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TIME CORRELATION FUNCTIONS OF BROWNIAN MOTION AND
EVALUATION OF FRICTION COEFFICIENT IN THE

NEAR-BROWNIAN-LIMIT REGIME∗

CHANGHO KIM† AND GEORGE EM KARNIADAKIS†

Abstract. The exponentially decaying behavior of the momentum-momentum and momentum-
force time correlation functions of Brownian motion at large times has been extensively used for
the numerical evaluation of the friction coefficient γ from molecular dynamics simulations. We
perform numerical analysis on these methods and address issues related to the appropriate choice
of large time and the rate of convergence of these methods. To this end, we obtain asymptotic
expansions of the time correlation functions with respect to the reduced mass μ of the Brownian
particle. For two important limit procedures of achieving the Brownian limit, certain forms of the
asymptotic expansion of the Mori memory function K(t) are introduced by physical arguments, and
then the asymptotic expansions of the time correlation functions are expressed in terms of the limit
of K(t), i.e., K0(t) = limμ→∞K(t), and the next-order correction term K1(t). For the infinite
mass limit case, we show that the numerical methods of estimating γ from the exponential decay
of the time correlation functions produce γ + O(μ−1), where the first-order correction depends on
the microscopic nature of K0(t) (i.e., deviation of K0(t) from the Dirac delta function γδ(t)) as well
as the contribution of K1(t) (i.e., deviation of K(t) from K0(t)). We also analyze the ratio of the
momentum-force correlation function to the momentum-momentum correlation function, which gives
instantaneous exponential decay rate. For the thermodynamic limit case, we consider the Rayleigh
gas system to investigate the finite-volume effect due to the boundary conditions and to demonstrate
that the lowest-order terms of the asymptotic expansions may fail to describe some characteristic
behavior of the time correlation functions. We perform systematic molecular dynamics simulations
of the Rayleigh gas system to confirm the theoretical predictions.
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1. Introduction. The friction coefficient is one of the essential parameters for
simulating transport phenomena in colloidal systems, and estimating it precisely in
a systematic manner is important from both theoretical and practical points of view.
In addition, as experimental techniques have been improved so that the trajectories
of Brownian motion can be observed on shorter time scales than the diffusive time
scale of the colloid particles [9, 20], understanding the corresponding phenomena at
the molecular level becomes more important.

When a Brownian particle suspended in a fluid has much larger mass than the
fluid particles, its velocity satisfies the phenomenological Langevin equation [19], where
the friction coefficient γ enters as a parameter. The microscopic theory of Brownian
motion has addressed the issue of deriving the Langevin equation from first principles
(i.e., from the Hamilton’s equation or Liouville’s equation of the molecular system)
and expressing the transport coefficient γ in terms of quantities that can be obtained
from the microscopic trajectory of the system, hence computationally from molecular
dynamics (MD) simulations.
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226 CHANGHO KIM AND GEORGE EM KARNIADAKIS

One such formula proposed by Kirkwood [12] is given by the Green–Kubo ex-
pression, where the friction coefficient is related to the time integral of the force
autocorrelation function. However, it has a so-called plateau problem that the value
of the time integral decays to zero as the upper limit of time integration is increased
to infinity. Another formula, which has a similar form but does not decay, has been
obtained by various techniques [17, 29, 32]; γ is given as the time integral of the
force autocorrelation function of the reference system. The latter is defined as the
frozen dynamics, where the Brownian particle is assumed to be fixed in space and the
fluid particles move under the external potential due to the presence of the Brownian
particle. Using the projection operator technique, Mazur and Oppenheim [23] per-
formed a detailed analysis of this formula. They defined a projection operator, which
is different from the well-known Mori projection operator [25], and showed that the
corresponding memory function has a well-behaved series expansion in powers of the
mass ratio of a fluid particle to the Brownian particle, and that γ is obtained from
the zeroth-order term. They also showed that the total force autocorrelation function
has a negative and slowly decaying tail, which makes the time integral of the Kirk-
wood formula vanish. Based on Mazur and Oppenheim’s analysis, Hynes, Kapral,
and Weinberg [10] performed a similar analysis on the generalized Langevin equation
derived by Mori [25] to show that the Mori memory function also has a slowly decay-
ing tail, but its contribution to the time integral is so negligible in the Brownian limit
that the Langevin equation can be derived from the generalized Langevin equation.

Significant progress on understanding the finite-size effect, which is important in
MD simulation studies, was made by Español and Zúñiga [5]. They showed that for a
Brownian particle suspended in a bath consisting of a finite number of particles, the
reduced mass μ enters in the generalized Langevin equation rather than the actual
mass M of the Brownian particle. Then they obtained asymptotic expressions for
the time correlation functions of the Brownian particles for large μ and t (see also
[18, 26]):

〈P(0) ·P(t)〉 ≈ d

β
μ e−

γ
μ t,(1.1a)

γ(t) =
β

d

∫ t

0

〈F(0) · F(u)〉 du = −β
d
〈P(0) · F(t)〉 ≈ γ e−

γ
μ t,(1.1b)

where P is the momentum of the Brownian particle and F is the force on the Brownian
particle by the fluid (for detailed definitions of other symbols, see section 2.1). Hence,
γ can be estimated from the exponential decay rate of 〈P(0) ·P(t)〉 and, alternatively,
〈P(0) · F(t)〉 or the time integral of 〈F(0) · F(t)〉 can be used to determine γ by its
extrapolated value at t = 0 or by its exponential decay rate. Español and Zúñiga
also pointed out that in Mazur and Oppenheim’s work [23], the thermodynamic limit
N → ∞, where N is the number of the bath particles, was implicitly assumed when
the infinite mass limit M → ∞ was taken, and hence the Brownian limit is achieved
as μ → ∞. From the hydrodynamic point of view, the density ratio of the Brownian
particle and the surrounding fluid is also an important parameter [7]. If the ratio
is comparable to unity, the motion of the Brownian particle is affected by the long-
lived vortices in the fluid, which were developed by its movement in previous times.
This hydrodynamic memory explains that the velocity autocorrelation function of the
Brownian particle has a long-time tail of the form t−3/2 [8]. For an incompressible
fluid, the hydrodynamic Brownian motion is described by the generalized Langevin
equation with the Boussinesq–Basset force [21]. The effect of compressibility has
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CORRELATION FUNCTIONS OF BROWNIAN MOTION 227

been investigated to explain the initial rapid change of the velocity autocorrelation
function [33]. Since these hydrodynamic effects become negligible as μ → ∞, we do
not further investigate them in the paper.

Numerous MD studies have been performed on the single Brownian particle sys-
tem from various points of view, and we only mention herein recent work which is
relevant to our present work. Through large-size MD simulations, the time-dependent
friction coefficient γ(t), defined as the time integral of the total force autocorrela-
tion function (see (1.1b)) has been investigated to determine the friction coefficient
γ [18, 26]. The Mori memory function of Brownian motion has been calculated from
MD simulations and investigated for various physical parameters in [14, 30]. The
convergence of the Mori memory function under the Brownian limit has also been
observed [11, 15]. Using the linear response theory and performing nonequilibrium
MD simulations, it has been shown that the aforementioned finite-size effect is due
to the finite mass of the bath rather than the finite volume of the bath [28], and an
alternative method of estimating γ from a finite system has been proposed [27]. An
ad hoc correction of finite-volume effect has also been attempted [31].

The Rayleigh gas model, which additionally assumes no interaction between bath
particles (i.e., a Brownian particle in an ideal gas), has provided plenty of insight into
Brownian motion. Owing to the noninteracting bath assumption, the system becomes
analytically more manageable so that some exact and explicit results are available.
The explicit expression for the friction coefficient has been obtained under the as-
sumption of elastic collisions by various techniques [4, 6, 22, 24], and the convergence
of the motion of the Brownian particle to the Ornstein–Uhlenbeck process has been
proved [3]. Recently, a corresponding proof for a continuous interaction potential case
has been provided [16]. Another favorable feature of the Rayleigh gas model is that an
infinite bath is naturally introduced, and results without any finite-size effect can be
obtained. The force autocorrelation function of the infinite reference system, the time
integral of which gives the friction coefficient, has been investigated for various types
of interaction potentials [11]. This quantity was accurately calculated from numerical
integration of one-particle trajectories of a bath particle and then compared with MD
simulation results.

