariance RCN
�x,�t = 〈Un(Un)∗〉 is given as the unique solution of

(A−1− A+)RCN
�x,�t

(
A−1− A+

)∗ − RCN
�x,�t = −2kBTν�t

ρ�V
(A−1− P DW )CW

(
A−1− P DW

)∗
, (20a)

P RCN
�x,�t = RCN

�x,�t P = RCN
�x,�t . (20b)

By observing that

A+ P A∗+ − A− P A∗− = 2ν�t P L P , (21)

and using the discrete fluctuation-dissipation balance (8), one can show that

RCN
�x,�t = kBT

ρ�V
P (22)

satisfies (20). The results (18) and (22) show that the Crank–Nicolson scheme does not introduce any temporal integration 
errors to the steady-state covariance.

4. Construction of projection methods

We present here how our projection methods are constructed to compute the numerical solution of the (spatially 
discretized) stochastic incompressible Stokes equation (5). The resulting schemes for the periodic boundary and no-slip 
boundary cases are given in Schemes 1 and 2, respectively. Our projection-method-based schemes solve the Crank–Nicolson 
update (10) using the operator splitting approach. In section 4.1, we consider the periodic boundary case, where the simple 
splitting exactly solves (10). In section 4.2, we first discuss issues that arise when the simple splitting is applied to the 
no-slip case and introduce the idea of iterative boundary corrections. In section 4.3, we present our iterative scheme for the 
no-slip case.
7
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Scheme 1 Projection method for the periodic boundary case.

Given velocity U n at timestep tn , the velocity U n+1 at the next timestep is updated via Ũ as follows.

Ũ = Un + ν�tL

(
Un + Ũ

2

)
+

√
2kB Tν�t

ρ�V
DW W n, (23)

DG� = DŨ , (24)

Un+1 = Ũ − G�. (25)

Scheme 2 K -Iteration scheme for the no-slip boundary case (1 ≤ K < ∞).
Given velocity U n at timestep tn , the velocity U n+1 at the next timestep is updated as follows.

1. For k = 1, 2, · · · , K :
• Compute Ũk using �k−1. For k = 1, use �0 = 0.

Ũk = Un + ν�tL0

(
Un + Ũk

2

)
+

√
2kB Tν�t

ρ�V
DW W n + 1

2
ν�t BG�k−1. (26)

• Compute �k .

DG�k = DŨk. (27)

2. Compute U n+1 from the projection of Ũ K :

Un+1 = Ũ K − G�K . (28)

4.1. Periodic boundary case

For periodic boundary conditions, the Crank–Nicolson update (10) can be exactly implemented by the simple projection-
based time-splitting given in Scheme 1. Since both Ũ and � obey periodic boundary conditions, Un+1 also satisfies periodic 
boundary conditions.

Using the fact that L and P commute in the periodic boundary case, we can show that Scheme 1 does not introduce any 
splitting error to solve (10). We first observe that Scheme 1 can be written as

Un+1 = P Ũ = P

[
Un + ν�tL

(
Un + Ũ

2

)
+

√
2kBTν�t

ρ�V
DW W n

]
. (29)

Using the commutativity of L and P , we have P LŨ = P P LŨ = P L P Ũ = P LUn+1 and thus see that (29) is identical to (10).

4.2. No-slip boundary case: hypothetical scheme

When Scheme 1 is applied to the no-slip boundary case with L replaced by L0 (see (9)), it does not exactly solve (10). 
Since Ũ is solved with the homogeneous Dirichlet boundary condition and � is solved with the homogeneous Neumann 
boundary condition, the resulting Un+1 = Ũ − G� does not necessarily satisfy the homogeneous Dirichlet boundary condi-
tion. While its normal component is zero, its parallel component is not guaranteed to be zero.

If we could impose the Dirichlet boundary condition Ũ = G� to Ũ , the resulting Un+1 = Ũ − G� would satisfy the ho-
mogeneous Dirichlet boundary condition. By expressing the vector Laplacian operator L with a specified Dirichlet boundary 
condition in terms of L0 and B (see (9)), this procedure can be written as

Ũ = Un + ν�tL0

(
Un + Ũ

2

)
+

√
2kBTν�t

ρ�V
DW W n + 1

2
ν�t BG�, (30a)

DG� = DŨ , (30b)

Un+1 = Ũ − G�. (30c)

However, the first two steps in this scheme cannot be sequentially implemented because G� is not available when Ũ is 
computed in (30a) and only available after (30b). Nonetheless, this hypothetical scheme is worth investigating because it 
exactly solves the Crank–Nicolson update (10).
8
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We show that (30) is equivalent to (10) by using the commutativity of L0 + B and P , i.e.

P (L0 + B) = (L0 + B)P . (31)

For the proof of (31), see Appendix B. By applying P to (30a) and using Un+1 = P Ũ and G� = Q Ũ where Q = I − P , we 
obtain

Un+1 − 1

2
ν�t

[
P L0Ũ + P B Q Ũ

]
= P

[
Un + 1

2
ν�tL0Un +

√
2kBTν�t

ρ�V
DW W n

]
. (32)

Since it can be shown using (31) that

P L0Ũ = P P L0Ũ = P
(

L0 P Ũ + B P Ũ − P BŨ
)

= P L0Un+1 − P B Q Ũ , (33)

(32) becomes identical to (10) and therefore the hypothetical scheme (30) would not introduce any splitting error.

