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Abstract
In this paper, we derive a generalized second fluctuation-dissipation theorem (FDT) for stochastic
dynamical systems in the steady state and further show that if the system is highly degenerate, then the
classical second FDT is valid evenwhen the exact formof the steady state distribution is unknown. The
established theory is built upon theMori-type generalized Langevin equation for stochastic dynamical
systems and hence generally applies to nonequilibrium systems driven by stochastic forces. These
theoretical results enable us to construct a data-driven nanoscale fluctuating heat conductionmodel
based on the second FDT.Wenumerically verify that our heat transfermodel yields better predictions
than theGreen-Kubo formula for systems far from the equilibrium.

1. Introduction

Thefluctuation-dissipation relations are one of themost important results in statisticalmechanics. In 1966,
Kubo, in his renowned paper [1], proposed a general relationship that connects the response of a given system to
the external perturbation and the internal thermalfluctuation of the system in the absence of disturbance. This
groundbreaking result, together withmany generalizations for open systems, is now categorized as the
fluctuation-dissipation theorems (FDTs)which provide a far reaching generalization of Einstein’s theory of
Brownianmotion andNyquist’s work on thermal noise in electrical resistors. In his original paper [1], Kubo
presented two results which characterize the fluctuation-dissipation relationship for arbitraryHamiltonian
systems. The aforementioned response result is called the first FDT, whereas another relationshipwhich builds
connections between the thermalfluctuation of an observable and thememory kernel for the corresponding
generalized Langevin equation (GLE) is now known as the second FDT. It is not widely known that Kubo actually
provided two derivationmethods for these two relationships. Thefirstmethod is based on a phenomenological
linearGLE for a systemobservable u(t):

( ) ( ) ( ) ( ) ( ) ( )ò= - - + +
d

dt
u t K t s u s ds

m
f t

m
g t

1 1
, 1

t

0

whereK(t) is known as thememory kernel and f (t) is thefluctuation force satisfying 〈f (t)〉= 0 and 〈u(s)f (t)〉= 0
for t> s. Here 〈·〉 is the ensemble average in the thermal equilibrium. The system is assumed to be perturbed by a
periodic external force ( ) ( )w=g t g tcos0 . For such a case, the first FDT is proved using the standard Fourier-
Laplace transform and the second FDT is derived from the first FDThence can be viewed as a corollary of it [1].
The secondmethod differs for the derivation of these two FDTs. In particular, the first FDT is derived using a
perturbationmethodwhich is known as the linear response theory. During the derivation, the
phenomenological GLE (1) is not used. The second FDT, however, can be derived usingMori’s equation [2],
which can be interpreted as the (1) in an operator form. In fact, since the evolution operator for theHamiltonian
system is given by et , the second FDT is a natural result of the skew-symmetry of the Liouville operator with
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respect to theHilbert space inner product · ·á ñr,
eq
, where ρeq is the equilibriumdistribution. Detailed explanations

can be found in section 3.
Since the establishment of the FDTs in the 1960s, there has been a considerable amount of work on its

verification, violation, generalization and applications. In fact, the FDT-related linear response relation has
become the cornerstone of nonequilibrium statisticalmechanics, which provides a powerful tool to study
various transport phenomena for near-equilibrium systems [3–5]. Herewe onlymention some recent studies in
activematter [6], turbulence [7, 8] and heat conduction [9–11].We note thatmost of these studies are about the
first FDT and relatively less attention has been paid to the second FDT. Formost applications, the second FDT
was required for the construction of theGLEwhen it was used as a reduced-ordermodel for particular
observables. Its generalization and verification has not yet beenwidely studied except for some recent work [12–
15]. One of the reasonswhy this is the case is that, unlike the first FDTwhich is directly related to theGreen-
Kubo formula for transport theory, the study on the second FDT is difficult to translate into useful,
experimentally verifiable results. In fact, Kubo’s second derivationmethod reviewed in the previous
paragraph clearly indicates the first and the second FDTs are actually quite different. Specifically, the second
FDT is an intrinsic property forHamiltonian systems in the thermodynamic equilibrium and its validity does
not rely on perturbation arguments. This observation hints that one can possibly derive the second FDTor its
generalized form from the operator-formGLE, i.e. theMori-Zwanzig equation [2, 16], for generalized stochastic
dynamics in the nonequilibrium steady state. In addition, noting a gradually increasing interest in open systems
and far-from-equilibriumphenomena, we anticipate that a classical or generalized second FDT for the
nonequilibrium systemwill provide insights on the systemdynamics. All these thoughtsmotivated the current
research.

Themain purpose of this paper is two-fold. First, wewill followKubo-Mori’smethodology to establish a
generalized second FDT for stochastic dynamical systems driven byGaussianwhite noise. Such stochastic
models are widely used in coarse-grainingmodeling formolecules [17–21], nonequilibriumheat conduction
models [9, 10, 22] andmany other open systems [7, 23]. Secondly, the second FDT is shown to be valid in the
nonequilibrium steady state, therefore can be applied to address the far-from-equilibrium transport problem.
To this end, wewill introduce an effective reduced-ordermodel for the heat conduction and further show that
the second FDT leads to a newway to calculate the heat conductivity for far-from-equilibrium systems.

This article is organized as follows. Section 2 provides a short summary of the theoretical results obtained in
this paper. Section 3 briefly reviews the derivation of theGLE for stochastic systems using theMori-Zwanzig
equation. In section 4, as a comparison, wefirst review the derivation of the first FDT for stochastic systems via
perturbation analysis, thenwe use theGLE to derive a generalized second FDTwhich holds in the
nonequilibrium steady state. In section 5, this newly established relation is applied to equilibrium and
nonequilibrium systems commonly used in the statisticalmechanics. In particular, we show the validity of the
classical second FDT for the averaged heatflux in a heat conductionmodel. The theoretical results are verified
numerically in section 6 via themolecular dynamics simulation of the heat conductionmodel. In addition, two
reduced-ordermodels are proposed and shown to faithfully characterize the thermal conduction for far-from-
equilibrium systems. Themainfindings of the paper are summarized in section 7.

2. Themain theoretical results

In this section, we give a short summary of themain theoretical results obtained in this paper and provide simple
examples to explain them. In statistical physics, open systems normally refer to dynamical systems in contact
with thermal reservoirs. These reservoirs aremodeled by deterministic or stochastic thermostats. If a
nonequilibrium condition is imposed, for instance, onemay choose thermostats with different temperatures
and attach them to aHamiltonian system, then the external force exerted by the thermostats will drive the system
out of the thermal equilibrium. In this paper, we aremainly concernedwith the nonequilibrium systemswith
stochastic thermostats.Mathematically, they can be described by a general stochastic differential equation
(SDE):

( ) ( ( )) ( ( )) ( ) ( ) ( ) ( )s r= + = ~x F x x x x xd t t t d t , 0 , 20 0

Stochastic analysis already told us [24] after afinite transient time, SDE (2) satisfying some suitable conditions
will converge to a unique steady state. For stochastic force ( ( )) ( )s x t d t in a nonequilibrium setting, such a
steady state is normally termed as the nonequilibirum steady state (NESS). The primary goal of the current paper
is to investigate whether the classical second FDT still holds in theNESS of SDEs. To this end, we follow the
aforementionedMori-Kubo’smethodology and use the followingGLE for the (open) stochastic system as the
starting point of our analysis:
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( ) ( ) ( ) ( ) ( ) ( )ò= W + - +
d

dt
u t u t K t s u s ds f t , 3

t

0

where ( ) ( )=u t e u 0t is an arbitrary observable function of the stochastic system.Using the properties of the
Kolmogorov backward operator  (generator of the stochastic dynamics), we proved the following result
regarding the validity of the second FDT:

(I) InGLE (3), thememory kernelK(t) and thefluctuation force f (t) satisfy a generalized second FDT:

( )
( ) ( )

( )
( ) ( )

( )
( )= -

á ñ

á ñ
+

á ñ

á ñ
r

r

r

r
K t

f t f

u

f t w

u

, 0

0

, 0

0
, 4

2 2

where ·á ñr is the ensemble average in theNESS. In (4), thefirst term yields the classical second FDT. The
additional term ( ) ( ) ( )á ñ á ñr rf t w u, 0 02 constitutes the generalized relation that the current paper studies.
However, sincew(0) in (4) depends on the steady-state probability density ρ (see its explicit expression (5)),
which is hard to obtain formost high-dimensional stochastic systems, this generalized relation cannot be used
directly. To overcome this difficulty, we notice an important fact about the obtained second FDT (4)which is the
secondmain result of this paper:

(II)The additional observablew(0) can be explicitly written as

( ) ( ) ( ) ( ) · ( ) s s r= = D +  w u u0 0 2 0 2 ln , 52 2

where  is a second-order differential operator in the non-degenerate coordinate of the stochastic system. If in
addition, observable u(0) is a function of the degenerate coordinate, then ( ) ( )= =w u0 0 0 and the generalized
second FDT (4) degenerates to the classical second FDT.

We can use the Langevin dynamics as an example to explain themeaning of the degenerate coordinate and
result (II). As it is well-known, theGaussianwhite noise for a Langvein dynamics is only imposed in the
momentum coordinate pi.We shall call themomentum coordinate pinon-degenerate and the position coordinate
qi degenerate. Bearing this inmind, the reasonwhy the special case discussed in (II)has ( ) ( )= =w u0 0 0
becomes obvious. Since the initial condition of the observable u(0)= f (qi(0)), thenwe have

( ) ( ) ( ( )) ( ( )) ( ) ( ( ))  s s r= = = ¶ + ¶ ¶ =w u f q f q f q0 0 0 2 0 2 ln 0 0.i p i p p i
2 2 2

i i i

This result can be physically interpreted as follows: For the linearGLE of an arbitrary (open) stochastic system,
the validity of the classical second FDTof an observable u(t) depends onwhether u(t) has direct interactionswith
the environment through thewhite noise. In reality,many nonequilibrium systems can bemodeled by highly
degenerate stochastic systems.Hencemost observables in such nonequilibrium systems satisfy the classical
second FDT.

Notably, similar conclusions on the validity of the classical second FDT for far-from-equilibrium systems
were discovered independently by Jung and Schmid [14], with additional numerical evidence provided therein
via theDPD simulation of a colloid particle immersed influids.

Lastly, wewill use (I), (II) and theGLE (3) to build effective reduced-ordermodels for low-dimensional
observables. In section 6, we show the application of such an effectivemodel in studying the far-from-
equilibrium transport phenomena, which are generally hard to handle using the linear response theory.