In this paper, we develop a theory that enables precise and systematic analysis
of MD simulation results of the single Brownian system in the near-Brownian-limit
regime. More specifically, we obtain asymptotic expansions of the time correlation
functions 〈P(0) ·P(t)〉, 〈P(0) · F(t)〉, and 〈F(0) · F(t)〉 with respect to μ. Noting that
the asymptotic behaviors in (1.1) for large t and μ have been extensively used to
determine the value of γ but very little has been theoretically investigated about
the criteria for choosing the large values of t and μ and the convergence rate of the
evaluated values to γ, we tackle these issues using asymptotic expansions of the time
correlation functions. Although we can retrieve (1.1) from the asymptotic expansions
for large t, it is noted that t is not an asymptotic parameter in these asymptotic ex-
pansions, and hence we can use them for short and intermediate times as well. Unless
explicitly indicated as t-asymptotic or (t, μ)-asymptotic, we use the term asymptotic
as μ-asymptotic in the rest of the paper. To derive the asymptotic expansions of
the time correlation functions, we use the asymptotic expansion of the Mori memory
function K(t). Since the form of the asymptotic expansion of K(t) depends on the
limit procedure of achieving the Brownian limit, we consider two important cases. For
the first case, where the infinite mass limit M → ∞ is taken under the assumption
that the thermodynamic limit N → ∞ has been already achieved (i.e., a finite-mass
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228 CHANGHO KIM AND GEORGE EM KARNIADAKIS

Brownian particle in an infinite bath), we perform detailed analysis on the numer-
ical methods of determining γ based on (1.1). In addition, we analyze the ratio of
〈P(0) · F(t)〉 to 〈P(0) ·P(t)〉, which gives an instantaneous exponential decay rate.
For the second case, where an infinite mass is assumed for the Brownian particle and
the thermodynamic limit is taken (i.e., frozen dynamics in a finite bath), a Rayleigh
gas is considered and the finite-volume effect due to the boundary conditions is in-
vestigated. To demonstrate the validity of the theory, we perform extensive MD
simulations of the Rayleigh gas for the two limit cases.

The rest of the paper is organized as follows. We derive the asymptotic expansions
of the time correlation functions in section 2. We present the analysis on the numerical
methods of evaluating the friction coefficient in section 3. The MD simulation results
are given in section 4. We provide a summary with some discussion in section 5.

2. Asymptotic expansions of time correlation functions.

2.1. System. We follow the standard setting of the system for microscopic de-
scription of a single Brownian particle [10, 23]. A Brownian particle of mass M is
suspended in a bath of volume V in a d-dimensional space (d = 2 or 3). The bath
consists of N bath particles of mass m. The inverse temperature of the system is
denoted by β = (kBT )

−1. Although assuming a specific form of interaction potentials
between the Brownian particle and a bath particle and between bath particles is not
essential, we introduce the usual assumption that they are functions of interparticle
distance and are short-ranged. The latter is introduced because the interaction be-
tween the Brownian particle and a bath particle is assumed to be instantaneous on
the Brownian time scale.

We denote the momentum of the Brownian particle by P and the force on the
Brownian particle by F. We note the following relation, which was derived by Español
and Zúñiga [5]:

(2.1) 〈P ·P〉 = d

β
μ,

where the brackets denote the equilibrium average and the reduced mass μ is defined
as

(2.2) μ =
MNm

M +Nm
.

In this paper, the Brownian limit is defined as μ→ ∞, which is equivalent to achieving
both the infinite mass limit M → ∞ and the thermodynamic limit N → ∞. When
increasing the number of bath particles, we also increase the volume of the system so
that the number density N/V stays constant. Other physical conditions such as the
temperature and parameters of the interaction potentials, including the size of the
Brownian particle, do not change when these limits are achieved.

As mentioned in the introduction, we are interested in the time correlation func-
tions 〈P(0) ·P(t)〉, 〈P(0) ·F(t)〉, and 〈F(0) · F(t)〉 in the near-Brownian-limit regime
μ� m (or, equivalently, M � m and N � 1).

2.2. Generalized Langevin equation. The starting point of the theory is the
following generalized Langevin equation [5, 25]:

(2.3) Ṗ(t) = − 1

μ

∫ t

0

K(t− u)P(u) du+ F+(t),
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CORRELATION FUNCTIONS OF BROWNIAN MOTION 229

where K(t) is the Mori memory function and F+ is the fluctuating force satisfying

(2.4)
〈
F+(t)

〉
= 0,

〈
P(0) · F+(t)

〉
= 0, F+(0) = F(0).

It is important to realize that this equation is exact although the explicit form of K(t)
is unknown. The fluctuation-dissipation relation is given as

(2.5) K(t) =
β

d

〈
F+(0) ·F+(t)

〉
.

As mentioned in the introduction, it is noted that because of (2.1), the factor in (2.3)
is μ−1 rather than M−1.

We denote the momentum autocorrelation function as

(2.6) C(t) = 〈P(0) ·P(t)〉 .
Then the other time correlation functions are given as time derivatives of C(t):

(2.7) 〈P(0) ·F(t)〉 = Ċ(t), 〈F(0) ·F(t)〉 = −C̈(t).
From (2.1), (2.3), and (2.4), we obtain a Volterra integrodifferential equation for C(t):

(2.8) Ċ(t) = − 1

μ

∫ t

0

K(t− u)C(u) du, C(0) =
d

β
μ.

2.3. Solution of (2.8). By using the Laplace transform technique, we solve
(2.8) for C(t) (i.e., express C(t) in terms of K(t)). We denote the Laplace transform
of a function by using tilde notation and use s as the Laplace variable. For example,

(2.9) C̃(s) =

∫ ∞

0

C(t)e−stdt.

From (2.8), we obtain

(2.10) C̃(s) =
C(0)

s+ 1
μK̃(s)

=
C(0)

s

∞∑
n=0

(
− 1

μs
K̃(s)

)n

,

where we assumed that the series expansion is well-defined. Then we obtain the
following series solution for C(t):

(2.11) C(t) = C(0)

[
1 +

∞∑
n=1

(−1)n

μn

∫ t

0

G∗n(u) du

]
,

where

(2.12) G(t) =

∫ t

0

K(u) du,

and G∗n(t) is the n-fold convolution power of G(t) defined recursively as

(2.13) G∗1(t) = G(t), G∗(n+1)(t) = (G∗n ∗G)(t) =
∫ t

0

G∗n(t− u)G(u) du.

To obtain (2.11), we used properties such as G̃(s) = K̃(s)/s and G̃∗n(s) =
[
G̃(s)

]n
.

D
ow

nl
oa

de
d 

08
/3

1/
21

 to
 1

69
.2

36
.2

36
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

230 CHANGHO KIM AND GEORGE EM KARNIADAKIS

2.4. K0(t) and C0(t). Although we expressed C(t) in terms of K(t) in (2.11),
it is noted that the explicit form of K(t) is unknown in practice and, in an MD
simulation study, it is obtained by calculating the time correlation functions (i.e.,
C(t) and its derivatives) and solving (2.8) for K(t) [30] (see also [13]). It is also noted
that when the value of N or M varies, both K(t) and C(t) vary. Hence, it appears
that there is not much gain from the solution (2.11). However, as observed in several
MD simulation studies [11, 14, 30], compared to the change of the overall shape of
C(t) and its derivatives for varying μ, that of K(t) is much smoother. In addition,
while C(t) does not possess a proper limit under μ → ∞, K(t) has a well-defined
limit, denoted by K0(t). For the finite value of μ, we express K(t) as follows:

(2.14) K(t) = K0(t) + δK(t).

Using K0(t) and the lowest-order term K1(t) of δK(t), we shall obtain an asymptotic
expansions of C(t) with respect to μ in section 2.5.

The friction coefficient γ is expressed in terms of K0(t) as follows. Since both
〈F(0) ·F(t)〉 and 〈F+(0) · F+(t)〉 converge to the frozen dynamics force autocorrela-
tion function of the reference system [5], we have the following relations using (2.5):

(2.15) K0(t) =
β

d
lim
μ→∞

〈
F+(0) ·F+(t)

〉
=
β

d
lim
μ→∞ 〈F(0) ·F(t)〉 .

