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ABSTRACT: Molecular dynamics (MD) simulations have long had an important
role in the study of equilibrium and nonequilibrium phase transitions. However, the
effects of finite system sizes and periodic boundary conditions on such simulation
are still not fully understood. In the present paper, we investigate this issue using
simulations of the homogeneous melting of superheated crystals, specifically the
effect of system size on the delay time before melting (which we call “melting
time”). Because melting is a random and relatively rare event, we perform a
systematic and extensive MD simulation study of a simple molecular system, solid-
phase argon in a perfect fcc crystal superheated above the melting point. Using
extensive replicate simulations, we first confirm that the distribution of melting
times is accurately characterized by a gamma distribution. Next, we use the model
of melting being triggered by random dislocations to derive an equation for the
mean melting time as a function of system size and show that this model well-
matches our MD data over a range of periodic boxes containing from 256 to 296,352 argon atoms. This equation shows that the
system-size effect is inversely proportional to the number of atoms (or equivalently, proportional to L−3 with L being the side length
of the periodic box) and could be used as a correction factor for melting times calculated in finite systems. We also study the effects
of temperature on melting and find that the mean melting time exponentially decreases to a nonzero asymptotic value with
increasing temperature. We observe that the melting time distributions shift toward more Gaussian-like forms of the gamma
distribution (i.e., with larger values of the shape parameter) at elevated temperatures. Finally, we also present the results of the
melting of water ice Ih to show that our findings apply to molecules and melting processes more complex than simple Lennard-Jones
systems.

1. INTRODUCTION
Atomistic theories for melting date back over 100 years to
Lindemann’s melting theory1 and this topic is still an area of
active research.2−4 Although these theories vary widely in their
details and depend on whether the solid includes a surface or
not (i.e., heterogeneous versus homogeneous melting), all
involve a triggering step where one or a few atoms depart from
their crystal site by more than a critical distance. These types of
mechanisms, which have roots in Lindemann’s melting
criterion, have been validated by molecular dynamics (MD)
simulations.5−7 For example, an MD study of the superheated
melting of Lennard-Jones crystals showed that melting can be
triggered by the dislocation of as few as 5−6 atoms.7

As a complementary tool to pure theory, the MD simulation
technique has been broadly used to study melting.8 Thanks in
part to the computational efficiency of periodic boundary
conditions (PBCs), MD has been successfully employed to
investigate homogeneous melting. Homogeneous melting is a
nonequilibrium process observed from the defect-free super-
heated state. Due to difficulties in minimizing the effect of
surfaces or grain boundaries, it is observed in experiments only
under carefully chosen conditions9 (e.g., metal spheres
embedded into other metals having similar lattice constants).

However, an infinite perfect crystal without surfaces can be
readily modeled by MD using PBCs. In this setting, several
simulation techniques have been developed to determine the
melting temperature of a simulated material.8,10,11 In the Z
method,12 where a sequence of microcanonical (NVE)
ensemble MD simulations is performed, the maximum
superheating is located using the criterion that the solid
beyond the limit of superheating must melt into the liquid, and
the melting pressure and temperature are determined as the
pressure and temperature of the resulting liquid state at the
maximum superheating. Although this method has the
advantage of a simple simulation protocol and can be applied
to relatively small systems, locating the maximum superheating
can be inaccurate because the transition from the solid to the
liquid is a rare event. In particular, as demonstrated by Alfe ̀ et
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al.,13 the mean waiting time (until the transition occurs)
becomes larger as the system size decreases or as the initial
steady-state temperature of the solid decreases to the limit of
superheating. Therefore, investigating the statistics of waiting
times has not only theoretical importance to understanding the
dynamical nature of the homogeneous melting process but also
practical importance to the construction of a reliable
computational procedure for determining melting points.
Recently, by applying Bayesian statistical inference, Davis et
al.14 showed that the waiting time obeys a gamma distribution
rather than an exponential distribution as previously asserted
by Alfe ̀ et al.13
In the present paper, we investigate the kinetics of

homogeneous melting beyond the limit of superheating. We
focus on the distribution of the waiting time before melting
(which we will simply call the “melting time”). The aim of the
paper is twofold. First, we confirm that the distribution of
melting times is accurately characterized by a gamma
distribution and provide a theoretical model equation for the
mean melting time based on the statistics of random atomic
dislocation. Second, by estimating the two parameters of the
gamma distribution, we investigate the dependence of the
distribution of melting times on the system size as well as the
system temperature. Precisely determining the distribution
function of a physical quantity requires in general many more
replicate values compared to calculating the moments (e.g.,
mean and variance) of the quantity. Furthermore, because the
physical quantity of interest in the present paper, the melting
time, arises from random and relatively rare events, a
systematic and extensive MD simulation study is required.
We created a very large data set of melting simulations to
validate our theoretical model equation, which not only helps
us understand the physics of melting but also enables us to
concisely characterize the distribution of melting times for
different system sizes and system temperatures. In this study,
we use a simple system, solid-phase argon in a perfect fcc
crystal superheated above the melting point. We also present
the results of the melting of water ice Ih to show that our
findings apply to molecules and melting processes more
complex than simple Lennard-Jones systems.
Homogeneous melting has been investigated via the classical

