
PHYSICAL REVIEW E 104, 015304 (2021)

Nonuniqueness of fluctuating momentum in coarse-grained systems
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Coarse-grained descriptions of microscopic systems often require a mesoscopic definition of momentum. The
question arises as to the uniqueness of such a momentum definition at a particular coarse-graining scale. We
show here that particularly the fluctuating properties of common definitions of momentum in coarse-grained
methods like lattice gas and lattice Boltzmann do not agree with a fundamental definition of momentum. In the
case of lattice gases, the definition of momentum will even disagree in the limit of large wavelength. For short
times we derive analytical representations for the distribution of different momentum measures and thereby give
a full account of these differences.
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I. INTRODUCTION

The definition of coarse-grained quantities for a meso-
scopic simulation method can be subtle [1]. In this article
we investigate the connection between the atomistic defini-
tion of momentum and the lattice gas (or lattice Boltzmann)
definition of momentum [2], in particular, the definition of
the fluctuating component of the momentum [3]. It is usually
assumed that momentum is a uniquely defined quantity. For
coarse-grained descriptions, however, this is not necessarily
the case, since space and time averages impact the definition
of fluctuating components of the momentum.

We show here that different definitions of microscopic
momentum differ significantly. In particular the definition
of the fluctuating momentum through a lattice gas deviates
significantly from a molecular definition of momentum. We
show that momentum definitions for a lattice gas differ from
molecular dynamics based definitions not only at the scale
of the lattice, but even in the hydrodynamic limit, i.e., for
large wavelength. This is particularly true for short timescales,
where the motion of particles is approximately ballistic. At a
larger level of coarse-graining, where significant correlations
are present, MD and LG definitions appear to converge.

These insights are important when considering the correct
implementation of fluctuations in mesoscopic methods like
fluctuating lattice Boltzmann [4–6], lattice gas [7], dissipa-
tive particle dynamics [8,9], or stochastic rotation dynamics
[10–12]. We focus here on lattice gas and lattice Boltzmann
implementations, and we will use the MDLG procedure to
directly map between MD and lattice gas or lattice Boltz-
mann. In Sec. II we will briefly introduce lattice gases and
the MDLG mapping.
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II. LATTICE GAS AND MDLG

The key idea of the MDLG procedure is to map an MD
simulation onto a discrete particle evolution on a lattice that
has the same formal representation as a lattice gas. To ex-
plain this procedure we briefly introduce boolean as well as
integer lattice gas models and explain in which key aspects
they differ from the MDLG coarse-graining onto a lattice gas.
Boolean lattice gases were originally developed as minimal
models for statistical mechanics. To simulate hydrodynamic
systems, the lattice collisions that conserved both particle
number and lattice gas momentum were chosen. It was the
key accomplishment by Frisch, Hasslacher and Pomeau [2]
and Wolfram [13] to select a lattice with sufficient rotational
symmetry to recover the Navier-Stokes equations, albeit with
some constants that contain unwanted density and velocity
dependence. But for practical purposes it was possible to use
this method for perfectly adequate fluid simulations, as long
as the density variations were not too great. The inherent
fluctuations of the lattice gas method were a great advantage
for some applications [14,15]. It was also of interest how the
lattice gas density fluctuations can be related to fundamen-
tal molecular theory [3,16] or mode coupling theory [17].
However, these fluctuations were not universally helpful, and
averaged (i.e., deterministic) lattice Boltzmann methods were
developed [18]. By choosing a different equilibrium distribu-
tion it was also possible to remove the density and velocity
dependence in the Navier-Stokes equations [19,20]. This sig-
nificant advantage then spurred the development of lattice
Boltzmann methods that also included fluctuations [5,21,22].
It was only recently realized that it is possible to develop
a lattice gas method that has the same hydrodynamic limit
as an entropic lattice Boltzmann method. This is achieved
by allowing for integer occupation numbers, rather than only
boolean occupation numbers [23]. The Boltzmann limit of
this lattice gas was shown to be a known entropic lattice
Boltzmann method [24].

To directly link an MD simulation to a lattice gas we
utilize the Molecular Dynamics Lattice Gas procedure [25]. It
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identifies the lattice gas occupation numbers ni(x, t ) as the
number of particles that move from lattice site ξ − ci at time
t − �t to lattice site ξ at time t . Here the ci are lattice displace-
ments, and they are the set of all distances between lattice
sites. For a cubic lattice with lattice spacing �x we get

ci,α ∈ {0,±1,±2, · · · }�x

�t
(1)

for each Cartesian direction indicated by the Greek symbol α.
The ci are typically referred to as the “velocity set” in a lattice
gas or lattice Boltzmann context. The only difference here is
that the velocity set in principle contains all possible lattice
displacements instead of being restricted a priori to a small set
of lattice displacements. The effective size of the velocity set
then emerges by considering only the lattice displacements for
which there are actually particles experiencing them. First we
define a function that determines if the coordinates lie inside
a lattice site denominated by ξ as