4.3. No-slip boundary case: K -iteration scheme (1 ≤ K < ∞)

To construct implementable schemes based on the hypothetical scheme (30), we first observe that Ũ satisfies the follow-
ing fixed-point problem:

Ũ =
(

I − 1

2
ν�tL0

)−1
[(

I + 1

2
ν�tL0

)
Un + 1

2
ν�t B Q Ũ +

√
2kBTν�t

ρ�V
DW W n

]
≡ �(Ũ ). (34)

We then construct the following iteration procedure of computing Ũ1, �1, Ũ2, �2, · · · to obtain the convergent solution 
Ũ∞ = limk→∞ Ũk and �∞ = limk→∞ �k:

Ũk = Un + ν�tL0

(
Un + Ũk

2

)
+

√
2kBTν�t

ρ�V
DW W n + 1

2
ν�t BG�k−1, (35a)

DG�k = DŨk, (35b)

where we assume �0 = 0. Since G�k−1 = Q Ũk−1, it is easy to see that, if (35) converges, the limit Ũ∞ is the solution of 
the fixed-point problem (34) and, equivalently, the solution Ũ of (30a) and (30b) in the hypothetical scheme. Therefore, the 
no-slip boundary solution for the next timestep is obtained as Un+1 = Ũ∞ − G�∞ . We also note that the last term in (35a)
is the boundary condition correction using Ũk−1.

Since the iteration (35) can be written as Ũk = MŨk−1 + c, where

M = 1

2
ν�t

(
I − 1

2
ν�tL0

)−1

B Q , (36)

the convergence criterion is that the spectral radius ρ(M) of M is smaller than 1. The rate of convergence r (i.e. ‖Ũk − Ũ‖ ∼
rk) is given as

r = ρ(M). (37)

Finally, by specifying a finite number K of iterations (K = 1, 2, · · · ), we obtain Scheme 2, which we call the K -iteration 
scheme. Note that the 1-iteration scheme corresponds to the projection method where no boundary correction is considered. 
Alternatively, one can impose a convergence criterion such as

‖�k−1 − �k‖
‖�k‖ ≤ ε. (38)

5. Steady-state covariance error analysis

In this section, we analyze the accuracy of the K -iteration scheme (see Scheme 2) by investigating the resulting steady-
state covariance matrix R(K )

�x,�t = limn→∞〈Un(Un)∗〉. While the same results can be obtained using the structure factor (note 
that the structure factor is basically the Fourier transform of the steady-state covariance), we use the steady-state covariance 
in this section; we analyze the structure factor in section 6, where numerical validation results are presented.

As shown in section 4.2, if infinite iterations were performed each timestep, the resulting ∞-iteration projection method 
would give the identical temporal update as the Crank–Nicolson scheme and thus its steady-state covariance would not 
have any temporal integration errors (i.e. R(∞) = R�x). When a finite number K of iterations are used, the new state 
�x,�t

9
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Un+1 = P Ũ K is computed from inexact Ũ K , causing temporal integration errors in R(K )
�x,�t . The main theoretical result of 

this section is that the temporal integration error of the K -iteration scheme in the steady-state covariance is of the order of 
�t K :

R(K )
�x,�t − R�x = O (�t K ). (39)

In section 5.1, we show that temporal integration errors committed at each timestep due to a finite number of boundary 
corrections are O (�t K ):

Ũ K − Ũ∞ = O (�t K ). (40)

We note that this result strongly supports (39). In section 5.2, we confirm (39) using a semi-analytic approach. That is, 
by noting that R(K )

�x,�t can be determined as the unique solution of a linear system described in Appendix A, we directly 
compute it for specific values of K and �t for some small-sized systems by solving the linear system.

5.1. Analytic results

To show (40), we first derive expressions of AK and B K so that the temporal update of the K -iteration scheme can be 
expressed in the compact form

Un+1 = P Ũ K = P
[

AK Un + B K W n] . (41)

By introducing A± = I ± 1
2 ν�tL0, we express Ũ1 as

Ũ1 = A−1−

[
A+Un +

√
2kBTν�t

ρ�V
DW W n

]
. (42)

Since G�k = Q Ũk , where Q = I − P , we recursively express Ũk for k = 2, 3, . . . , and obtain the following general expression:

Ũ K = A−1−

[
K−1∑
k=0

(
1

2
ν�t B Q A−1−

)k
][

A+Un +
√

2kBTν�t

ρ�V
DW W n

]
. (43)

Using the identity A−1−
[∑K−1

k=0

(
1
2 ν�t B Q A−1−

)k
]

=
[∑K−1

k=0

(
1
2 ν�t A−1− B Q

)k
]

A−1− , we have an alternative expression for 

Ũ K , which gives the following expressions for AK and B K in the temporal update (41):

AK =
[

K−1∑
k=0

(
1

2
ν�t A−1− B Q

)k
]