nucleation theory (CNT).15−17 This has led to a theoretical
framework to predict the maximum superheating achievable at
various heating rates based on CNT and validated by MD
simulations.18−20 This approach focuses on when the first
nucleus is formed and the rate of nucleus formation is related
to the free energy of activation for the formation of the nuclei.
This provides insight into the fundamental physics and
thermodynamics of phase transitions. Our study explores
how simulation parameters will influence the phase transition
process observed in MD simulations. To this end, we
investigate the distribution of melting times, which we define
as the time until a global change due to melting occurs at
superheated temperatures. This melting time is in contrast to
the nucleation time determined by a local order parameter21

because nuclei can form and disappear over a range of times. In
this paper, we observe that these melting times are stochastic
quantities whose distribution depends on the system size. We
develop a systematic computational procedure to characterize
the melting time distribution. As mentioned above, under-
standing the melting time distribution has practical importance
to reliable determination of melting points using computa-
tional approaches. Hence, we believe that our computational

study will give complementary information relevant to the
CNT approach by providing reliable interpretation of the
simulation results without relying on the free energy
formulation.
For a physical quantity estimated by MD simulation, its

dependence on the system sizethe number of molecules in a
single periodic imageis called the system-size effect.
Accurate characterization and theoretical understanding of
the system-size effect is crucial for reliable and computationally
feasible MD simulations. When an infinite system is modeled
by PBCs, several different types of pitfalls may arise.22 For the
equilibrium MD estimation of transport coefficients of simple
fluids, such as self-diffusion coefficients23 and shear viscos-
ities,24 the finite system-size corrections have been well
established. However, the effects of PBCs can be subtle and
complicated. For example, in the presence of long-range
electrostatic interactions, the PBCs combined with the use of
Ewald sums can even alter the ground-state conformation of
small peptides.25 The advent of supercomputers has allowed
simulations large enough that some properties are effectively
converged with respect to the size of the simulation box,26 but
simulations using complex force fields or requiring very long
timescales or multiple replicates, are still run with PBC box
sizes small enough to yield artifacts. The use of PBCs can also
cause artifacts in simulations of equilibrium and non-
equilibrium phase transition processes, including phase
changes and related processes such as initial nuclei formation
at the commencement of freezing.27,28

For equilibrium and nonequilibrium phase transition
phenomena, several studies have made the distinction between
PBC-induced artifacts versus the statistical effects of having
more independent atoms in larger periodic boxes. For example,
a 1990 study of the initial formation of pre-crystalline nuclei in
supercooled Lennard-Jones liquid using periodic box sizes of
15,000 and 1,000,000 particles concluded that size effects were
statistical, rather than a PBC-induced distortion of the results
for the smaller periodic box.29 That is, the larger box sampled a
much larger number of independent configurations, allowing
more opportunities for crystal nuclei to form. As mentioned
above, Alfe ̀ et al. showed for superheated iron crystals that the
mean melting time was inversely proportional to the number of
atoms in the periodic box, consistent with melting being
triggered by a rare event whose overall probability for the
system increases with the number of independently moving
atoms.13 Another study that investigated the effects of the
periodic box size on the time to melt for hard spheres using
both kinetic Monte Carlo and MD simulations showed similar
results.30

2. MD SIMULATIONS
We performed NPT (i.e., constant temperature and constant
pressure) ensemble MD simulations of solid-phase argon
superheated above the melting point for various system sizes
and system temperatures. As mentioned in the Introduction,
we performed a large number of replicate MD simulations
(1000 to 2000 for most conditions, see below) to obtain an
extensive data set of melting times for each value of system size
and system temperature. Before providing the details of the
MD simulations, we first describe the physical conditions
under which those MD simulations were performed. We used
as our initial state a highly compressed perfect fcc crystal with a
density of 1.69 g/cm3 and observed its melting process under 1
atm. To investigate the system-size effect on melting times, we
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used a fixed temperature value T = 99.5 K. For the system
temperature dependence, we used temperature values between
99.5 and 104 K. We chose the temperature values to be
significantly higher than the melting point of 84.1 K at 1 atm
so that melting times are not too long. The initial density of
1.69 g/cm3 corresponds to solid argon under high pressure
(∼1080 atm) and experiments have shown that at this pressure
argon has a melting point above 105 K31 so that the initial,
compressed system is stable as a solid over the temperature
range we considered.
To capture the melting time of the argon crystal, we