Since γ is given as the time integral of limμ→∞ 〈F(0) · F(t)〉 [23], we have

(2.16) γ =
β

d

∫ ∞

0

lim
μ→∞ 〈F(0) · F(t)〉 dt =

∫ ∞

0

K0(t) dt.

Now, using K0(t), we define C0(t) as

(2.17) C0(t) = C(0)

[
1 +

∞∑
n=1

(−1)n

μn

∫ t

0

G∗n
0 (u) du

]
,

where G0(t) is correspondingly defined as

(2.18) G0(t) =

∫ t

0

K0(u) du.

It is noted that C0(t) is the solution of (2.8) if K(t) would be replaced by K0(t).
Following the procedure demonstrated in [1] with K̃0(0) = γ from (2.16), it can be
shown that, for large μ and t,

(2.19) C0(t) ≈ C(0) e−
1
μ K̃0(0)t =

d

β
μ e−

γ
μ t.

Hence, the comparison of (1.1a) and (2.19) shows that C(t) and C0(t) have the same
lowest-order asymptotic expressions. Roughly speaking, as K(t) approaches K0(t) for
large μ, C(t) can be approximated by C0(t). However, in order to make this argument
rigorous, we need to take the term δK(t) into account and obtain an asymptotic
expansion of C(t) for large but finite μ. In section 2.5, we obtain such an expansion,
which has C0(t) as the lowest-order term and higher-order terms of which are given as
convolutions of C0(t) and δK(t). In addition, we note that although C0(t) and C(t)
have the same lowest-order asymptotic expressions, their higher-order corrections of
the (t, μ)-asymptotic exponential decay behaviors are different due to the contribution
of δK(t); see sections 3.1 and 3.2.
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2.5. Asymptotic expansion of C(t). It is important to realize that the devi-
ation δK(t) of K(t) from K0(t) depends on the limiting procedure of achieving the
Brownian limit μ → ∞ (i.e., how M and N are increased). We shall obtain asymp-
totic expansions of C(t) and its derivatives for two specific forms of δK(t). For each
case, we first discuss when the assumed form of K(t) appears and then obtain the
asymptotic expansions.

2.5.1. Case A (μ ≈ M). Here, we assume that

(2.20) K(t) ≈ K0(t) +
1

μ
K1(t),

where K1(t) does not depend on μ. This form of K(t) appears when we take the
infinite mass limit M → ∞ assuming the thermodynamic limit N → ∞ is already
achieved or assuming the conditionM 	 Nm. Hence, in this case, μ is approximately
equal to M . Hynes, Kapral, and Weinberg [10] considered this case and showed that
the Mori memory function is decomposed into two contributions, which they denoted
as iΩ11(t) and Δ11(t). In particular, iΩ11(t) is given as the Maxwellian average (with
respect to P) of the Mazur–Oppenheim memory function [23], which allows a well-
behaved expansion in powers of the mass ratio m/M , whereas Δ11(t) decays on the
slow time scale of the Brownian particle, which does not allow such an expansion.
However, it was shown that the magnitude of Δ11(t) is negligible (i.e., o(m/M)).
Hence, we have (2.20) with K1(t) given as the first-order term in the expansion of
iΩ11(t).

By substituting (2.20) into (2.10), we obtain

(2.21) C̃(s) ≈ C(0)

s+ 1
μ K̃0(s)

∞∑
n=0

(
−

1
μ2 K̃1(s)

s+ 1
μ K̃0(s)

)n

,

and, subsequently, by introducing

(2.22) C̃0(s) =
C(0)

s+ 1
μK̃0(s)

,

we obtain

(2.23) C̃(s) ≈ C̃0(s)

∞∑
n=0

(
− 1

C(0)μ2
K̃1(s)C̃0(s)

)n

.

Hence, we obtain the following asymptotic expansion of C(t):

(2.24) C(t) ≈ C0(t) +

∞∑
n=1

(
− 1

C(0)μ2

)n

K∗n
1 ∗ C∗(n+1)

0 (t).

We note that, contrary to the expansion of C0(t) (see (2.17)), keeping a finite number
of lower terms does not cause divergence as t → ∞ owing to the exponential decay
of C0(t) (for the decay behavior of the lowest-order term C0(t) and the higher-order
terms, see (3.8) and (3.9), respectively). Hence, in practice, we can use the following
asymptotic expansion:

(2.25) C(t) ≈ C0(t)− 1

C(0)μ2
(K1 ∗ C0 ∗ C0) (t).
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The corresponding asymptotic expansions of the first and second derivatives are given
as

Ċ(t) ≈ Ċ0(t)− 1

μ2
K1 ∗ C0(t)− 1

C(0)μ2

(
K1 ∗ C0 ∗ Ċ0

)
(t),(2.26)

C̈(t) ≈ C̈0(t)− C(0)

μ2
K1(t)− 1

μ2
K1 ∗ Ċ0(t)− 1

C(0)μ2

(
K1 ∗ C0 ∗ C̈0

)
(t).(2.27)

However, as shown in section 3.2, by including all terms in (2.24), we obtain the
correction to the exponential decay rate of C(t) due to K1(t). Roughly speaking,
(2.25) approximates (2.24) under the assumption that the approximation

(2.28) e
− K̃1(0)

μ2 t ≈ 1− K̃1(0)

μ2
t

is valid.

2.5.2. Case B (frozen dynamics of a Rayleigh gas). Here, we consider a
fixed Brownian particle immersed in a bath with a finite number of bath particles.
Hence, we achieve the Brownian limit by increasing the number of bath particles (i.e.,
by taking the thermodynamic limit). To the best of our knowledge, how the Mori
memory function of a finite system converges to that of the infinite reference system
has not been known in this case. We investigate this problem under the noninteracting
bath assumption. In other words, we obtain the form of δK(t) for the frozen dynamics
of the Rayleigh gas in a finite bath. We first obtain the form of the tail appearing
in the force autocorrelation function in the finite system and then derive the form of
δK(t).

In order to make the argument clear, we assume that the volume of the bath is
given as V = Ld, where L is the side of the bath, and periodic boundary conditions
are imposed. In addition, we assume that the interaction between the Brownian par-
ticle and a bath particle is purely repulsive. Since the number of bath particles, N ,
is increased with N/V constant, μ is proportional to Ld. Contrary to the force auto-
correlation function 〈F(0) · F(t)〉 of the infinite reference system, which is essentially
zero at large times, that of the finite system has a small magnitude at large times.
This is attributed to the re-collisions of bath particles to the fixed Brownian particle
(in the image cells), which results from the introduction of the boundary conditions.

As derived in the appendix, the force autocorrelation function of the Brownian
particle interacting with the gas through elastic collisions has a negative tail of the
form L−df(t/L). Roughly speaking, this is because the time scale of the re-collision
is proportional to L, and the probability of the re-collision decays like O(Ld−1). We
borrow this result for the purely repulsive potential case. Then, by using (2.15), the
force autocorrelation function of the finite system is expressed as

(2.29) 〈F(0) ·F(t)〉 = d

β
K0(t) +

1

μ
f

(
t

μ1/d

)
.

We note that only the contribution of the first re-collisions to the nearest periodic
images (i.e., separated by L) is considered in (2.29). However, the other collisions
occur at longer times, and (2.29) is a good enough approximation for our purpose.

To derive the form of δK(t), we use the following equation, which is obtained by
differentiating (2.8) with respect to t:

(2.30) K(t) = −β
d
C̈(t)− β

dμ
K ∗ Ċ(t).
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Substituting (2.29) into (2.30), we obtain

(2.31) K(t) = K0(t) +
β

dμ
f

(
t

μ1/d

)
− β

dμ
K ∗ Ċ(t).

Hence, we obtain K(t) ≈ K0(t) + μ−1K1(t), where

(2.32) K1(t) = −β
d
K0 ∗ Ċ0(t) +

β

d
f

(
t

μ1/d

)
.

We note that K1(0) = 0 and the convolution term initially dominates K1(t) until the
effect of re-collisions becomes significant.

By following the same procedure as in section 2.5.1 and using the Laplace trans-
form of K(t),

(2.33) K̃(s) = K̃0(s) +
1

μ

K̃2
0 (s)

s+ 1
μK̃0(s)

+
β

d

1

μ1−1/d
f̃(μ1/ds),

we obtain the same form of the asymptotic expansions, (2.25), (2.26), and (2.27) with
K1(t) defined in (2.32).