A−1− A+, B K =
√

2kBTν�t

ρ�V

[
K−1∑
k=0

(
1

2
ν�t A−1− B Q

)k
]

A−1− DW . (44)

Using the well-known result for the geometric series of a matrix, we finally obtain

Ũ K =
[

I −
(

1

2
ν�t A−1− B Q

)K
]

Ũ∞ (45)

and thus (40).
We note that no notion of stochastic accuracy (e.g. weak vs. strong) is required to interpret (40) or (45) since Un and W n

are fixed during the boundary correction iterations. However, to define the order of temporal integration errors committed at 
each timestep, a notion of stochastic order of convergence is needed. In this paper, instead of analyzing the weak or strong 
orders of accuracy of our schemes, we focus on the convergence of the resulting steady-state covariance (and equivalently, 
the structure factor). For discussion of stochastic accuracy of FHD schemes, we refer the reader to [22].

5.2. Semi-analytic results

As described in Appendix A, one can derive a linear system ((A.8) and (A.11), or equivalently, (A.15)) that uniquely 
determines the covariance matrix, using the definition of discretized operators and the expressions of AK and B K (see 
(41) and (44)). However, the solution cannot be given explicitly. Hence, we construct the linear system for a spatially 
discretized system of a specific size and compute its solution numerically. Although the solution has numerical errors 
due to floating-point arithmetic, these errors can be controllable and kept small comparable to machine precision. In this 
sense, this approach gives semi-analytic results, which should not be confused with stochastic simulation results (given in 
section 6) containing sampling errors.
10
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Fig. 3. Errors in R(K )
�x,�t for K = 2 and β = 0.1. In panel (a), each pixel represents a component of the error matrix E and its shade represents the value of 

|E f , f ′ |. In panel (b), the physical domain of the system is shown and at each face f the magnitude of the diagonal component E f , f (normalized by the 
maximum error εmax) is shown by the color map.

We present results obtained from a two-dimensional system with 10 × 10 cells, where no-slip boundary conditions are 
imposed on all boundaries. We note that the choice of the number of cells is arbitrary, and the conclusion should not change 
for moderate to large system sizes (roughly speaking, N � 8) as we justify below. However, we point out that semi-analytic 
results for a larger system quickly become computationally infeasible. This is because the size of the extended linear system 
(A.15) has a matrix with (N − 1)4 × (N − 1)4 components for a system domain with N × N cells. We assume �x = �y and 
define the dimensionless number

β = ν�t

�x2
(46)

and investigate how the errors change as the value of β varies. For faces f and f ′ , we define the error at the ( f , f ′)-
component as

E f , f ′ = �V
(

R(K )
�x,�t

)
f , f ′ −

kBT

ρ
P f , f ′ , (47)

and define the maximum error as

εmax = max
( f , f ′)

|E f , f ′ |. (48)

Since R(K )
�x,�t is linearly proportional to kBT /ρ , we simply set kB T /ρ = 1.

Fig. 3 shows how the errors in the steady-state covariance matrix R(K )
�x,�t are distributed for the 2-iteration scheme with 

β = 0.1. In panel (a), the error matrix E is displayed as a grayscale image where the brightness of a pixel represents the 
magnitude of each component |E f , f ′ |. The image shows that errors are dominant along the diagonal (i.e. for f = f ′). This 
is because diagonal components of the steady-state covariance matrix tend to be larger than off-diagonal components. In 
panel (b), the magnitude of each diagonal component |E f , f | is shown at the corresponding face f in the physical domain of 
the system. The image indicates that errors are dominant near the boundaries. This observation is consistent with the fact 
that the inexact boundary correction causes temporal integration errors of the K -iteration scheme due to a finite number 
of iterations. We note that the essentially same error pattern is observed for different system sizes. For N × N cells with 
8 ≤ N ≤ 13, the error distributions at the corners of the domain and at the sides of the domain remain the same. Moreover, 
compared with the maximum error εmax for N = 10, the corresponding values for N = 11, 12, 13 have negligible deviations 
(� 0.2%). Hence, we expect our observations for the 10 × 10 system to remain valid for larger systems.

In Fig. 4, we show the dependence of the maximum error εmax on the number of iterations K and the stability condition 
number β . Fig. 4a demonstrates that the steady-state covariance matrix obtained by the K -iteration scheme has the O (�t K )

accuracy (see (39)). The semi-log plot of εmax versus K in Fig. 4b indicates that for a given value of �t the error decreases 
exponentially with respect to K . Moreover, we confirm that the errors asymptotically decay with the rate of convergence r
given in (37) for large values of K .

6. Numerical validations

In this section, we present numerical validation results of our K -iteration scheme. We solve the two-dimensional 
stochastic Stokes equation (2) with no-slip boundary conditions using the K -iteration scheme and calculate the equilibrium 
11
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Fig. 4. Dependence of the maximum error εmax of R(K )
�x,�t on the number of iterations K and the stability condition number β = ν�t/�x2. In panel (a), for 

K = 1, 2, 3, 4, εmax is plotted versus β in the log-log scales. Guide lines for integer slopes are shown for small β values. In panel (b), εmax is plotted versus 
K for various values of β in the semi-log scales. The solid lines indicate the expected asymptotic decays given as (const)rK , where r is estimated from the 
spectral radius of the iteration matrix, see (37).

structure factors SUx
�x,�t and S

U y
�x,�t using the time trajectories of Un = (Ux(n�t), U y(n�t)). We compare these numerical 

results with the exact results for the discretized system as well as the semi-analytical results for �t > 0 (available only for 
small systems).