monitored the expansion of the system (during the NPT
simulation) and then located the time when the density of the
system first falls below a certain value (see Figure 1). From test
calculations, we determined a good threshold value for the
irreversible melting of the argon crystal to be 1.40 g/cm3,
which is close to the density of liquid argon, for example, 1.39
g/cm3 at 87.3 K and 1 atm or 1.32 g/cm3 at 99.5 K and 3
atm,32 and considerably below the density of solid argon 1.62
g/cm3 (at the triple point, 83.7 K and 0.68 atm).33 We
additionally verified that the midpoint in this rapid density
change occurs at the same time as the peak of the spatial
density fluctuations during melting, see Supporting Informa-
tion Section 8.
To confirm that our density change criterion can reliably

capture the time to irreversible melting, we compared the
melting times estimated by this criterion with those estimated
from the local bond order parameter distribution changes. To
this end, we used the modified Steinhardt order parameter
q̅6.

34 The definition of q̅6 and analysis results are given in
Supporting Information Section 7. As shown in Figure 1, the
melting times estimated from the density changes occur
slightly later than those estimated from the order parameter.
However, these time lags were observed to have consistent
values around 10 ps. Given the similarity of the melting times
determined using the order parameter and the density
threshold, we opted to use the density criterion with our
NPT simulations, which enabled us to obtain a very large
number of replicate values of melting time in a computationally
efficient manner. A more detailed discussion of our choice of

NPT simulations is given in Supporting Information Section
6A. We note that NPT simulations have been used in several
MD studies of homogeneous melting.35−38

To simulate a crystal of argon atoms, we used a Lennard-
Jones forcefield, V(r) = 4ε[(σ/r)12 − (σ/r)6] with ε = 0.9980
kJ/mol and σ = 0.3405 nm. All simulations were performed
using GROMACS version 5.0.7.39 The initial states were
different size periodic boxes of an fcc crystal containing N × N
× N unit cells (with N ranging from 4 to 42), yieldingM = 4N3

atoms in the periodic box. We created each initial periodic box
of perfect fcc crystal with an initial density of 1.69 g/cm3. We
randomly initialized the atom velocities to a specified system
temperature (between 99.5 and 104 K) and performed NPT
simulation at 1 atm. We employed the Bussi velocity rescaling
thermostat40 with a time constant τT = 0.1 ps and the
Berendsen barostat41 with a time constant τp = 1 ps and a
compressibility of 4.5 × 10−5 bar−1. We ran test simulations
with larger thermostat time constants (0.25, 0.5, and 1 ps) and
found this had no effect on the melting time for periodic boxes
with N ≥ 12 (M ≥ 6912 atoms). (See Supporting Information
Section 6D for additional results and discussion on the
thermostat time constant.) We used a 1 nm cutoff for the
Lennard-Jones forces and a timestep of 2 fs. Due to its highly
compressed initial structure, the system was observed to
quickly expand to a density of ∼1.52 g/cm3 over a period of
about 10 ps (see Supporting Information, Figure S11 of
Supporting Information). After this change, the system was
observed to maintain this density until the onset of melting.
For more a detailed description of this initial behavior of the
system, see Supporting Information Section 6B. To determine
if our overall conclusions were dependent on this initialization
procedure, we also tested starting the simulations from an
ensemble of different initial structures with the argon atoms
thermally dislocated from the perfect fcc crystal sites by
sampling starting configurations from a short NVE simulation
at the initial system volume, which yielded melting behavior
similar to that obtained starting with a perfect fcc crystal (see
Supporting Information Section 6C).
Simulations were performed for each replicate as a sequence

of restarted short simulation segments (typically 500 ps in

Figure 1. Changes of the system density and the local bond order parameter distribution during the melting process observed from an MD
trajectory with N = 20 (i.e., 4N3 = 32,000 argon atoms). In the left panel, the time profile of the system density is superimposed with that of the
average of the local bond order parameter values q̅6 (note that q̅6 is computed for each atom). In the inset, the two curves are shown for the entire
simulation. In the right panel, the distributions of q̅6 values at chosen times are compared.
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length). The system density was calculated at the end of each
segment and the simulation was restarted until the density
value was below a critical level, indicating irreversible melting.
The reported melting time for each replicate run was
determined by scanning the densities for each frame in the
trajectories and identifying the 1 ps interval when the density
fell below 1.40 g/cm3. The average and standard deviation of
the melting times for each box size and temperature are given
in Tables S1 and S2 of Supporting Information. These tables
also include the average temperature of the system measured
during the simulation to verify that there was no drift from the
specified temperature. In addition to determining the melting
times, for a subset of the replicate simulations, we calculated
the radial distribution functions and the histograms of
distances to the nearest neighbor atoms for the frozen portion
of the trajectory (see Figure S3 of Supporting Information). As
a validation of the accuracy of the energetics across the
different periodic box sizes, we calculated the enthalpy of
melting for one replicate for a range of box sizes at 99.5 K
which yielded ΔHfus = 1.122 ± 0.002 kJ/mol averaged over a
selection of 26 box sizes, showing near identical results for all
box sizes. This result is close to the experimental value of 1.19
kJ/mol42 near the melting point of 83.8 K.
The system sizes and the numbers of replicate MD