3.Mori-type generalized Langevin equations for SDEs

The starting point of our analysis is theMori-Zwanzig (MZ) equation for stochastic differential equations
(SDEs). Such stochastic systemMZequationwas derived independently by different researchers using various
methods [17, 25, 26]. Herewe briefly review the derivation used in [26]; more detailed explanations can be found
therein. Let us consider a d-dimensional SDE on N :

( ) ( ( )) ( ( )) ( ) ( ) ( ) ( )s r= + = ~x F x x x x xd t t dt t d t , 0 , 60 0

where F: dN dN  and s  ´: dN dN m  are smooth functions, ( ) t is anm-dimensionalWiener process
with independent components, and x0 is a a random initial state characterized in terms of a probability density
function ρ0(x). For the deterministic initial conditionwe have ( ) ( ( ))r d=  -=x x x 0i

dN
i i0 1 . TheMarkov

property of (6) allows us to define a composition operator ( ) t , 0 that pushes forward in time the average of
the observableu(t)= u(x(t)) over the noise, i.e.,

[ ( ( ))∣ ] ( ) ( ) ( ) ( )( ) 
= =u x x u x u xt t e, 0 . 7t

t
0 0 0

Using Itô’s interpretation of thewhite noise, ( ) t , 0 is known as aMarkovian semigroup generated by the
backwardKolmogorov operator [27, 28]:
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( ) ( ) ( ) ( ) ( ) å å å s s=
¶

¶
+

¶
¶ ¶= = =

x x x xF
x x x

1

2
. 8

k

dN

k
k j

m

i k

dN

ij kj
i k

0
1

0
0 1 , 1

0 0

2

0 0

Fromnowon, with a slight abuse of notation, wewill useu(x(t)) to represent its noise-averaged quantity (7). In
fact, without any further specification, allu(x(t)) that appear in the rest of this paper represent the noise-averaged
quantity (7).We also note (7) is only a conditional expectation.When the initial condition is random, (7) is still a
stochastic quantitywith initial randomness.We now introduce a projection operator ¶ and its orthogonal
operator  �= - . By differentiating thewell-knownDyson’s identity

( )    �ò= + -e e e e ds,t t
t

s t s

0

it is straightforward to obtain the followingMZ equation governing the evolution of the noise-averaged
observable (7):

( ) ( ) ( ) ( ) ( )( )       � �ò
¶
¶

= + + -u u u u
t

e e e e e ds0 0 0 0 . 9t t t
t

s t s

0

The three terms at the right hand side of (9) are called, respectively, streaming term,fluctuation (or noise) term,
andmemory term. Applying the projection operator ¶ to (9) yields the projectedMZ equation

( ) ( ) ( ) ( )( )       �ò
¶
¶

= + -u u u
t

e e e e ds0 0 0 . 10t t
t

s t s

0

Note that theMZ equation (9) and its projected form (10) for stochastic systems have the same structure as the
classicalMZ equations for deterministic (autonomous) systems [26, 29, 30]. However, the Liouville operator 
is now replaced by theKolmogorov operator . Let us consider theweightedHilbert space ( )r=H L ,N2  with
inner product

( ) ( ) ( ) ( )ò rá ñ = Îr x x x xh g h g d h g H, , , , 11
dN

where ρ is a positive weight function on dN which is often chosen to be a certain type of probability densities.
With thisHilbert space, we can introduce theMori-type projection operator:

( ) ( ) ( )� å= á ñ Îr
=

-h G u h u h H0 , 0 , , 12
i j

N

ij i j
, 1

1

where ( ) ( )= á ñrG u u0 , 0ij i j and ui(0)= ui(x(0)) (i= 1,K,M) areM linearly independent functions. It is easy to
check that ¶ and its orthogonal  �= - are both symmetric projection operators in ( )rL ,dN2  , i.e.
¶* = ¶= ¶2,  * = = 2, where �* *, are the ( )rL ,dN2  -adjoint operator of �, .With ¶ defined as
(12), thememory integral of theMZequation (9) and its projected version (10) can be simplified to a convolution
term. Therefore these twoMZ equations can be rewritten as

( ) ( ) ( ) ( ) ( ) ( )òW= + - +
u

u K u f
d t

dt
t t s s ds t , 13

t

0

( ) ( ) ( ) ( ) ( )� � �òW= + -u u K u
d

dt
t t t s s ds, 14

t

0

where ( ) [ ( ) )]= ¼u t u t u t, , M
T

1 and

( ) ( ) ( ) ( )= á ñrG u u a0 , 0 Gram matrix , 15ij i j

( ) ( ) ( ) ( )åW = á ñr
=

-G u u b0 , 0 streaming matrix , 15ij
k

M

jk k i
1

1

( ) ( ) ( ) ( ) ( ) å= á ñr
=

-K t G u e u c0 , 0 memory kernel , 15ij
k

M

jk k
t

i
1

1

( ) ( ) ( ) ( )=f t e u d0 fluctuation term . 15i
t

i

Equations (13)–(14) are known as the (linear) generalized Langevin equation (GLE) in statistical physics. The
projection operatormethod provides a systematic way to derive such closed equations ofmotion from the first
principle. Depending on the choice of theHilbert spaceweight function ρ, the linearGLE (13) and its projected
form (14) yield evolution equations for different dynamical quantities.When considering SDE (6) in the context
of statistical physics, themost common setting of ρ is ρ= ρ0= ρS, where ρS is the steady state distribution of the
stochastic system satisfying the Fokker-Planck equation *r r¶ = = 0t S S (see details in section 4). For such a
case, GLE (13) yields the full dynamics of the noise-averaged quantity [ ( ( ))∣ ]( ) u x xtt 0 and the projectedGLE
(14) yields the evolution equation of the steady state time-autocorrelation functionCij(t), which is defined as
[31, 32]
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( ) ≔ [ [ ( ) ( )∣ ]] ( ) ( ) ( ) ( ) ( ) ( )( )   = á ñ = á ñr rxC t u t u t u u t u u0 , 0 0 , 0 , 0 0 , 0 .xij t i j i j i j0 S0 0
 

For deterministicHamiltonian systemswith the unitary evolution operator et , theMori-Zwanizg equation is as
(9) butwith theKolmogorov operator  replaced by the Liouville operator . Aswementioned in the
introduction, the second FDT the thermal equilibirumholds naturally as a result of the skew-symmetry of the
Liouville operator with respect to · ·á ñr,

eq
, where ρeq is the equilibriumdistribution [3, 29]. In fact, we have

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

   

 

 



å å

å

å

= á ñ = - á ñ

= - á ñ

= - á ñ

r r

r

r

=

-

=

-

=

-

=

-

K t G u e u G u e u

G u e u

G f f t

0 , 0 0 , 0

0 , 0

0 , , 16

ij
k

M

jk k
t

i
k

M

jk k
t

i

k

M

jk k
t

i

k

M

jk k i

1

1

1

1

1

1

1

1

eq eq

eq

eq

wherewe used the idempotence of the projection operator, i.e. =2 and the fact thatMori-type projection
operator is symmetric in ( )rL ,dN

eq
2  . For stochastic systems studied in this paper, since theKolmogorov

operator  is not skew-symmetric with respect to the inner product · ·á ñr, , the classical second FDThas to be
generalized accordingly.

4.Generalizedfluctuation-dissipation theorem

In this section, wefirst review the derivation of the generalized first FDT for stochastic systems and emphasize its
difference from the second FDT. As amathematical preparation, we need to assume that there exists a unique
probabilitymeasure dμ= ρdxwhich is invariant under theMarkovian semigroup generated by SDE (6). This
implies the existence and uniqueness of a time-independent probability density ρ that satisfies theKolmogorov
forward (Fokker-Planck) equation:

( )*r r¶ = = 0, 17t

where* is the ( )L N2  -adjoint operator of . Throughout the paper, we further assume that ρ= ρ(x) is a
smooth function that decays to 0 as |x|→+∞ . For frequently used statistical physicsmodels, these two
assumptions are generally hard to prove since it involves the analysis of the degenerate elliptic operator . Some
recent studies on hypoellipticity [33, 34] have shown the possibility of obtaining affirmative answers using the
rather complicatedHörmander analysis. These theoretical results, togetherwith numerical studies such as [10,
35], suggest that the uniqueness, smoothness and decaying properties of ρ(x) are rather technical assumptions.

4.1.Derivation of thefirst FDT
Thefirstfluctuationdissipation theoremdescribes the linear response of a given dynamical system to external
perturbations. This relationshipwas established byKubo [1] for classical and quantumHamiltonian systems
and then has been extended to open systems by different researchers [6, 8, 36, 37]. Aswe brieflymentioned in the
introduction, the derivation of thefirst FDT relies on the perturbation theory. To demonstrate this point, we
consider a general perturbation to the stochastic system (6):

( ) ( ( )) ( ( )) ( ) ( ) · ˜( ( )) ( ) · ˜ ( ( )) ( ) ( )
( )

 s sd d r= + + + ~x F x x G F x H x xd t t dt t d t t t dt t t d t , 0 ,

18

where 0< δ= 1, ( ) · ˜( ( ))dG F xt t dt and ( ) · ˜ ( ( )) ( )sdH xt t d t characterize respectively the dynamics of
the pertubative frictional andfluctuating forces added to the stochastic system.We denote ρ as the steady state
distribution for the unperturbed stochastic system (6) and ρδ as the one for the perturbed stochastic system (18).
For the sake of simplicity, we assume that δG(t), ( )dH t , the diffusionmatrixσ(x(t)) and the perturbed
diffusionmatrix ˜ ( ( ))s x t are all d× d diagonalmatrices. As a consequence, the diffusion part (second-order
derivatives) of theKolmogorov backward operator corresponding to the perturbed system is of the diagonal
form andwe have

( ) ( ) ( ) ˜ ( ) ( ) ˜ ( ) å s d d s= ¶ + ¶ + ¶ + ¶
=

x x x xF G t F H t ,
i

d

i x i x i i x i i x
1

2 2 2 2 2
i i i i

where ( ) ˜ ( )s sx x,i i , δGi(t) and ( )dH ti
2 are the i-th diagonal elements of the correspondingmatrices. Using the

standard perturbation theory, we obtain the following generalized first FDT:

Theorem1. (Generalized-1st-FDT) Assuming that the steady state distribution ( )r r= x is a smooth function of x
and decays to 0 as ∣ ∣  +¥x . For the perturbed SDE (18), the following generalized first FDTholds for state space
observable ( )= xu u :

5
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( ) ( ) [ ˜ ] ( ) ( )

˜ ˜ ˜ ( ) ( ) ( ) ( )⎜ ⎟
⎛
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⎞
⎠
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å

å

r
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s
r

s r
r
s r d d

á ñ - á ñ = - ¶ -

+ ¶ + ¶ ¶ + ¶ - +

r r
r

r

=

=

d
u t u t F u t s G s ds

u t s H s ds O

1

2 1
. 19

i

d t

x i i

i
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x i x i x i x i

1 0

1 0

2 2 2 2

i

i i i i

If the perturbative forces ( )dG t and ( )dH t are homogeneous, i.e. ( ) ( )d d=G t G ti and ( ) ( )d d=H t H ti , then
the generalized first FDT (19) has a vector-form representation:

( ) ( ) · [ ˜ ] ( ) ( )

· · ( ) ( ) ( ) ( )˜ ˜ ˜⎜ ⎟
⎛
⎝

⎞
⎠

ò

ò

r
r d

r
r

r
r d d

á ñ - á ñ = -  -

+ 
¾

+
¾

 + - +s s s

r r
r

r

d
Fu t u t u t s G s ds

L L u t s H s ds O

1

2 1
, 20

t

t

0

0

2 2

where the vector function [ ˜ ]˜ s
¾

= ¶s =L x i i
d

1i
and ˜s is a second-order differential operator defined as

˜˜ s= å ¶s =i
d

i x1
2

i
.The proof of theorem 1 follows a perturbation analysis similar to the one used in [1] ormore

recent papers such as [6, 8].We also outline the procedure inA. In the absence of the stochastic perturbation, i.e.
( )d =H t 0, for homogeneous perturbation δGi(t)= δG(t), we get the commonly used linear-response relation

[6, 8]:

( ) · [ ˜ ] ( ) ( ) ( )ò r
r dá ñ = -  -r

r
d

Fu t u t s G s ds
1

. 21
t

0

Wenote that to apply formulas (19)–(21), it is required to know the steady state distribution ρ. For
nonequilibrium systems, this is generally hard to obtain due to high dimensionality of the Fokker-Planck
equation (17). Various approaches such as theGaussian approximation [8] and the information theorymethod
[7]were proposed to address this issue. Aswewill see in the following section, the generalized second FDT also
contains additional terms that involve ρ. However, for specifically chosen observables u(x), calculation of the
density ρ can be avoided.

4.2.Derivation of the second FDT
The secondflutucation-dissipation theorem gives the proportionality between the noise amplitude and the
friction kernel in theGLE. For open systems, depending on the formof theGLE and the observable of interest,
the explicit expression of the second FDTwill be different. Awell-organized review in this regard is given by
Maes in [12]. In this section, we provide a novel way to generalize the second FDTusing thefirst-principle GLE
derived in section 3. The derivation only uses themathematical properties of the Kolmogorov operator .
Without loss of generality, we consider the SDE (6)with theKolmogorov (backward) operator (8) of the form:

( ) ( )   å å s s= + = ¶ + ¶
= =

xF , 22
i

N

i x
i j

N

i j x x
1 , 1

2
i i j

whereσi,σj are constants. Note that here  represents a general advection operator instead of the skew-
symmetric Liouville operator. For such a stochastic system in the steady state ρ, by introducing theMori-type
projection operator (12) inweightedHilbert space ( )rL ,N2  , we can prove the following generalized second
FDT for theGLE (13)–(14). This is themain theoretical result of this paper.