We recall that the equilibrium structure factors are defined as

SUx
�x,�t = V lim

n→∞〈Ûx(n�t)Û∗
x (n�t)〉, S

U y
�x,�t = V lim

n→∞〈Û y(n�t)Û∗
y(n�t)〉, (49)

where V is the volume of the system and (Ûx(n�t), Û y(n�t)) is the Fourier transform of Un = (Ux(n�t), U y(n�t)). As 
mentioned in section 3, due to the no-slip boundary conditions, we consider the extended domain (see Fig. B.1) to define 
the Fourier modes. As a result, for a system with N × N cells, there are 2N × 2N Fourier modes and the Fourier spectrum 
is symmetric with respect to kx = 0 and ky = 0 (see Fig. 5 for the 12 × 12 case).

Using a simulated time trajectory, the equilibrium structure factors are calculated as follows. Since the procedure is ex-

actly the same for S
U y
�x,�t , we only explain the case of SUx

�x,�t . When the time trajectory is computed up to N2 timesteps, we 
compute the following time average to estimate the ensemble average 〈ÛxÛ∗

x 〉, where the first N1 timesteps are discarded 
to not include non-stationary data:

SUx
�x,�t ≈ V

N2 − N1

N2∑
n=N1+1

Ûx(n�t)Û∗
x (n�t). (50)

Hence, a sufficiently large value of N1 should be used to reduce the systematic error, whereas the value of N2 − N1 should 
be large enough to control the level of the statistical error. By the central limit theorem, the magnitude of the statistical 
error is asymptotically proportional to 1/

√
N2 − N1. The exact structure factor SUx

�x of the spatially discretized case can be 
computed using R�x given in (18). Similarly, the theoretical values of the numerical structure factor SUx

�x,�t , which one 
would obtain from (50) in the limits N1 → ∞ and N2 − N1 → ∞ can be computed using the semi-analytic result R(K )

�x,�t .

We present here the numerical structure factor results of SUx
�x,�t that were calculated using the 2-iteration scheme (i.e.

K = 2) for three different system sizes, 12 ×12, 16 ×16, and 32 ×32 cells. Parameter values, �x = �y = 1, β = ν�t/�x2 = 1, 
and ρ/kB T = 1, were used. The initial velocity field was set to zero and the trajectory was calculated up to N2 = 107

timesteps for the 12 × 12 and 16 × 16 cases and N2 = 2 × 106 for the 32 × 32 case. To compute the equilibrium structure 
factor, the first N1 = 106 timesteps were discarded.

Fig. 5 shows the numerical structure factor SUx
�x,�t for the smallest system size. Since the semi-analytic result of SUx

�x,�t

is available for this case, we compare the simulation error |SUx
�x,�t − SUx

�x| with the theoretically expected error (i.e. without 
statistical errors) for validation purposes. We see that the time integration error in the equilibrium structure factor due to 
inexact boundary corrections is reasonably small for rather large β = 1 even when one boundary correction is used per 
timestep. In fact, the plot of SUx

�x,�t is visually indistinguishable from that of the exact result SUx
�x (i.e. for �t → 0).

It is instructive to observe some features of SUx
�x . First, for the no-slip boundary and periodic boundary cases, their 

equilibrium structures are overall similar but different. For the periodic boundary case, SUx
�x is given as (see (16))

SUx
�x = kBT

ρ

k2
y

k2 + k2
, (51)
x y

12
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Fig. 5. The equilibrium structure factor SUx
�x,�t computed using the 2-iteration scheme (i.e. K = 2). The system has 12 × 12 cells and the stability condition 

number is β = ν�t/�x2 = 1. The left panel displays SUx
�x,�t obtained from trajectory calculation up to N2 = 107 timesteps with the first N1 = 106 timesteps 

discarded (see (50)). The middle panel displays its error |SUx
�x,�t − SUx

�x|, where SUx
�x is the exact result (i.e. for �t → 0). The right panel displays the expected 

error (i.e. without statistical errors) computed using the semi-analytic results.

Fig. 6. The equilibrium structure factors SUx
�x,�t computed for two system sizes, 16 ×16 (left) and 32 ×32 (right) cells with the same cell sizes �x = �y = 1, 

are shown in the top row. The results were obtained using the 2-iteration scheme with β = ν�t/�x2 = 1. The corresponding errors |SUx
�x,�t − SUx

�x| are 
shown in the bottom row. While the same values of N1 = 106 were used for both sizes, different values of N2, 107 for 16 × 16 and 2 × 106 for 32 × 32, 
were used. As a result, the level of statistical errors for 32 × 32 is higher.

and thus along a ray (i.e. ky = ckx) the values of SUx
�x do not change. However, our no-slip boundary case result shows that 

the values of SUx
�x slightly change along a ray for larger values of kx and ky . Second, we see that SUx

�x,�t becomes zero for 
the Fourier modes with kx = 0. This is because if Ux is independent of x, it must be zero due to the boundary condition. In 
addition, SUx

�x,�t also becomes zero for the Fourier modes with ky = 0 because these modes are omitted by the projection 
operator P .