�ξ (x) =
{

1 if x ∈ ξ,

0 otherwise. (2)

We can then express the occupation numbers mathematically
as

ni(ξ, t ) =
∑

n

�ξ−ci [xn(t − �t )]�ξ [xn(t )], (3)

where xn(t ) is the position of the nth particle in the MD
simulation at time t . Here the ni take on integer values, and
these ni obey an evolution equation that is formally similar to
the standard lattice gas evolution equation:

ni(ξ + ci, t + �t ) = ni(ξ, t ) + �i. (4)

However, it is important to note that in the MDLG context
the definition of the ni is the fundamental quantity given by
Eq. (3), and the collision operator is determined by the ni

through

�i = ni(ξ + ci, t + �t ) − ni(ξ, t ). (5)

This collision operator is therefore a fluctuating quantity
which is fully defined through the underlying MD simulation.
The collision operator conserves mass but not momentum.
The standard lattice gas definition for the mass and momen-
tum fields are

ρLG(ξ, t ) =
∑

i

ni(ξ, t ), (6)

jLG(ξ, t ) =
∑

i

cini(ξ, t ) (7)

and are also applied here. Note that this definition uses our
convention that the particles have a unit mass m = 1. The av-
erage occupation numbers define an equilibrium distribution
function

f eq
i = 〈ni〉. (8)

This equilibrium distribution function is in good agreement of
the standard lattice Boltzmann equilibrium distributions only
for a very specific choice of lattice spacing �x and timestep
size �t . To achieve this the lattice spacing �t is determined

by the constraint

a2 = 〈δx2〉
d�x2

≈ 2

11
, (9)

where δx = x(t + �t ) − x(t ) is the displacement of a particle
during a time interval �t , 〈δx2〉 is the mean-squared displace-
ment and d is the number of dimensions. This value of a2

was chosen over 1/6, which was used in the original publi-
cation [25], for purely historical reasons. The tiny difference
between the two values for the current study is irrelevant.
For this choice of a2 = 2/11 we only have lattice velocities
cix ∈ {−1, 0, 1}�x/�t with appreciable probabilities [25].

We know that the underlying momentum in the MD simu-
lation is conserved and that the lattice gas momentum, which
only takes on discrete values, cannot be identical to the MD
momentum. We therefore want to examine the similarities and
differences in these two definitions of momentum.

III. DEFINITIONS FOR MOMENTUM

For our MD simulations we consider classical particles
where the nth particle has a position xn(t ) and a velocity
vn(t ) = dxn(t )/dt . The density is then simply given by

ρ(x, t ) =
∑

n

δ[x − xn(t )], (10)

and the local momentum can be defined as

j(x, t ) =
∑

n

vn(t )δ[x − xn(t )]. (11)

To recover continuous density and momentum fields some-
times the Dirac δ function is replaced by a function with a
finite base [26,27], but we do not consider these approaches
here. We focus on mesoscale simulation methods that coarse-
grain these fields onto a regular lattice (often a square or cubic
lattice) with a lattice size of �x. We can then define the lattice
based definition ρ and j as

ρ(ξ, t ) =
∑

n

�ξ [xn(t )], (12)

j(ξ, t ) =
∑

n

vn(t )�ξ [xn(t )]. (13)

This is the most straightforward projection of the conserved
quantities of mass and momentum onto a lattice.

The definition of the lattice density ρLG of Eq. (6) is iden-
tical to the definition in the MD context Eq. (12)

ρ(ξ, t ) = ρLG(ξ, t ). (14)

As mentioned above the momentum j differs from the lattice
gas definition jLG. In the previous publication [25] it was
shown that while the instantaneous values of the current j and
jLG cannot be identical, the expectation values in the sense of
a nonequilibrium ensemble average are the same:

〈 j(ξ, t )〉neq = 〈 jLG(ξ, t )〉neq (15)

where 〈· · · 〉neq denotes a nonequilibrium ensemble average.
This has to be the case simply because mass is rigorously con-
served both in MD and LG, the definition of mass is identical,
and therefore the expectation value of the mass current also
has to agree.
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FIG. 1. Scatter plots for the correlations of three different mo-
menta considered in this paper for three different time-steps �t .

