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Abstract We study confined Brownian motion by investigating the memory function of a
d-dimensional hypercube (d ≥ 2), which is subject to a harmonic potential and suspended
in an ideal gas confined by two parallel walls. For elastic walls and under the infinite-mass
limit, we obtain analytic expressions for the force autocorrelation function and the memory
function. The transverse-direction memory function possesses a nonnegative tail decaying
like t−(d−1), from which anomalous diffusion is expected for d = 2. For d = 3, the position-
dependent friction coefficient becomes larger than the unconfined case and the increment is
inversely proportional to the square of the distance from the wall. We also perform molecular
dynamics simulations with thermal walls and/or a finite-mass hypercube. We observe faster
decay due to the thermal wall (t−3 for d = 2 and t−5 for d = 3 under the fully thermalizing
wall) and convergence behaviors of the finite-mass memory function, which are different
from the unconfined case.

Keywords Memory effects · Long-time tail · Finite-mass effects · Anomalous diffusion ·
Molecular dynamics

1 Introduction

The generalized Langevin equation (GLE) approach [40], which is also known as the memory
function method, provides an effective tool to analyze the phenomena of Brownian motion
and anomalous diffusion. The approach has a solid theoretical background. The equation has
been derived from a microscopic equilibrium system [28,36] and from an incompressible
fluid described by the fluctuating hydrodynamics [15] and shown to hold for a broad class
of stochastic processes [37]. Reduction to the Langevin equation has been demonstrated on
microscopic scales [18] and on hydrodynamic scales [15]. Generalization to nonequilibrium
systems has also been considered [20]. In addition, the GLE is versatilely applicable to inter-
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pret experimental data over a broad range of time scales. Theoretical predictions on Brownian
motion at short time scales have been experimentally confirmed by single-particle tracking
techniques in the framework of the GLE [30]. A model based on the GLE and the frac-
tional Gaussian noise has been used to explain subdiffusion dynamics in the conformational
fluctuation of a protein molecule [27] and a phenomenological model, which combines the
Basset force and the generalized Stokes force, has been proposed for the hydrodynamic and
subdiffusive motion of a tracer in a viscoelastic medium [13].

There are two types of the GLE approach. In the first approach, diffusion and velocity
relaxation of a tracer particle are investigated through the deterministic GLE, which is for-
mally derived by the projection operator technique [28,36]. Two essential quantities are the
memory function and the autocorrelation function of the fluctuating force. They are related
by the fluctuation-dissipation theorem [28,36], and several methods have been proposed to
determine these functions from trajectory realizations [6,24,33,39]. The temporal behav-
ior of the velocity autocorrelation function and the mean square displacement function is
explained by the memory function [25,39,48]. In addition, whether the diffusion is normal
or anomalous is determined by the tail behavior of the memory function [23,35]; only if the
time integral of the memory function converges to a positive value, the diffusion is normal.
On the other hand, the second approach employs the stochastic GLE, where the fluctuating
force in the deterministic GLE is replaced by an independent random noise process. Con-
sidering that the relationship between the fluctuating force and the velocity is complicated
in the deterministic GLE, the stochastic GLE is more easily investigated analytically and
numerically and used in stochastic modeling. For a Gaussian random process (such as the
Gaussian colored noise or the fractional Gaussian noise) and a certain analytic form of the
memory function (such as exponential and power-law decaying functions), plenty of analytic
results are available [8,26,38,40,45,47]. Also, one can use standard numerical techniques to
generate sample trajectories of the stochastic GLE [3,40].

If the mass of a tracer particle is much larger than that of a fluid particle, the time scale of the
movement of the former is correspondingly larger than that of the latter. Due to large time scale
separation, the motion of the Brownian particle is approximately described by a Markovian
process (i.e., the Langevin equation) [41]. Complete time scale separation would occur in
the Brownian limit, where the Brownian particle has an infinite mass. Microscopically, this
corresponds to the frozen dynamics, where the Brownian particle is fixed and the fluid particles
move under the presence of the Brownian particle. The force autocorrelation function of this
dynamics provides information not only for the macroscopic Markovian description through
the adiabatic approximation but also for the microscopic description of systems in the near-
Brownian-limit regime. The friction coefficient in the Langevin equation is calculated from
the time integral of the frozen dynamics force autocorrelation function. As the mass M of the
Brownian particle increases, the autocorrelation function of the fluctuating force converges
to the frozen-dynamics force autocorrelation function and, by the fluctuation-dissipation
theorem, the Brownian limit of the memory function, which we will call the limit memory
function, is also obtained by the frozen dynamics [12]. An asymptotic expression for the
velocity autocorrelation function with respect to M is available in terms of the limit memory
function [22].

In this paper, we investigate Brownian motion in a confined Rayleigh gas through the
deterministic GLE. The Rayleigh gas is a simplified model consisting of a heavy Brown-
ian particle and a surrounding ideal gas, where elastic collisions of the Brownian particle
with gas particles are usually assumed. Owing to the noninteracting bath assumption, hydro-
dynamic effects of the surrounding fluid become suppressed whereas the effects of direct
interaction between the Brownian particle and gas particles become dominant. The uncon-
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fined Rayleigh gas has been extensively studied by analytic means. It has been proved that
the motion of the Brownian particle converges to the Ornstein–Uhlenbeck process in the
Brownian limit [9,42]. The friction coefficient [11,14,21,34] and the velocity autocorre-
lation function [17,32] have been obtained by various techniques. The convergence proofs
have also been given for the systems generalized in the following ways: the Brownian particle
has a convex shape and rotates [10]; the space is confined by a wall [4]; there are several
Brownian particles and the elastic collisional dynamics is replaced by dynamics under a con-
tinuous interaction potential [29]. In a confined Rayleigh gas, a gas particle can perform a
series of collisions alternately with the Brownian particle and the boundary wall. As a result,
the interaction between the Brownian particle and the ideal gas becomes complicated and a
long-time tail in the memory function is expected to emerge. Although a tail is also present
in the memory function in the unconfined case, it decays exponentially and its magnitude
becomes negligible when the mass of the Brownian particle is sufficiently large [17]. Hence,
by investigating the long-time tail in the memory function of the confined case, we discuss the
effects of confinement in the Rayleigh gas. More specifically, we observe the power-law tail
and investigate its dependence on system parameters such as the dimensionality of the space
and the size of confinement. In addition, we investigate the effects of the stochastic thermal
wall satisfying Maxwell boundary condition [43,44]. However, we note that the confinement
effects observed in our model are different in nature from those on Brownian motion in a
liquid, where hydrodynamic interactions play an important role [5,19,46].

We use both an analytical approach and molecular dynamics (MD) simulation approach
in a complementary way, which have been employed to investigate the memory function
of the unconfined Rayleigh gas with a continuous interaction potential function [21]. From
the analytical approach, we obtain an expression for the limit memory function by using
an analytic expression of the frozen dynamics force autocorrelation function. In the frozen
dynamics of the Rayleigh gas model, the dynamics of each gas particle becomes decoupled
from those of the other gas particles and, thus, each relevant physical quantity is written as
an ensemble average of a functional of the single-gas-particle trajectory. On the other hand,
from the MD simulation approach, we investigate the system with a finite-mass Brownian
particle and/or the stochastic thermal walls. However, in general, analyzing the tail of a time
correlation function by means of MD simulations is not so straightforward due to the difficulty
in accurately estimating the time correlation function over a large time interval. In this case,
analytic results for the limiting situation are very helpful for guiding the MD simulation
approach. In turn, we also confirm the analytic results by the MD simulation results.

In order to make full use of analytic features, we consider a cube of fixed orientation
as the Brownian particle rather than a spherical shape. We shall see that by assuming all
collisions are elastic, the diffusions along the directions other than the transverse direction to
the channel become identical to the unconfined case and decoupled from the one along the
transverse direction in the Brownian limit. Since the generalization to a higher-dimensional
space is straightforward, we consider a hypercube in d-dimensional space with d ≥ 2. A
similar setting of the system (a hypercube in a half space confined by a single wall) has been
considered in the mathematical proof for the convergence of the diffusion process [4]. A suf-
ficient condition for the convergence has been given in terms of the velocity distribution of
gas particles. For the three-dimensional equilibrium ideal gas, which satisfies the condition,
the diffusion process in the Brownian limit becomes the Ornstein–Uhlenbeck-type process
with a position-dependent friction coefficient. However, it has been pointed out that the con-
dition does not hold in the two-dimensional equilibrium case, which suggests the possibility
of failure in converging to normal diffusion. We shall see that the tail of the memory kernel
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decays like t−1 in the two-dimensional case with the elastic walls, which implies anomalous
diffusion.