Fig. 6 shows the results of the larger system sizes. As in the 12 ×12 case, the plots of SUx
�x,�t are visually indistinguishable 

from those of SUx
�x . As the number of cells increases, the plot of SUx

�x becomes similar to that of the continuum structure 
factor. The characteristic pattern observed in the error plot of the 12 × 12 case appears in the error plots of the larger 
systems. Due to the smaller value of N2 for the 32 × 32 case, the level of statistical errors is relatively significant in the 
error plot. However, even for this case, the level of statistical errors in the structure factor plot is completely negligible.
13



M. Mancini, M. Theillard and C. Kim Journal of Computational Physics 463 (2022) 111288
Fig. 7. Schematic description of the giant fluctuation phenomenon. When a concentration gradient is present in a fluid system in the absence of gravity, 
the concentration field exhibits long-ranged correlations along the directions perpendicular to the concentration gradient. As a result, diffusing fronts (i.e.
surfaces of constant concentration) become very rough. For a snapshot of diffusing fronts from our giant fluctuation simulation, see Fig. 10.

7. Simulations of giant fluctuations

In this section, we apply our projection method to simulate the phenomenon of giant fluctuations. As experimentally 
observed in space [63,62], random advection (due to thermal fluctuations) can induce long-ranged concentration fluctuations 
when coupled with a concentration gradient in a micro-gravity environment. Specifically, in the absence of gravity, the 
nonequilibrium enhancement in the structure factor of the concentration fluctuations exhibits a power-law divergence, 
Sc

neq(k) ∝ k−4, where k is the wavenumber. The theoretical explanation of the phenomenon [49] is regarded as one of the 
most significant accomplishments of the FHD approach. The incompressible computer simulation of the phenomenon was 
first performed in [9], where the velocity equation was solved using the saddle-point system. In this section, we simulate 
giant fluctuations with similar settings considered in [9]. While a careful and systematic investigation on the choice of 
spatial resolution for given physical parameter values would be in general required in an SPDE simulation study, we use 
simulation parameter values similar to the ones established in [9]. The goal of this section is to demonstrate that our 
projection method approach is readily applicable to the velocity equation coupled with the concentration equation and 
gives comparable results without the monolithic system.

7.1. Governing equations

Following [9], we consider a two-dimensional incompressible fluid system confined between two walls in the absence 
of gravity (see Fig. 7). The fluid is a dilute solution, where the concentrations at the walls are held fixed with slightly 
different values. As a result the mean concentration profile has a small concentration gradient. The governing equations for 
the velocity u and the mass fraction c of the solute are written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ν�u − ∇π +

√
2kBTν

ρ
∇ ·W v ,

∇ · u = 0,

∂c

∂t
+ u · ∇c = χ�c +

√
2c(1 − c)Mχ

ρ
∇ ·Wc,

(52)

where ρ is the constant density of the solution, ν is the kinematic viscosity of the solution, χ is the diffusivity of the solute 
in the solution, and M is the mass of a solute molecule. W v and Wc are independent spatiotemporal Gaussian white noise 
tensor fields. Note that we assume that viscous effects dominate inertial effects and omit the u · ∇u term. The size of the 
system domain is L × H . At the walls, Dirichlet boundary conditions are imposed for c: c = c0 ± δc at y = ±H/2, where 
c0 is the mean mass fraction and δc � c0. For the velocity, no-slip boundary conditions are imposed on the walls. Periodic 
boundary conditions are imposed for u and c in the horizontal direction.

7.2. Linear case

Due to the Dirichlet boundary conditions and the nonlinear advection term u · ∇c, analytic results for the structure 
factor Sc are limited for (52) [21]. However, the theoretical prediction of a power-law divergence Sc

neq(k) ∝ k−4 can be 
readily obtained for a linearized periodic system [49]. We first describe this system and summarize the analytic results, and 
then apply our numerical approach to the system and compare our numerical results with the analytic results for validation.

We linearize c around the mean concentration profile c̄(y) = c0 + ∣∣∇c
∣∣ y, where the constant gradient is given as ∇c =

(0, 2δc/H). We denote c − c̄(y) by c̃. By approximating the advection term and the stochastic term using constant ∇c and 
c0, respectively, we obtain
14
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Fig. 8. Comparison of the simulation results of the concentration structure factor Sc
simul with the theoretical results Sc

�x for the linear case. In the left panel, 
the power-law divergence is shown for Sc(k, 0). In the right panel, Sc(0, k) is shown, which corresponds to the equilibrium structure factor Sc

eq (see (54)). 
The linearized periodic system (53) is solved for L = H = 32, �x = �y = 1, �t = 1, μ = χ = 1, and |∇c| = 1. The mean values and error bars are computed 
from 4 independent runs with 5 × 104 timesteps.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ν�u − ∇π +

√
2kBTν

ρ
∇ ·W v ,

∇ · u = 0,

∂ c̃

∂t
+ u · ∇c = χ�c̃ +

√
2c0(1 − c0)Mχ

ρ
∇ ·Wc.