It is therefore interesting to examine how well the two
nonaveraged definitions of the mass current are correlated. To
examine the momentum definition we performed equilibrium
MD simulations of a two dimensional Lennard-Jones (LJ)
fluid given by the interparticle potential

V (x) = 4ε
[(σ

x

)12
−

(σ

x

)6]
. (16)

For simplicity, we assumed the mass of one particle, m, equals
one and the unit of time is scaled by τ = (mσ 2/ε)1/2. We
performed our MD simulations using the LAMMPS package
[28]. The particles are contained in square box with the length
of L = 3 000 σ with periodic boundary conditions. Uniform
configurations of N = 90 000 particles with the kinetic energy
corresponding to 50 in the LJ units were generated as an
initial configuration. We ran our simulation with a time step
of 0.001 τ . The first 10 000 000 iterations were discarded and
then measurements were performed for additional 10 000 000
timesteps. We saved data for specific �x using a time-step that
gave a2 = 2/11 from Eq. (9). Furthermore, we used ADIOS2
package [29] along with MD simulations to reduce the time
required for reading and analyzing data. For data presented in
this paper we used a range of lattice size from 6 σ to 500 σ

which led to different numbers of lattice points for our fixed
simulation box.

In Fig. 1 the scatter plot shows the correlation of three dif-
ferent momentum definitions for three different timesteps �t .
The third definition will be given below, see Eq. (21). For j
and jLG we can see the correlation in Figs. 1(a)–1(c) for three
different time-steps. The two measures j and jLG are indeed
not identical, which would be represented by blue points lying
entirely on the red diagonal. Instead we observe noticeable
scatter. Interestingly there is not only scatter, but the average
does not even follow the identity, indicating that the widths
of the momentum distributions for the two measures are

different. Which distribution is wider does depend on the time
discretization. One further feature that immediately stands out
is the strong discretization of jLG for the shortest timestep.
In this case there are on average only 〈n〉 = N�x2/L2 = 0.36
particles in each lattice site. We can use f eq

i of Eq. (8) to define
the combined occupation density for positive velocities as

f + =
∑

i:cix>0

f eq
i , (17)

where the sum is only taking over those indices for which the
lattice velocity has a positive x component. Similarly we can
define f − as the sum of all f eq

i where the cix < 0. We also
define the average number of particles on each lattice site as

ρeq =
∑

i

f eq
i = N�x2

L2
. (18)

We can now ask which distribution of particles is ex-
pected for lattice momentum l�x/�t . If the particles can be
considered independent, then the probability that a specific
lattice site has the momentum l�x/�t is equivalent to a
standard combinatorial problem: given N particles that are
to be distributed into three containers. The first container
corresponds to a lattice velocity with cix = +�x/�t at lattice
site ξ , the second container corresponds to a lattice velocity
with cix = −�x/�t at the same site [the only values entering
Eq. (7)], and the last one is the rest of the lattice. This gives
the probability of

P
(

jLG
x ≡ l�x/�t

)
=

∑
k

N!

(N − 2k − l )!k!(k + l )!

×
(

1 − f + + f −

ρeqNξ

)N−2k−l( f +

ρeqNξ

)k+l( f −

ρeqNξ

)k

(19)

to find a total momentum of l�x/�t where Nξ is the number
of lattice sites and we sum over all combinations that have
a total momentum of l�x/�t , i.e., having k particles with
lattice velocity cix = −�x/�t and k + l particles with lattice
velocity cix = +�x/�t . Here we have approximately f − ≈
ρeq/6, f 0 ≈ 2ρeq/3, and f + ≈ ρeq/6 where f 0 is defined
similar to the definition in Eq. (17) for particles with no x
momentum. The number of lattice points is Nξ = 250 000. In
Fig. 1 we show the values for momenta for 10 iterations. The
expected number of points in the scatter plot with momen-
tum 4�x/�t is then 10Nξ P( jLG ≡ 4�x/�t ) ≈ 1.198. The
expected number of samples with lattice momentum of 5 is
0.014. This is in good agreement with seeing two instances
of lattice momentum of 4 (as well as none with a lattice
momentum of −4), and no instance with a larger absolute
lattice momentum. An alternative derivation that does not
make the assumption of having only three velocities in any
one direction is shown in Sec. IV C.

This explains why one distribution is discrete while the
other is continuous. It does not, however, explain why the
momenta are not distributed with the same second moment.
To understand this better, we first observe that the momentum
distribution j only depends on the instantaneous velocity of
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the particles, where as jLG depends on the displacement of the
particles during the time interval �t . We can therefore define
an in-between measure consisting of the averaged momentum
over the time step �t . We follow the same particles that con-
tribute to jLG and time-average their velocities over a period
of �t :

j�t (ξ, t ) = 1

�t

∑
n

∫ t

t−�t
dt ′ vn(t ′)�ξ [xn(t )] (20)

=
∑

n

xn(t ) − xn(t − �t )

�t
�ξ [xn(t )]. (21)

This is a measure that shares the time step dependence with
jLG and at the same time is a measure that only depends on the
MD data for the lattice cell. In that sense it is an intermediate
measure. For �t much shorter than the mean free time of
the particles it should agree with j. We also examined the
correlation between this measure of the momentum and the
fundamental lattice gas momentum in Fig. 1. Comparing this
measure j�t to the fundamental momentum j we see that for
the short time of �t = 0.366 the two measures are indeed
highly correlated. But for larger values of �t the variance of
j�t becomes smaller than the variance of j, and at the same
time the scatter increases.