The rest of the paper is organized as follows. In Sect. 2, we explain the system. In Sect. 3,
we present analytic results. In Sect. 4, we show MD simulation results. In Sect. 5, we provide
the derivation of two analytic results: the GLE and the frozen dynamics force autocorrelation
function. In Sect. 6, we present a summary and discussion.

2 System

We consider the d-dimensional space with d ≥ 2 and denote the coordinates of a point as
(x1, x2, . . . , xd). Two parallel walls normal to the xd -axis are located at xd = h±. In the
space between the two walls, a hypercube with sides L1, L2, . . ., Ld is placed. We fix the
orientation of the cube so that the edges with length Li (i = 1, 2, . . . , d) are parallel to the
xi -axes, respectively. Then, two faces of the cube are parallel to the walls. Depending on
their xd -coordinates, we call the two walls as the upper and lower walls and the two faces of
the hypercube as the upper and lower faces. We also call the direction parallel to the xd -axis
as the transverse direction (to the channel). The remaining space between the walls is filled
with an ideal gas. We denote the mass of a gas particle as m and the number density of the
gas as a, respectively. For the geometry of the walls and the hypercube for d = 3, see Fig. 1a.

We first explain the dynamics of the system with a finite-mass hypercube and elastic walls.
For the frozen dynamics and the stochastic thermal walls, see below. We denote the mass of the
hypercube as M and assume that it collides with a gas particle elastically. When a gas particle
with velocity (v1, v2, . . . , vd) collides with the hypercube with velocity (V1, V2, . . . , Vd)

through one of the faces normal to the xi -axis, the i th velocity components of the gas particle
and the hypercube become

vi → vi − 2M

m + M
(vi − Vi ), Vi → Vi + 2m

m + M
(vi − Vi ), (1)

respectively, and the other components do not change. When a gas particle collides with one
of the elastic walls, its velocity (v1, v2, . . . , vd) becomes (v1, v2, . . . ,−vd). We assume that
gas particles do not interact among themselves.

(a) (b)

Fig. 1 In panel a, the geometry of the system is depicted for the three-dimensional case. For the definitions
of the symbols, see the text. In panel b, a trajectory of a gas particle colliding alternatively with the (purely
elastic) upper wall and the upper face of the fixed cube is depicted
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In addition, we introduce a harmonic potential to the hypercube along the transverse
direction. By denoting the force constant as k, the hypercube located at (X1, X2, . . . , Xd)

experiences the linear restoring force (0, 0, . . . ,−k Xd). In order to avoid the direct interaction
of the hypercube with the walls, we assume that k is sufficiently large so that there is almost
no chance for it to reach the walls. We note that in the Brownian limit considered in Ref. [4]
(i.e., m → 0 while the mass and the size of the cube are kept fixed and the number density
and the velocity distribution of the ideal gas are appropriately scaled), it has been proved
that the cube never reaches the wall. We also note that a similar experimental setting (i.e.,
a particle under a harmonic potential, which is suspended in a liquid confined by a wall)
has been employed to investigate confined colloidal diffusion at hydrodynamic scales by the
optical trap technique [5,19,46].

We assume that the system is in equilibrium and obeys the Boltzmann distribution. We
denote the inverse temperature of the system by β = (kBT )−1. We call this dynamics (i.e.,
with the finite-mass hypercube under the harmonic potential) full dynamics.

Frozen dynamics In this dynamics, the hypercube is assumed to have an infinite mass so
that it is held fixed at given position regardless of elastic collisions with gas particles. If a
gas particle with velocity (v1, v2, . . . , vd) collides with a face normal to the xi -axis, the i th
component becomes −vi and the other components do not change. We denote the distances
between the upper wall and the upper face and between the lower wall and the lower face as
�+ and �−, see Fig. 1a. We note that, in the frozen dynamics, neither M nor k is defined
and the separation distances �± are given as parameters.

Thermal walls We employ a stochastic thermal wall model satisfying the Maxwell bound-
ary condition [43,44]. We first explain the thermalizing procedure of the gas-particle velocity
at the walls. If a gas particle collides with one of the walls, the particle is instantly released
from the wall with a randomly sampled velocity (v1, v2, . . . , vd) from the following distri-
butions

ψ‖(vi ) =
√
βm

2π
e− 1

2 βmv2
i , i = 1, 2, . . . , d − 1, (2a)

ψ⊥(vd) = βm|vd |e− 1
2 βmv2

d , (2b)

where ψ⊥(vd) is defined for vd > 0 at the lower wall and for vd < 0 at the upper wall.
Then, we define the accommodation factor 0 ≤ φ ≤ 1, which is the probability that gas
particles are thermalized when colliding with the walls. We call the cases φ = 0 and φ = 1,
respectively, purely elastic and fully thermalizing walls.

3 Analytic Results

Throughout this section, we only consider the purely elastic walls so that every collision
occurring in the system is elastic and the dynamics is deterministic. We present analytic
results as follows. We first consider the full dynamics and present the form of the GLE for
the finite-mass hypercube in Sect. 3.1. Then, we investigate its Brownian limit. We provide
an analytic expression of the frozen dynamics force autocorrelation function and investigate
its power-law decaying tail in Sect. 3.2. We obtain the limit memory function in Sect. 3.3.
We discuss the Langevin description and obtain its position-dependent friction coefficients in
Sect. 3.4. We present the derivation of the GLE and the frozen dynamics force autocorrelation
function in Sect. 5.
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3.1 GLE

By using the Mori projection method [36,40], we show in Sect. 5.1 that the position
X = (X1, X2, . . . , Xd) and velocity V = (V1, V2, . . . , Vd) of the hypercube having mass M
satisfy the following GLE:

Ẋi (t) = Vi (t), (3a)

MV̇i (t) = −
∫ t

0
Ki (t − s)Vi (s)ds + F+

i (t), i = 1, 2, . . . , d − 1, (3b)

Ẋd(t) = Vd(t), (3c)

MV̇d(t) = −k Xd(t)−
∫ t

0
Kd(t − s)Vd(s)ds + F+

d (t), (3d)

where the memory function Ki (t) and the fluctuating force F+
i (t) satisfy the fluctuation-

dissipation relation

Ki (t) = β
〈
F+

i (0)F
+
i (t)

〉
, i = 1, 2, . . . , d, (4a)〈

F+
i (0)F

+
j (t)

〉
= 0, for i �= j . (4b)

In addition, the fluctuating force is uncorrelated with Xd(0) and V(0):

〈
Xd(0)F

+
i (t)

〉 = 0, i = 1, 2, . . . , d, (5a)〈
Vi (0)F

+
j (t)

〉
= 0, i, j = 1, 2, . . . , d. (5b)

We note that since V(t) changes discontinuously whenever it collides with gas particles, its
time derivative V̇(t) = 1

M F(t) is understood as a formal derivative containing a series of
Dirac delta functions and so is the fluctuating force. We also note that Eq. (3) is exact and
equivalent to the original time evolution equation although, in general, it cannot be used to
generate sample trajectories because the fluctuating force is very complicatedly related with
X and V.

In order to derive the GLE, we make the assumption that the harmonic potential is so stiff
that the direct interaction between the hypercube and the walls is negligible. In Sect. 5.1.1,
we show that in this case the following equilibrium distribution of the hypercube along the
transverse direction can be assumed:

ρ(Xd) =
√
βk

2π
e− 1

2 βk X2
d . (6)

Since this distribution becomes exactly valid in the case that the hypercube is subject to a
harmonic potential but suspended in an unbounded ideal gas, Eq. (3) is exact in the latter
case.

3.2 Frozen Dynamics Force Autocorrelation Function

Denoting the force exerted on the fixed hypercube by the ideal gas as F0 = (F0,1, F0,2, . . . ,

F0,d), we derive the following analytic expression for the frozen dynamics force autocorre-
lation in Sect. 5.2:
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〈
F0,i (0)F0,i (t)

〉 = 8a

β

√
2m

πβ

⎛
⎜⎜⎝

d∏
j=1
j �=i

L j

⎞
⎟⎟⎠ δ(t), i = 1, 2, . . . , d − 1, (7a)

〈
F0,d(0)F0,d(t)

〉 = 8a

β

√
2m

πβ

⎛
⎝d−1∏

j=1

L j

⎞
⎠ δ(t)+ I +

2 (t)+ I −
2 (t). (7b)

Here, I ±
2 (t) = I2(t;�±), where

I2(t;�) = A(t;�)
d−1∏
i=1

B(t; Li ), (8a)

A(t;�) = 4am2
∞∑

n=1

(2n�)4

t5
ϕ

(
2n�

t

)
, (8b)

B(t; L) = L erf

(
L

t

√
βm

2

)
− t

√
2

πβm

(
1 − e

− βmL2

2t2

)
, (8c)

with ϕ(v) =
√
βm
2π e− βm

2 v
2

and erf(x) = 2√
π

∫ x
0 e−y2

dy. The longitudinal-direction force

autocorrelation functions
〈
F0,i (0)F0,i (t)

〉
(i = 1, 2, . . . , d−1) contain only a delta function1.