simulations used are as follows. For argon at T = 99.5 K, the
initial states were 32 different sized periodic boxes containing
N × N × N cells for N = 4 to 27 and then 28 to 42 for even
values of N, corresponding to a range of system sizes (denoted
by the total number of argon atoms M = 4N3) of 256 to
296,352 argon atoms (complete list is given in Table S1 of
Supporting Information). For system sizes with N = 4 to 7, we
performed 2000 replicate melting runs, that differed only in the
initial random velocities used to set the system temperature.
For system sizes with N = 8 to 42, we ran 1000 replicate
melting runs. To determine the temperature dependence of the
melting rates, we also ran simulations of argon melting for the
range of temperatures from 100 to 104 K in half-degree units,
for N = 4 to 9 (because larger simulation boxes would melt

nearly instantly at elevated temperatures). For most higher-
temperature simulations, we ran 200 replicates at each box size,
except for the 100 K simulations for which we ran 800
replicates (complete list is given in Table S2 of Supporting
Information).
In addition to argon melting simulations, we have also run

water ice (Ih) melting simulations in the constant temperature
and constant pressure ensemble for 11 different simulation box
sizes at 281 K and 1 atm. The ice melting simulation is
described in Supporting Information Section 5. The resulting
averages and standard deviations of the melting times for all ice
melting simulations are given in Table S5 of Supporting
Information.

3. RESULTS AND DISCUSSION
In Section 3.1, we present our MD simulation results for the
distribution of melting times and the dependence of this
distribution on the system size. In Section 3.2, we present our
theoretical model equation for the mean melting time as a
function of system size and discuss the atomistic mechanism of
homogeneous melting. In Section 3.3, we investigate the
dependence of the melting time distribution on the system
temperature, and in Section 3.4, we present MD simulation
results for the melting of water ice.

3.1. Distribution of Melting Times and System-Size
Dependence. In this section, using the large ensemble of
melting times obtained from our MD simulations, we show
that the melting times for the superheated argon crystals follow
a gamma distribution. The gamma distribution

τ β
α

τ τ=
Γ

>
α

α− −βτP( )
( )

e ( 0)1

describes the probability of the coincidental occurrences of
independent events. Here, the shape parameter α is unitless
and the rate parameter β has units of inverse time (specifically
inverse picoseconds in our results). Γ(α) = ∫ 0

∞xα−1e−x dx is the
gamma function.

Figure 2. Gamma distribution fitted to the measured melting times for four different periodic box sizes at T = 99.5 K. The values of the α and β
parameters are also shown. Each histogram has 100 bins and is smoothed with a moving average window of 15 bins. For periodic box size N, the
number of argon atoms is 4N3.
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For all replicates at each temperature and periodic box size,
we calculated the time until melting occurred (as described in
Section 2) to yield 200−2000 replicate melting times. Despite
the large number of replicates, the resulting histograms were
noisy (see Figure S1 of Supporting Information), so we
performed a smoothing procedure on the histograms. To
optimize the bin width and averaging window, we calculated
22 different histograms for each set of data by varying the
number of bins between 20 and 150. Then, for each different
histogram, we applied a (uniformly weighted) moving average
smoothing filter with nine different window sizes. For the full
list of the number of bins and the width of moving average
window, see Table S3 of Supporting Information. In this way,
we determined it was best to use 100 bins in the histograms
and a moving average window of 15 bins for the smoothing
procedure.
The resulting smoothed histograms for periodic box sizes N