3. Evaluation of γ. In this section, we analyze the numerical methods of eval-
uating γ that make use of the long-time behavior of C(t) or Ċ(t). More specifically,
we consider the following values:

1. γ1 obtained from the exponential decay rate of C(t) at large times;
2. γ2 obtained from the extrapolated value at t = 0 from Ċ(t) at large times;
3. γ3 obtained from the exponential decay rate of Ċ(t) at large times;
4. γ4 obtained from the extrapolated value at t = 0 from the instantaneous

exponential decay rate −Ċ(t)/C(t) at large times.
Throughout this section, we consider Case A (i.e., assuming M 	 Nm and the

finite-volume effect is not significant). In addition, we introduce some time scales τ0
and τ1 on K0(t) and K1(t), respectively, so that we assume

K0(t) = 0 for t > τ0,(3.1a)

K1(t) = 0 for t > τ1.(3.1b)

We note that τ0 is comparable to or longer than the time duration of a single collision
between the Brownian particle and a bath particle. Since K0(t) and K1(t) smoothly
decay to zero, the assumptions in (3.1) do not hold exactly in practice. For a typical
shape of K0(t) and K1(t), see Figure 3.

By using the following three parameters, we shall obtain the asymptotic behavior
of γ1, γ2, γ3, and γ4:

(3.2) γ ≡
∫ τ0

0

K0(u) du, α ≡ γτ0 −
∫ τ0

0

G0(u) du, ζ ≡
∫ τ1

0

K1(u) du.

While the total effect of K0(t) and K1(t) is considered in γ and ζ, respectively, the
effect of microscopic structure of K0(t) (i.e., deviation of K0(t) from Dirac delta
function γδ(t)) is reflected in α.

We first obtain (t, μ)-asymptotic expressions of C0(t) and C(t) in sections 3.1 and
3.2, respectively, to find estimates for γ1, γ2, γ3, and γ4. Then, to address the issue
of the validity time interval, we analyze lower-order terms with respect to μ, which
contribute linear approximations of C(t) and Ċ(t) with respect to t in sections 3.3,
3.4, and 3.5.
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3.1. (t, μ)-Asymptotic expression of C0(t). Under the assumption (3.1), we
have, for t > τ0,

(3.3)

∫ t

0

G0(u) du = γt− α.

Similarly, after some transient time nτ0, the time integral
∫ t

0 G
∗n(u)du exhibits t-

asymptotic behavior and becomes a polynomial of t having degree n. We obtain the
two highest-order terms in the polynomial by using the following identity:

(3.4)

∫ t

0

G∗n
0 (u) du =

∫ t

0

dt1 G0(t1)

∫ t−t1

0

dt2 G0(t2) · · ·
∫ t−∑n−1

k=1 tk

0

dtn G0(tn),

which can be easily shown by mathematical induction. For large t, by approximating
the integrand G0(t1) . . . G0(tn) as a constant equal to γn over the whole region, we
obtain the leading term as γntn/n!. To obtain the next highest term, we assume
t > nτ0 and consider the following subregions. In the region satisfying tk > τ0 for
k = 1, . . . , n and

∑n
k=1 tk < t, the integrand is exactly γn, and hence the integration

over this region is equal to γn(t − nτ0)
n/n!. In the region satisfying 0 < t1 < τ0,

tk > τ0 for k = 2, . . . , n and
∑n

k=2 tk < t − τ0, the integrand becomes G0(t1)γ
n−1,

and hence the integration over the region is equal to γn−1(γτ0−α)(t−nτ0)n−1/(n−1)!.
Since there are n − 1 similar subregions and the volume of the remaining region is
o(tn−1), we obtain

(3.5)

∫ t

0

G∗n
0 (u) du =

1

n!
γn(t−nτ0)n+ n

(n− 1)!
γn−1(γτ0−α)(t−nτ0)n−1+o(tn−1),

and, equivalently,

(3.6)

∫ t

0

G∗n
0 (u) du =

1

n!
γntn − n

(n− 1)!
αγn−1tn−1 + o(tn−1).

By substituting (3.6) to (2.17), we have

(3.7) C0(t) ≈ d

β
μ

∞∑
n=0

1

n!

(
−γ
μ
t

)n [
1 +

(n+ 1)α

μ

]
,

and by using the approximation (1+α/μ)n+1 ≈ 1+ (n+1)α/μ for large μ, we finally
obtain

(3.8) C0(t) ≈ d

β
μ

(
1 +

α

μ

)
exp

[
−γ
μ

(
1 +

α

μ

)
t

]
.

We note that although we assumed both t and μ are large in the above derivation, it is
not clear what the criteria for t and μ are for (3.8) to be valid. Especially, the validity
time interval for (3.6), t > nτ0, depends on n. We revisit this issue in sections 3.3,
3.4, and 3.5.

3.2. (t, μ)-Asymptotic expression of C(t). Using the asymptotic expansion
of C(t), (2.24), and the first-order-corrected asymptotic expression of C0(t), (3.8), we
obtain the (t, μ)-asymptotic expression of C(t). We introduce the following rather
crude assumptions to estimate the correction terms in (2.24). We assume that C0(t)
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is exactly given by (3.8) for all t and K1(t) is a Dirac delta function, ζδ(t) (i.e.,

G1(t) =
∫ t

0
K1(u)du = ζ for all t). Then, we obtain

(3.9)
1

[C0(0)]n
K∗n

1 ∗ C∗(n+1)
0 (t) =

1

n!
ζntnC0(t),

and by substituting this into (2.24), we finally obtain

(3.10) C(t) ≈ d

β
μ

(
1 +

α

μ

)
exp

[
−γ
μ

(
1 +

α+ ζ/γ

μ

)
t

]
.

Then, by differentiating (3.10), we obtain

(3.11) Ċ(t) ≈ − d

β
γ

(
1 +

2α+ ζ/γ

μ

)
exp

[
−γ
μ

(
1 +

α+ ζ/γ

μ

)
t

]
.

By using (3.10) and (3.11), we can obtain the following estimates of γ1, γ2, γ3,
and γ4:

γ1 ≈ γ3 ≈ γ4 ≈ γ

(
1 +

α+ ζ/γ

μ

)
,(3.12a)

γ2 ≈ γ

(
1 +

2α+ ζ/γ

μ

)
.(3.12b)

3.3. Linear approximation of C(t). As mentioned above, the time interval
where the exponentially decaying behavior with the first-order-corrected prefactor and
decay rate occurs is not clearly defined. We investigate this issue by analyzing the
lowest-order terms in C(t) with respect to μ which contribute a linear approximation
of C(t) with respect to t.

From (2.17) and (2.25) or alternatively from (2.11) and (2.20), we obtain the
following series:

(3.13) C(t) ≈ d

β
μ

[
1− 1

μ

∫ t

0

G0(u) du − 1

μ2

∫ t

0

G1(u) du +
1

μ2

∫ t

0

G0 ∗G0(u) du

]
.

The validity of the above approximation is guaranteed if the higher-order terms are
negligible compared with these lowest-order terms. By a rough estimate, the condition
is given as γ

μ t 	 1, so by increasing μ, we have a longer time interval.

By using (3.3) and the t-asymptotic expressions∫ t

0

G1(u) du = ζt+ const for t > τ1,(3.14a)

∫ t

0

G0 ∗G0(u) du =
1

2
γ2t2 − 2αγt+ const for t > 2τ0,(3.14b)

we obtain, for t > max{2τ0, τ1},

(3.15) C(t) ≈ d

β
μ

(
1 +

α

μ

)[
1− γ

μ

(
1 +

α+ ζ/γ

μ

)
t

]
.