This indicates that the effects of collisions are instantaneous and uncorrelated as in the
unbounded case. On the other hand, the transverse-direction force autocorrelation function〈
F0,d(0)F0,d(t)

〉
contains also slowly decaying parts I +

2 (t) and I −
2 (t), which result from

repeated collisions with the upper and lower wall, respectively. As� → ∞, I ±
2 (t) becomes

zero and we retrieve the unbounded case.
We make the following observations on the time profile of I2(t;�). It is zero at t = 0

and nonnegative for all t . At short times, it has very small values until it exhibits a sharp
increase and attains a maximum, and then it monotonically decreases to zero. The short-time
behavior of I2(t;�) is explained by that it takes time for a gas particle to collide again with
the hypercube. Hence, the time when the maximum value appears is of the order of�/ 〈|vd |〉.
On the other hand, at large time t , A(t;�) and B(t; L) become

A(t;�) ≈ 2am2

�

∫ ∞

0
y4ϕ(y)dy = 3a

β2�
, (9a)

B(t; L) ≈ L2

t

√
βm

2π
. (9b)

Hence, we obtain

I2(t;�) ≈ 3a

β2

(
βm

2π

) d−1
2 L2

1 L2
2 · · · L2

d−1

td−1�
, (10)

and observe that the tail decays like t−(d−1). In addition, we observe that at large times the
magnitude of the tail is inversely proportional to the separation distance � and proportional
to the square of the area of the upper or lower face.

In Fig. 2, the time profile of
〈
F0,d(0)F0,d(t)

〉
is shown for the two-dimensional case. If

the hypercube is fixed at the center of the channel (i.e., �+ = �− = �),
〈
F0,d(0)F0,d(t)

〉

1 We use
∫∞

0 δ(t)dt = 1
2

∫∞
−∞ δ(t)dt = 1

2 rather than
∫∞

0 δ(t)dt = 1.
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(a)

(b)

Fig. 2 The frozen dynamics force autocorrelation function for the transverse direction to the channel in the
two-dimensional case. The width of the channel is 6 (i.e., h± = ±3) and the hypercube has sides L1 = L2 = 1
and is fixed at Xd = 0 (i.e., �± = 2.5) in panel a and at Xd = −1 (i.e., �+ = 3.5 and �− = 1.5). The
other parameters are given as m = a = β = 1. The analytic result (depicted by the dashed line), see Eq. (7b),
is compared with the frozen dynamics MD simulation result (depicted by the solid line). The error bars
correspond to statistical errors with two standard deviations. The long-time asymptotic result, see Eq. (10), is
also plotted by the dotted line. In the inset of panel b, the time profiles of I±

2 (t) = I2(t;�±), see Eq. (8), are
plotted

= 2
β
γ ∗

d δ(t)+ 2I2(t;�) and we observe the shape of I2(t;�). Otherwise, the tail may have
two local maxima as a result of superposing I2(t;�+) and I2(t;�−).

3.3 Limit Memory Function

As the mass of the Brownian particle increases, the memory function Ki (t) defined in Eq. (3)
converges to the limit memory function K BL

i (t), where BL stands for the Brownian limit
M → ∞. Compared with the free Brownian case in an unbounded space, where a simple
relation K BL

i (t) = β
〈
F0,i (0)F0,i (t)

〉
holds, the frozen dynamics force autocorrelation func-

tion depends on the position of the hypercube (through the separation distance �±) and the
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limit memory function K BL
i (t) is expected to be expressed as the average of

〈
F0,i (0)F0,i (t)

〉
over the equilibrium distribution of the hypercube. By assuming

K BL
i (t) = β

∫
ρ(Xd)

〈
F0,i (0)F0,i (t)

〉
d Xd (11)

and using Eq. (7), we obtain the limit memory function as follows:

K BL
i (t) = 2γ ∗

i δ(t), i = 1, 2, . . . , d − 1, (12a)

K BL
d (t) = 2γ ∗

d δ(t)+ K̃ BL
d (t), (12b)

where

γ ∗
i = 4a

√
2m

πβ

d∏
j=1
j �=i

L j , i = 1, 2, . . . , d, (13)

K̃ BL
d (t) = β

∫
ρ(Xd)

[
I2(t;�+)+ I2(t;�−)

]
d Xd . (14)

We note that the separation distances�± are functions of Xd defined as�+ = h+−Xd − 1
2 Ld

and �− = Xd − 1
2 Ld − h−, see Fig. 1a. In addition, by letting � → ∞, we see that γ ∗

i
is the friction coefficient of the unbounded case. Rather than analytically investigating the
convergence of Ki (t) to K BL

i (t) in the Brownian limit or the validity of Eq. (11), numerical
validation by using MD simulations is performed, see Fig. 7.

3.4 Langevin Description

Based on the adiabatic approximation due to time scale separation, the following Langevin
equation is proposed in the Brownian limit:

Ẋi (t) = Vi (t), (15a)

MV̇i (t) = −γ ∗
i Vi (t)+ �i (t), i = 1, 2, . . . , d − 1, (15b)

Ẋd(t) = Vd(t), (15c)

MV̇d(t) = −k Xd(t)− γd(Xd)Vi (t)+ �d(t), (15d)

where γ ∗
i and γd(Xd) are the friction coefficients in the corresponding directions and �i (t)

(i = 1, 2, . . . , d) is Gaussian white noise.
For the longitudinal directions (i = 1, 2, . . . , d − 1), γ ∗

i is expressed by Eq. (13)
from γ ∗

i = β
∫∞

0

〈
F0,i (0)F0,i (t)

〉
and the noise correlation is correspondingly given as〈

�i (t)� j (t ′)
〉 = 2γ ∗

i
β
δi jδ(t − t ′). Hence, the Langevin description in these directions is

identical to the unbounded case. On the other hand, for the transverse direction, since〈
F0,d(0)F0,d(t)

〉
depends on the position of the hypercube through Xd , γd(Xd) becomes a

position-dependent friction coefficient. For d = 2, since the time integral of
〈
F0,d(0)F0,d(t)

〉
diverges from Eq. (10), the Langevin description fails and anomalous diffusion is expected.
For d ≥ 3, we have

γd(Xd) = γ ∗
d + δγ (�+)+ δγ (�−), where δγ (�) = β

∫ ∞

0
I2(t;�)dt. (16)

We note that due to the presence of the walls, γd depends on the separation distances �±
and becomes larger than the unconfined one. In case of normal diffusion, �d(t) is given as√

2γd (Xd )
β

Ẇt , where Wt is the standard Wiener process independent of �i (t).
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An asymptotic expression of δγ (�) for large � is obtained as follows. As � becomes
larger, it takes longer time for a gas particle to recollide with the wall and the time interval
where A(t;�) attains considerable values appears later. In this case, we approximate I2(t;�)
in Eq. (8a) by replacing B(t; L) with its long-time asymptotic expression given in Eq. (9b).
Then, by integrating this with respect to t , we obtain

δγ (�) ≈ 64am2β

(
βm

2π

)d/2 L2
1 L2

2 · · · L2
d−1

�d−1

∞∑
n=1

1

nd−1

∫ ∞

0
yd+2e−2βmy2

dy. (17)

From Eq. (17), we see that for d = 2, δγ (�) diverges and for higher d , it is proportional to
�−(d−1). For d = 3, Eq. (17) becomes

δγ (�) ≈ a
√

2πmβ

3

L2
1 L2

2

�2 . (18)

In Fig. 3, the dependence of δγ (�) on � is plotted for d = 3 and compared with Eq. (18).
Before closing this section, we obtain the friction coefficient γd−sphere of a d-dimensional

hypersphere by using the analytic expression of
〈
F0,i (0)F0,i (t)

〉
. We note that its δ-weight is

proportional to the area of corresponding face and that the contribution of the collisions on an
area element is uncorrelated with that on the other area elements. Hence, we can define its den-

sity 〈F0(0) · F0(t)〉 = 4a
β

√
2m
πβ
δ(t) per unit area, from which the friction coefficient γd−sphere

for a hypersphere of radius R in the unbounded d-dimensional space is obtained. By denoting
the area of the hypersphere as Sd−1(R), we have 〈F0(0) · F0(t)〉 = 〈F0(0) · F0(t)〉Sd−1(R).
From the relation γ = β

d

∫∞
0 〈F0(0) · F0(t)〉dt for the isotropic case [18], we obtain

γd−sphere = 2a
π(d−1)/2

�
( d

2 + 1
)
√

2m

β
Rd−1. (19)

Fig. 3 Log–log plot of the increment δγ (�) in the transverse-direction friction coefficient γd due to the wall
separated by distance �, see Eq. (16), versus �. The result is obtained from the three-dimensional case and
the other parameters are given as L1 = L2 = 1, and m = a = β = 1. The asymptotic expression of δγ (�)
for large �, see Eq. (18), is also plotted by the dotted line
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This general formula coincides with the previous results for d = 2 and 3 [11,14,21,32,34]
and even for d = 1 [7]. We also note that a similar argument can be applied to the computation
of the friction coefficient of a convex body [10].