= 4, 10, 26, and 42 are shown in Figure 2. (See Figure S1 of
Supporting Information for the unsmoothed histograms for the
same periodic box sizes.) By comparing histograms of the
melting times for the different box sizes, we observe that the
melting time follows an exponential distribution for the
smallest periodic box size and this transitions to a Gaussian
distribution for the largest box size. Because the gamma
distribution becomes an exponential distribution in the limit α
→ 1 and converges to a Gaussian distribution for large α, this
observation suggests that the melting times for all of the
systems may follow gamma distributions with different values
of the α and β parameters. Hence, we fitted the (smoothed)
histograms to the gamma distribution to determine the best fit
values for the parameters α and β. Figure 2 clearly shows that
each histogram is well described by a gamma distribution with
the fitted values of α and β.
To further corroborate that the melting times for the

superheated argon crystals follow a gamma distribution, we
perform a chi-squared test as follows. For each periodic box
size, we tested whether the smoothed distribution data comes
from a gamma distribution using the chi-square goodness-of-fit
test.43 This calculates a test statistic (p-value) that is essentially
the probability of getting the observed distribution of melting
times if the data follows a gamma distribution. In other words,
the null hypothesis is that the data is from a gamma
distribution. For all periodic box sizes tested, the p-values
were very large (0.92 < p < 1).
We note that our results are consistent with the recent MD

study by Davis et al.,14 where argon crystals in a 500-atom
periodic box were superheated to extremely high temperatures
leading to very short waiting times of <50 ps. Compared with
that study, our results were obtained at much lower

temperatures and for much larger periodic box sizes. It is
perhaps not surprising that the gamma distribution arises for
melting rates because it describes the probability of the
coincidental occurrences of independent events and would be
consistent with melting being triggered by a critical number of
simultaneous atomic dislocations in the argon crystal. Though
the lognormal, Weibull, and gamma distributions have been
frequently used to model random times owing to their
flexibility to fit empirical positive-valued distributions using
their multiple parameters, the gamma distribution is well suited
to model a random time that can be related to the occurrences
of independent events. In particular, the Erlang distribution is a
special case of the gamma distribution when α is an integer
value and predicts the waiting time until the α-th event occurs
for independent events with the same rate β. In addition, the
gamma distribution family includes the exponential distribu-
tion as well as the normal distribution as its limiting cases,
which also justifies our choice based on the simulation results.
Interestingly, the gamma distribution arises in several
descriptions of energy and atomic fluctuations as well as the
rates of nonequilibrium processes. This distribution has been
found to describe the energy distributions in both NVT44 and
NVE45 ensembles. In another example, the use of a modified
(shifted) gamma distribution to describe atomic fluctuations in
proteins was found to best fit neutron scattering data.46 Finally,
an MD study of the gas−liquid nucleation rates during the
condensation of a Lennard-Jones gas found that the gamma
distribution described the nucleation onset times for several
MD thermostats tested.47

Under the assumption that the melting times follow a
gamma distribution, the α and β parameters can be more easily
estimated using the mean μ and variance σ2 of the melting
times (i.e., without computing and fitting the histogram) and
using the relations

α μ
σ

β μ
σ

= =,
2

2 2

Figure 3 shows that the estimated values of α and β for the
system temperature of 99.5 K increase as the system size
increases. For the number of argon atoms in the periodic box,
denoted by M, the parameters α and β are reasonably well
described by the following linear expressions obtained by linear
regression: α = 6.2 × 10−5M + 1.0 (R2 = 0.989) and β = 6.7 ×
10−8M − 3.1 × 10−4 (R2 = 0.994). The error bars on the α and
β values were calculated using bootstrapping as described in
Supporting Information Section 3. We note that there appears
to be a slight bend in the curve for larger box sizes, but the data
is too noisy to rule out a simple linear fit. Finally, as a validity
check for our numerical procedures for calculating α and β,

Figure 3. Plot of the α and β parameters of the gamma distribution versus the number of argon atoms in the periodic box at 99.5 K. The
parameters were computed from the average and variance of the melting times across all replicates. The error bars were calculated from
bootstrapping (see Supporting Information Section 3 for details.
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these linear fits were also computed using the parameter values
determined by fitting to the smoothed histograms, and the
resulting slopes of the linear regression results for α and β
varied by only 8.6 and 6.5%, respectively.
The linear expression of α with the intercept value close to 1

(i.e., α ≈ 1 at M = 0) is consistent with our observation made
in Figure 2 that the distribution of melting times is close to an
exponential distribution for small system sizes and it
approaches a Gaussian distribution for large system sizes.
Despite the negative intercept given in the linear expression of
β, the actual value of the rate parameter β smoothly asymptotes
to 0 for small values ofM. Based on these two observations, we
express α = a0 + a1M and β = bM, which give the following
expression for the mean melting time μM = α/β of the system
size M

μ = · +
a
b M

a
b

1
M

0 1
(1)

Hence, the MD simulation results suggest that the system-
size effect on the mean melting time is inversely proportional
to the number of atoms M. Equivalently, the system-size effect
is proportional to L−3 with L being the side length of the
periodic box. We note that this M−1 (or L−3) dependence is
different from that seen for transport coefficients such as the
self-diffusion constant, which has a periodic box size correction
factor proportional to M−1/3 (or L−1).23 In the next section, we
will develop a theoretical model that explains the M−1

dependence of the system-size effect of the mean waiting
time and further investigate the validity of relation (1) using
MD simulation results.
In addition to the mean melting time, we also studied the

variance (σM
2 ) in the melting times, which we find also decrease

in an approximately inverse relationship with M, as shown in
Figure S2 of Supporting Information. This relation can be
expressed as