Theorem2. (Generalized-2nd-FDT) For SDEwith infinitesimal generator (22), if we assume that the steady-state
distribution ( )r x is a smooth function of x and decays to 0 as ∣ ∣  +¥x , then the following generalized second FDT
holds for any state space observable ( )= xu u inGLE (13)–(14):

( )
( ) ( )

( )
( ) ( )

( )
( )= -

á ñ

á ñ
+

á ñ

á ñ
r

r

r

r
K t

f f t

u

w f t

u

0 ,

0

0 ,

0
, 23

2 2

where ( ) ( )=w u0 0 and  is a second-order differential operator defined as

( ) å ås s
r

s s r s s r= ¶ + ¶ ¶ + ¶ ¶
= =

2
1

. 24
i j

N

i j x x
i j

N

i j x x i j x x
, 1

2

, 1
i j i j j i

For a special case where  is a degenerate elliptic operator and the diffusion term is of the diagonal form  s= D2 ,
whereΔ is an-dimensional Laplacianwith n N , then  is ann-dimensional operator and admits a simple form:

( ) · ( ) s s r= D +  2 2 ln . 252 2

Proof. For any operator defined inweightedHilbert space ( )rL ,N2  , where ρ is the steady state distribution,
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wedenote*r as the adjoint operator of in ( )rL ,N2  with respect to inner product · ·á ñr, . Correspondingly,

we denote* as the adjoint operator of the unweightedHilbert space in ( )L N2  with respect to theweight-
less inner product · ·á ñ, . First we aim tofind the ( )rL ,N2  adjoint of theKolmogorov operator  (22). Using the
integration by parts formula and the fact that ( )r x 0 as ∣ ∣  +¥x , it is easy to obtain

· ( ) ( )  *
r

r+ = - -r F x
1

. 26

Similarly, for the second-order differential operator  in (22), using the integration by parts formula twice leads
to

( )  * år
s s r s s r

r
r= + ¶ ¶ + ¶ ¶ +r

=

1 1
. 27

i j

N

i j x x i j x x
, 1

i j j i

Naturally, we have

( )     * år
s s r s s r

r
r

r
r+ = + ¶ ¶ + ¶ ¶ + = +r

=

2
1 1 1

, 28
i j

N

i j x x i j x x
, 1

i j j i

where operator  is defined as (24). For the special case where  s= D2 , it is easy to see that  has the simple
form (25). Summing up formulas (26) and (28), we can get that

· ( ) ( )    *
r

r
r

r+ = - - + +r F x
1 1

. 29

Using a similar procedure for operator  and  defined in the unweightedHilbert space ( )L N2  , we have

· ( ) ( )   * *+ = - =F x , . 30

On the other hand, since ρ satisfies the steady state Fokker-Planck equation *r r¶ = = 0t , we obtain an
operator identity   * * *r r r r¶ = = + = 0t . Combining this with formula (30) and noting that

· ( )- F x is amultiplication operator, we obtain

· ( )
· ( ) ( )

 

 
 

*

*
⎫
⎬⎭

r r r
r r r

r
r

r
+ = - 
=

 - + -  =
F x

F x
1 1

0. 31

Substituting this relation into (29)we get   * = - +r . Nowwenote that symmetric projection operator
satisfies  * = = 2. For the formally definedGLEmemory kernel (15c), we obtain the generalized second
FDT:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

  

  

 

 

*á ñ = á ñ = á ñ

=-á ñ + á ñ

=-á ñ + á ñ

r r r r

r r

r r

u K t u e u u e u

u e u w e u

f f t w f t

0 0 , 0 0 , 0

0 , 0 0 , 0

0 , 0 , .

t t

t t

2

,

Theorem2 canbe readily generalized to theN-dimensionalGLE (13)–(14) and for the generalKolmogorov
operator (8).When thedissipative term in theKolmogorov operator (22) is given by ( ) ( ) s s= å ¶= x xi j

N
i j x x, 1 ,

2
i j
,

thenweobtain ( ) ( )=w u0 0 with

[ ] [ ] ( ) å s s
r
s s r

r
s s r s s s s= ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶

=

2
1 1

, 32
i j

N

i j x x i j x x i j x x x i j x x i j x
, 1

2
i j i j j i i j j i

where the shorthand notationσi(x)= σi andσj(x)= σj are used. The derivation of (32) follows directly from the
proof of theorem 2 and is given in B.On the other hand, the result of theorem2 holds for an arbitraryMori-type
projection operator ¶.Hence for theN-dimensional GLEs (13)–(14), we have

( ) ( ( ) ( ) ( ) ( ) ) ( )å= -á ñ + á ñr r
=

-K t G f f t u f t0 , 0 , . 33ij
k

N

jk k i k i
1

1

When one tries to apply thefirst and the second FDTs such as (21) and (23), it is normally necessary to know
the exact formof the steady state distribution ρ, which, however, is generally hard to deduce for nonequilibrium
systems such as turbulence [7] and heat conductionmodels [10]. This difficulty can be bypassed because of the
following corollary which is already announced in section 2:

Corollary 2.1. If the phase space observable ( ( ) ( ))= p qu u t t, is a function of the degenerate coordinates of the
stochastic system, then ( ) ( )= =w u0 0 0 and theGLE (13)–(14) for u(t) satisfies the classical second FDT.
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The proof is obvious since  is an operator in the non-degenerate coordinate. A typical example is the
Langevin dynamics for amolecular dynamical system. Since theGaussianwhite noise is only imposed in the
momentum coordinate pi, the position coordinate qi is therefore degenerate. Hencewe have

( ) ( ) ( ( )) = = =w u f q0 0 0 0i . Formore general, nonequilibrium systems in the steady state, this result still
holds which is somewhat surprising because the nonequilibrium steady state (NESS)measure is generally
unknown! Aswewill see in the following section,many statistical physicsmodels are generated by highly
degenerate operator , i.e. the dissipative forces act on a small subset of the phase space coordinates. For such
models, if the observable u(x) of interest is a function of the degenerate coordinate, we can simply avoid the
calculation of ρ in evaluatingw(0) and use the classical second FDT to build reduced-ordermodels for the
observable. An application of this fact in heat conduction problems is presented in section 6.We also have the
following result:

Corollary 2.2. For SDEwith infinitesimal generator (8), if the linear GLEs (13)–(14) for observable ( )u t satisfying
the classical second FDTwith ( ) =w 0 0, then W = 0ij in (13)–(14).

Proof. It is sufficient to prove the one-dimensional case. According to the definition of Wij (15b), for one-
dimensional GLE (13)–(14), we have

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

   *
W =

á ñ

á ñ
=

á ñ

á ñ
= -

á ñ

á ñ
+

á ñ

á ñ
= -

á ñ

á ñ
=r

r

r r

r

r

r

r

r

r

r

u u

u

u u

u

u u

u

u w

u

u u

u

0 , 0

0

0 , 0

0

0 , 0

0

0 , 0

0

0 , 0

0
0.

2 2 2 2 2

,

Remark 1.Onemight have observed similarities in the derivation of the generalized first and second FDT since
they are based on the integration by part formula and the properties of the Kolmogorov operator. However, we
note the vital difference between these two operator-form FDTs.Namely, the validity of the generalized second
FDTs (23), (33) are intrinsically non-perturbative and generally applicable to arbitrary stochastic systems in the
equilibriumor nonequilibrium steady state. In fact, as we reviewed in the Introduction, the derivationwe
presented is amanifestation/extension of Kubo-Mori’s second derivation approach of the second FDT for
stochastic (open) systems. The underlying philosophy is: different from the first FDTwhich is a linear response
result hence depends on themagnitude of the external stimuli, the second FDTdescribes the connection
between the internal fluctuation force and thememory kernel for a reduced-order observable, therefore can be
derived using only the properties of the dynamics generator .

Remark 2.The derivationmainly uses theMori-type projection operator which leads to linearGLEs. The above
theory also applies to nonlinear GLEs such as the Zwanzig’s equation [38], essentially because the Zwanzig-type
projection operator is an infinite-rank operator which is similar to theMori-type projection operator. The proof
is rather technical therefore will be deferred toC.

5. The generalized second FDT for specific systems

5.1. The generalized second FDT for equilibrium systems
The application of the generalized FDTs to equilibrium systems leads to explicit expressions of formula (19), (20)
and (23) since the equilibriumdistribution ρ is given by theGibbs-Boltzmann form r = b-e Z for the
canonical ensemble. In this section, wewill derive such expression for some frequently used statisticalmechanics
models. Before wemove onto analyzing stochastic systems, it is worth noticing that for equilibrium systems
generated by deterministic forces such as theNosé-Hoover thermostats, the classical second FDTholds as a
result of the skew-symmetry of the Liouville operator .

5.1.1. Langevin dynamics
The Langevin dynamics for a d-dimensional systemofN interacting particles is given by the following SDE in

´d N2 :

( )
( )



⎧

⎨
⎪

⎩⎪
g

s

=

= å - +¹

q p

p F p

d
m

dt

d dt
m

dt d t

1

, 34
i

i
i

i i j
N

i j
C

i
i i,

wheremi is themass of each particle,å ¹ Fi j
N

i j
C
, is the total conservative force acting on particle i, and ( ) ti is a

d-dimensionalWiener process which satisfies ( ) ( ) x=d t t dtj i with
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( ) ( ) ( ) ( )x x x g d d dá ñ = á ñ = -¢ ¢ ¢ ¢t t s k T t s0, 2 .ij ij i j B ii jj

The parameter γ is the friction coefficient which is related toσ through the fluctuation-dissipation relation
σ= (2γ/β)1/2, whereβ= 1/kBT, kB is the Boltzmann constant andT the temperature of the equilibrium system.
The stochastic dynamical system (34) is widely used in themesoscopicmodelling of liquids and gases. The
Kolmogorov backward operator (8) associatedwith the SDE (34) is given by

· · · · ( ) å å å å
g g

b
= ¶ + ¶ - ¶ + ¶ ¶

= ¹

p
F

p

m m
, 35q p p p p

i

N
i

i i j i

N

i j
C

i

N
i

i i

N

1 ,
,i i i i i

where ‘·’ denotes the standard dot product. If the interaction potentialV(q) is strictly positive at infinity then the
Langevin equation (34) admits a unique invariant Gibbsmeasure given by

( ) ( )( )r = b-p q
Z

e,
1

, 36p q
eq

,

where

( ) ( ) ( )
 

å= +
=

p q
p

q
m

V,
2

37
i

N
i

i1

2
2

is theHamiltonian andZ is the partition function. The formal expression of theGibbs-Boltzmann distribution
enables us to get the explicit expression of the additional termw(0) in the generalized second FDT (23). As an
example, the Langevin dynamics (34) is often used to study the self-diffusion of Brownian particles, for which a
relevant physical observable is the tagged particle velocity vj. By choosing u(0)= pjx/mj and using (23) and (35),
we obtain

( ) · · ( )å åg
b

s
r

r
g

= ¶ ¶ + ¶ ¶ = -
= =

w
p

m

p

m m
p0

2
. 38p p p p

i

N
jx

j i

N

eq
eq

jx

j j
jx

1 1

2

2i j i i

This implies that theGLE (13) for observable pjx can be rewritten as

( ) ( ) ( ) ( ) ( ) ( ) ( )ò
g

= W - + - +
r

d

dt
p t p t f

m
p f t s p s ds f t0

2
0 , .jx jx

t

j
jx jx

0
2

eq

Remark.Herewe obtained a somewhat counterintuitive conclusion stating that the classical second FDT for
a Brownian particle does not hold in the statistical equilibrium sincewe have an additional term (38) in theGLE
memory kernel. This is because instead of usingHamiltonian dynamics, we used stochastic dynamics, i.e.
equation (34), to simulate the equilibrium.On the other hand, the formof the second FDT strongly depends on
theGLEunder investigation. For otherGLEs such as the nonlinear ones derived by Zwanzig-type projection
operators [19, 20, 39], it is possible that the classical second FDT still holds for a Brownian particle generated by
the Langevin dynamics.