4 MD Simulation Results

In this section, we present MD simulation results for the frozen and full dynamics of the two-
and three-dimensional confined Rayleigh gas. In Sect. 4.1, we explain the MD procedures
as well as the simulation parameters. In Sect. 4.2, we confirm the analytic results for the
frozen dynamics and investigate the effects of the thermal walls. In Sect. 4.3, we observe the
memory function of the finite-mass hypercube under the harmonic potential.

4.1 MD Procedures

Physical Parameters For the two-dimensional system, a square with L1 = L2 = 1 in a
channel of width Hchannel = 6 (i.e., h± = ±3) is considered. In order to mimic an infinite
channel, the length of the channel is set as Lchannel = 100 and periodic boundary condition is
imposed along the direction of the channel axis. The mass m of a gas particle and the inverse
temperature β and number density a of the ideal gas are chosen as m = β = a = 1. In the
frozen dynamics, the hypercube is fixed in the middle of the channel (i.e.,�± = 2.5) and the
accommodation factor φ of the thermal walls is varied from φ = 0 (purely elastic) to φ = 1
(fully thermalizing). The hypercube fixed at Xd = −1 (i.e.,�+ = 3.5 and�− = 1.5) is also
simulated with φ = 0. In the full dynamics, the force constant k of the harmonic potential is
chosen as k = 4, 6, and 8 and the mass M of the square is chosen as M = 10, 20, 50, 100,
200, and 500. Only the purely elastic walls are considered. For the frozen dynamics of the
three-dimensional system, a cube with L1 = L2 = L3 = 1 in a channel with Hchannel = 6 is
considered and periodic boundary condition with Lchannel = 100 is imposed to the x1- and
x2-axes. While the same values m = β = 1 are used, a = 0.01 is used to reduce the mean
number of the gas particles. The value of φ is varied from φ = 0 to φ = 1.

In order to investigate the case of a single-wall system, we additionally simulate the frozen
dynamics of the two- and three-dimensional systems with larger values of Hchannel = 12, 24,
and 48 but with �+ = 2.5 fixed and observe 〈F+(0)F+(t)〉. When we increase the volume
of the system, we correspondingly decrease the value of a so that the mean number of the
gas particles remains the same, which is for computational convenience. Since the frozen
dynamics force autocorrelation is linearly proportional to a, we normalize it by a before
comparison.

Generating Initial Configurations For the frozen dynamics, the initial configuration of
the ideal gas is sampled from Eq. (42). In other words, the number of the gas particles is
sampled from the Poisson distribution with mean a(Hchannel Lchannel − L1L2) for d = 2
and a(Hchannel L2

channel − L1L2 L3) for d = 3. Then, the position and velocity of each gas
particle are sampled from the uniform distribution and the Maxwell–Boltzmann distribution,
respectively. For the full dynamics, the initial position (X1, X2, . . . , Xd) of the hypercube is
determined as follows: X1 = · · · = Xd−1 = 0 and Xd is sampled from Eq. (6). Its velocity
is sampled from the Maxwell–Boltzmann distribution. Then, the initial configuration of the
ideal gas is sampled as in the frozen dynamics case.

Calculating Trajectories For the MD simulations of the frozen dynamics, a standard
event-driven algorithm for hard-core systems [1,2] is employed. In other words, we repeat
the following procedure: calculate the next collision time from the smallest collision time
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among all possible collisions; move all particles forward until collision occurs; implement
collision dynamics for the colliding gas particle. For the MD simulation with the finite-mass
hypercube under the harmonic potential, where an event/time-driven hybrid method should
be used in order to properly handle with the collisional dynamics as well as the dynamics
under the continuous potential, the collision Verlet algorithm [16] is employed. The basic
idea is to approximate the continuous dynamics between the collisions by the Verlet map. In
our case (i.e., under the harmonic potential), the collision time between the hypercube and
a gas particle under the Verlet map is formally solved for and thus the next collision time is
accurately estimated without employing any iterative solver.

Evaluating Forces and Time Correlation Functions In frozen dynamics, the force F0(t)
on the fixed hypercube at time t is calculated from the average force in the time interval
[t, t + �t] (i.e., the impulse divided by �t). Every time step, each component of F0(n�t)
is calculated and, for the transverse direction, F+(n�t) and F−(n�t) are separately calcu-
lated. In full dynamics, the total force F(t) is obtained from the sum of the harmonic force
(0, . . . , 0,−k Xd(t)) and the average force due to the collisions in the time interval [t, t +�t].
Every time step, F(n�t) is calculated along with the trajectory (X(n�t),V(n�t)).

Using a standard technique to estimate time correlation functions [2], the following time
correlation functions are calculated:

〈
F0,i (0)F0,i (t)

〉
and 〈F±(0)F±(t)〉 for the frozen dynam-

ics and the auto/cross-correlation functions among X(t), V(t), and F(t) for the full dynamics.
The δ-weights in the force autocorrelation functions are separately estimated as follows. For
each collision with the faces normal to the xi -axis, we calculate the square of the momentum
change of the colliding gas particle. From the sum of these values divided by the total simula-
tion time, we estimate the δ-weight in the force autocorrelation function of the xi -component
of the force.

The procedures to calculate the force and the δ-weight in the force autocorrelation function
are elaborated by considering the frozen dynamics. For the full dynamics, the procedures are
essentially the same. In the frozen dynamics, the force F0,i (t) is expressed as

F0,i (t) = −
∑

k

�pi,kδ(t − τk), (20)

where�pi,k and τk are, respectively, the momentum change of a colliding gas particle in the
xi -direction and the collision time at kth collision. The force at the time step n�t is estimated
as

FMD
0,i (n�t) = 1

�t

∫ (n+1)�t

n�t
F0,i (t)dt = − 1

�t

∑
τk∈[n�t,(n+1)�t)

�pi,k . (21)

The force autocorrelation function
〈
F0,i (0)F0,i (n�t)

〉
is evaluated from FMD

0,i (t) except the
point n = 0 where the delta function affects the value. The expression for the δ-weight in〈
F0,i (0)F0,i (t)

〉
is obtained from the following time average expression:

〈
F0,i (0)F0,i (t)

〉 T →∞= 1

T

∫ T

0
F0,i (τ )F0,i (τ + t)dτ

= 1

T
∑

τk∈[0,T ]

∑
l

�pi,k�pi,lδ(t + τk − τl). (22)

Here, the last equality is obtained by substituting Eq. (20) and integrating the delta function
δ(τ − τk). Hence, the δ-weight is estimated from 1

T
∑
τk∈[0,T ]�p2

i,k .
Calculating the Memory Function Next, we explain how to evaluate the transverse-

direction memory function Kd(t). For the other directions, the same procedure with k = 0
can be applied. In principle, we need to solve the following Volterra equation for Kd(t):
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〈Vd(0)Fd(t)〉 = − k 〈Vd(0)Xd(t)〉 −
∫ t

0
Kd(s) 〈Vd(0)Vd(t − s)〉 ds. (23)

This is obtained by multiplying Vd(0) to Eq. (3d) and taking ensemble average with Eq. (5b).
One expected difficulty we encounter in the collisional dynamics is that the memory function
contains a δ-peak, which should be handled with care separately from the continuous part. In
addition, since Eq. (23) is the first kind Volterra equation, its solution is numerically unstable.
To resolve these issues, we convert Eq. (23) into its second kind equation by differentiating
with respect to t :

〈Fd(0)Fd(t)〉 = k M 〈Vd(0)Vd(t)〉 + 1

β
Kd(t)+

∫ t

0
Kd(s) 〈Vd(0)Fd(t − s)〉 ds. (24)

Then, we decompose 〈Fd(0)Fd(t)〉 and Kd(t) into the δ-peaks and continuous parts:

〈Fd(0)Fd(t)〉 = a1δ(t)+ a2(t), Kd(t) = b1δ(t)+ b2(t). (25)

By substituting Eq. (25) into Eq. (24) and equating the δ-peaks and continuous parts, we
obtain

b1 = βa1, (26)

1
β

b2(t) +
∫ t

0
b2(s) 〈Vd(0)Fd(t − s)〉 ds

= a2(t)− k M 〈Vd(0)Vd(t)〉 − 1
2 b1 〈Vd(0)Fd(t)〉 .