σ α
β

= =
+

≈ ·
a a M

b M
a
b M

1
M
2

2
0 1

2 2
1
2

3.2. Theoretical Model Equation for Mean Melting
Time. In this section, we derive a model equation for the mean
melting time by assuming that melting is initiated by one or a
group of atoms simultaneously moving due to thermal motion
a significant distance away from their equilibrium position in
the lattice. We introduce a parameter m (1 ≤ m≪M) which is
the number of atoms that need to be simultaneously displaced
to commence melting. We also introduce the probability q (0 <
q ≪ 1) that such a group of atoms moves far enough away
from the equilibrium position to trigger melting during some

time interval Δt. Then, the probability that at least one group
has sufficient dislocation during Δt is given as 1 − (1 − q)M/m.
We note that this probability converges to unity asM increases.
Because the mean melting time is inversely proportional to this
probability, we have a system-size dependent term Δt/[1 − (1
− q)M/m]. In the limit of very large system sizes (M → ∞) this
term converges to Δt, indicating that the necessary dislocations
to trigger melting will happen in the first time interval with
100% probability. Assuming that there is a finite delay between
the triggering dislocations and the overall change in the
system’s density, we define this delay time as μ∞, which will be
the average melting time of an infinitely large periodic box.
Overall, the average time until a crystal with a periodic box
containing M atoms melts is given as

μ μ= Δ
− −

++ ∞
t
q1 (1 ) M c mM ( )/

(2)

Note that we have included an offset parameter c to M,
which we empirically found necessary to best describe the
results for small systems.
Because we assume q is small, we can simplify eq 2 to

μ μ≈
Δ

+
+ ∞

t

M c

m
q

M (3)

Simplifying steps are shown in Supporting Information
Section 1. We note that eq 3 (without the empirical offset
parameter c) has the same form as eq 1, which was obtained
from the MD simulation results. This agreement implies that
the system-size effect observed in the MD simulations is due to
the statistical effects of having more independent atoms in
larger periodic boxes rather than PBC-induced artifacts.
Using eq 3, one can not only determine μM as an explicit

function of M by fitting the MD results but also interpret the
values of the fitting parameters from the microscopic
viewpoint. In this paper, we use Δt = 1 ps, which is the
timestep size used for monitoring melting in our MD
simulations. Fitting eq 3 to the mean melting times of different
system sizes for the system temperature 99.5 K yields μ∞ = 832
ps, m/q = 4.083 × 107, and c = 2.002 × 103 with the R2

coefficient value of 0.97. The MD simulation results and the
fitted curve are shown in Figure 4. The μ∞ value is the mean
melting time for a simulation using an infinitely large
simulation box at 99.5 K. As described in Section 3.3, this
asymptotic value is strongly dependent on the system
temperature. The value of m/q is the inverse of the probability
per atom of a melting-inducing fluctuation occurring during Δt
= 1 ps. The c parameter determines the asymptotic melting

Figure 4. Plot of the melting time μM vs the number of argon atoms (M) in the periodic box. For the system temperature of 99.5 K, results from all
32 different periodic box sizes are shown in panel (a). The same but zoomed-in plot is drawn in panel (b). Filled red circles with error bars
corresponding to two standard deviations denote the MD simulation results, whereas blue solid lines denote the fitted curve to eq 3.
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time as the size of the periodic box becomes very small. The
observed inverse relationship given in eq 3 suggests a practical
way to correct for finite size effects in simulations of melting
times and similar properties by running the simulation with
different sized periodic boxes and extrapolating to infinite box
size using this equation.
As mentioned above, the preceding analysis proposes that

the inverse relationship between the mean melting time and
the size of the periodic box is entirely due to the change in the
number of independently moving argon atoms. Another
possible explanation would be that different periodic box
sizes lead to structural differences in the frozen crystal that are
more stable for smaller periodic boxes. To investigate this
possibility, we calculated and plotted the radial distribution
functions and nearest-neighbor distances during the frozen
portion of the trajectory for selected T = 99.5 K replicates for
all periodic box sizes. The plots in Figure S3 of Supporting
Information show that for both of these distance measure-
ments, the lines for all replicates of all periodic box sizes are
well superimposed. This shows that there are no large
differences in the crystal structures for the different box sizes
causing differences in the melting times.
3.3. Temperature Dependence. In this section, using the

additional melting simulation results for higher temperatures
(T = 100, 100.5, ..., 104 K), we investigate the temperature
dependence of the statistics of melting times and analyze the
thermodynamics of the transition. Because the higher-temper-
ature simulations melt much faster than the 99.5 K runs, we
limited MD simulations to the six smallest periodic boxes. The
average and standard deviation of the melting times for 9
different temperatures are given in Table S2 of Supporting
Information.
We first confirm whether the observations made for the 99.5