When we compare j�t to jLG we see that for short times
the behavior is essentially the same as for j and jLG. For larger
time steps �t the j�t is showing a narrowing of distribution
which approaches that of jLG. At the same time it can be seen
in Fig. 1 that the correlation between jLG and j�t increases
with larger �t and the scatter decreases. It is hard to quantify
this effect from a scatter plot, so instead we define a measure
for the correlation.

We define a measure for the correlation of two quantities
that allows for a relative scaling of the quantities by

Cja, jb (�t ) = 1

2XT

∑
ξ

∑
t

[
ja(ξ, t )

σ ja
− jb(ξ, t )

σ jb

]2

, (22)

where X is the number of lattice sites and T is the number of
time-steps we are averaging over. The variance σ j are defined
through

σ j =
√√√√ 1

XT

∑
ξ

∑
t

[ j(ξ, t ) − ρequ]2, (23)

where ρequ is the average momentum per lattice cell of
Eq. (18). For our simulations this is set to zero for simplicity.
The measure Cja, jb is zero when the two different measures ja

and jb of momentum are completely correlated (i.e., identical
up to a scaling factor) and will take on a value of one when
they are completely uncorrelated. Note that this measure does
take into account that even if the overall scale of the momen-
tum, as given by the spread of the distribution, differs, the
momenta could in principle still be strongly correlated.

The results of measuring these Cja jb functions are shown in
Fig. 2. As we observed in our discussion of Fig. 1 there is close
agreement between the fundamental definition of momentum
j(x, t ) and the time-averaged momentum j�t for small time
intervals �t . For larger time steps, this correlation begins to
weaken.

FIG. 2. Correlators of Eq. (22) for the three combinations of the
three definitions of momentum considered in this paper. They are
shown as a function of the time-step �t .

We also observe that the correlation between the averaged
momentum j�t and the lattice gas momentum jLG does indeed
increase with an increasing time-step �t as we surmised from
the inspection of Fig. 1. We hypothesize that this correlation
between j�t and jLG will continue to increase. Without being
able to give a full proof here, we speculate that at larger
coarse-graining the time-averaged velocities that enter both
measures become more and more correlated, as was shown
in an earlier paper [30]. As coarsening increases, fluctuations
become less important and the observed time-averaged veloc-
ities will vary less within one lattice cell, leading to agreement
between the two measures. Note, however, that this is a subtle
effect of time-correlations, and coarse-graining alone is not
sufficient, as can be seen in the deterioration of the correla-
tions with the fundamental momentum j.

In the above discussion we examined the correlation of
the different definitions of momenta normalized by their
mean-squared displacements. But we have not considered
the mean-squared displacements themselves. We show those
second moments of the momenta, normalized by the average
number of particles per cell, in Fig. 3 as a function of the
time-step �t . The most important feature to notice is that the
second moment of the lattice gas diverges for small time steps
from the results for the instantaneous (and the time-averaged)
momentum. The observation that coarse-graining can lead to
an increase as well as a decrease in fluctuations is somewhat
unexpected and requires some careful analysis.

In the next part of this paper we will consider the dis-
tributions of momentum for the three different measures we
defined, which can be achieved analytically in the limit of
a small time-step. This will elucidate the curious result of
the different fluctuation amplitudes for the lattice gas and
instantaneous momenta.

IV. DISTRIBUTIONS OF THE MOMENTA

We observed an increase in the fluctuation for the lattice
gas definition of momentum. We will now examine if we can
understand these findings quantitatively and how they relate to
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FIG. 3. Second moments of the three definitions of momentum
from measurement (symbols) compared to theoretical predictions.
The red triangles and the solid line correspond to the measurement
of the current j and the ideal gas prediction of Eq. (33). The dis-
placement momentum j�t is shown as green squares and the ideal
gas prediction of Eq. (42) is shown as a green dot-dashed line. The
improved prediction including correlations of Eq. (51) is shown as a
dashed line, and agrees well with the measurements. The lattice gas
momentum jLG is shown as blue circles, and the ideal gas prediction
of Eq. (70) is shown as a blue dotted line.

previous predictions. First let us stress again that an ensemble
average of the momentum (which would be free of fluctua-
tions) does agree for all three definitions of the momentum.
So we are interested here in the fluctuating component of the
momentum.