(27)

The numerical procedure to calculate the δ-peak and continuous part of Kd(t) is sum-
marized as follows. By using the δ-weight a1 of

〈
F0,d(0)F0,d(t)

〉
, which is estimated from

MD simulation as described above, b1 is determined by Eq. (26). Then, the continuous part
b2(t) of Kd(t) is obtained from numerically solving Eq. (27). The convolution integral is
discretized by the trapezoidal rule and the values of b2(n�t) is successively obtained for
n = 1, 2, . . . [31,39].

Numerical Parameters Each trajectory is calculated up to time Tsim = 103 with �t =
0.01. The time correlation functions are calculated up to time Tcorr from each trajectory and
their ensemble averages are obtained from Nsample samples. Correspondingly, the memory
function is calculated up to time Tcorr. The values of Tcorr and Nsample are chosen as follows:
for the two-dimensional frozen dynamics, Tcorr = 20, Nsample = 220 ≈ 106; for the three-
dimensional frozen dynamics, Tcorr = 10, Nsample = 220 ≈ 106; for the two-dimensional full
dynamics, Tcorr = 100, Nsample = 218 ≈ 2.6×105 or Tcorr = 250, Nsample = 217 ≈ 1.3×105

(only used in the computations for Fig. 10).

4.2 Frozen Dynamics Results

We first observe MD simulation results with purely elastic walls, by which we can numeri-
cally confirm our analytic results presented in Sect. 3.2. For the two-dimensional system with
the parameters given in Sect. 4.1, the estimated values of the δ-weights in

〈
F0,i (0)F0,i (t)

〉
(i = 1, 2) coincide with the theoretical value. The ratio of the statistical errors to the theoret-
ical value is estimated as 1 × 10−4. The MD result for the tail part of

〈
F0,d(0)F0,d(t)

〉
also

agrees very well with the analytic result, see Fig. 2. The statistical error at the maximum of
the tail is estimated as 7 × 10−3 of the theoretical value. Similarly, for the three-dimensional
system, excellent agreement of the MD results with the analytic results is observed. The ratios
of the statistical errors to the theoretical values are estimated as 5 × 10−4 for the δ-weights
and 0.06 for the maximum value of the tail, respectively.
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Fig. 4 For the two-dimensional systems with two values of the accommodation factorφ = 0 (purely repulsive)
and φ = 1 (fully thermalizing), the time profiles of the frozen dynamics force autocorrelation function〈
F0,d (0)F0,d (t)

〉
for the transverse direction are plotted by the dashed and solid lines, respectively. The

separation distances are �+ = �− = 2.5. In the inset, negative values in the tail of the fully thermalizing
case are shown with the error bars corresponding to two standard deviations

Now we observe the effects of the thermal walls. While the δ-weight of
〈
F0,d(0)F0,d(t)

〉
does not depend on the accommodation factor φ, the tail part has the following dependence
on φ. As the stochastic character of the walls increases (i.e., φ increases), the tail appears
at a later time and decays faster. In addition, its maximum has a smaller value and appears
at a later time. In Fig. 4, the time profiles of the tail for the two extreme cases φ = 0 and
φ = 1 are compared for d = 2. The tail behavior with faster decay and smaller maximum
can be explained by that the repeated collision pattern is destroyed and randomized when
the colliding particle is thermalized by the wall. The time delay in the appearance of the tail
can be understood as follows. The time when the tail appears is related with the time for a
gas particle to recollide with the hypercube. Specifically, the time when the tail is about to
appear and increase is related with the recollisions of gas particles with large velocities in the
transverse direction. If these particles are thermalized, their new velocities tend to be smaller
and thus it takes more time for them to recollide with the wall.

One more interesting observation is that under the thermal walls, the tail exhibits negative
values as shown in the inset of Fig. 4. We note that this is possible only when F+ and F−
are correlated. Actually, under the thermal walls, there is a nonzero probability that a gas
particle collides sequentially with the upper face, the upper wall, the lower wall, and the
lower face, which contributes to the correlation of F+ and F−. Hence, the superposition of
the wall effects separately calculated from F+ and F−, see Eq. (7b), is no more valid.

We also investigate the long-time tail decay behavior under the thermal wall and compare
it with the purely elastic wall case, i.e., t−(d−1). As described above, the long-time decay also
becomes faster as φ increases. By sufficiently increasing the separation distance �− from
the lower wall, we mimic the system with a single wall and investigate the long-time decay
of I +

2 (t) or 〈F+(0)F+(t)〉−〈F+〉2. As shown in Fig. 5, under the fully thermalizing wall, the
tail is observed to decay like t−3 for d = 2 and t−5 for d = 3. Under the stochastic walls, the
tail is also observed in the longitudinal-direction force autocorrelation function. However, the
magnitude is much smaller than the transverse direction, and the decaying exponent cannot
be estimated due to relatively large statistical errors.
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Fig. 5 For the two- and three-dimensional systems with the fully thermalizing walls, where the hypercube is
located near the upper wall (�+ = 2.5) but far from the lower wall (�− = 44.5), the long-time decays of the
autocorrelation function of F+ is observed through the log–log plot of the normalized I+

2 (t) versus t . Error

bars correspond to the statistical errors with two standard deviations. For comparison, the decays of t−3 and
t−5 are also plotted

4.3 Full Dynamics Results

From the two-dimensional full-dynamics simulations, we mainly observe the memory func-
tion K M

i (t) in the xi -direction, where the superscript M indicates the mass of the hypercube.
As we increase M , we compare this function with the corresponding limit memory function
K BL

i (t) to confirm the analytic expression of K BL
i (t), see Eq. (12), and investigate the con-

vergence behaviors of K M
i (t) to K BL

i (t). We decompose K M
i (t) as the sum of the δ-peak

and tail parts: K M
i (t) = 2γ M,δ

i δ(t)+ K̃ M
i (t). We added the superscript δ in the δ-weight to

emphasize that it is obtained from the δ-peak rather than the time integral of K M
i (t). We first

observe the δ-peak in the memory function and then the tail part.
For both longitudinal and transverse directions to the channel (i.e., i = 1, 2), we observe

that γ M,δ
i has a smaller value than γ ∗

i and converges to γ ∗
i as M increases. We also observe

that γ M,δ
1 /L2 and γ M,δ

2 /L1 have the (statistically) same value for a wide range of values of
M . Although this would be quite expected in the free unbounded case, this implies, in our
case, that the δ-peak depends neither on the confined geometry nor on the external potential
as long as the surrounding ideal gas stays in the identical equilibrium state. In Fig. 6, the
deviation γ M,δ

i − γ ∗
i is plotted versus M , where a clear linear dependence on M−1 is shown.

Hence, we observe
γ

M,δ
i = γ ∗

i − O(M−1), i = 1, 2, . . . , d. (28)

Now we observe the convergence of the tail part K̃ M
d (t). In Fig. 7, the time profiles of

K̃ M
d (t) are plotted for various values of M . For sufficiently large values of M , the tail has a

similar shape to the limit memory function; after achieving the maximum, the tail monoton-
ically decreases. From these results, we confirm the convergence of K̃ M

d (t) to K̃ BL
d (t); as

M increases, the magnitude of the tail increases and it becomes closer to K̃ BL
d (t). Then, we

investigate the scaling behavior of the deviation K̃ M
d (t) − K̃ BL

d (t) with respect to the mass
M . In Fig. 8, the following form of scaling behavior is tested
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Fig. 6 For various values of the mass M of the hypercube in the two-dimensional system, the δ-weights γ M,δ
i

in the memory functions K M
i (t) are estimated and their deviations from the Brownian-limit values γ ∗

i in the
unbounded case are plotted versus M in the log–log plot with the error bars corresponding to two standard
deviations. The force constant of the harmonic potential is k = 4. For comparison, M−1 is also plotted

Fig. 7 The time profiles of the transverse-direction memory function K M
d (t) are plotted for various values of

M . The force constant of the harmonic potential is k = 4. For comparison, the limit memory function K BL
d (t)

is plotted by the dashed line

K̃ M
d (t) ≈ K̃ BL

d (t)+ 1√
M

g

(
t√
M

)
. (29)

From the coincidence of the scaled curves, Eq. (29) is confirmed and the shape of the function
g(t) is obtained.