(53)

Since it is expected that the fluctuational behavior of c̃ does not significantly depend on y under a weak constant con-
centration gradient, we further assume that periodic boundary conditions can be imposed for the vertical direction in (53). 
While the validity of those assumptions needs to be investigated for realistic cases, we recall that the linear periodic system 
exhibits the essential physics of the power-law divergence. We note that this periodic approximation was suggested and 
justified in the physics literature on long-range nonequilibrium correlations [49]. The steady-state concentration structure 
factor is given as [9]

Sc(k, l) = Sc
eq + Sc

neq = Mc0(1 − c0)

ρ
+ kBT

∣∣∇c
∣∣2

ρχ(χ + ν)

k2

k2 + l2
1

(k2 + l2)2
. (54)

Hence, by setting l = 0 (i.e. considering c̃⊥ = H−1
∫ H/2
−H/2 c̃ dy), we see that Sc

neq ∝ k−4. On the other hand, for k = 0, Sc has 
only the equilibrium structure factor Sc

eq.
We implemented a numerical scheme to solve (53). Except for the use of our projection method to solve the velocity 

equation, this scheme strictly follows the one used in [9]. That is, for the discretization of the concentration equation, 
we define the concentration at cell centers and discretize the Laplacian and stochastic terms in the same manner as for 
velocity but shifted to the regular mesh. For the discretization of the advection term u · ∇c, we interpolate the velocity at 
cell centers by averaging the neighboring face values. We employ our projection method to update the velocity field for 
time discretization and then solve the concentration equation using a semi-implicit Crank–Nicolson scheme. Since periodic 
boundary conditions are enforced, no boundary correction for velocity is required (i.e. K = 1).

For validation, we compare the structure factor results obtained from the numerical simulations with the theoretical 
results. We note that the analytical expression for the corresponding discrete structure factor Sc

�x is obtained from (54) by 
replacing k, l, and 

∣∣∇c
∣∣2

with 2 sin(πk�x)/�x, 2 sin(π l�y)/�y, and cos(π�y) 
∣∣∇c

∣∣2
, respectively. Fig. 8 shows that the 

numerical simulation results match well with the theoretical results. The left panel clearly shows the power-law divergence 
of Sc(k, 0) ∝ k−4 for small k. For large k, the power-law of the nonequilibrium part Sc

neq is hidden by the equilibrium part 
Sc

eq as expected from (54). The right panel shows that Sc(0, k) coincides with the equilibrium structure factor Sc
eq, which 

confirms that the fluctuation spectrum parallel to the concentration gradient is not affected.

7.3. Realistic case

In this last part, we present numerical results for the original system (52). As for the linear case, our numerical approach 
follows the one used in [9] except that we solve the velocity equation using our projection method. Because no-slip bound-
ary conditions are enforced in the vertical direction, we must now compute the velocity field using the K -iteration scheme 
(K > 1). For the discretization of the advection term u · ∇c and the implementation of the Dirichlet boundary condition for 
the concentration, see [9].
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Fig. 9. Simulation results of the concentration structure factor Ssimul for the giant fluctuation phenomenon. In the left panel, Ssimul is compared with the 
theoretical result S�x of the linear case as well as the corrected theoretical result C(k, 0)S�x . In the right panel, the approximation for the suppression 
factor C(k, 0) is compared with Ssimul/S�x . The simulations results were obtained by solving (52) with �x = �y = 1, L = 128, H = 16, �t = 0.2, μ = 4, 
and χ = 1. The Dirichlet condition was imposed with a gradient of 1. The error bars were computed from 4 independent runs with 5000�t .

Fig. 10. Snapshot of the concentration profile. For the simulation parameters, see the caption of Fig. 9.

The concentration boundary conditions are known to suppress the power-law divergence at small k. For the Rayleigh-
Bénard problem for binary fluid mixtures, the following closed-form approximation for the suppression factor (i.e. the ratio 
of the realistic structure factor to the linearized one) was obtained [21]:

C(k, l = 0) = (kH)4

(kH)4 + 24.6(kH)2 + 505.5
. (55)

Although our problem setting is not exactly the same as the Rayleigh-Bénard problem, we test whether similar corrections 
can be applied. Fig. 9 shows our simulation results for K = 2. As expected, we observe that the Dirichlet boundary condition 
significantly affects the structure factor at small k and, as a result, the power-law divergence becomes weaker (see the left 
panel). Also, our measurement of the suppression factor agrees well with the above theoretical prediction (55) over a 
wide range of k (see the right panel). These conclusions are qualitatively the same as the one in [9]. A snapshot of the 
concentration profile is shown in Fig. 10.

8. Conclusions

Motivated to incorporate thermal fluctuations into traditional CFD calculations, we have presented how the projection 
method on a uniform staggered grid can be adapted to include stochastic contributions, and demonstrated that this ap-
proach can accurately solve the incompressible FHD equations. To this end, we have analyzed the resulting equilibrium 
structure factor of the velocity field, or equivalently the steady-state covariance function. For periodic boundary conditions, 
the projection method does not introduce any splitting errors and thus it gives exactly the same structure factor as the 
one that monolithic solvers would give. For non-periodic boundary conditions, such as no-slip, splitting errors occur at the 
boundaries. To correct them, we have proposed to use a simple iterative procedure. We have shown and verified that the 
splitting errors converge exponentially with the number of iterations and the convergence rate depends on the dimension-
less number β = ν�t/�x2.