Dissipative particle dynamics. For a d-dimensional interacting particle systemofN particles, the SDE that
governs the particle position qi andmomentum pi in dissipative particle dynamics (DPD) is given by [18, 40]

( ) ( )( · ) ( ) ( )
( )



⎧

⎨
⎩ gw sw

=

= å - å + å¹ ¹ ¹

q
p

p F q e v e e

d
m

dt

d dt q dt q d t
39

i
i

i

i i j
N

ij
C

ij i j
N

ij ij ij ij i j
N

ij ij ij
1 2

wheremi is themass of i-th particle, qij= qi− qj, qij= ∥qi− qj∥, eij= qij/qij, vij= vi− vj, vi= pi/mi and ( )F qij
C

ij

is the conservative force exerted on particle i by particle j. The dimensionless weight functionω(qij) provides the
range of interactions of the dissipative and random forces. The friction coefficient and the noise intensity are
linkedwith each other through thefluctuation-dissipation relationσ= (2γ/β)1/2, whereβ= 1/kBT. For the
DPDmodel, the frictional forces are applied in a pair-wise form, such that the sumof thermostating forces
acting on a particle pair equals zero.Hence for ( ) ( ) x=d t t dtij i , we have ξij(t)= ξji(t) and

( ) ( ) ( ) ( )x x d d d d dá ñ = + -¢ ¢ ¢ ¢ ¢ ¢t t t s .ij i j ii jj ij ji

TheKolmogorov backward operator associatedwith theDPDmodel (39) is given by [17]

· · ( )( · ) · ( )( · · ) å å å ågw
b

gw= ¶ + ¶ - ¶ + ¶ ¶ - ¶ ¶
= ¹ ¹ ¹

p
F e v e

m
q q

1
.q p p p p p p

i

N
i

i i j i

N

i j
C

i j i

N

ij ij ij ij
i j i

N

ij
1 ,

,
, ,

i i i i i i j

Similarly, for the x-directional velocity of the h-th particle in theDPDmodel, the additional termw(0) in the
generalized second FDT can be calculated using (32) as:
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( ) 

å å

å å

b
s s d d

r
r

s s d d
r

r
b
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r

r
s s d

r
r

s s d d s s d d s s d s s d

=

= ¶ + ¶ - ¶ + ¶

=- + + +

¹

¹

w
p

m
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p

m m
p

m m
p
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p
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1 1

,

hx

h

i j

N
i j hj ij

h eq
p eq

i j hi ij

h eq
p eq

i i j

N
i j hj

h eq
p eq

i j hi

h eq
p eq

i j

N
i j hj ij

h i
ix

i j hj ij

h j
jx

i i j

N
i j hj

h i
ix

i j hi

h j
jx

, ,

, ,

ix jx ix jx

whereσiσj= γω(qij) andwe used the fact that [ ]s s¶ = 0p i ji
. The resultingGLEs (13)–(14) can be obtained

accordingly. For the Langevin dynamics and theDPDmodel, the correspondingKolmogorov operators are both
degenerate elliptic operators sincewhite noise is only imposed in themomentum space. Hence if we choose the
tagged particle position qj as the quantity of interest, then the classical second FDTholds forGLEs (13)–(14) as
claimed in section 4.

5.2. The generalized second FDT for nonequilibrium systems
As an example of nonequilibrium systems, we consider an d-dimensional heat conductionmodel in [10, 33]. To
this end, we consider a lattice  of interacting oscillators. For each oscillator Îi , the position andmomentum
are given respectively by Îqi

d and Îpi
d . The phase space is therefore given by ∣ ∣W = d2 , where ∣ ∣ gives

the cardinality of the set  which corresponds to the total number of particles. These oscillators are interacting
with the substrate and each other through theHamiltonian

( ) ( ) ( ) ( )
 

⎛

⎝
⎜

⎞

⎠
⎟å å d= + +

Î Î

p q
p

q q
m

U V,
2

, 40
i

i

i
i i

e
e e

2

whereUi andVe are the pining potential and interactive potential, respectivly, For ( )   = ¢ Î = ´e i i, we
have d = - Î¢q q qe i i

d . Themodel ( ) , can be viewed as an undirected graphwith no on-site loop, i.e. self-
interactions of the kindV0(δqe= 0) are not allowed. The graph is undirected in the sense that the interactive
potential ( ) ( )- = -¢ ¢q q q qV Ve i i e i i appears only once in theHamiltonian (40).Without the loss of generality,
we assume the uniformmass conditionmi=m= 1.Wenow choose a subset of the boundary oscillators
 Ì ¶ to impose thermal baths. For each Îb we assume that a thermostat of the temperatureTb> 0 is
given, alongwith a coupling constant γb> 0.With this setting, we obtain an n-dimensional heat conduction
model given by the following systemof stochastic differential equations:

( ) ( )
( )




⎧
⎨⎩ g g

=

= -¶ - +
Î

q p

p p q p

d dt

d dt dt k T d t
i

, 2
41

q

i i

i i i B i i ii

where γi= 0 for ⧹ Îi and γi= γb,Ti=Tb for Îb . Since the Langevin forces only act on the boundary
oscillators, for a ‘bulk’ of oscillators that are away from the boundaries, the dynamics are kept deterministic and
Hamiltonian. Formodeling purposes, different boundary conditions can be specified. Typical choices are
periodic, fixed or free boundaries. Nomatter which condition is used, the formof theKolmogorov backward
operator  corresponding to SDE (41) can bewritten as:

( · · ) ( · ( ) · ) ( ) 
 

å åg g= ¶ ¶ - ¶ + ¶ - ¶ ¶
Î Î

p p p qk T , . 42p p p q q p
b

b B b b b
i

i i ib b b i

When all added thermostats have the same temperature b= ÎT b1 ,b , then the system admits a unique
invariantmeasure

( )( )m r= =b
b-p q p qd d d

Z
e d d

1
, 43p q

eq
,

which is known as theGibbsmeasure for thermal equilibrium.When the boundary temperatures are different,
theGibbsmeasure is no longer invariant and (41)describes the dynamics of heatflowing from the higher-
temperature thermostats to the lower-temperature thermostats. Under certain assumptions to the potential
energy (see [33]), it can be proved that the system approaches to a unique, steady state exponentially fast. In the
literature, such a state is often called the nonequilibrium steady state (NESS).We further denote the steady state
probability density as ρNESS. By introducing theMori-type projection operator (12) in theHilbert space

( )∣ ∣ rL ,d2 2
NESS , we can derive theGLE (13)–(14). According to theorem2,we can obtain the following

proposition:

Proposition 1. For an n-dimensional heat conductionmodel given by the SDE (41), if the potential energy ( )qUi i
and ( )dqVe e satisfy certain conditions which ensure the smoothness and uniqueness of rNESS, e.g. the one outlined in
[33], then the following generalized second FDTholds for state space observable ( )= p qu u , inGLEs (13)–(14):
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( )
( ) ( )

( )
( ) ( )

( )
= -

á ñ

á ñ
+

á ñ

á ñ
r

r

r

r
K t

f f t

u

w f t

u

0 ,

0

0 ,

0
,

2 2
NESS

NESS

NESS

NESS

where the additional termw(0) is given by

( ) · ( ) · ( )
 

å åg
r

g r= ¶ ¶ + ¶ ¶
Î Î

w k T u k T u0 2 0
2

0 .p p p p
b

b B b
b

b B b NESS
NESS

b b b b

In particular, if observable u is a function of bulk coordinates ⧹ , i.e. ( ) ([ ] [ ] )∣ ⧹ ∣ ∣ ⧹ ∣   = = = =p q p qu u u, ,i i i i1 1 , then
the classical second FDTholds in the nonequilibrium steady state:

( )
( ) ( )

( )
( )= -

á ñ

á ñ
r

r
K t

f f t

u

0 ,

0
. 44

2
NESS

NESS

Proof.TheKolmogrov operator (42) can be decomposed as

· · ( · · ( ) )   




 



     
å å åg g= ¶ ¶ - ¶ + ¶ - ¶ ¶ = +
Î Î Î

p p p qk T , .p p p q q p
b

b B b
b

b b
i

i i ib b b i

It is easy to get the desired result using theorem2 and corollary 2.1. ,

For the heat conductionmodel (41), a physicallymeaningful observable u= u(q, p) is the heatflux. If we
consider an oscillator chain (one-dimensional case)with symmetric on-site and neighbourhood interaction
potential energy. i.e.Ui=U(qi) andVe(δqe)= V(qi+1− qi). The local and total heatflux of the system can be
defined as [10, 35, 41]:

( ) ⧹ ( ) ⧹ ( )   å= ¢ - Î = ¢ - Î+ +J p V q q i J p V q q j, , , 45i i i i tot N
j

i j j1 , 1

where Ji is the local heatflux and Jtot,N is the total onewith ∣ ⧹ ∣ =N . Proposition 1 ensures the validity of the
classical second FDT for observables of the bulk coordinates. This implies that for the local and total heat flux
defined as (45), the classical second FDTholds in theNESS even though the explicit formof the steady state
probability density ρNESS is unknown.Note that our definition of the total heatflux excludes the heatflux at the
chain boundary. Another frequently used definition of Jtot,N(t) contains such contributions and can be
decomposed as

( ) ( ) ( ) ( )⧹  = +J t J t J t , 46tot N,

where ( )⧹ J t is the bulk contribution as (45) and ( )J t is the boundary contribution.When applying the
generalized second FDT to (46), we have a non-zero additional termw(0)which breaks the classical second FDT.
However, with someweak assumptions, we can show (see appendixD) that the dynamics of the averaged heat
flux Jav(t)= Jtot,N(t)/N can be approximated by the bulk contribution ( )⧹ J t N in the thermodynamic limit as
N→∞ . Hencewe conclude that theGLE (13)–(14)model for the averaged heatflux satisfies the classical
second FDT in the thermodynamic limit.

Lastly, wewant to comment on themathematical difficulty to get similar results on the second FDT for
nonequilibrium systems generated by deterministic forces. Consider a similar heat conduction chainmodel
driven byNosé-Hoover thermostats. By assuming thatmi=m= 1 and there are only two thermostats with
temperatureTL andTR, the dynamics is described by the following equations ofmotion [35]:

( )
( )






⎧

⎨

⎪

⎩
⎪

⎧
⎨⎩

g
g

=

= -¶ -
Î
Î

p q

dq

dt
p

dp

dt

p i

p i
,

, if

, if

, 47

i
i

i
q

L i T

R i T
i

L

R

where L R, are the set of boundary oscillators which interact with thermostats at the temperatureTL,R. The
cardinality of L R, are denoted as ∣ ∣L R, . The dynamics of the auxiliary variables γL,R are given by:

∣ ∣
( )

 

⎛

⎝
⎜

⎞

⎠
⎟å

g
q

= -
Î

d

dt k T
p

1 1
1 , 48L R

L R B L R T n
n

,

, ,

2

L R TL R, ,

where θL,R are the thermostat response times. It is easy to check that the velocity field for the combined system
(47)–(48) has divergence

· ( ) ( ) ( )g g g = - -F p q t t, , L R

which changes back and forth between positive and negative values depending on the kinetic temperature of the
boundary oscillators [35]. As a consequence, thewhole systemoscillates between energy dissipating state and
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increasing state.Mathematically speaking, it is very hard to define a proper probabilitymeasure to quantify such
a nonequilibrium steady state. Even the SRBmeasure [42, 43], whichworks for dissipative systems, is not
applicable to this case. In practice, onemay assume the ergodicity of the deterministic system so that the
ensemble average ·á ñrNESS

can be replaced by the time average. Then due to the similarity of the dynamics, it is
reasonable to expect the heat conductionmodel generated by deterministic thermostats shares some properties
with the stochasticmodel (41), including the classical and the generalized second FDT. This conjecture,
however, needs to be verified.