Since the validity of (3.13) is guaranteed under the condition γ
μ t 	 1, we collected

only constant terms and linear terms in t and neglected γ2t2/μ2. Then we kept only
up to the first-order correction terms for the constant terms. Equation (3.15) is the
correction to C(t) ≈ C(0) exp

(− γ
μ t
) ≈ C(0)

[
1− γ

μ t
]
and the estimate of γ1 is retrieved

from it. It is also noted that we have confirmed that this estimate is valid at least in
the time interval max{2τ0, τ1} < t	 μ

γ .
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3.4. Linear approximation of Ċ(t). Similarly, we obtain the expansion
(3.16)

Ċ(t) = − d

β

[
G0(t) +

1

μ
G1(t)− 1

μ
G∗2

0 (t) +
1

μ2
G2(t)− 2

μ2
G0 ∗G1(t) +

1

μ2
G∗3

0 (t)

]
,

where we introduced the second-order correction G2(t) of G(t) by employing the
second-order correction K2(t) of K(t) and assuming the existence of τ2. By using the
relations

G0 ∗G0(t) = γ2t− 2αγ for t > 2τ0,(3.17a)

G0 ∗G1(t) = γζt+ const for t > τ0 + τ1,(3.17b)

G0 ∗G0 ∗G0(t) =
1

2
γ3t2 − 3αγ2t+ const for t > 3τ0,(3.17c)

we obtain, for t > max{3τ0, τ0 + τ1, τ2},

(3.18) Ċ(t) = − d

β
γ

(
1 +

2α+ ζ/γ

μ

)[
1− γ

μ

(
1 +

α+ ζ/γ

μ

)
t

]
,

and hence we retrieve the estimates for γ2 and γ3 given in (3.12). We note that al-
though we introduced the second-order correctionG2(t), we neglected its contribution,
which is a second-order correction to the constant term.

3.5. Linear approximation of −Ċ(t)/C(t). By using (3.15) and (3.18), we
obtain the following linear approximation of the instantaneous exponential decay rate
of C(t):

(3.19) − Ċ(t)
C(t)

=
γ

μ

(
1 +

α+ ζ/γ

μ

)
,

which is valid for max{3τ0, τ0 + τ1, τ2} < t 	 μ
γ . Hence, we retrieve the estimate for

γ4. We note that the slope (with respect to time t) is zero in this first-order correction
with respect to μ (i.e., the slope is o(μ−2)).

We also derive the limit of the instantaneous exponential decay rate normalized
by μ. From (3.13) and (3.16), we obtain

(3.20) −μĊ(t)
C(t)

≈ G0(t) +
1

μ
G1(t) +

1

μ

∫ t

0

G0(u) [G0(t)−G0(t− u)] du.

Since G1(t) and the integral in (3.20) are bounded, we obtain

(3.21) lim
μ→∞

[
−μĊ(t)

C(t)

]
= G0(t).

We note that the time interval where the approximation (3.20) is valid becomes larger
as μ→ ∞ and thus the relation (3.21) is valid for all t.

4. MD simulation results. To confirm the theoretical predictions obtained in
sections 2 and 3, we perform MD simulations of the Rayleigh gas system. Although
the theoretical predictions obtained for Case A are valid for an interacting bath as
well as for an noninteracting bath, we choose this system for the following reasons.
First of all, K0(t) and γ can be accurately obtained from numerical integration of

D
ow

nl
oa

de
d 

08
/3

1/
21

 to
 1

69
.2

36
.2

36
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CORRELATION FUNCTIONS OF BROWNIAN MOTION 237

one-particle trajectories of a bath particle for this system [11]. Also, when a purely
repulsive interaction potential between the Brownian particle and a bath particle is
chosen, K0(t) and K1(t) satisfy the assumption on the existence of time scales τ0
and τ1, and hence we can verify the results in section 3. On the other hand, when
an interaction potential contains an attractive component, these time scales become
much longer and may not be clearly defined [11]. By comparing with the results in
the purely repulsive potential case, we can observe how the failure of the time scale
assumption, which may also occur for Brownian motion in an interacting bath, affects
the behavior of the time correlation functions.

Three sets of MD simulations are performed. The first two sets correspond to
Case A with a purely repulsive interaction potential and an interaction potential with
an attractive component, respectively. The last set is the frozen dynamics simulations
corresponding to Case B.

4.1. MD setup. We perform two-dimensional microcanonical-ensemble (NV E)
MD simulations. The Weeks–Chandler–Andersen (WCA) potential and the truncated
Lennard-Jones (LJ) potential with cutoff 2.5σ are chosen as a purely repulsive inter-
action potential and an interaction potential containing an attractive component,
respectively. The truncated LJ potential V (r) with cutoff rcut is defined as

(4.1) V (r) =

{
V0(r)− V0(rcut) if r < rcut,

0 otherwise,

where r is the interparticle distance between the Brownian particle and a bath particle
and V0(r) is the LJ potential with parameters ε and σ, defined as

(4.2) V0(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
.

The WCA potential is defined as the truncated LJ potential with cutoff 21/6σ, where
the minimum of V0(r) is attained. We choose σ as the radius R = 1 of the Brownian
particle and ε = 1.

The system parameters are chosen as follows. For the first two sets of MD simu-
lations, various values of the mass M of the Brownian particle are used: M = 2, 5,
10, 20, 50, 100. The mass m of a bath particle is set as m = 1, and the number of
bath particles is N = 104. The simulation box is a square with side L = 100, and
periodic boundary conditions are imposed. The inverse temperature of the system is
set as β = 1. For the last set of MD simulations, the WCA potential is used. Various
values of the side of the simulation box are used: L = 10, 15, 20, 30, 50, 70, 100. The
number of bath particles is correspondingly increased so that the number density is
equal to N/L2 = 1. The other parameters are the same except that the mass of the
Brownian particle is not defined (i.e., infinite) in this case. All simulation results are
reported in reduced units with ε the unit of energy, σ the unit of length, and m the
unit of mass.

The MD simulations are performed as follows. For the first two sets of MD
simulations, the initial position of the Brownian particle is randomly chosen with a
uniform distribution in the simulation box, and then the initial positions of the bath
particles are randomly chosen with a uniform distribution outside the interaction
range of the Brownian particle. The initial velocity of the Brownian particle is set
as zero, whereas the velocities of the bath particles are sampled from the Maxwell–
Boltzmann distribution. The velocity Verlet algorithm is used for time integration,
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Fig. 1. For Case A with the WCA potential, the normalized momentum autocorrelation function
C(t)/C(0) is plotted for various values of the mass M of the Brownian particle for long times in
panel (a) and for short times in panel (b). Note that the vertical axis in panel (a) is logarithmic
scale.

and the time step size is set as Δt = 10−3. To obtain a sample in equilibrium,
temperature scaling is performed ten times every 106 time steps. Then the trajectory
is obtained for 5× 106 time steps for the WCA potential case and for 107 time steps
for the LJ potential to calculate 〈P(0) ·P(t)〉, 〈P(0) · F(t)〉, and 〈F(0) ·F(t)〉. For
the last set of MD simulations, all procedures are the same except that the Brownian
particle is fixed at the randomly chosen initial position and the momentum of the
Brownian particle is defined as the negative of the total bath momentum [5].

A total of 128 samples are obtained for each set of the simulation parameters.
When a certain physical quantity, for example, K(t), is calculated from the time cor-
relation functions, the statistical error present in the quantity is estimated as follows.
The samples are grouped into n = 8 bins and the time correlation functions are ob-
tained by averaging over each bin. Using these averaged time correlation functions, 8
samples of the physical quantity are obtained and the sample variance s2 is calculated.
Then the standard deviation of the quantity obtained from the fully averaged time
correlation functions over all of the samples is estimated by σ = s/

√
n. Owing to

a large number of samples, the limiting behavior of the time correlation functions is
clearly observed without any significant interference with statistical errors. However,
when the first-order corrections for the limiting behavior are investigated, the statis-
tical errors are no longer negligible. In these cases, the error bars corresponding to
3σ are also plotted.