For the other values of the force constant k, we similarly observe the convergence. In
Fig. 9, the time profiles of K̃ M

d (t) with the largest value of M = 500 are compared with
those of the corresponding K̃ BL

d (t) for various values of k. For each value of k, two time
profiles show clear agreement, which confirms again Eq. (12). As k increases, the tail appears
later. This is because the hypercube tends to stay in the middle of the channel under a stiffer
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Fig. 8 The deviation of the memory function K M
d (t) from the limit memory function K BL

d (t) is plotted
versus t . For three values of the mass M of the hypercube, the magnitude of the deviations and time are scaled
with respect to

√
M , see Eq. (29). Since the time profiles of K M

d (t) are calculated up to time 100 in all cases,
the time domains of the scaled curves become shorter as M increases. The force constant of the harmonic
potential is k = 4

Fig. 9 The time profile of the transverse-direction memory function K M
d (t) are plotted for three values of

the force constant k. The mass of the hypercube is M = 500. For comparison, corresponding time profiles of
the limit memory function K BL

d (t) are plotted by the dashed lines

harmonic potential and thus it takes more time for a gas particle to recollide with either the
upper or lower face. For the chosen values of k, the decaying parts of the tail are quite similar.

We finally report that a slow oscillation is observed after the main peak of the tail for small
values of M . We first check whether it is a numerically spurious one. We note that insufficient
sample averaging of the time correlation functions may cause a spurious oscillatory tail as
follows. When we determine the value of K M

d (n�t) from Eq. (27), we use estimated values
of the δ-weight and estimated time correlation functions up to time n�t , which contain
statistical errors. As a result, the solution also accumulates errors. In this case, the error in the
solution satisfies a similar Volterra equation [31] and thus it is proportional to the statistical
errors in the input values. We observe that the use of insufficient sample average causes a
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Fig. 10 The time profiles of K M
d (t) are plotted up to time 250 for three sets of values (M, k): (10,4) (squares),

(10,8) (circles), and (20,4) (triangles). Error bars correspond to the statistical errors with two standard devi-
ations

spurious oscillatory tail, the magnitude and phase of which may be very different among
independent realizations. This unfavorable effects of course can be reduced by increasing the
size of sample average, which, however, seriously increases computational cost. By increasing
the sample size, we rule out the possibility that numerically originated spurious oscillation
dominates the long-time tail. In Fig. 10, the slow oscillations in K M

d (t) are shown for small
values of M . We observe that the period is inversely proportional to

√
k and the magnitude is

proportional to
√

k. In addition, we observe that as M increases, the magnitude decreases and
the period increases. Due to the computational limitations, however, quantitative analysis is
not systematically performed.

5 Derivation

5.1 GLE

In order to derive Eqs. (3)–(5), we use the Mori projection method [36,40]. Since the Mori
projection operator is defined in terms of equilibrium average, we discuss the equilibrium
distribution of the hypercube and the ensemble averages of relevant quantities in Sect. 5.1.1.
We present the standard form of the GLE obtained from the Mori projection method in
Sect. 5.1.2. Then, we show how this equation is reduced to Eq. (3) in our specific case in
Sect. 5.1.3.

5.1.1 Equilibrium Distribution and Average

We assume the system is in equilibrium and follows the Boltzmann distribution. The equi-
librium distribution of the hypercube is expressed as

ρeq(X,V) = ρ1(X1, X2, . . . , Xd−1)ρ2(Xd)ρV(V) (30)

and ρ1 and ρV follow the uniform and Maxwell–Boltzmann distribution, respectively. The
approximation of ρ2(Xd) by ρ(Xd) defined in Eq. (6) for large k is explained as follows.
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Suppose that a repulsive interaction potential U between the hypercube and the walls is
imposed and it depends on the separation distance from a wall with short cutoff distance ε.
Then, ρ2(Xd) is expressed as

ρ2(Xd) ∝ e
−β
[

1
2 k X2

d+U
(

h+−Xd− 1
2 Ld

)
+U

(
Xd− 1

2 Ld−h−
)]

(31)

for Xd ∈ (h− + 1
2 Ld , h+ − 1

2 Ld
)
. If k is sufficiently large that the probability of the hyper-

cube being in the interaction range of U is negligible, ρ2(Xd) is approximated by ρ(Xd).
Hence, the validity depends on the distances |h± ∓ ε| as well as k and β. Actually, the
assumption becomes exactly valid as h± → ±∞, which corresponds to the case that the
hypercube is subject to the harmonic potential but suspended in an unbounded ideal gas.

From Eq. (30) with ρ2(Xd) replaced by ρ(Xd), we obtain the following equilibrium
averages, which are used in Sect. 5.1.3:〈

V 2
i

〉 = (βM)−1 , 〈Vi Fi 〉 = 0, fori = 1, 2, . . . , d,〈
X2

d

〉 = (βk)−1 , 〈Xd Vd〉 = 0, 〈Xd Fd〉 = −β−1,
(32)

where F = (F1, F2, . . . , Fd) ≡ MV̇. The other ensemble averages containing two quantities
from different directions (e.g., 〈Xd V1〉) are all zero.

Ensemble averages containing the force need some discussion. In a collisional dynamics,
〈Vi (0)Fi (t)〉 has a jump discontinuity at t = 0, which can be seen from that its time derivative
− 1

M 〈Fi (0)Fi (t)〉 has a delta function due to elastic collisions. Hence, 〈Vi Fi 〉 is actually unde-
fined. This is also explained by that the velocity of the hypercube discontinuously changes
whenever a collision occurs and thus 〈Vi (0)Fi (0+)〉 and 〈Vi (0)Fi (0−)〉 are different. On
the other hand, in a system under a continuous interaction potential, 〈Vi (0)Fi (t)〉 is con-
tinuous t = 0 and 〈Vi Fi 〉 = 0 from 〈Vi (0)Fi (−t)〉 = − 〈Vi (0)Fi (t)〉. By considering that
our system is obtained as a limit where a continuous repulsive potential becomes an infinite
potential barrier, we formally define 〈Vi Fi 〉 = 0. The average 〈Xd Fd〉 is obtained from that
the conditional expectation of Fd given Xd is −k Xd and thus 〈Xd Fd〉 = −k

〈
X2

d

〉
.

5.1.2 Mori Projection

For a phase variable A = (A1, A2, . . . , An)
T defined on a Hamiltonian system, the Mori

projection operators are defined as

P(•) = 〈 • A∗〉 〈AA∗〉−1 A, Q = I − P, (33)

where subscripts T and ∗ denote the transpose and the conjugate transpose, respectively, and
I is the identity operator. The time evolution equation of A, Ȧ(t) = iLA(t), where iL is the
Liouville operator of the system, is cast into the following GLE:

d

dt
A(t) = i�A(t)−

∫ t

0
K(t − s)A(s)ds + B(t), (34)

where the frequency matrix i�, the fluctuating force vector B(t), and the memory function
matrix K(t) are defined as

i� = 〈
(iLA)A∗〉 〈AA∗〉−1

, (35a)

B(t) = eQiLtQiLA(0), (35b)

K(t) = 〈
B(t)B∗(0)

〉 〈
AA∗〉−1

. (35c)

Since PB(t) = 0, the following condition holds:
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〈
B(t)A∗(0)

〉 = 0, (36)

which implies every pair of a component of A(0) and that of B(t) is uncorrelated.

5.1.3 Derivation of Eqs. (3)–(5)

We apply the results in Sect. 5.1.2 to phase variable A = (Xd , V1, V2, . . . , Vd)
T . A technical

difficulty of including Xi (i = 1, 2, . . . , d − 1) is that
〈
X2

i

〉
is not clearly defined. Since

Eq. (3b) for V̇i (t) (i = 1, 2, . . . , d − 1) does not contain Xi (t), Eq. (3a) for Ẋi (t) can be
included after obtaining Eqs. (3b)–(3d).