A. Instantaneous momentum

For the lattice momentum measure j the situation is already
rather interesting. We can calculate the momentum distribu-
tion as

P j ( j) =
∫

dx1dv1 · · · dxN dvN PN (x1, v1, · · · , xN , vN )

× δ

(
j −

N∑
n=1

vn�ξ (xn)

)
. (24)

To obtain the average we need the N-particle distribution
function in phase space in equilibrium. We assume here that
the mean velocity is u. We define the average number of
particles per lattice cell as

ρeq = N (�x)d

Ld
, (25)

which is identical to the definition of Eq. (18). Since we are
considering a system in equilibrium here all particles have
uncorrelated velocities distributed according to the Maxwell
Boltzmann distribution

PMB(v) = 1

(2πkBT )d/2
exp

(
− (v − u)2

2kBT

)
, (26)

kB is Boltzmann’s constant and T is the temperature. For sim-
plicity we will assume u = 0 below. The extension to nonzero

u is straightforward but makes the expressions below longer. If
we further assume that the particles are dilute enough so that
they resemble an ideal gas, then the N-particle distribution
function is simply given by

PN (x1, v1, · · · , xN , vN , t ) =
N∏

n=1

1

V
PMB(vn); (27)

otherwise, volume exclusion has to be taken into account. In
this case the number of particles in a cell will be Poisson
distributed and we get

P j ( j) = exp(−ρeq)

[
δ( j) +

∞∑
n=1

(ρeq)n

n!
exp

(
− j2

2nkBT

)]
,

(28)

where the appearance of a Dirac δ function represents the
finite fraction of lattice cells without particles that contain a
momentum of zero. This distribution function is an unusual
combination of a discrete set of Gaussians and one δ function
that can be understood as the limit of a Gaussian with zero
width. It was the discovery of this unusual distribution func-
tion that inspired its application in a quite different context in
a recent paper by Pachalieva [31].

Interestingly the second moment of this distribution can
be evaluated directly, without requiring the assumption in
Eq. (27) of a dilute gas. We get

〈 j(ξ, t )2〉 (29)

=
〈(∑

n

vn(t )�ξ (xn(t ))

)2〉
(30)

=
∫

dx1dv1 · · · dxN dvN PN (x1, v1, · · · , xN , vN )

×
N∑

n=1

N∑
m=1

vnvm�ξ (xn)�ξ (xm) (31)

= N
�xd

V

∫
dv1 (v1)2PMB(v1) (32)

= dρeqkBT, (33)

where we have used that the expectation value of a single
velocity term is zero by symmetry and that the velocities
of any two particles are uncorrelated in equilibrium, leaving
on the one-particle contribution above. This is a result well
known from kinetic theory, and our simulation results are in
very good agreement with this theory, as shown in Fig. 3.

B. Displacement momentum

For the momentum defined from the particle displacement
the situation is a little more complicated. Analogous to the
previous case we need to calculate

P�t ( j) =
∫

dx1dv1 · · · dxN dvN PN,δ (x1, δx1, · · · , xN , δxN )

× δ

(
j −

N∑
n=1

δxn

�t
�ξ (xn)

)
, (34)
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but, as was emphasized by Pachalieva et al. [31], little is
known about the N-particle displacement distribution func-
tion. For short time-steps �t it is reasonable to assume that
in equilibrium this distribution function will also factorize,
but because the time-evolution introduces correlations, this
ceases to be valid for larger time-steps. For dilute systems, the
buildup of these correlations is less severe [30], so the assump-
tion of a factorizing distribution function is not immediately
invalid.

As a second approximation we will assume here that the
factorizing single particle displacement distribution function
can be approximated by a Gaussian. We know that this is
only approximately true [31], but it will serve here for a rough
approximation. We therefore assume

P�t (δx) ≈ 1

(2π〈δx2〉)d/2
exp

(
− (δx − u�t )2

2〈δx2〉
)

, (35)

where the mean-squared displacement 〈δx2〉 is to be obtained
from the numerical simulations as usual [25]. We also assume
that the particles are uniformly distributed.

With this assumption we can calculate an approximate
second moment for the time-averaged momentum:

〈 j�t (ξ, t )2〉 (36)

=
〈(∑

n

xn(t ) − xn(t − �t )

�t
�ξ (xn(t ))

)2〉
(37)

=
∫

dx1dδx1 · · · dxN dδxN PN (x1, δx1, · · · , xN , δxN )

×
N∑

n=1

N∑
m=1

δxnδxm�ξ (xn)�ξ (xm) (38)

= N (N − 1)
∫

dx1dδx1dx2dδx2P2,�t (x1, δx1, x2, δx2)

× δx1δx2

(�t )2
�ξ (x1)�ξ (x2)

+ N
∫

dx1 dδx1

(
δx1

�t

)2

P�t (x1, δx1). (39)

The last term can be easily evaluated as

N
∫

dx1 dδx1

(
δx1

�t

)2

P�t (x1, δx1)�ξ (x1) (40)

= N
�xd

Ld

∫
dδx1

(
δx1

�t

)2

P�t (δx1) (41)