4.2. Case A with WCA potential. We first observe the behavior of the time
correlation functions for various values of the massM of the Brownian particle. Then
we confirm the estimates (3.12) of γ1, γ2, γ3, and γ4 from the time correlation functions
after we discuss the behavior of the Mori memory function K(t). Figure 1 shows the
time profiles of C(t) = 〈P(0) ·P(t)〉 for various values ofM . As expected from (1.1a),
C(t) decays exponentially at large times, and the exponential decay rate is inversely
proportional to the reduced mass μ. However, from the short-time behavior of C(t)
it is observed that the slope at t = 0 is zero, and it takes some time for C(t) to
exhibit a linear decay. The initial zero slope is expected from the fact that C(t)
is an even function (i.e., C(t) = C(−t)) or from a short-time expansion C(t) =

C(0)
[
1− 1

2!ω
(2)
v t2 + 1

4!ω
(4)
v t4 ± · · · ], where ω(n)

v is the nth frequency moment [2]. The

time profiles of Ċ(t) =
〈
P(0) ·F(t)〉 are shown in Figure 2. As expected from (1.1b),
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Fig. 2. For Case A with the WCA potential, the negative of the momentum-force correlation
function, −〈P(0) · F(t)〉 = −Ċ(t), is plotted for various values of the mass M of the Brownian
particle for long times in panel (a) and for short times in panel (b). The black solid lines indicate
the plateau value d

β
γ. Note that the vertical axis in panel (a) is logarithmic scale.
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Fig. 3. For Case A with the WCA potential, the Mori memory function K(t) is plotted for
various values of the mass M of the Brownian particle in panel (a). The limit K0(t) = limμ→∞K(t)
is also plotted. In panel (b), the time profile of K1(t), which is obtained by subtracting K0(t) from
K(t) for M = 5 or 10 and multiplying by the corresponding value of μ, is plotted with the error bars
corresponding to 3σ.

Ċ(t) exhibits an exponential decay, at large times, with the same exponential decay
rate as C(t). From the short-time behavior of Ċ(t) it is observed that the magnitude
of Ċ(t) is initially zero and, after attaining the maximum, it exhibits a linear decay.
As M becomes larger, the maximum approaches the theoretical plateau value d

βγ =

− limt→∞ limμ→∞ Ċ(t).
We observe the Mori memory function K(t) in Figure 3. It is calculated from the

time correlation functions following the procedure presented in [30]. Its limit under
the Brownian limit, K0(t) = limμ→∞K(t), is obtained by numerical integration of
one-particle trajectories of a bath particle following the procedure presented in [11].
In the left panel of Figure 3, the time profiles of K(t) for various values of M as well
as that of K0(t) are shown. The convergence of K(t) to K0(t) is clearly observed as
M increases. The next-order correction K1(t), defined in (2.20), is obtained by using
K(t) for intermediate values ofM and calculating μ [K(t)−K0(t)]. The time profiles
of K1(t), obtained from the results for M = 5 and 10, are shown in the right panel of
Figure 3, which show close agreement with each other. As expected from the fact that
the initial value K(0) is equal to 〈F · F〉 regardless of the value of M , the initial value
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Fig. 4. For Case A with the WCA potential, the prefactor of the exponential decay of the
normalized momentum autocorrelation function at large times is plotted versus the reciprocal of the
reduced mass μ in panel (a). The values of γ1, γ2, and γ3 are plotted versus μ−1 in panels (b),
(c), and (d), respectively. All values are obtained from the linear regression of log(C(t)/C(0)) or
log

∣
∣Ċ(t)

∣
∣. For details, see the text. The error bars corresponding to 3σ are also plotted. The dotted

line in each panel is the theoretical prediction: for (a), 1+α/μ and for (b), (c), and (d), see (3.12).

of K1(t) is shown to be zero. The time profile of K1(t) attains a negative peak and
then decays to zero. From the time profiles of K0(t) and K1(t), we estimate the time
scales of τ0 and τ1 of K0(t) and K1(t) as 0.2 and 0.3, respectively. The parameters
defined in (3.2) are evaluated as γ = 4.87, α = 0.22, and ζ = −2.1.

Using the estimated values of γ, α, and ζ, we confirm the estimates of γ1, γ2, γ3,
and γ4 given in (3.12). For the log plot of the normalized momentum autocorrelation
function C(t)/C(0) versus t, linear regression is performed and the slope and intercept
are obtained. The time interval for the linear regression is chosen such that the lower
endpoint is set as τ0 + τ1 = 0.5 and the upper endpoint is chosen as the time when
C(t) decays to one half of the initial value. For M = 100, the half-life is longer than
t = 10 and time interval [0.5, 10] is used instead. The prefactor of the exponential
decay of C(t)/C(0) at large times is estimated from the intercept and plotted versus
μ−1 in panel (a) of Figure 4. The dependence of the prefactor on μ is explained very
well by 1+α/μ, which is obtained from (3.10). From the slope of the linear regression,
the value of γ1 is estimated by using (3.10) and plotted in panel (b) of Figure 4. As
predicted by (3.12), it is observed that as M increases, the value of γ1 converges to
the value of γ and the deviation is proportional to μ−1. For the momentum-force
correlation function Ċ(t) = 〈P(0) ·F(t)〉, linear regression is performed to its log plot
using the same time interval as the normalized momentum autocorrelation function.
Using (3.11), the values of γ2 and γ3 are estimated from the intercept and slope
of the linear regression and plotted in panels (c) and (d) of Figure 4, respectively.
Their asymptotic behavior is well explained by (3.12). Although the values 2α and
ζ/γ, which appears in the estimate of γ2, happen to cancel each other so we cannot
accurately estimate the value 2α+ζ/γ, it is clearly seen that the slope of the deviation
(γ2 − γ) with respect to μ−1 is different from that of γ1 and γ3.

Next, we compile the instantaneous exponential decay rate −Ċ(t)/C(t). In the
left panel of Figure 5, its time profiles for various values ofM are plotted. The instan-
taneous exponential decay rate attains a plateau after some time which corresponds
to τ0 = 0.2. As M increases, the plateau value, which is normalized by factor μ,
increases and approaches to the value of γ. Using the same time interval as the above
cases, an extrapolated value at t = 0 is obtained from linear regression for each value

D
ow

nl
oa

de
d 

08
/3

1/
21

 to
 1

69
.2

36
.2

36
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CORRELATION FUNCTIONS OF BROWNIAN MOTION 241

 0

 2

 4

 6

 0  0.5  1  1.5  2

-μ
 <

P
(0

)⋅F
(t

)>
 / 

<
P

(0
)⋅P

(t
)>

time t

(a)

M = 100
M = 10
M = 5
M = 2

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 0  0.1  0.2

μ-1

(b) γ4

Fig. 5. For Case A with the WCA potential, the instantaneous exponential decay rate
−Ċ(t)/C(t) normalized by the reduced mass μ is plotted, in panel (a), for various values of the
mass M of the Brownian particle. The plateau values in panel (a), which correspond to γ4, are
plotted, with the error bars corresponding to 3σ, versus the values of μ−1 in panel (b). The dotted
green line in panel rm(b) indicates the prediction of (3.12).
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Fig. 6. For Case A with the LJ potential, the normalized momentum autocorrelation function
C(t)/C(0) and the negative of the momentum-force correlation function, −Ċ(t), are plotted in panels
(a) and (b), respectively, for various values of the mass M of the Brownian particle. The plateau
value d

β
γ is also plotted as a black solid line in panel (b). Note that the vertical axis in panel (a) is

logarithmic scale.

of M . It is noted that for linear regression, we use −Ċ(t)/C(t) itself rather than its
logarithm in this case. In the right panel of Figure 5, these extrapolated values, which
correspond to γ4, are plotted versus μ−1. The convergence of γ4 to γ is well explained
by (3.12). It is also clearly seen that the asymptotic behavior of γ4 is very similar to
those of γ1 and γ3.

4.3. Case A with LJ potential. We first compare the decay behavior of the
time correlation functions in the LJ potential case with that of the WCA poten-
tial case. In Figure 6, the normalized momentum autocorrelation function and the
momentum-force correlation functions are shown for various values of M . Although
the decay rate decreases as M increases in both correlation functions, the decay is
far from being a pure exponential decay. This implies that K(t) has a tail and the
microscopic structure ofK(t) affects the time correlation functions even at large times.

In Figure 7, the time profiles of K(t) are shown for various of values ofM , as well
as K0(t) and K1(t). Convergence of K(t) to K0(t) is clearly observed for increasing
values of M , and the time profiles of K1(t) obtained from the results for M = 5 and
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Fig. 7. For Case A with the LJ potential, the time profiles of the Mori memory function
K(t) are plotted for various values of the mass M of the Brownian particle in panel (a). The limit
K0(t) = limμ→∞K(t) is also plotted. In the inset, the main peak of K(t) at short times is plotted.
In panel (b), the time profiles of K1(t), which are obtained by using the results of M = 5 and
M = 10, are plotted with the error bars corresponding to 3σ. In the inset, the tails of K1(t) are
plotted.