The frequency matrix i� is calculated from Eq. (35a). By substituting Eq. (32) into
〈(iLA)A∗〉 and 〈AA∗〉, i� becomes a matrix containing two nonzero elements (i�)1,d = 1
and (i�)d,1 = − k

M . Hence, we obtain

i�A(t) =
(

Vd , 0, 0, . . . ,− k

M
Xd

)
. (37)

Many components of K(t) and the first component of B(t) become zero in our case, as
seen in Eq. (3). Although the resulting equation is consistent with physical intuition, showing
this without relying on it is not straightforward. It is because K(t) is defined through the
fluctuation-dissipation relation, Eq. (35c), in terms of the orthogonal dynamics B(t). We first
consider the simplest case d = 2 and show which components of K(t) and B(t) are nonzero.
Then, we discuss the general case and derive Eqs. (3)–(5).

For d = 2, the GLE is written as⎡
⎣ Ẋ2

V̇1

V̇2

⎤
⎦

t

=
⎡
⎣ V2

0
− k

M X2

⎤
⎦

t

+
∫ t

0
ds

⎡
⎣ K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤
⎦

s

⎡
⎣ X2

V1

V2

⎤
⎦

t−s

+
⎡
⎣ B1

B2

B3

⎤
⎦

t

, (38)

where the subscripts in the matrix and vectors indicate the time that their components are
evaluated. Since Ẋ2 = V2, the first component of vector equation (38) becomes
∫ t

0
K11(s)X2(t −s)ds+

∫ t

0
K12(s)V1(t −s)ds+

∫ t

0
K13(s)V2(t −s)ds+B1(t) = 0. (39)

By multiplying X2(0), V1(0), and V2(0) and taking average, we have
∫ t

0
K11(s) 〈X2(0)X2(t − s)〉 ds +

∫ t

0
K13(s) 〈X2(0)V2(t − s)〉 ds = 0, (40a)

∫ t

0
K12(s) 〈V1(0)V1(t − s)〉 ds = 0, (40b)

∫ t

0
K11(s) 〈V2(0)X2(t − s)〉 ds +

∫ t

0
K13(s) 〈V2(0)V2(t − s)〉 ds = 0. (40c)

Here, we have used Eq. (36). Differentiating Eq. (40a) with respect to t and adding Eq. (40c),
we obtain

〈
X2

2

〉
K11(t) = 0 and thus K11(t) = K13(t) = 0. From Eq. (40b), we have

K12(t) = 0. Hence, we have B1(t) = 0 and the first component of the vector equation
becomes Ẋ2 = V2, as expected. For the other components, the same procedure is applicable
to show that K21(t) = K23(t) = K31(t) = K32(t) = 0. Therefore, only K22(t) and K33(t)
are nonzero components. In addition, from Eq. (35c), we have K22(t) = βM 〈B2(0)B2(t)〉,
K33(t) = βM 〈B3(0)B3(t)〉, 〈B2(0)B3(t)〉 = 〈B3(0)B2(t)〉 = 0. From Eq. (36), we also
have 〈X2(0)Bi (t)〉 = 〈V1(0)Bi (t)〉 = 〈V2(0)Bi (t)〉 = 0 for i = 2, 3.
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For the d-dimensional case, we can similarly show (i) Kii (t) and Bi (t) (i = 2, 3, . . . , d +
1) are nonzero; (ii) Kii (t) = βM 〈Bi (0)Bi (t)〉; (iii)

〈
Bi (0)B j (t)

〉 = 0 for i �= j ; (iv)
〈Xd(0)Bi (t)〉 = 0 (i = 2, 3, . . . , d + 1); and (v)

〈
Vi (0)B j (t)

〉 = 0 (i = 1, 2, . . . , d and
j = 2, 3, . . . , d + 1). Eq. (3) is obtained by defining Ki (t) and F+

i (t) (i = 1, 2, . . . , d) in
Eq. (3) as M Ki+1,i+1(t) and M Bi+1(t), respectively. Then, Eqs. (4) and (5) are obtained
from (ii)–(v).

5.2 Frozen Dynamics Force Autocorrelation Function

In this section, we derive the analytic expression for
〈
F0,i (0)F0,i (t)

〉
(i = 1, 2, . . . , d) given

in Eq. (7). For the frozen dynamics with the purely elastic walls and the fixed hypercube of
the upright orientation, we make the following observations, which our derivation is based
on:

(i) if a gas particle collides with a face, it never collides with the other faces;
(ii) repeated collisions with the hypercube are possible only when a gas particle collides

with the upper or lower face;
(iii) F0,i (t) is attributed to the collisions with the faces normal to the xi -axis.

For the schematic of the repeated collisions in the case of d = 3, see Fig. 1b.
From observations (i) and (iii) and

〈
F0,i

〉 = 0 (i = 1, 2, . . . , d) by symmetry, all cross-
correlations

〈
F0,i (0)F0, j (t)

〉
(i �= j) become zero. From observation (ii),

〈
F0,i (0)F0,i (t)

〉
(i = 1, 2, . . . , d − 1) contains only a δ-peak. We also note that the form of the δ-weight is
the same as that of

〈
F0,d(0)F0,d(t)

〉
. In fact, by taking the separation distances�± to infinity,

we have I ±
2 (t) → 0 and retrieve the unconfined case. Hence, in what follows, we only derive

Eq. (7b). To this end, we decompose the force F0,d = F+ + F−, where F+ and F− are the
forces on the upper and lower faces, respectively. By using that F+ and F− are uncorrelated,
we have

〈
F0,d(0)F0,d(t)

〉 = 〈F+(0)F+(t)〉 + 〈F−(0)F−(t)〉 + 2 〈F+〉 〈F−〉 . (41)

In Sect. 5.2.1, we explain in detail the geometry and initial configuration of the system in
the frozen dynamics. In Sect. 5.2.2, we express 〈F+〉 and 〈F+(0)F+(t)〉 as ensemble averages
of functionals of the single-gas-particle trajectory. In Sect. 5.2.3, we analyze the single-gas-
particle trajectories contributing to the ensemble averages. In Sect. 5.2.4, we obtain analytic
expressions for 〈F±〉 and 〈F±(0)F±(t)〉 and, thus, Eq. (7b).

5.2.1 Geometry and Initial Configuration

Since translating the system does not affect the frozen dynamics, we assume that the upper
wall is located at xd = �+ and the upper face of the fixed hypercube is on the plane
xd = 0. Furthermore, we assume that the domain of the upper face on the plane is denoted
as (0, L1)× (0, L2)× · · · × (0, Ld−1). For the case d = 3, see Fig. 1b.

We assume that the system is initially at equilibrium and the initial configuration of the
system is described by the Poisson field as follows. By denoting the position and velocity of
a gas particle as x = (x1, x2, . . . , xd) and v = (v1, v2, . . . , vd), respectively, the probability
that a gas particle is found in the volume element dxdv is given as
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λ(dx, dv) = a

(
d∏

i=1

ϕ(vi )dxi dvi

)
Igeom(x), (42)

where ϕ(v) =
√
βm
2π e− βm

2 v
2

and Igeom(x) is 1 if x is in the geometrically accessible region
(i.e., outside the hypercube and between the walls) and otherwise 0. In other words, the gas
particles are distributed uniformly outside the hypercube with the number density a and their
velocities following the Maxwell–Boltzmann distribution.

5.2.2 Reduction to Single-Gas-Particle Properties

Since the dynamics of each gas particle is decoupled from those of the other gas particles
in the frozen dynamics, we express 〈F+〉 and 〈F+(0)F+(t)〉 in terms of a single particle
quantity. By denoting the xd -component of the force exerted on the upper face by the gas
particle with initial condition (x, v) as f+(t; x, v), these quantities are expressed as

〈F+〉 =
∫

f+(0; x, v)λ(dx, dv), (43)

〈F+(0)F+(t)〉 =
∫

f+(0; x, v) f+(t; x, v)λ(dx, dv)+ 〈F+〉2 . (44)

These expressions are obtained as follows. By denoting the initial configuration of the ideal
gas as

{
x(α), v(α)

}∞
α=1, we define the corresponding measure μ(dx, dv) = ∑∞

α=1 δ(x −
x(α))δ(v − v(α))dxdv. Since the initial configuration is given as the Poisson field with mean
λ(dx, dv), we have 〈μ(dx, dv)〉 = λ(dx, dv). Hence, from F+(t) = ∫

f+(t; x, v)μ(dx, dv),
we obtain Eq. (43). We obtain Eq. (44) by using the decompositionμ(dx, dv) = λ(dx, dv)+
μ̃(dx, dv) and applying the following Itô isometry for μ̃(dx, dv)〈∫

f+(0)μ̃(dx, dv)
∫

f+(t)μ̃(dx, dv)
〉

=
∫

f+(0) f+(t)λ(dx, dv). (45)

As in Eq. (45), we suppress the dependence on (x, v) unless needed.