6. Application to reduced-ordermodeling

In this section, we apply the generalized second FDT to the reduced-ordermodeling of the heat conduction
problem.Wefirst propose suitablemethods to approximate thememory kernelK(t) and thefluctuating force
f (t) for aGLE satisfying the classical second FDT. The resulting stochastic integro-differential equation serves as
the reduced-ordermodel forGaussian observables of the nonequilibrium system. Thismodel enables us to
numerically verify the generalized second FDT. Secondly, we propose a polynomial chaos expansionmethod to
approximate the dynamics of non-Gaussian observables which satisfy the generalized second FDT. Applying
these twomethods to the averaged heatflux Jav(t) leads to dynamicalmodels which characterize the steady state
heat transfer in nonequilibirum systems.Wenote that a similar approachwas used in [44] forHamiltonian
systems and the resulting stochasticmodel is often referred to as the fluctuating heat conductionmodel.

6.1.Methodology
Without loss of generality, we consider a one-dimensional GLE for scalar observable u(t)

( ) ( ) ( ) ( ) ( ) ( )ò= W + - +
d

dt
u t u t K t s u s ds f t . 49

t

u
0

In (49), the streaming constantΩ is easy to obtain using the definition (15b). However, evaluating thememory
kernelK(t) and thefluctuation force fu(t) from thefirst principle is rather challenging since it involves the
approximation of the high dimensional orthogonalflow et . To avoid such technical difficulties, here we adopt
a data-drivenmethod introduced in [45] to approximate thememory kernelK(t). As for thefluctuation force
fu(t), it can be approximated by suitable series expansions of a stochastic process. Thewhole procedure can be
described as follows. First of all, we recall that the projectedGLE yields (see section 3) the evolution of the steady
state correlation functionC(t) of u(t):

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )ò= W + - =

á ñ

á ñ
r

r

d

dt
C t C t K t s C s ds C t

u t u

u
, where

, 0

0
. 50u u

t

u u
0 2

Hencewith equation (50), thememory kernelK(t) can be represented formally using the inverse Laplace
transform if we knowCu(t). If we further assume that the dynamics of the observable u(t) is a stationaryGaussian
process, sinceGLE (49) is a linear equation for u(t), this implies the fluctuation force fu(t) is also a stationary
Gaussian process. Thenwe can use the truncatedKarhunen-Loéve (KL) expansion series to approximate fu(t),
namely

( ) ( ) ( ) ¯ ( ) ( ) å åx l x lá ñ + = +r
= =

f t f t e t f e t . 51u u
k

K

k k k u
k

K

k k k
1 1

In the steady state, themean value of the stochastic process satisfies ( ) ( ) ¯á ñ = á ñ =r rf t f f0u u u, which can be
obtained by taking the ensemble average of theGLE (49) and then evaluating it at t= 0:

¯ ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )


= á ñ = á ñ - Wá ñ = á ñ -

á ñ

á ñ
á ñr r r r

r

r
rf f u u u

u u

u
u0 0 0 0

0 , 0

0
0 . 52u 2

TheKL expansion randomcoefficients { }x =k k
K

1 are necessarily independentGaussian randomvariables satisfying
〈ξiξj〉= δij, and { }l =e,k k k

K
1 are, respectively, eigenvalues and eigenfunctions of the homogeneous Fredholm

integral equation of the second kind:

( ) ( ) ( ) ( ) [ ] ( )ò lá ñ = Îrf t f e s ds e t t T, 0 , 0, , 53
T

u u k k k
0

whereT is a certain numerical integration time. If the classical second FDTholds forGLE (49), by substituting
( ) ( ) ( ) ( )á ñ = - á ñr rf t f K t u, 0 0u u

2 into eqn (53) and solving for { ( )}l =e t,k k k
K

1, we can get the exact KL series
representation (51) for thefluctuation force fu(t).With all these terms available, we propose the following data-
drivenmodeling diagram for an arbitraryGaussian observable u(t):
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Eqn 55 , 54

u

u
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k

K
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where [ ( )] ˜ ( )L =C t C su u is the Laplace transformofCu(t) and [·]( )L- t1 is the inverse transform. In
flowchart (54), the leftmost three terms are inputs of the diagramwhich can be obtained by solving numerically
the SDE (6) and then averaging samples collected from the steady state simulation.Wenote that solving (50) for
K(t) is a well-known inverse problemwhich is ill-conditioned. In this paper, we use the series expansionmethod
[45] and LASSO regression to approximateK(t). By combining all these approximations and executing (54), we
can get the first reduced-ordermodel for u(t):

( ) ( ) ( ) ( ) ( ) ( )òå x= W + - +
=

d

dt
u t u t k b t s u s ds f t, , 55

i

I t

i i
1 0

where ( ) ( )= å =K t k b ti
I

i i1 is the series expansion approximation forK(t) and f (t, ξ) is the truncatedKL
expansion approximateing the fluctuation force fu(t).Wewant to emphasize that the key relation that
rationalizes thewhole algorithm is the classical second FDT.

The above reduced-ordermodeling diagram cannot be applied to non-Gaussian cases nor the case where the
generalized second FDTholds. Themainmodeling difficulties stem from the fact that the steady state
distribution of the fluctuation force f (t) and the additional termw(0) in thememory kernelK(t) are generally
unknown and cannot be easily constructed fromMDsimulation.However, we can use the polynomial chaos
expansion to directly simulate u(t). To this end, we propose the followingmodeling diagram for non-Gaussian
u(t):

( ) ( ) ( )
( ) ( )

˜ ( )
( )

( ) ( ( )) ( )
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Eqn 50

, . 56u

u

u
i

M

i i

1

1

In (56), ( ) ( ( ))xg= å =u t u H t ,i
M

i i1 is the polynomial chaos expansion for a stationary non-Gaussian process,
which can be constructed from the time-autocorrelation and the steady state probability density ρu. Specifically,
the expansion coefficient ui and aGaussian process γ(t, ξ) is calculated via amodified Sakamoto-Ghanem
algorithm [46]. In appendix E, we explain the procedure in detail. By directly simulating the non-Gaussian
processes in the state space, we avoid the computation of the infinite Kramers-Moyal coefficients [27] or the
effective Fokker-Planck diffusion coefficient [44].

For these two reduced-ordermodelingmethods, by approximating the full GLE or using the polynomial
chaos expansionmethod, we can construct a surrogatemodel for u(t).Moreover, it also enables us to use a short-
timeMD simulation data to predict the long-time dynamics of u(t). This part will be verified later via numerical
simulations in the following section.

6.2. Numerical result for a one-dimensional heat conductionmodel
Wenow study numerically the one-dimensional heat conductionmodel (41). In particular, wewill use reduced
ordermodels introduced in section 6.1 to build effectivemodels for different phase space observables, from
whichwe can verify the validity of the generalized second FDT and demonstrate the effectiveness of these
reduced ordermodels.Moreover, wewill study in detail themodel for the averaged heat flux Jav(t) and discuss its
usefulness in characterizing the heat transport intensity for systems in and out of the statistical equilibrium.

To this end, we set the on-site potential energy in (41) to be 0 and the neighbourhood interaction potential
energy to be the Lennard-Jones (LJ) potential energy, i.e.:

( ) ( )  ⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥d

s s
= - =

-
-

-+
+ +

V q V q q
q q q q

4 2 .e e i i
i i i i

1
1

12

1

6

Thewhole chain is linkedwith two thermostats with temperaturesTL andTRwhichwill be specified later for
different cases. Free boundary conditions are imposed and themodeling parameters are set as follows:

∣ ∣= =N 256, ò= 0.2,σ= 1, γL= γR= 1. To solve (41)numerically, we use the Euler-Maruyama scheme
with step size dt= 10−5. Infigures 1 and 2, we show the schematic for the heat conductionmodel and the
sample trajectories of selected observables of this stochastic system.

6.2.1. Verification of the generalized second FDT
The reduced-ordermodelingmethodwe introduced in section 6.1 enables us to numerically verify the
generalized second FDTby hypothesis testing.Wewillfirst choose an observable for which the classical second
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FDTholds (Ω= 0 andw(0)= 0) and show that the stochasticmodel (55) gives correct statistics for observable u
(t). Thenwewill repeat the procedure for an observable for which the generalized second FDTholds (Ω≠ 0 and
w(0)≠ 0). Since the algorithmworks onlywhen the classical second FDTholds, stochasticmodel (55) should
givewrong statistics for observable u(t). Throughout this subsection, the thermostat temperatures are set to be
TL= 1 andTR= 5whichmakes the system approaching anNESS as t→ + ∞.

Observable pM.We choose themomentumof the oscillator inmidst as the observable. According to
proposition 1, themomentum pM satisfies the classical second FDT (44) in theNESS. Figure 3 shows that pM is a
Gaussian variable and themarginal probability density function (PDF) satisfies ( )~p 0.2955, 0.42M

2

approximately. Therefore the standardKL expansion can be used to represent the fluctuation term,which leads
to the reduced-ordermodel for pM(t):

( ) ( ) ( ) ( ) ( )òå å l x= - +
= =

d

dt
p t k b t s p s ds e t . 57M

i

I t

i i M
i

M

i i i
1 0 1

In this paper, thememory kernel expansion basis bi(t) are set to be the Laguerre polynomials, and a LASSO
regressionmethod is used to approximate the expansion coefficient ki [45]. In (57), I= 20 andM= 500 (the
same hereinafter). Since a stationaryGaussian process pM(t) is fully characterized by itsmarginal distribution
and the time autocorrelation function, we solve (57)numerically and compare these two statistics with the exact
results obtained throughMD simulation. Infigure 3, we can see that the solution of the reduced-ordermodel
(57) reproduces the correct statistics of the observable pM(t).

Observable pL.We choose themomentumof the leftmost oscillator as the observable. According to
proposition 1, themomentum pL satisfies the generalized second FDT (44) (w(0)≠ 0) in theNESS. Figure 3
shows that pL is also aGaussian variable with themarginal PDF satisfying ( )~ -p 0.4169, 1L approximately.
If we assume that the classical second FDTholds, then the reduced-ordermodel for pL(t) is given by

Figure 1. Schematic of the 1-D and 2-Dheat transportmodel (41). The onsite potential and boundary Langevin forces are shown in
the top plot for the 1-Dmodel. Note that only the boundary oscillators,marked in red, interact with the heat bath.

Figure 2. Sample trajectories of the particlemomenta PL(t),PM(t) and the averaged heatflux Jav(t). The temperatures of the
thermostats are set to beTL = 1 andTR = 5. The displayed time domain is [80, 100], where the system is verified to be in theNESS
after the transient time t = 80.
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( ) ( ) ( ) ( ) ( ) ( )òå å l x= W + - +
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p t p t k b t s p s ds e t , 58L L
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Using the data we obtained in theNESSwe obtainΩ≈− 0.8622.When comparing themarginal distribution
and the time autocorrelation functionwith the exactMD simulation results, wefind that the reduced-order
model reproduces the correct autocorrelation function for observable pL(t), which is reasonable since the
evolution equation for ( )C tpL

is given by (50) and only depends on thememory kernelK(t). However, since the
classical second FDTdoes not hold (w(0)≠ 0) for theGLE of pL(t), the reduced-ordermodel with the pre-
assumed classical second FDTmust reproduce thewrongNESSmarginal distribution rpL

.

Remark.Combining these numerical simulation results for observable pM(t) and pL(t), we verify the existence
of the additional termw(0) in thememory kernelK(t) that violates the classical second FDT. In this paper, we
would not determine the specific formofw(0) and leave it as an independent research topic.

6.2.2. Stochasticmodeling of the averaged heat flux
In this subsection, we use the reduced-order technique to build dynamicalmodels for the averaged heat flux
Jav(t) and show that (55) is an effective, genericmodel for heat transport close to and far-from the statistical
equilibrium. In addition, we show that (55)with shortMD simulation data can predict the correct long-term
dynamics of the averaged heatflux Jav(t).