10 agree very well with each other, which confirms our assumption on the asymptotic
form of K(t), (2.20). However, the time scales τ0 and τ1 cannot be clearly defined in
this case; K0(t) has an oscillating tail due to the effect of the trapped bath particles
to the potential well of the LJ potential [11], and it is observed that K1(t) also has
an oscillating tail.

Since both the exponential decay and the influence of the microscopic structure
affect the time correlation functions over the whole time interval of our observation,
we fail to accurately estimate the values of γ1, γ2, and γ3. These values vary for
different choices of the time interval for the curve fitting since the time correlation
functions do not exhibit a pure exponential decay. However, for γ4, it is expected
that the effect of the exponential decay disappears or is reduced significantly since
the exponential decay of C(t) and Ċ(t) may cancel in the instantaneous exponential
decay rate, −Ċ(t)/C(t). In Figure 8, the instantaneous exponential decay rate is
plotted for various values of M . It does not exhibit an exponential decay, and at
large times it starts to form a plateau. For M = 100, the instantaneous exponential
decay rate is calculated up to t = 20, and it is confirmed that it attains a plateau. In
addition, as predicted from (3.20) and (3.21), it is observed that for each t, −Ċ(t)/C(t)
approaches G0(t), which is the time integral of K0(t), as M increases. The deviation
is inversely proportional to the reduced mass μ.

4.4. Case B. We first observe a characteristic behavior of Ċ(t) in the frozen
dynamics of the Rayleigh gas system. Figure 9 shows the time profiles of −Ċ(t) for
various values of the simulation box size L. We use the values of Ċ(t) obtained from
the time integral of the force autocorrelation function rather than those obtained
from the momentum-force correlation function since the latter contain much larger
statistical errors than the former. This is because the momentum of the Brownian
particle is defined as the negative of the total momentum of the bath particles, and
thus its variance is very large in this case. Contrary to Case A, we observe that Ċ(t)
attains a plateau before it starts to decay. For L = 10, 15, and 20, the duration of
exhibiting such a plateau is proportional to L and the plateau value becomes closer
to the value of γ as the system size increases. The deviation of the plateau value from
γ is observed to be inversely proportional to L2. It is also observed that even after
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Fig. 8. For Case A with the LJ potential, the instantaneous exponential decay rate −Ċ(t)/C(t)
normalized by factor μ is plotted for various values of the mass M of the Brownian particle in
panel (a). The time integral of K0(t), i.e., G0(t), is also plotted. As M increases, the deviation of
−μĊ(t)/C(t) from G0(t) is observed to decrease like O(μ−1) for all points on the time axis. Two
time points t = 5 and t = 10, representative of the cases t < τ0 and t ≈ τ0, are chosen and their
values −μĊ(t)/C(t) versus μ−1 are plotted with corresponding linear regressions in panel (b). To
reduce statistical errors, the time-averaged values of −μĊ(t)/C(t) over short time intervals [5,5.1]
and [9.9,10] are used. The error bars correspond to 3σ. The square for t = 10 and M = 10 is omitted
since the value is not reliable due to large decay of C(t) and Ċ(t). The arrows in panel (a) indicate
the location of the time points (t = 5 for the left arrow and t = 10 for the right one) where two sets
of data in panel (b) are obtained, whereas the arrows at the vertical axis in panel (b) indicate the
corresponding values of G0(t) (t = 5 for the bottom arrow and t = 10 for the top one).
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Fig. 9. For Case B (with the WCA potential), −Ċ(t) evaluated from the time integral of the
force autocorrelation function is plotted for various values of the box size L in panel (a). In panel (b),
the same quantity is plotted near the value of γ, which is plotted as a dotted line. It is noted that
the error bars corresponding to σ rather than 3σ are plotted for clear presentation.

the plateau region, Ċ(t) does not exhibit a clear exponential decay.
As mentioned in section 2.5.2, this characteristic behavior of Ċ(t) is explained by

the tail of the force autocorrelation function which develops in the finite-size Rayleigh
gas system. In the left panel of Figure 10, the time profiles of the force autocorre-
lation function for L = 10, 15, and 20 are compared by using scaled time t/L and
scaling factor L2. The scaled tails show good agreement with each other, which con-
firms (2.29). In the right panel of Figure 10, the Mori memory function is compared
with the force autocorrelation function for L = 10. The overall shape of K(t) is
similar to 〈F(0) · F(t)〉 and is lifted by − β

dμK0 ∗ Ċ0(t) as predicted from (2.31).
For larger values of L, the decay is not observed and the momentum-force cor-

relation function maintains the plateau up to t = 10, which is the maximum time of
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Fig. 10. For Case B, the time profiles of the force autocorrelation function for various values
of the box size L are plotted in panel (a). Following (2.29), scaled time t/η and scaling factor η2 are
used. In panel (b), the tails of the force autocorrelation and the Mori memory function for L = 10
are compared. The time profile of K0 ∗ Ċ0(t) is also plotted.

our observation. In this case, the momentum autocorrelation function exhibits a pure
exponential decay.

5. Summary and discussion. For a Brownian particle suspended in a bath,
corrections to the (t, μ)-asymptotic expressions of 〈P(0) ·P(t)〉 and 〈P(0) ·F(t)〉,
(1.1a) and (1.1b), have been obtained in (3.10) and (3.11). Using these corrections,
it has been shown that various numerical methods which estimate the value of the
friction coefficient γ using the exponential decay of the time correlation functions at
large times produce γ +O(μ−1); see (3.12).

To obtain these results, the asymptotic expansion of C(t) = 〈P(0) ·P(t)〉, (2.24),
has been derived by solving the Volterra integrodifferential equation (2.8) and by
introducing the asymptotic expansion of the Mori memory function K(t). The lowest-
order term C0(t) in the asymptotic expansion of C(t) is defined in terms of the Mori
memory function K0(t) of the infinite reference system. C0(t) itself is given as a series
of convolution powers, and higher-order terms in the asymptotic expansion of C(t)
are given as multiple convolutions of C0(t) with higher-order terms in the asymptotic
expansion of K(t).

By introducing time scales τ0 and τ1 of K0(t) and K1(t), (t, μ)-asymptotic ex-
pressions of C0(t) and C(t), (3.8) and (3.10), have been derived. However, owing to a
feature of convolution, each term in the asymptotic expansion of C0(t) and C(t) has
different length of transient time before it exhibits a t-asymptotic behavior, and hence
the time intervals, where the asymptotic expressions are valid, become questionable.
To address this issue, lower-order terms in the asymptotic expansions of C(t) and Ċ(t)
have been analyzed and the validity time intervals for the linear decay expressions,
(3.15) and (3.18), have been found. The lower endpoint of the time intervals is de-
termined by τ0 and τ1, whereas the upper endpoint is given by the condition γ

μ t	 1.
However, it is noted that our result does not imply that the exponential decay be-
havior is only valid in these intervals. Our analysis demonstrates one of the essential
reasons that the evaluation of the friction coefficient is not straightforward; there are
two limits involved (i.e., the Brownian limit and the long time limit), and they are
not interchangeable with each other. Since it is virtually impossible to simulate the
infinite reference system using the MD simulation technique, (2.16) cannot be used
as it is from MD simulations. Instead, a finite system corresponding to a large value
of μ is simulated and a long-time behavior in a certain time interval is observed. As
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shown in our analysis, an appropriate choice of the time interval depends on not only
the microscopic times t0 and t1 but also the condition determined by the value of μ.

For a Rayleigh gas under the WCA potential, which satisfies the time scale as-
sumption, the theoretical predictions have been confirmed by a systematic MD sim-
ulation study. In particular, as predicted from (3.12), γ2 has been shown to have a
different first-order correction from those of γ1, γ3, and γ4. Then, to observe a case
where the assumption of the time scales fails, a counterpart system under the LJ po-
tential has been investigated. Due to the influence of the oscillating tail, it has been
observed that the decay is not clearly exponential even at large times, and accurate
evaluation of γ1, γ2, and γ3 fails. However, the normalized instantaneous exponential
decay rate defined as −μĊ(t)/C(t) has been observed to have the following favorable
features that make γ4 a practically better measure of γ than γ1, γ2, and γ3: first,
the quantity does not exhibit an exponential decay and eventually forms a plateau;
second, it is easily calculated from the time correlation functions; third, for each t, it
converges to the time integral of the Mori memory function up to time t as μ → ∞;
see (3.20) and (3.21).