Overall our method succeeds at simulating the incompressible FHD equations efficiently and accurately without the need 
to form and solve a monolithic system containing the discretization of the momentum and pressure equations. The construc-
tion of the method demonstrates how other variations of the projection method, and by extension other CFD techniques, 
can be adapted to incorporate thermal fluctuations in fluid simulations at small scales. Its application to the simulation 
of giant fluctuations illustrates how it can be used to explore the impact of thermal fluctuations on complex multi-physics 
fluid flows. While our numerical analysis based on the equilibrium structure factor and the nonequilibrium simulation study 
of giant fluctuations confirm that the proposed projection method gives comparable results without the monolithic system, 
further numerical investigation (e.g. based on the dynamic structure factor spectra) would be beneficial to characterize the 
system behaviors and propagation of numerical errors.
16



M. Mancini, M. Theillard and C. Kim Journal of Computational Physics 463 (2022) 111288
CRediT authorship contribution statement

Marc Mancini: Formal analysis, Investigation, Software, Validation, Visualization, Writing – original draft. Maxime Theil-
lard: Conceptualization, Project administration, Software, Supervision, Writing – original draft, Writing – review & editing.
Changho Kim: Conceptualization, Formal analysis, Methodology, Project administration, Software, Supervision, Writing – 
original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to deeply thank Dr. John Bell (Lawrence Berkeley National Laboratory) for insightful discussions 
on various aspects of the computational FHD approach and Matteo Polimeno (UC Merced) for helping with the data vi-
sualization. C.K. also thanks Dr. Lei, Yue (UC Merced) for helpful discussions on the mathematical aspect of Appendix A. 
The authors gratefully acknowledge computing time on the Multi-Environment Computer for Exploration and Discovery 
(MERCED) cluster at UC Merced, which was funded by National Science Foundation Grant No. ACI-1429783.

Appendix A. Projected linear SDEs and steady-state covariance

A.1. Continuous-time case

In this appendix, we present analytic results on the determination of the steady-state covariance matrix R = 〈xx∗〉 for 
the following form of projected linear SDEs:

dx

dt
= P [Ax + BZ(t)] . (A.1)

Here, the n-dimensional stochastic process x(t) is driven by an m-dimensional Gaussian white noise process Z(t) with 
covariance 〈Z(t)Z∗(t′)〉 = CZδ(t − t′) and its dynamics is projected by an orthogonal projection operator P (i.e. P 2 = P and 
P∗ = P ). Hence, P , A, B , and CZ are n ×n, n ×n, n ×m, and m ×m matrices, respectively. We will make further assumptions 
on A and initial condition x(0) below.

We first summarize standard analytic results for the case of unprojected SDEs:

dx

dt
= Ax + BZ(t). (A.2)

We assume that all eigenvalues of A have negative real parts. The long-time dynamics of x(t) converge therefore to a steady 
state characterized by a Gaussian distribution ρss(x) = Z−1 exp(− 1

2 x∗R−1x), where R = ∫
xx∗ρss(x)dx = limt→∞〈x(t)x∗(t)〉

is the steady-state covariance matrix and Z is the normalization constant. Since the steady-state process xss(t) can be 
expressed as

xss(t) =
t∫

−∞
e A(t−s)BZ(s)ds, (A.3)

it is straightforward to obtain the following expression of its covariance

R = 〈xss(0)x∗
ss(0)〉 =

∞∫
0

e As BCZ B∗e A∗sds. (A.4)

However, it is noted that calculating a matrix exponential and thus evaluating (A.4) may not be so straightforward, partic-
ularly if n is large. An alternative method to compute the covariance matrix R is to solve a linear system of which R is a 
solution [26]. Since

dR = 〈dxx∗〉 + 〈xdx∗〉 + 〈dxdx∗〉 = ARdt + R A∗dt + BCZ B∗dt = 0, (A.5)

R satisfies

AR + R A∗ = −BCZ B∗. (A.6)
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This linear system has the form of the Lyapunov equation and its solubility and uniqueness is guaranteed when the eigen-
values of A have negative real parts [57]. It is noted that a typical case is that A is negative definite.

We now consider the projected SDEs (A.1) with the assumption that A is negative definite. As in the unprojected case, 
the following linear system can be easily obtained:

P AR + R A∗ P = −P BCZ B∗ P . (A.7)

However, except for the trivial case where P is the identity matrix I , some eigenvalues of the matrix P A are zero and 
the uniqueness of solutions of (A.7) is no longer guaranteed. The reason that (A.7) has many solutions can be explained 
as follows. For the initial condition x(0) = P x(0) + (I − P )x(0), since (A.1) only updates the projected portion P x(0), the 
steady-state covariance R = 〈xx∗〉 depends on (I − P )x(0).