Wefirstly briefly review the classical Kubo’s linear response theory for heat transport. For a stochasticmodel
such as (41), the system is initially set to be in the statistical equilibrium (43) and then perturbed by a small
temperature difference acted on the boundary. This can be achieved by alternating the temperature of a
thermostat asTeq+ΔT. IfΔT is sufficiently small, then the thermal conductivityκ of the lattice system can be
calculated using the first FDT, which is known as theGreen-Kubo formula [9, 10, 35, 47]:

( ) ( ) ( )òk = á ñ
¥N

k T
J t J dt, 0 , 59

B eq
av av eq2

0

where the ensemble average ·á ñeq is takenwith respect to the equilibriummeasure (43)with temperatureTeq and
N is the total particle number.Hence theGreen-Kubo formula (59) links the equilibrium time autocorrelation
function of thefluxwith the transport coefficient near the statistical equilibrium.Wenote thatmany low-
dimensional heat conductionmodels exhibit a violation of Fourier’s lawwithκ= κ(N) depending onN. This,
however, will not invalidate theGreen-Kubo formula since theN-dependence for such special systems is
embedded in the time correlator ( ) ( )á ñJ t J, 0av av eq. Amore difficult case for some low-dimensional systems is the
anomalous long-time tail of the heatflux autocorrelation function since it scales as t− d, 0< d< 1. This anomaly
is normally associatedwith a chain-length dependent conductivity scalingκ(N)∝Nαwithα> 1, whichwill
lead to divergent Green-Kubo integral (59) and an infinite conductivityκ. This phenomenon is rather system-

Figure 3. (First column)Marginal probability density for pM (Up-Left) and pL(Down-Left); (Second column)Normalized time
autocorrelation functionC(t)/C(0) for observable pM (Up-Right) and pL (Down-Right). Themarginal PDF is obtained from theMD
simulation data using kernel density estimation. The correlation function is obtained by averaging 5000 sample trajectories within the
time domain [90, 100]while the system is in theNESS.
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dependent and strongly related to the boundary conditions. The LJ systemunder our investigation does not
exhibit such an anomaly, which agrees with the finding in [48]withfixed boundary conditions.

Equilibrium case.Wefirst focus on the equilibrium case and show that the stochasticmodel we introduced in
section 6.1 yields a correct prediction of the equilibrium time autocorrelation function ( ) ( )á ñJ t J, 0av av eq. Note
that the equilibrium case is a special case of the nonequilibriummodel withTL= TR= Teq, andwe already
proved that theGLE for the averaged heat flux Jav(t) in theNESS satisfies the classical second FDT. If the
equilibriumdistribution for Jav(t) is Gaussian, then the full stochasticmodel can be constructed via (54), which
generates a simulated sample trajectory of Jav(t) as the solution of (55)withΩ= 0. Figure 4 shows that
equilibriummarginal distribution for Jav(t) at low temperatureTeq= 1 is approximately Gaussianwith

( ) ( )~J t 0, 0.21av
2 . Hence the corresponding fluctuation force fJ(t) in (55) can be approximated by a truncated

KL series, which leads to the reduced-ordermodel:

( ) ( ) ( ) ( ) ( )òå å l x= - +
= =

d

dt
J t k b t s J s ds e t . 60av
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I t

i i av
i

M

i i i
1 0 1

The heatflux has a longer correlation time scale when comparing to observables such as pL, pM.When solving
(60)numerically, we use a shortMD trajectory data for tä [0, 10] to construct thememory kernelK(t). From
figure 4, we can see that the stochasticmodel (60) predicts the long time tail of the correlation function.

The situation is different when increasing the system temperature toTeq= 5. In particular, the estimated
PDFof Jav(t) is clearly non-Gaussian and has a long tail. Formodeling such heat flux, we adopt the secondmodel
(56)where Jav(t) is approximated by a polynomial chaos expansion

( ) ( ( )) ( )å xg=
=

J t J H t, . 61av
i

M

i i
1

The simulation result is shown in the second rowoffigure 4.Wefind that with short-termdata, the generated
stochastic process (61) has a target distributionwhich agrees with theMD simulation result.Moreover, the
extrapolated correlation function of (61) predicates the correct long-time tail of the exact result.

Remark.The reduced-ordermodelingwe introduced for Jav(t) is only semi-analytical. Namely, while the
second FDT inducedGLE is closed and derived from the first principle, the calculation of thememory kernel is
extrapolated using a short-termdata-drivenmethod. This is less satisfying froma theoretical point of view.Here
wewant tomention the technical difficulty of developing a pure analyticalmethod to get similar results for the
systemunder our investigation.Wenote that the time autocorrelation function of the heatflux hasmultiple time
scales. Specifically, there are a short-time scale, δ-function alike fast decaying of the correlation close to t= 0 and
a long-time scale, slow decaying of the correlation as t→ + ∞ . Generally speaking, it is hard tofind an
analyticalmethodwhich generates such two-time-scale dynamics of the correlation simultaneously. Some
recently developed analyticalmethods such as the nonlinearfluctuating hydrodynamics [41, 49] usedmode-

Figure 4.Marginal probability density ρJ(x) and the normalized time autocorrelation functionCJ(t)/CJ(0) for the averaged heatflux
Jav(t) in the statistical equilibrium. The presented numerical simulation time domain is [50, 130] to ensure the system is already in the
stationary state (equilibrium). Note that the short-time (t ä [0, 10])MDsimulation for the correlation is displayed as a blue solid line
and the extrapolation result based on the stochasticmodeling is shown as a blue dashed line, with a vertical red dashed line separating
these two. The presented simulation results are for systemswith temperatureTeq = 1 (First row) andTeq = 5 (Second row).
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coupling theory to approximate thememory kernel and successfully predicted the long-time tail of the
correlation function. But since the short-time scale dynamics cannot be capturedwithin this framework, which
is important for accurately evaluating theGreen-Kubo integral (59), it is hard to get the correct transport
coefficient based on purely analytical calculations.

Close-to-Equilibrium case.Wenow consider the close-to equilibrium case and use the classical Green-Kubo
theory to verify the validity of stochastic heat conductionmodel. To this end, we chooseTL= 1 andTR= 1.1 in
theMD simulation of the SDE (41). By collecting the data from the nonequilibrium steady state, we find Jav(t) is
also approximately Gaussianwith ( )~J 0.0170, 0.24av

2 . Hence the reduced-ordermodel for the close-to-
equilibrium averaged heatflux Jav(t) is given by

( ) ( ) ( ) ( ) ( )òå å l x= - +
= =

d

dt
J t k b t s J s ds e t . 62av
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i i i
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Infigure 5, we compare theMD simulation result of the normalized time-autocorrelation function:

( ) ( ) ( )= á - á ñ - á ñ ñD D DC t J t J J J, 0 ,J av av T av av T T

where ·á ñDT is the ensemble averagewith respect to theNESS probability density withTR− TL=ΔT. Similar to
the previous case, we used theNESS simulation data for t ä [0, 10] to construct thememory kernel. The long-
termprediction of the correlation function is shown to be accurate. In addition, we calculate the averaged long-
term energy accumulation:

( ) ( )òD =
D

E t J s ds ,
t

av
T0

where Jav(t) is theMD sample path for system in the near-equilibrium steady state. For stochasticmodel (62),
this quantity can be calculated by averaging the solutionwith respect to the probabilitymeasure introduced by
the i.i.dGaussian randomvariables { }x =i i

M
1 , i.e.

( ) ( )
{ }

òD =
x x= =

E t J s ds .
t

av
0

i i
M

1

Here Jav(t) is the numerical solution of (62). On the other hand, theGreen-Kubo formula can also be used to
calculate the energy accumulation as:

( ) ( ) ( ) ( )òk kD = »
D

= á ñ
¥

E t
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t

T
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t

t

k T a
J s J ds, 0 , 63
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where a is the equilibriumposition spacing of the chain. For our example a= σ= 1. ( ) ( )á ñJ s J, 0av av eq can be
obtained from the equilibriumMDsimulation result or the solution of (60). Note that the second approximation
in (63) is valid since normally a linear temperature profile is formed for the heat conductionmodel [35]. The
simulation result verifies that both theGreen-Kubo formula and the reduced-ordermodel (62) predicate rather

Figure 5.Marginal probability density ρJ(x) and the normalized time autocorrelation functionCJ(t)/CJ(0) for the averaged heatflux
Jav(t); The presented simulation results are for close-to-equilibrium systemswith temperaturesTL = 1,TR = 1.1 (First row) and
TL = 5,TR = 5.25 (Second row). Other settings are the same as infigure 4.
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accurately the long-term energy accumulation. In fact, stochasticmodel (62) gives a different definition of
thermal conductivityκ based on the second FDT:
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( ) ( )
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ò ò
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For our example,κ(T= 1,ΔT= 0.1,N= 256)≈ κ= 0.0178, whereκ is theGreen-Kubo transport coefficient
(59).We also consider a high temperature case. By choosingTL= 5 andTR= 5.25, we found the steady state
distribution for Jav(t) is similar to the result we obtained for the high-temperature equilibrium case. Because of
the non-Gaussian feature of Jav(t), we need to use the aforementioned polynomial chaos expansionmethod to
generate the stochasticmodel. The simulation result is shown infigure 5, andwe see that the constructed
fluctuating heat conductionmodel faithfully captures and predicates the static and dynamical properties of
Jav(t).When comparing the accumulated energyΔE(t), the calculated result ismore accurate than the
predication of theGreen-Kubo formula, with an estimated conductivity (given by (64))κ(T= 5,ΔT= 0.25,
N= 256)≈ 0.0271. Thismight stems from the fact that for temperature differenceΔT= 0.25, the system is
already out of the linear response regime (see explanations below).

Far-from-equilibrium case.When a large temperature gradientΔT is imposed to the system through the
boundary thermostats, the system is outside of the linear response regime. For such far-from-equilibrium cases,
the validity of theGreen-Kubo formula (59) is questionable since it is based on perturbation theory.However,
we can still usemethods introduced in section 6.1 to build reduced-ordermodels for Jav(t) and use it to quantify
the intensity of heat transfer. Form theMD simulation result presented infigure 6, wefind that the heatflux
probability density in the far-from equilibrium steady state is non-Gaussian, strongly asymmetric and has long
tails. Similar results were reported forHamiltonian systems [49], where the PDFwas shown to approximate the
Baik-Rains distribution.Herewe did not pre-assume the formof the PDF and directly used the numerically
evaluated density function to build amodel. Specifically, since the heatflux is a non-Gaussian process, we adopt
the secondmethodology (56) and repeat what we have done for the high temperature near-equilibrium case to
calculate Jav(t) using ( ) ( ( ))xg= å =J t J H t ,av i

M
i i1 . Figure 6 clearly shows that the simulated Jav(t) predicts the

energy accumulationmore accurately than theGreen-Kubo formula (withTeq= 1, 5), as expected. The
estimated conductivity for the two cases we considered areκ(T= 1,ΔT= 4,N= 256)≈ 0.28 andκ(T= 5,
ΔT= 4,N= 256)≈ 0.29.

Remark.Wemay compare the classical Green-Kubo transport theorywith the second FDT-induced
transport theory from the information theory point of view. TheGreen-Kubo theory uses the equilibrium
information (correlation function) of theflux to predict the near-equilibrium transport. In ourmethod, we used
the short-time information offlux to predict the long-time transport. These twomethods have their ownmerits
and drawbacks. Specifically, theGreen-Kubo theory is uniformly valid for equilibrium systemswith various
perturbations, such as thermostats with different temperature gradientsΔT. However, it only applies to near-
equilibrium systems. The second FDT-induced transport theory has larger range of applicability and can be used

Figure 6.Marginal probability density ρJ(x) and the normalized time autocorrelation functionCJ(t)/CJ(0) for the averaged heatflux
Jav(t); The presented simulation results are for far-from-equilibrium systemswith temperatureTL = 1,TR = 5 (First row) andTL = 5,
TR = 9 (Second row). Other settings are the same as infigure 4.
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to predict far-from-equilibrium transport. But up to this point, we can only reply on data-drivenmethods to
calculate theGLE,whichmeans that the heat transport for systemswith different temperature gradients has to be
handled on a one-to-one basis.