Our approach is new in the sense that the Mori memory function is employed
and explicit dependence of the time correlation functions in the near-Brownian-limit
regime on the memory function is determined. A close connection of the Mori memory
function to the Brownian motion theory has been pointed out from several points of
view [5, 10, 15]. Compared with Mazur and Oppenheim’s memory function, Mori’s
memory function K(t) can be relatively easily calculated from the time correlation
functions. However, since its analytic properties are not so favorable as those of the
former [10], determining an asymptotic expansion of K(t) may not be straightfor-
ward, and some physical arguments or numerical experiments are needed. For the
infinite mass limit (i.e., Case A), by previous theoretical analysis [10, 23], a simple
form, (2.20), has been found. As a counterexample, we have considered the frozen
dynamics of the Rayleigh gas in a finite bath. We have demonstrated that due to the
boundary conditions Ċ(t) exhibits a characteristic behavior, which is not explained by
the asymptotic expression of C0(t), andK(t) has a different form from Case A. Consid-
ering that several MD simulation studies have performed frozen dynamics simulations
and determined the value of γ by using (1.1), a future investigation on asymptotic
behavior of the time correlation functions along the thermodynamic limit is called for.

In this paper, we have analyzed one of the prototypical systems where multiscales
are present and play an important role. Our work has provided a method of eval-
uating the friction coefficient γ in a systematic manner. A precise evaluation of γ
is essential for mesoscopic simulation methods such as Langevin/Brownian dynamics
and dissipative particle dynamics. Since the time scale of the Brownian motion is not
completely separated from that of the surrounding fluid particles in the phenomena
simulated by these methods, consideration of the asymptotic behavior of the time cor-
relation function of the Brownian particle at microscopic times will help to develop a
more realistic model.

Appendix. The scaling property of the tail present in the force autocorrela-
tion function due to the re-collisions of bath particles to the periodic images of the
Brownian particle is derived for a finite-volume Rayleigh gas under periodic boundary
conditions, where the fixed Brownian particle interacts with the gas through elastic
collisions. By considering a bath particle colliding with the Brownian particle and
subsequently with its periodic image, we calculate the autocorrelation function of the
force exerted on the Brownian particle or its image by the bath particle. The scaling
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Fig. 11. A typical trajectory of a bath particle sequentially colliding with the fixed Brownian
particle at the origin O and its image at O′. The Brownian particle and its image are represented as
disks of radius R and the bath particle elastically collides at points A and B. The angles ∠AOO′ and
∠BO′O and the angle between AB and the horizontal line are denoted as θ, ψ, and φ, respectively.
While θ and φ are counterclockwise angles from the horizontal lines, ψ is a clockwise angle. It is
assumed that the separation L between the Brownian particle and its image is much larger than R.

parameter is the separation distance L between the Brownian particle and its image,
which is assumed to be much larger than the radius R of the Brownian particle. We
first consider the two-dimensional case and then discuss the general case.

For simplicity, we assume that there is a single image. We denote the positions
of the Brownian particle and its image by O(0, 0) and O′(L, 0), respectively. By
introducing θ and ψ, we denote the points at which the bath particle collides with
the Brownian particle and its image as A(R cos θ,R sin θ) and B(L−R cosψ,R sinψ),
respectively (see Figure 11). We also denote the angle formed by the line AB and
the horizontal line as φ and its possible range as φ1 < φ < φ2. Since limL→∞ Lφ1 =
−R(1+sin θ) and limL→∞ Lφ2 = R(1− sin θ), we have φ = O(L−1). By denoting the
magnitude of the bath particle’s velocity as v and the time duration that it moves from
A to B as tAB, vtAB satisfies (R cos θ + vtAB cosφ− L)2 + (R sin θ + vtAB sin θ)2 =
R2. Since vtAB = L + δx with δx = O(1) for large L, we obtain δx = −R cos θ −√
R2 − (R sin θ + Lφ)2 +O(L−1). Hence, we obtain an expression for ψ in terms of θ

and φ: sinψ = sin θ + Lφ
R +O(L−1).

The impulses exerted on the bath particle during the collisions at A and B are
expressed as IA = 2mv cos(θ−φ)(cos θ, sin θ) and IB = 2mv cos(ψ+φ)(− cosψ, sinψ),
respectively. By denoting the time when the bath particle collides at A by tA, the
force it exerts on the Brownian particle or its image is expressed as F(t) = −IAδ(t−
tA) − IBδ(t − tA − tAB). Hence, we have 〈F(0) · F(t)〉 =

〈|IA|2δ(−tA)δ(t− tA)
〉
+

〈IA · IBδ(−tA)δ(t− tA − tAB)〉 ≡ c1(t) + c2(t). The first term c1(t) corresponds to
the result for the infinite reference system (i.e., without the image of the Brown-
ian particle), whereas the second term c2(t) is the contribution of the re-collision
to the image. Following a similar procedure demonstrated in [11], the ensemble
averages c1(t) and c2(t) are obtained by averaging with respect to the equilibrium
distribution of the initial condition of the bath particle. We denote the initial po-
sition and velocity as (r cosχ, r sinχ) and (v cosω, v sinω), respectively, and assume
that the equilibrium measure is approximated by that of the infinite reference sys-
tem (i.e., (aI{r≥R}rdrdχ)(

mβ
2π e

− 1
2βmv2

vdvdω), with a the number density of bath
particles), which becomes valid for r 	 L and R 	 L. By using that δ(tA) =
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v| cos(χ− ω)|δ(r −R) for 1
2π + χ < ω < 3

2π + χ, we perform integration with respect
to r and consider r → R+ for the remaining integration with respect to χ, ω, and v.
By symmetry, we only need to consider the case 0 < χ < π

2 and multiply by factors
4 and 2 for c1(t) and c2(t), respectively. We have θ → χ and φ → 2χ − ω − π as
r → R+. Through the integration

(A.1) 4m2aR

(∫ ∞

0

mβ

2π
v4e−

1
2βmv2

dv

)(
4

∫ π
2

0

dχ

∫ χ+ 3
2π

χ+ 1
2π

| cos(χ− ω)|3dω
)
δ(t),

we obtain c1(t) =
8aR
β

√
2πm
β δ(t), which leads to the friction coefficient γ = 2aR

√
2πm
β

for the infinite reference system [11].
In order to estimate c2(t), we note that the interval of ω for the re-collision is of

length O(L−1) from the constraint φ1 < φ < φ2. Since ω ∈ (2χ−π− R
L (1−sinχ), 2χ−

π+R
L (1+sinχ)), we approximate the integrand by its value at ω0 = 2χ−π and consider

the width of the interval Δw = 2R
L . We note that ω0 corresponds to the case that the

trajectory of the bath particle from A to B is parallel to the horizontal line. Then
IA · IB is approximated by −4m2v2 cos2 χ cos 2χ, whereas δ(tA) is by v cosχδ(r−R).
On the other hand, since tA → 0 as r → R+, δ(t − tA − tAB) can be replaced by
δ(t− tAB) in the integrand, which is further approximated by δ(t− L

v ) =
L
t2 δ(v− L

t ).
Hence, through the integration

(A.2) −4m2aR

(
L

t2

∫ ∞

0

mβ

2π
v4e−

1
2βmv2

δ

(
v − L

t
dv

))(
2Δw

∫ π
2

0

cos3 χ cos 2χdχ

)
,

we finally obtain

(A.3) c2(t) ≈ −16aR2m3β

5πL2

(
L

t

)6

e−
1
2mβ(L

t )
2

.

Hence, c2(t) has a form of L−2f
(

t
L

)
.

For the three-dimensional case, the integration with respect to two spherical an-
gles for the initial velocity gives O(L−2) dependence. This is because in order for the
bath particle to collide with the image, both angles should be in narrow intervals of
length O(L−1). The integration with respect to the magnitude v of the bath particle’s
velocity gives the same form of the L-dependence as in the two-dimensional case. That
is, integrating g(v)δ(t − tA − tAB) with respect to v gives L

t2 g(
L
t ). Hence, we obtain

L−3f( t
L ). We can generalize this result for the d-dimensional case and conclude that

c2(t) has a form of L−df( t
L ).
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