5.2.3 Meaningful Trajectories

In Eqs. (43) and (44), we note that we only need to consider gas particles colliding with
the upper face instantaneously (i.e., at t = 0). However, in order to properly handle with
the δ-character in f+(0), we consider all gas particles colliding first with the upper face. By
introducing the indicator function I(A), which is 1 if the condition A is valid and otherwise
0, these particles are characterized by the following function:

I0(x, v) = I (0 < xd < �+, vd < 0)
d−1∏
i=1

I

(
0 < xi − xd

vd
vi < Li

)
. (46)

For the gas particle satisfying I0 = 1, the collision time is given as τ0 = −xd/vd and f+(t)
is expressed as

f+(t) = 2mvd

[
I0δ(t − τ0)+

∞∑
n=1

Inδ(t − τn)

]
, (47)

where In indicates whether the (n + 1)th collision with the upper face occurs and τn is the
corresponding collision time.
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5.2.4 〈F±〉 and 〈F±(0)F±(t)〉

Calculating 〈F+〉 is straightforward. We first integrate f+(0) = −2mv2
d I0δ(xd) with respect

to xd and obtain
∫

f+(0)dxd = −2mv2
d Ī0, where

Ī0 = I(vd < 0)
d−1∏
i=1

I(0 < xi < Li ). (48)

We note that integrating δ(xd) led us to take the limit xd → 0 for the remaining terms
and the overbar notation was introduced for this limit. By further integrating with respect to
(x1, x2, · · · , xd−1) and v, we obtain

〈F+〉 = −2m(aL1L2 · · · Ld−1)

∫ 0

−∞
v2

dϕ(vd)dvd = − a

β
L1L2 · · · Ld−1. (49)

We note that 〈F+〉 does not depend on the separation distance �+.
Now we obtain an analytic expression for 〈F+(0)F+(t)〉. As we did for f+(0) above, we

first integrate f+(0) f+(t) with respect to xd and obtain

∫
f+(0) f+(t)dxd = −4m2v3

d

[
Ī0δ(t)+

∞∑
n=1

Īnδ(t − τ̄n)

]
, (50)

where

Īn = Ī0

d−1∏
i=1

I

(
0 < xi − 2n�+vi

vd
< Li

)
, τ̄n = −2n�+

vd
. (51)

We note that Īn checks whether the gas particle collides with the upper face of the hypercube
instantaneously at t = 0 and then has further n successive collisions. From Eq. (50), the
integration of f+(0) f+(t)with respect to λ(dx, dv) is decomposed into two parts as follows:∫

f+(0) f+(t)λ(dx, dv) = I1δ(t)+ I +
2 (t). (52)

We note that the δ-peak is attributed to the instantaneous collision whereas the tail part I +
2 (t)

is due to the repeated collisions. We obtain the intensity of the δ-peak as follows:

I1 = −4m2(aL1L2 · · · Ld−1)

∫ 0

−∞
v3

dϕ(vd)dvd = 4a

β

√
2m

πβ
L1L2 · · · Ld−1. (53)

Calculating the tail part is more involved since the domain of integration with respect to
(x1, x2, . . . , xd−1) and (v1, v2, . . . , vd−1) is restricted by Īn = 1. I +

2 (t) is expressed as

I +
2 (t) = −4am2

∞∑
n=1

∫ 0

−∞
dvd δ

(
t + 2n�+

vd

)
v3

dϕ(vd)

d−1∏
i=1

Ji,n(vd , t), (54)

where

Ji,n(vd , t) =
∫ Li

0
dxi

∫ − vd (Li −xi )
2n�+

vd xi
2n�+

dviϕ(vi ). (55)

By using δ
(

t + 2n�+
vd

)
= 2n�+

t2 δ
(
vd + 2n�+

t

)
, we perform the integration with respect to

vd and finally obtain I +
2 (t) = I2(t;�+).
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For the force F−, we follow the same procedure to obtain 〈F−〉 = − 〈F+〉 and similar
expressions to Eqs. (44) and (52) with all plus subscripts replaced with minus ones and
I −
2 (t) = I2(t;�−). By substituting them into Eq. (41), we finally obtain Eq. (7b).

6 Summary and Discussion

We have systematically investigated Brownian motion of the d-dimensional hypercube in
the slit-pore through the analytical and computational analysis of its memory function. The
hypercube interacts with the surrounding ideal gas particles via elastic collisions. To avoid
direct interaction with the walls, the hypercube is also subject to a stiff harmonic potential
along the transverse direction to the channel.

In the analytic approach, for the case where the hypercube has a finite mass and every
collision in the system is elastic, we have obtained the GLE [Eqs. (3)–(5)] from the Mori
projection method. Then, we have obtained the limit memory function [Eq. (12)] from the
analytic expression of the frozen dynamics force autocorrelation function [Eq. (7)] through the
adiabatic approximation [Eq. (11)]. From the emergence of the power-law decaying (t−(d−1))
tail in the transverse direction [Eq. (10)], we have observed the anomalous diffusion for d = 2
and the increase in the position-dependent friction coefficient for d = 3 [Eqs. (16) and (18)].

In the MD simulation approach, we have numerically verified our analytic results by
observing the convergence of the finite-mass memory function to the limit memory function.
We have also observed its converging behaviors [Eqs. (28)–(29)]. In addition, the effects of
stochastic thermal walls have been investigated. We have observed that the superposition of
wall effects is no more valid and that the long-time decay of the transverse-direction memory
function due to a single wall becomes faster (t−3 for d = 2 and t−5 for d = 3).

We have used these two approaches in a complementary way. Elastic collisions introduce
a series of delta functions in the force on the hypercube. Hence, handling the force properly
with care is required in the analytic approach. Moreover, results obtained by using delta
functions cannot be rigorously justified. Our analytic results possessing the following issues
have been numerically verified by MD simulations: application of the Mori GLE to collisional
dynamics, formal definition of 〈Vi Fi 〉 = 0, approximation ofρ(Xd), adiabatic approximation
[Eq. (11)], convergence of the memory function. In addition, by MD simulations, we have
observed the system with the finite-mass hypercube and/or thermal walls, which is not easily
investigated by the analytic approach. On the other hand, we have developed the numerical
procedure to calculate the δ-weight and continuous part of the memory function from MD
trajectories and verified it with the analytic results.

The deviation of the finite-mass memory function from its limit memory function is related
with how inaccurate the adiabatic approximation is for a given value of mass M . We have
observed that the scaling behavior of the deviation with respect to M is different from the
free unbounded case [18,22]. In the free unbounded case, the leading term in the deviation is
attributed to nonzero velocity of the Brownian particle, which we believe is also true in our
case. Compared with the free unbounded case, where the linear dependence on the velocity
disappears by the isotropy of the system, we expect that this linear dependence does not
disappear in our case, which may be related with the

√
M-dependence of the tail deviation

(note that the velocity is O(M−1/2) from the equipartition theorem). Another possible origin
of the deviation is the coupling with the harmonic force. For small values of M , we have
clearly observed that the memory function contains a slow oscillation and its magnitude and
period depend on the force constant k as well as the mass M . We expect that for larger value
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of M this oscillatory tail is still present although it is computationally difficult to clearly
characterize it due to its small magnitude and its large period.

Finally, we discuss the fixed upright orientation of the hypercube. As demonstrated in this
paper, it allows enormous analytic tractability for the analysis of the frozen dynamics. The
trajectories of gas particles become simple and the effects of the two purely elastic walls
can be separately considered and superimposed. Using these properties, we have obtained
the analytic expressions and expected anomalous diffusion in the two-dimensional case.
As mentioned in Sect. 1, our results explain why the convergence to normal diffusion has
not been proved for the two-dimensional case in Ref. [4]. However, we think that the t−1

decay behavior may be singular in the sense that under any tilted orientations faster decay
is expected. It is because the repeated collisions with the same patterns are no more possible
under these orientations. In addition, the regular collision patterns are also easily destroyed
by the thermal walls, which causes faster decay. Regarding the effects of geometric shape,
we are currently investigating the Brownian motion of a disk and a sphere in a slit pore with
thermal walls and the effects of confinement with thermal walls and we will present our
results in the future publication.
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