= ρeq 〈δx2〉
(�t )2

. (42)

The first term contains a two-particle probability distribution
that has been approximated previously [30] by

P2,�t (x1, δx1, x2, δx2)

≈ 1

L2d
g(r) exp

(
− (δx1 + δx2)2

4σ 2+(r)

)
exp

(
− (δx1 − δx2)2

4σ 2−(r)

)
,

(43)

where r = |x1 − x2|,

σ±(r) = a�x

√
1 ± 〈δx1δx2〉

〈δx1δx1〉 , (44)

and g(r) is the radial distribution function. It is here approxi-
mated by [25]

g(r) = 1

2
tanh

(
r − ζ

0.03

)
+ 1

2
, (45)

and we use ζ = 0.75. Two important properties of this two
particle displacement distribution function is that∫

dδx1dδx2δx2
1P2,�t (x1, δx1, x2, δx2) = g(r)

L4
〈δx2〉, (46)∫

dδx1dδx2δx1δx2P2,�t (x1, δx1, x2, δx2) = g(r)

L4
〈δx1δx2〉.

(47)

The correlation of displacements as a function of distance was
found to be well approximated by

〈δx1δx2〉(r)

≈ κ〈δx2〉
(

ρ√
〈δx2〉

)1/2

exp

(
− r

ξ
√

〈δx2〉

)
(48)

= κa−1/2〈δx2〉
( ρ

�x

)1/2
exp

(
− r

ξa�x

)
, (49)

where ξ varied only very slightly with density from 1 for low
densities to 1.25 for the highest densities tested. For the last
step we used Eq. (9). We find that we get good agreement
for κ = 0.38 and we hope to perform more thorough analysis
of the origin of these correlation effects in a future study.
We here take ξ = 1 since our density is closer to the low
densities considered in [30]. We can now evaluate (making
the approximation N − 1 ≈ N)

N2
∫

dx1dδx1dx2dδx2P2,�t (x1, δx1, x2, δx2)

× δx1δx2

(�t )2
�ξ (x1)�ξ (x2)

=
( N

L2

)2 ∫
dx1dx2

〈δx1δx2〉(r)

(�t )2
�ξ (x1)�ξ (x2)

= κa−1/2 (ρeq)
5
2

�x
3
2

〈δ1δ1〉

×
∫

dx1dx2
g(r)

(�x)4
exp

(
− r

ξa�x

)
�ξ (x1)�ξ (x2).

(50)

This last integral can only be performed numerically, but we
define

C(�x) =
∫

dx1dx2
g(r)

(�x)4
exp

(
−

√
6r

ξ�x

)
�ξ (x1)�ξ (x2).

(51)
We find that to good approximation

C(�x) ≈ 0.333 (52)
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for �x > 20 and goes to zero at �x → ζ . The full form is
shown in the supplemental material [32]. With this we obtain

〈 j�t (ξ, t )2〉 = ρeq 〈δx2〉
(�t )2

(
1 + κa−1/2

(
ρeq

�x

) 3
2

C(�x)

)
,

(53)

which is in excellent agreement with the data, as can be seen
in Fig. 3.

C. Lattice gas momentum

Let us now put our attention on the lattice gas momen-
tum. It was first claimed by Adhikari et al. [5] and later by
Dünweg et al. [6] that the occupation numbers ni should be
Poisson distributed as long as we are considering an ideal
gas. This argument was based on the arguments presented
in Landau and Lifshitz [33]. A more general derivation of
the distribution was given in our previous publication [30],
where it was shown that in general the distribution of the ni

depends on the N-particle distribution function. This is a slight
simplification from the derivation of Eq. (19), where a finite
system leading to a multinomial distribution was considered.
For that derivation, however, it was assumed that the only
values for the velocity in any one direction would be zero
or ±�x/�t . The derivation using the assumption of Poisson
distributed occupation numbers is simpler than generalizing
the previous derivation.

In the special case that this distribution function factorizes,
as was assumed in the previous section for the analytical
calculation of the momentum distribution for the j�t momen-
tum measure, the occupation numbers ni are indeed Poisson
distributed. With this approximation Parsa et al. [30] obtained

P(ni ) = exp
( − f eq

i

)(
f eq
i

)ni

ni!
, (54)

where the equilibrium distribution are given by Eq. (8). A
fully analytical expression for f eq

i can be obtained analytically
[25,34,35] by solving

f eq
i =

∫
dx

∫
dδxP�t (δx)�ξ (x)�ξ−ci (x − δx), (55)

where �ξ (x) was defined in Eq. (2). While Mathematica is
able to obtain an explicit expression for the solution, it is too
lengthy to reproduce here. It can be found in the Mathematica
notebook in the Supplemental Material [32].