7. Summary

In this paper, we discussed the generalization of the second fluctuation-dissipation theorem (FDT) for stochastic
dynamical systems driven bywhite noise and its application to the heat conductionmodel. FollowingKubo-
Mori’smethodology, the derivation of this newFDTonly uses the property of the Komogorov operator , and
hence generally holds for observables in both equilibrium andnonequilibrium steady states (NESS).We also
note a surprising fact that for observables in the degenerate coordinate of the Kolmogorov operator, the classical
second FDTholds in theNESS evenwhen the steady state probabilitymeasure is generally unknown. The
generalized second FDTwas applied to various statistical physicsmodels in and out of equilibrium such as the
Langevin dynamics and theDPDmodel. In particular, we focused on a low-dimensional heat conductionmodel
and proved the validity of the classical second FDT for the averaged heat flux.We also introduced two reduced-
ordermodelingmethods based on the second FDT. Thefirst oneworks forGaussian observables which satisfy
the classical second FDT,whereas the othermethod is based on the polynomial chaos expansion approachwhich
is generally applicable to observables satisfying the generalized second FDT.With these twomethods, wewere be
able to numerically verify ourmain theoretical result, theorem2.Moreover, we derived afluctuating heat
conductionmodel and introduced a newdefinition of thermal conductivity which holds for both near-
equilibrium and far-from-equilibriumheat transport. For a nanoscale open systemout of the linear response
regime, this second-FDT-induced conductivity yields amore accurate prediction of heat transfer than the
classical Green-Kubo theory.We conclude by emphasizing that the presentedwork can be generalized to other
transport processes. Further applications of the proposedmethodology can be expected.

Data availability statement

Nonewdatawere created or analysed in this study.

AppendixA. Proof of the generalizedfirst FDT

For the perturbed stochastic system (18) evolving from the steady state ρ(0)= ρ, the evolution equation of the
probability density is given by the Fokker-Planck equation:
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where ( )* t is the Kolmogorov forward (Fokker-Planck) operator of the form
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Since the added forces are of the orderO(δ), which is assumed to be a small quantity, the solution of
equation (A1) can bewritten as a perturbative expansion of ρ(t), i.e.

( ) ( ) ( ) ( )r r dr d r= + + +t t t , A21
2

2

where the steady state solution satisfies *r = 0. By substituting the perturbation series (A2) into equation (A1)
and retaining only thefirst order termO(δ), we get the formal expression of δρ1(t):

( ) ( )( )  **òdr r= -t dse s .
t

t s
ext1

0

Hence in the phase space, for observable u= u(x), the change of ensemble average induced by the perturbation
can be expressed as:
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where ρδ= ρδ(t) is the formal solution of the Fokker-Planck equation (A1). Using the integration by parts
formula to simplify ( ) ( )á - ñrs u t sext , we obtain the generalized linear-response formulas (19)–(20).
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Appendix B. Proof of the generalized second FDT (32)

Following the proof of theorem2,we have
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Using integration by parts twice and a shorthand notation ( ) ( ) s s s s= å ¶ = å ¶= =x xi j
N

i j x x i j
N

i j x x, 1
2

, 1
2

i j i j
, we

have

[ (·)] [ (·)] [ (·)]

[ (·)] [ (·)] [ ] [ ] [ ]



 

  

* å s s
r

r s s
r

r s s
r
s s r

r
r

r
r s s

r
r s s s s s s s s

r
r

= ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶

= + + ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶

= + +

r
=

1 1 1

1 1 1

1
,

i j

N

x x i j x x i j x x i j i j x x

x x i j x x i j x i j x x i j x x x i j

, 1

2

2

i j i j j i i j

i j j i i i i i i j

where is a second-order differential operator. Then it is straightforward to obtain
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Since   * * *r r r= + = 0, · ( ) *+ = - F x and   * = + , where operator  is defined as
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By substituting the above equality into  * +r , we can get the desired result:
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where  is defined as (32).

AppendixC. The generalized second FDT for nonlinearGLEs

The nonlinearGLEs are normally derived using the Zwanzig-type projection operator [16, 29, 50]:

( )( ˆ)
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Zwanzig’s projection (C1) is a conditional expectation operator satisfying ¶2= ¶. It is also a symmetric operator
in ( )rL ,N2  , i.e. · · · ·� �á ñ = á ñr r, , . Using (C1) to derive theMori-Zwanzig equation for stochastic system (6),
we obtain a nonlinearGLE:
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where F(u(t)) is a nonlinear vector function ofu(t). Thememory integral ( )ò -R t s s ds,
t

0
is not directly given

by a convolution form such as the one in (13). To simplify this equation, we note that in the conditional
projection (C1) is an infinite-rank operator [29, 50], therefore can be formally written as [51]:
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¥0j j 1 are set of phase space functions which are linearly independent in

( )rL ,N2  . As a result, the Zwanzig-equationmemory kernel is given by:
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Hence using the proof of theorem2, thememory kernel can be rewritten as:
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where ( ) ( )y=g 0 0j j and ( ) ( )y=h 0 0j j . After all these steps, we obtain a nonlinearGLE:
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where thememory kernel and the fluctuation force satisfy the generalized second FDT (C3). The above
derivation is of course quite formal. However suchmathematical rigorous discussion clearly indicates for
stochastic systems the classical second FDThas to be generalized by includingmore observables such as gj(0) and
hj(0) in the time correlationswith the noise fi(t). At the current stage, it seems difficult or even unnecessary to get
the explicit expressions for terms such asψj(0),fj(0) and gj(0), hj(0). However, nonlinearGLE (C4) and the
generalized second FDT (C3)may be used as the ansatz for proper reduced-ordermodellings for stochastic
systems, such as the ones used in [19].

AppendixD. Validity of the classical second FDT for the averaged heatflux

It is sufficient to prove the result for d= 1 system and the generalization tomulti-dimensional cases is direct.
The local heatflux at the boundaries have to be handled independently. Since the Langevin forces act on the
momentumcoordinates of the boundary oscillators, the heat reservoir only exchanges energywith the oscillators
through the kinetic part [35]. From this observationwemay define the boundary heatflux as the non-
Hamiltonian contribution of the time derivative of the kinetic energy i.e.,

g g g g= ¶ - ¶ = - ÎJ k T
p

p
p

k T p b
2 2

, .b b B b p
b

b b p
b

b B b b b
2

2 2
2

b b

In the steady state, a stable kinetic temperature profile is often obtained through numerical experiments and the
boundary oscillators admit a kinetic temperature ¹T Tb

k
b [35].We further assume themarginal distribution for

themomentumof the boundary oscillators pb, Îb is Gaussian, i.e.

⧹{ } ( )òr r= µ b-q pd d p e , D1p bb
b

pb
2

2

where p⧹{pb} represents allmomenta p but pb, b = k T1b B b
k and ρ= ρNESS is the probability density

corresponding to theNESS. To be noticed that this assumption is verified numerically in section 6.2.1 (see figure
3). In the stationary regime, we get the boundary heat flux ensemble average
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Hence for the total heatfluxwe have
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where ⧹ J and J denote respectively the bulk and boundary contributions to the total heat flux. As it is shown
in [35], in the stationary regime the average bulk heatflux ( )⧹ á ñrJ t is an extensive quantity which scales as the
order of volume for the lattice system i.e.O(Ld), where L is the length of the lattice system. For fixed coupling
constantλb and thermal bath temperatureTb, the average boundary heatflux ( )á ñrJ t scales as the order of
surface area for the lattice system. i.e.O(Ld−1). Naturally sinceN∝ Ld, we have

( ) ( ) ( )⧹ á ñ = á ñr r
¥ N

J t
N

J tlim
1 1

. D2
N

tot N,

The above limit can be seen as the first-ordermoment estimation of the total heatflux in the stationary regime.
We also need to verify whether the above estimation hold in the second order. To this end, we use the triangle
inequality to get

( ) ( ) ( ) ( ) ( ) ( )⧹ ( ) ( ) ( ) ⧹ ( ) ( )              - +r r r r rJ t J t J t J t J t . D3L L tot N L L L,2 2 2 2 2 

Then by combining another triangle inequality
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wehave
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Using the embedding inequality associatedwith L2(ρ)→ L1(ρ) andCauchy–Schwartz inequality, we get that

∣ ( ) ∣ ( ) ( ) ( )⧹ ⧹ ( ) ⧹ ( )        á ñr r rC J t C J t J t , D5L L1 2 

whereC is the embedding constant. Inequality (D4) also implies ( ) ( )  rJ t L2 scales atmost of the orderO(Ld−1),
while (D5) indicates ( )⧹ ( )   rJ t L2 scales at least of the orderO(Ld). Hence dividing byN and then taking the
limitN→∞ in both sides of inequality (D3), we have
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Using the similar technique and the stationary condition ( ) ( )⧹ ( ) ⧹ ( )      =r rJ t J 0L L2 2 , ( ) ( )  =rJ t L2

( ) ( )  rJ 0 L2 , it is easy to obtain the following estimate
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For the same reason, dividing byN2 and then taking the limitN→∞ in both sides of inequality (D7), we obtain

( ) ( ) ( ) ( ) ( )⧹ ⧹   á ñ = á ñr r
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, 0 . D8
N
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Estimates (D2) and (D8) imply that the averaged total heat flux Jav,N(t), as a stationary second-order process, can
be approximated by its bulk contribution ( )⧹ J t NN, in the L2 sense.

Appendix E. Polynomial chaos expansion for stationary non-Gaussian processes

For strongly non-Gaussian stochastic processes such as the far-from equilibriumheat flux Jav(t), the KL
expansion is no longer suitable to represent such processes since the random coefficients ξk are not i.i.d Gaussian
and cannot be easily determined. Somemethodswere proposed to address the approximation problemof a non-
Gaussian process. For instance, Chu and Li [44] suggested to use aGaussianmultiplicative noise to approximate
the random force in the extended stochastic system. Zhu andVenturi [26] used Phoon’s algorithm [52, 53] to
generate a sample-based, iterated KL expansion to represent the non-Gaussian process. In this paper, we adopt a
modified Sakamoto-Ghanem [46]method to approximate Jav(t). The numericalmerits of the new algorithm are
highlighted in two aspects. First, it is generally appliable to non-Gaussian stochastic process u(t)with arbitrary
steady state distribution ρu and correlation functionC(t1, t2)= 〈u(t1), u(t2)〉. Secondly, it worksmuchmore
efficiently when comparing to similar approaches such as Phoon’s algorithm [52, 53], which enables us to rapidly
generate sample trajectories from theGLE.Herewe only briefly explain themain steps of Sakamoto-Ghanem
algorithm and ourmodification of it.More details and extension of such amethod can be found in [46].