K simulations hold for the elevated temperatures. As shown in
Figure 5, the distribution of melting times follows a gamma
distribution for each temperature. Additionally, at each
temperature, nearly linear relationships are observed between
the gamma distribution parameters and the size of the periodic
box (see Figure S4 of Supporting Information) as observed for

99.5 K (see Figure 3). We also confirm the M−1 dependence of
the system-size effect of the mean melting time μM for each
temperature (see Figure S5 of Supporting Information) as for
99.5 K (see Figure 4).
Next, we investigate the temperature dependence for these

results. By comparing the distributions for higher temperatures
shown in Figure 5 to the one for 99.5 K with the same system
size M = 256 (see Figure 2a), we observe that the distributions
are shifted to shorter average melting times at higher
temperatures and that the distributions look more like
Gaussian distributions with increasing temperature. These
observations imply that both parameters α and β increase as
the system temperature increases (note that β = α/μ increases
because α increases and μ decreases with T). For different
system sizes, this behavior of α and β is shown in Figure S6 of
Supporting Information, where we find that the growth is
much faster than linear for both α and β as the temperature is
increased. This temperature dependence of the α and β
parameters can also be seen from the aforementioned linear
relationships between these coefficients and the number of
argons in the periodic box (shown in Figure S4 of Supporting
Information). The slopes of these linear relationships increase
with temperature.
To summarize, these results show an interesting interrela-

tionship between the system size, the temperature, and the
resulting gamma distribution parameters α and β. As we
discussed previously, at 99.5 K, these parameters increase
linearly with the number of atoms, so that the largest systems
have melting time distributions that are nearly Gaussian, and
the smallest systems have exponential melting time distribu-
tions. Likewise, increasing the temperature increases the
distribution parameters, so that small, hotter systems have
gamma distribution parameters similar to much larger systems
at lower temperatures. For example, a system with 256 atoms
at 104 K has nearly the same α parameter value (α = 3.02) as a
system with 37,044 atoms at 99.5 K (α = 3.01). A similar trend
is seen for the β parameter: β = 0.023 for 256 atoms at 103.5 K
and β = 0.020 for 296,352 atoms at 99.5 K. In all cases, the
changes that decrease the melting time, either increasing the

Figure 5. Gamma distribution fitted to the measured melting times for the periodic system containing 256 argon atoms at four different
temperature values T = 100, 101, 102.5, and 104 K. The values of the α and β parameters are also shown.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c10392
J. Phys. Chem. C 2022, 126, 4199−4208

4205

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c10392/suppl_file/jp1c10392_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10392?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10392?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10392?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10392?fig=fig5&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c10392?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


system size or raising the temperature, lead to a more
Gaussian-like distribution, and changes that increase the
melting time, lead to a more exponential-like distribution.
Results for the temperature dependence of the fitted
parameters in eq 3 are described in Supporting Information
Section 4.
We now analyze the thermodynamics of the melting process

using the simulation data. Early theoretical models of melting
processes led to the following form of expressions for the rate
of nucleation (the collection of dislocations leading to melting)

= *−ΔATrate e E k T/ B

where A is the reaction prefactor, kB is the Boltzmann constant,
and ΔE* is the activation energy for the reaction.48 One
challenge in computing a reaction rate from our measured
average melting time is that a proper rate should be based on
the time at which the process first reaches the top of the
reaction barrier. However, melting times determined by the
procedure described in Section 2 are expected to have a
positive bias. To determine the correct time offset, we assumed
that the rate is obtained as the reciprocal of the adjusted time
μM − toffset

μ
=

− t
rate

1

M offset

Then, we optimized the value of toffset to maximize the R2

value when fitting the computed rate data to the logarithm of
the rate expression

= + − Δ * i
k
jjj

y
{
zzzA T

E
k T

ln(rate) ln( ) ln( )
1

B

Because the value of ln(T) is nearly constant over our range
of temperatures (99.5−104 K), we noted that the fit to this
equation is essentially indistinguishable from a fit to the
Arrhenius equation, that is