By assuming that the initial state x(0) belongs to the projected space, i.e. P x(0) = x(0), we can restrict the dynamics of 
x(t) within the projected space. In this case, R must satisfy an additional condition

P R = R P = P , (A.8)

and the two conditions (A.7) and (A.8) guarantee the uniqueness of R . This can be explained by the fact that P A becomes 
negative definite in the projected space: for x = P x,

x∗ P Ax = (P x)∗ P A(P x) = (P x)∗ A(P x) < 0. (A.9)

This result is useful when a candidate expression for the steady-state covariance can be suggested (e.g. by physical intuition). 
By showing that it satisfies both (A.7) and (A.8), one can guarantee that it is indeed the steady-state covariance.

A.2. Discretized case

We can also obtain a similar result for the following linear stochastic recurrence relations:

xn+1 = P
[

Axn + BZn] . (A.10)

Here, all assumptions remain the same as above except that 〈ZnZn′ 〉 = CZδn,n′ and R = limn→∞〈xn(xn)∗〉. From the sta-
tionarity of R , the following linear system is obtained [26]:

P AR(P A)∗ − R = −P BCZ (P B)∗. (A.11)

As in the continuous case, this system has many solutions due to the null space of P . When P x0 = x0 is assumed, the 
resulting R satisfies (A.8). For a negative definite A, it can be shown that (A.11) and (A.8) uniquely determine R .

A.3. Reduced linear systems

We have shown that the steady-state covariance R = limt→∞〈x(t)x∗(t)〉 is the unique solution of (A.7) and (A.8) if the 
time evolution of x(t) is given by (A.1) with the condition P x(0) = x(0). In this case, by restricting the range of x(t) to the 
projected space, we can obtain a reduced linear system for R .

This can be done by defining the transformation x̃ = V ∗x with V = [v1, . . . , vr]. Here, r is the rank of P and {vi}i=1,...,r

are a set of r orthonormal eigenvectors of P whose eigenvalues are one. Using P = V V ∗ and I = V ∗V , it is easy to show 
that R̃ = limt→∞〈x̃(t)x̃∗(t)〉 = V ∗R V satisfies

Ã R̃ + R̃ Ã∗ = −V ∗BCZ B∗V , (A.12)

where Ã = V ∗ AV . By vectorizing matrices, (A.12) can be expressed as(
I ⊗ Ã + Ã ⊗ I

)
vec(R̃) = −vec(V ∗BCZ B∗V ), (A.13)

where ⊗ denotes the Kronecker product. By inverting this r2 × r2 linear system, R̃ is obtained and thus R = V R̃ V ∗ can be 
computed.

The same procedure applies to the discretized case. Assuming (A.8), (A.11) can be written as

Ã R̃ Ã∗ − R̃ = −V ∗BCZ B∗V , (A.14)

and its vectorized equation is given as(
Ã ⊗ Ã − I

)
vec(R̃) = −vec(V ∗BCZ B∗V ). (A.15)

Hence, R = V R̃ V ∗ can be computed from the solution R̃ .
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Fig. B.1. The velocity field in the extended domain. The shaded region depicts the original domain with 4 × 3 cells. Red and blue circles indicate that 
zero velocities are assigned to Ux and U y , respectively, on the boundaries. Red and blue arrows are located at faces where Ux and U y , respectively, are 
defined inside the domain. The directions of the arrows show how the velocities in the original domain are mirrored. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Appendix B. Proof of commuting relation (31)

By showing that there exists a common eigenbasis, one can show that two operators commute. For example, in the case 
of the periodic boundary case, such a common eigenbasis for the Laplacian operator and the projection operator can be 
easily constructed from the Fourier modes (uei(kx+ly), vei(kx+ly)). For our case, a similar procedure can be used. However, due 
to a different boundary situation, sine-cosine modes (u sin kx cos ly, v cos kx sin ly) are used instead to construct a common 
eigenbasis.

We first show that these sine-cosine modes constitute a complete eigenbasis of the operator L0 + B as follows. By the 
definition of B , see (9), computing (L0 + B)U is equivalent to computing the vector Laplacian of U under the assumption 
that its prescribed tangential velocity components on the boundaries (empty squares in Fig. 2) have the same values as the 
velocity components at the face half a grid spacing inward (filled triangles closest to those empty squares). This implies 
that the corresponding velocity components in ghost cells (empty triangles) also have the same values. Thus, by considering 
mirror images of U with respect to each boundary (see Fig. B.1), we can construct an extended system where periodic 
boundary conditions are satisfied. Then it is easy to see that the sine-cosine modes with the form given above form a 
complete set of eigenfunctions of L0 + B due to the mirror symmetry and the zero normal velocity condition.

We then observe that the action of P does not introduce other modes. More specifically, we have P (u sin kx cos ly,

v cos kx sin ly) = (w sin kx cos ly, z cos kx sin ly), where(
w
z

)
= 1

k2 + l2

(
l2 −kl

−kl k2

)(
u
v

)
. (B.1)

Hence, for each mode, we can find simultaneous eigenfunctions of L0 + B and P by diagonalizing the matrix in (B.1). It is 
interesting to see that the matrix is identical to the one for the periodic boundary case.
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