Of interest here are the first three moments of the equilib-
rium distribution. The zeroth and first velocity moments are
given by mass and momentum conservation, as was shown by
Parsa et al. [25]. The second velocity moment, however, is
more interesting. It was previously evaluated for u = 0 in the
same publication, but here we also evaluate it for general u.
The moments are given by∑

i

f eq
i = ρeq, (56)∑

i

viα f eq
i = ρequα, (57)∑

i

viαviβ f eq
i = ρuαuβ + δαβθ, (58)

FIG. 4. θ defined in Eq. (58) as function of mean velocity for
different a2 is shown in panel (a) and the measured amplitude A(a2)
is shown in panel (b). Both are compared to the numerical fit of
Eq. (67).

where θ (�t,�x) is defined by Eq. (58). It approaches a2 +
1/6, with a2 defined in Eq. (9), which was previously shown
in Fig. 10 of Ref. [25]. What is new here is that we were able to
show that this result holds all values of u. In the context of the
research for this paper we discovered that while the discussion
in the paper by Parsa et al. focused on the case u = 0, the
dependence on u for different θ is actually fascinating. While
lattice Boltzmann approaches demand that θ is a constant,
this requirement is not consistent with the requirement of a
positive distribution f eq

i for small values of θ .
Numerical evidence shows that we can approximate

θ (ux, uy ≡ 0) =
[(

a2 + 1

6

)
− A(a2) cos(2πux )

]
, (59)

with

A(a2) = 0.1 exp(−19.7a2), (60)

where the numerical values were found by numerical fitting,
as shown in Fig. 4. This shows that while the lattice gas
expression for the second moment cannot be strictly Galilean
invariant, it exponentially approaches a Galilean invariant
value for larger a2.

These results allow us to make an analytical prediction
for lattice gas momentum fluctuations for a dilute system.
The probability of observing a momentum of j for a lattice
gas is given by a combination of Poisson distributed random
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numbers:

PLG( j) =
N∑

n1=0

· · ·
N∑

nI =0

P({ni})δ

(
j −

∑
i

nici

)
, (61)

where δ() is the δ function and I is the number of discrete
lattice velocities. To evaluate this, it makes sense to first
combine all the contributions with a positive velocity cix > 0.
For this purpose let us define a partial velocity set c+

ix with
V + elements, which contains all velocities with a positive
x component. We then get for the probability of having j+
particles with positive x lattice gas displacement

P( j+) =
ĵ+∑

n+
1 =0

· · ·
ĵ+∑

n+
V +=0

V +∏
i=1

e− f eq
i

(
f eq
i

)n+
i

n+
i !

δ
( ∑

n+
i c+

ix − j+
)

= e− ∑V +
i=1 f +

i
(
∑

f +
i ) ĵ+

ĵ+!
, (62)

where we introduced an integer momentum as ĵ+ =
j+�t/�x. Similarly, we get

P( j−) =e− ∑V −
i=1 f −

i

( ∑
f −
i

) ĵ−

ĵ−!
. (63)

The probability distribution for the full nondimensional mo-
mentum ĵ = j�t/�x is then given by

PLG( ĵ)

=
∞∑

ĵ+=0

∞∑
ĵ−=0

e−( f ++ f − ) ( f +) ĵ+

ĵ+!

( f −) ĵ−

ĵ−!
δ( ĵ+− ĵ− ), ĵ

= e−( f ++ f − )
∞∑

ĵ+=max(0, ĵ)

( f +) ĵ+

ĵ+!

( f −) ĵ+− ĵ

( ĵ+ − ĵ)!

= e−( f ++ f − )

(
f +

f −

) ĵ/2

I| ĵ|(2
√

f + f −), (64)

where I j () is the modified Bessel function of the first kind.
This result will be identical to Eq. (19) when Nξ → ∞, i.e.,
the system becomes infinite. Looking back at Eq. (57) and
Eq. (58) we see that we can identify

( f + − f −)
�x

�t
= ρux, (65)

( f + + f −)
�x2

�t2
= ρu2

x + ρθ. (66)

So we can write the probability distribution for the current in
terms of the equilibrium properties as

PLG( ĵ) = e−(ρu2
x+ρθ )

(
ux + u2

x + θ

−ux + u2
x + θ

) ĵ/2

× I| ĵ|

√
ρ
(
u2

x + θ
)2 − ρ2u2

x . (67)

With this we obtain in MD units∑
j

PLG( j) j = ρu, (68)∑
j

PLG( j) j2 = ρu2
x + ρθ, (69)

as should be expected for consistency with Eqs. (56)–(58). In
particular for the case u = 0 we predict

〈 jLG(ξ, t )2〉 = ρeqθ

≈ ρeq

( 〈δx2〉
�x2

+ 1/6

)
�x2

�t2

= ρeq

( 〈δx2〉
�t2

+ �x2

6�t2

)
. (70)

When comparing this to the results for P�t of Eq. (42) we
see that the first terms are identical, but there is a second term
for the Lattice Gas. For the case of a2 = 〈δx2〉/�x2 = 2/11
considered in this paper both terms are of equal magnitude,
and we predict that the noise amplitude is a little less than
twice as large for the lattice gas current than for the current
defined by displacements.