= ̅ − Δ * i
k
jjj

y
{
zzzA

E
k T

ln(rate) ln( )
1

B

Thus, we computed linear regression using the latter
equation (i.e., instead of computing nonlinear fitting to the
former equation). For each of the five smallest periodic box
sizes, we performed the optimization procedure using 10
temperature points. The plots of the resulting fits are given in
Figure 6. The optimized toffset values and the corresponding
fitting results are given in Table S4 of Supporting Information.
We note that the optimized values of toffset ≈ 30 ps are similar
across different system sizes. Considering that the magnitude

of μM significantly varies depending on the system size, these
consistent values strongly support our use of toffset. In addition,
all fits have good R2 values (all greater than 0.98).
The predicted activation energies ΔE* increase with the size

of the periodic box, from 127.82 kJ/mol for N = 4 to 159.48
kJ/mol for N = 8. Because the interatomic potential is very
short-ranged, the energy to dislocate an atom by a fixed
distance in the frozen crystal lattice should not depend on the
size of the periodic box. Therefore, the predicted lower
activation barrier for the smaller periodic boxes indicates that
melting can be achieved with less dislocation than in the larger
boxes. This makes sense because for the smaller box there will
be nearby dislocations in each surrounding periodic image.
The smaller boxes have lower activation energies yet have an

overall lower melting rate than the larger boxes. Their slower
rate is due to their lower prefactors: ln A̅ = 144.50 for N = 4
compared with ln A̅ = 184.15 for N = 8. In conventional
chemical reactions, the prefactor (which is also known as the
“frequency factor”) describes the frequency at which collisions
occur with sufficient energy for a reaction to occur. In our case,
the prefactor is proportional to the rate of argon fluctuations
that are sufficiently large to cause the crystal to melt.

3.4. Melting of Water Ice. The melting time data from the
water ice simulations (described in Supporting Information
Section 5) were analyzed using the same approach we applied
to argon melting. We observed that the gamma distribution
parameters, α and β, follow a linear relationship with M (see
Figure S10 of Supporting Information) like the argon melting
data we showed in Figure 3. We also confirmed that the
measured average melting times (μM) versus the number of
water molecules (M) is well described by eq 3. Figure 7 shows

that the melting time follows an approximately inverse
relationship with the size like the argon melting time (see
Figure 4) and the melting time asymptotes to a fixed value
(μ∞) which is the predicted melting time for an infinitely large
periodic box at 281 K.

4. CONCLUSIONS
PBCs are a purely artificial construct to imitate “macroscopic”
experimental samples using dramatically smaller “microscopic”
systems (rarely greater than 109 atoms and usually much
smaller) that are amenable to simulation. In addition to the
documented artifacts of PBCs that can arise when calculating
equilibrium properties, for simulations of equilibrium and

Figure 6. Plot of the logarithm of the rate, ln(rate), vs the inverse
temperature, T−1, for the five smallest periodic box sizes. N denotes
the number of unit cells in each direction. Solid lines depict the linear
regression results.

Figure 7. Plot of the melting time μM vs the number of water
molecules (M) in the periodic box. For the ice system at 281 K,
results from 11 different periodic box sizes are shown. Filled red
circles with error bars corresponding to two standard deviations
denote the MD simulation results, whereas the blue solid line denotes
the fitted curve to eq 3. The values of the fitting parameters are μ∞ =
556 ps, m/q = 7.3 × 105, and c = −155.
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nonequilibrium phase transition processes, the size of the
periodic box adds an additional artifact due to the limited
number of independent particles whose random motion can
trigger phase transition. In this study, we used the model
problem of the melting of superheated argon ice crystals to
demonstrate that the resulting system-size effect of the mean
melting time is inversely proportional to the number of atoms
in a periodic box. To corroborate this system-size effect, we
derived eq 3 for the mean melting time, which involves the rate
of melt-inducing spontaneous dislocations in the crystal, q/
(mΔt), and the asymptotic average melting time for an
infinitely large periodic box, μ∞. After confirming that the
distribution of melting times follows the gamma distribution,
we also investigated the behavior of the shape (α) and rate (β)
parameters of the distribution to characterize the interrelation-
ship between the system size, the temperature, and the melting
time distribution. Both parameters increase linearly with the
number of atoms in the periodic box. Though the resulting
dependence of the mean melting time on the periodic box size
is seen at all temperatures studied, the effect is shifted so that
the melting time distribution for smaller periodic boxes at a
particular temperature is similar to that for larger periodic
boxes at lower temperatures. More specifically, the changes
that decrease the melting time, either increasing the system
size or raising the temperature, lead to a more Gaussian-like
distribution, whereas changes that increase the melting time,
lead to a more exponential-like distribution. The subsequent
analysis of the rate kinetics of the melting process for different
system sizes showed that the activation energy is higher for
larger boxes, but this is more than offset by the increase in the
prefactor for larger boxes, leading to a net increase in melting
rates for larger boxes. In practical terms, this study shows that
simulations of phase transition processes in systems using
PBCs should be corrected by running the simulation with
different size periodic boxes and extrapolating to infinite box
size.
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