V. DISCUSSION

In this article we have investigated coarse-grained descrip-
tions of momentum fluctuations. Of particular interest to us
were lattice gas momentum fluctuations. We were able to
show that in a lattice gas coarse-graining that maps a molec-
ular dynamics simulation onto a lattice gas, the momentum
fluctuations are significantly enhanced. This is in contrast
to density fluctuations, that have been carefully studied, and
that agree extremely well with experimental results [16]. A
comparison of the predictions for the current fluctuations with
the actually measured current fluctuations for different �t was
shown in Fig. 3. The fundamental definition of the momentum
j has fluctuations that are independent of �t . The time-
averaged current j�t fluctuations agree with the fundamental
current for small �t, where the approximation v = δx/�t
holds but then starts to be reduced. The actually measured
fluctuations of this current, however, are significantly less
reduced than the ideal gas theory of Eq. (42) would pre-
dict. Correlations between particle displacements have to be
taken into account to understand this observation, as has been
foreshadowed in [30]. Taking into account the correlations of
particles displacements in Eq. (53) is possible and allows us
to explain the observed fluctuations.

The fluctuations for the lattice gas current jLG fail to
converge with the fundamental current fluctuations, even for
small �t . They do, however, agree well with the experimen-
tally measured lattice gas current fluctuations. For large �t
the measured displacement and lattice gas currents start to
converge.

The lack of convergence of the fluctuations of lattice gas
momentum with the other two definitions of momentum for
small time step raises the question what the nature of the
remaining significant difference is. Initially it appeared to us
that the most likely explanation was that the existence of a
lattice can introduce effects at the scale of the lattice size,
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FIG. 5. Fourier transforms 〈 ja
x (k) ja

x (−k) for three different cur-
rent definitions ja = { j, j�t , jLG} considered in this paper for three
different time-steps �t .

whereas we expected long wave-length fluctuations, which
evolve much slower and are therefore less affected by time-
averaging, to coincide. This would also be consistent with the
expectation that in the hydrodynamic limit all currents should
agree. We therefore looked at the Fourier transforms of the
current fluctuations for all three currents at three different
levels of coarse graining. The results are shown in Fig. 5. As
expected for the dilute system under consideration, the fluc-
tuations for the x component of the current j are always flat.
The Fourier plot for the time-averaged current j�t

x is identical
for small �t , but for larger �t the current diminishes for fast
modes corresponding to short wavelength, and this effect is
clearly visible in the graph. It is also obvious that current in
the orthogonal y-direction decays more quickly whereas the
value for slowly evolving large wavelength (small k) remains
essentially unaffected by the time-averaging.

Now the Fourier transform of the lattice gas current is also
k-independent, but at the much higher fluctuation amplitudes
as predicted by Eq. (70). This implies that the lattice gas
discretization changes the fluctuation amplitude of the noise-
component of the current even for very large wavelength,
while not affecting the ensemble averaged current. This result
was unexpected, since we anticipated that the agreement of the
three-momentum measures in the thermodynamic limit would
imply that they should also agree in the large wavelength limit.

For the larger time-step of �t = 9.358 we saw in Fig. 3 that
the total fluctuation amplitude still tracks the analytically pre-
dicted one very closely. Here we see, however, that the Fourier
spectrum is no longer flat but instead decays, particularly in
the orthogonal direction. At the even larger time-step of �t =
90.817 we saw in Fig. 3 that the analytical prediction and the
measured fluctuations no longer agree. However, we also saw
that the overall fluctuations of j�t and jLG converged. Here
we now observe that even the full Fourier representations of
the two measures agree.

In conclusion, we have discussed three definitions of mo-
mentum to examine the effect of different coarse-graining
procedures on the definition of the fundamental conserved
quantity of momentum. We found that different coarse-
grained definitions of the momentum can disagree for the
fluctuating components, even in the hydrodynamic limit,
while ensemble averages of the momenta fully agree. This
result is in full agreement with our analytical predictions. We
saw that for short coarse-graining times �t the lattice gas does
obey the predictions for fluctuations underlying the work of
Adhikari et al. [5] as well as later research [6,22,23,36], but
the momentum fluctuations are about twice as large as the
fluctuations of the fundamental definition of momentum of a
lattice cell.

Another result that requires further investigation is that
the lattice gas momentum starts to converge towards another
fundamental time-averaged definition of momentum for larger
�t , and in this limit numerical evidence suggests that the
momentum fluctuations for large wavelength now agree with
the fluctuations corresponding the fundamental definition of
momentum.
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