Suppose u(t) is a second order, stationary non-Gaussian stochastic process with an arbitrary steady state
distribution ρu and the stationary correlation functionCu(t+ s, s)= Cu(t, 0)= 〈u(t), u(0)〉. Then the following
polynomial chaos expansion approximates u(t) in the L2 sense asM→ +∞ andK→ +∞:
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HereHi is the i-th order probabilist’sHermite polynomials. Being represented as a truncatedKL expansion
which can be determined by solving the Fredholm equation (53), γ(t, ξ) has steady correlation function
Cγ(t)= 〈γ(t, ξ), γ(0, ξ)〉 satisfying the following algebraic equation:
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where uj are the coefficients of theHermite-chaos expansion of the random variable uwith probability density
ρu. Specifically, ui can be obtained (seemore details in [54], section 6) usingGaussian quadrature by evaluating
the integral:

( ) ( ( )) ( )ò=
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1

, E3i
i

i2
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1
1 1

whereU−1(x) andG−1(x) are, respectively, the inverse of the cumulative distribution function (CDF) for an
arbitrary randomvariable u∼ ρu and aGaussian random variable ( )~g 0, 1 . In the original version of the
Sakamoto-Ghanem algorithm [46], algebraic equation (E2) is solved exactly forCu(t) andCγ(t) in a discrete
lattice {0,Δt, 2Δt,L ,T} by assuming thatCu(t)> 0 for tä [0,T]. Herewe generalize the algorithmby solving
(E2) approximately in the same lattice for the partCu(t)< 0. i.e. For the lattice point iΔt such thatCu(iΔt)< 0,
wefind an approximated solutionCγ(iΔt) in [−1, 1] for the following algebraic equation:
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To apply themodified Sakamoto-Ghanem algorithm in the stochasticmodeling of the far-from equilibrium
heatflux Jav(t), we only need to input theNESS probability density ρJ and correlation functionCJ(t)which can be
obtained numerically via theMD simulation.Wefinally obtain the polynomial chaos expansion of Jav(t)

( ) ( ( )) ( )å xg=
=

J t J H t, . E5av
i

M

i i
1

ORCID iDs

YuanranZhu https://orcid.org/0000-0001-6851-4161
ChanghoKim https://orcid.org/0000-0002-4064-8237

References

[1] KuboR 1966The fluctuation-dissipation theoremRep. Prog. Phys. 29 255
[2] MoriH 1965Transport, collectivemotion, and Brownianmotion Prog. Theor. Phys. 33 423–55
[3] Snook I 2006The Langevin andGeneralised Langevin Approach to theDynamics of Atomic, Polymeric andColloidal Systems (Elsevier)
[4] EvansD andMorriss G 2008 StatisticalMechanics of Nonequilbrium Liquids (2nd ed.) (Cambridge: CambridgeUniversity Press)

(https://doi.org/doi:10.1017/CBO9780511535307)
[5] Glatzel F and Schilling T 2021Comments on the validity of the non-stationary generalized langevin equation as a coarse-grained

evolution equation formicroscopic stochastic dynamics J. Chem. Phys 154
[6] DalCengio S, Levis D and Pagonabarraga I 2019 Linear response theory andGreen-Kubo relations for activematter Phys. Rev. Lett. 123

238003
[7] MajdaAJ, Rafail AV andGroteM J 2005 Information Theory and Stochastics forMultiscale Nonlinear Systems (Providence, RI: American

Mathematical Soc.) vol 25
[8] GritsunA, BranstatorG andMajdaA 2008Climate response of linear and quadratic functionals using thefluctuation-dissipation

theorem J. Atmos. Sci. 65 2824–41
[9] KunduA,DharA andNarayanO 2009TheGreen-Kubo formula for heat conduction in open systems J. Stat.Mech. Theory Exp. 2009

L03001
[10] Lepri S, Roberto R andPoliti A 1998On the anomalous thermal conductivity of one-dimensional lattices EPL (Europhysics Letters)

43 271
[11] DharA 2008Heat transport in low-dimensional systemsAdv. Phys. 57 457–537
[12] MaesC 2014On the secondfluctuation–dissipation theorem for nonequilibriumbaths J. Stat. Phys. 154 705–22
[13] JungG 2022Non-Markovian systems out of equilibrium: Exact results for two routes of coarse graining J. Phys. Condens.Matter 34

204004
[14] JungG and Schmid F 2021 Fluctuation-dissipation relations far from equilibrium: A case study SoftMatter 17 6413–25
[15] Jung B and JungG2023Dynamic coarse-graining of linear and non-linear systems:Mori-Zwanzig formalism and beyond J. Chem.

Phys. 159

23

Phys. Scr. 98 (2023) 115402 YZhu et al

https://orcid.org/0000-0001-6851-4161
https://orcid.org/0000-0001-6851-4161
https://orcid.org/0000-0001-6851-4161
https://orcid.org/0000-0001-6851-4161
https://orcid.org/0000-0002-4064-8237
https://orcid.org/0000-0002-4064-8237
https://orcid.org/0000-0002-4064-8237
https://orcid.org/0000-0002-4064-8237
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/doi:10.1017/CBO9780511535307
https://doi.org/10.1063/5.0049693
https://doi.org/10.1103/PhysRevLett.123.238003
https://doi.org/10.1103/PhysRevLett.123.238003
https://doi.org/10.1175/2007JAS2496.1
https://doi.org/10.1175/2007JAS2496.1
https://doi.org/10.1175/2007JAS2496.1
https://doi.org/10.1088/1742-5468/2009/03/L03001
https://doi.org/10.1088/1742-5468/2009/03/L03001
https://doi.org/10.1209/epl/i1998-00352-3
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1007/s10955-013-0904-8
https://doi.org/10.1007/s10955-013-0904-8
https://doi.org/10.1007/s10955-013-0904-8
https://doi.org/10.1088/1361-648X/ac56a7
https://doi.org/10.1088/1361-648X/ac56a7
https://doi.org/10.1039/D1SM00521A
https://doi.org/10.1039/D1SM00521A
https://doi.org/10.1039/D1SM00521A
https://doi.org/10.1063/5.0165541


[16] Zwanzig R 1961Memory effects in irreversible thermodynamics Phys. Rev. 124 983
[17] Español P 1995Hydrodynamics fromdissipative particle dynamics Phys. Rev.E 52 1734
[18] Español P andWarren P 1995 Statisticalmechanics of dissipative particle dynamics EPL 30 191
[19] LeiH, BakerNA and Li X 2016Data-driven parameterization of the generalized Langevin equationProc. Natl. Acad. Sci 113 14183–8
[20] HudsonT and Li XH2020Coarse-graining of overdamped Langevin dynamics via theMori-Zwanzig formalismMultiscaleModeling&

Simulation 18 1113–35
[21] Grogan F, LeiH, Li X andBakerNA2020Data-drivenmolecularmodelingwith the generalized Langevin equation J. Comput. Phys.

418 109633–41
[22] Eckmann J P, Pillet CA andRey-Bellet L 1999Non-equilibrium statisticalmechanics of anharmonic chains coupled to two heat baths

at different temperaturesCommun.Math. Phys. 201 657–97
[23] MajdaA andGershgorin B 2010Quantifying uncertainty in climate change science through empirical information theory Proc. Natl.

Acad. Sci 107 14958–63
[24] Mattingly J C, Stuart AMandHighamD J 2002 Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate

noise Stochastic Processes andTheir Applications 101 185–232
[25] Morita T,MoriH andMashiyamaK 1980Contraction of state variables in non-equilibriumopen systems. IIProg. Theor. Phys 64

500–21
[26] ZhuY andVenturi D 2020Generalized Langevin equations for systemswith local interactions J. Stat. Phys. 178 1217–47
[27] RiskenH1989The Fokker-Planck Equation:Methods of Solution andApplications vol 60 2nd edition (Springer)Mathematics in science

and engineering
[28] Kloeden PE and Platen E 2013Numerical Solution of Stochastic Differential Equations vol 23 (Springer Science&BusinessMedia)
[29] ZhuY,Dominy JM andDVenturi 2018On the estimation of theMori-Zwanzigmemory integral J.Math. Phys. 59 103501
[30] ZhuY andVenturi D 2018 Faber approximation of theMori-Zwanzig equation J. Comp. Phys. 372 694–718
[31] Pavliotis GA 2014 Stochastic Processes and Applications: Diffusion Processes, the Fokker-PLanck and Langevin Equations vol 60 (Springer)
[32] ZhuY andVenturi D 2020Hypoellipticity and theMori-Zwanzig formulation of stochastic differential equations arXiv:2001.04565
[33] CuneoN, Eckmann J-P,HairerM andRey-Bellet L 2018Non-equilibrium steady states for networks of oscillatorsElectron. J.

Probab. 23
[34] Eckmann J P andHairerM2000Non-equilibrium statisticalmechanics of strongly anharmonic chains of oscillatorsCommun.Math.

Phys. 212 105–64
[35] Lepri S, Livi R and Politi A 2003Thermal conduction in classical low-dimensional latticesPhys. Rep. 377 1–80
[36] AgarwalG S 1972 Fluctuation-dissipation theorems for systems in non-thermal equilibrium and applicationsZeitschrift für Physik A

Hadrons and nuclei 252 25–38
[37] HairerM andMajdaA J 2010A simple framework to justify linear response theoryNonlinearity 23 909
[38] Zwanzig R 1973Nonlinear generalized Langevin equations J. Stat. Phys. 9 215–20
[39] Li Z, BianX, Li X andKarniadakis GE 2015 Incorporation ofmemory effects in coarse-grainedmodeling via theMori-Zwanzig

formalism J. Chem. Phys. 143 243128
[40] Hoogerbrugge P J andKoelman JMVA1992 Simulatingmicroscopic hydrodynamic phenomenawith dissipative particle dynamics

EPL 19 155–60
[41] SpohnH2016 Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chainsThermal Transport in Low

Dimensions (Springer) 107–58
[42] Bonetto F, Lebowitz J L andRey-Bellet L 2000 Fourierʼs law: a challenge to theoristsMathematical Physics 2000 (World Scientific)

128–50
[43] RuelleD 1999 Smooth dynamics and new theoretical ideas in nonequilibrium statisticalmechanics J. Stat. Phys. 95 393–468
[44] ChuWand Li X 2019TheMori-Zwanzig formalism for the derivation of a fluctuating heat conductionmodel frommolecular

dynamicsCommun.Math. Sci. 17 539 –63
[45] ZhuY and LeiH 2022 EffectiveMori-Zwanzig equation for the reduced-ordermodeling of stochastic systemsDiscrete andContinuous

Dynamical Systems - S 15 959–82
[46] Sakamoto S andGhanemR2002 Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic

processes J. Eng.Mech. 128 190–201
[47] KuboR, TodaMandHashitsumeN2012 Statistical Physics II: Nonequilibrium StatisticalMechanics vol 31 (Springer Science&Business

Media)
[48] SavinAV andKosevich YA2014Thermal conductivity ofmolecular chainswith asymmetric potentials of pair interactions Phys. Rev.E

89 032102
[49] Mendl CB and SpohnH2015Current fluctuations for anharmonic chains in thermal equilibrium J. Stat.Mech. Theory Exp. 2015

P03007
[50] ChorinA J,HaldOHandKupfermanR 2002Optimal predictionwithmemory PhysicaD 166 239–57
[51] Hislop PD and Sigal I S 2012 Introduction to Spectral Theory:With Applications to Schrödinger Operators vol 113 (Springer Science&

BusinessMedia)
[52] PhoonKK,Huang S P andQuek ST 2002 Simulation of second-order processes usingKarhunen-Loeve expansionComputers &

Structures 80 1049–60
[53] PhoonKK,HuangHWandQuek ST 2005 Simulation of strongly non-Gaussian processes usingKarhunen-Loeve expansion Prob.

Eng.Mech. 20 188–98
[54] XiuD andKarniadakis G 2002TheWiener-Askey polynomial chaos for stochastic differential equations SIAM J. Sci. Comput. 24

619–44

24

Phys. Scr. 98 (2023) 115402 YZhu et al

https://doi.org/10.1103/PhysRev.124.983
https://doi.org/10.1103/PhysRevE.52.1734
https://doi.org/10.1209/0295-5075/30/4/001
https://doi.org/10.1137/18M1222533
https://doi.org/10.1137/18M1222533
https://doi.org/10.1137/18M1222533
https://doi.org/10.1016/j.jcp.2020.109633
https://doi.org/10.1016/j.jcp.2020.109633
https://doi.org/10.1016/j.jcp.2020.109633
https://doi.org/10.1007/s002200050572
https://doi.org/10.1007/s002200050572
https://doi.org/10.1007/s002200050572
https://doi.org/10.1073/pnas.1007009107
https://doi.org/10.1073/pnas.1007009107
https://doi.org/10.1073/pnas.1007009107
https://doi.org/10.1016/S0304-4149(02)00150-3
https://doi.org/10.1016/S0304-4149(02)00150-3
https://doi.org/10.1016/S0304-4149(02)00150-3
https://doi.org/10.1143/PTP.64.500
https://doi.org/10.1143/PTP.64.500
https://doi.org/10.1143/PTP.64.500
https://doi.org/10.1143/PTP.64.500
https://doi.org/10.1007/s10955-020-02499-y
https://doi.org/10.1007/s10955-020-02499-y
https://doi.org/10.1007/s10955-020-02499-y
https://doi.org/10.1063/1.5003467
https://doi.org/10.1016/j.jcp.2018.06.047
https://doi.org/10.1016/j.jcp.2018.06.047
https://doi.org/10.1016/j.jcp.2018.06.047
http://arxiv.org/abs/2001.04565
https://doi.org/10.1214/18-EJP177
https://doi.org/10.1007/s002200000216
https://doi.org/10.1007/s002200000216
https://doi.org/10.1007/s002200000216
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1007/BF01391621
https://doi.org/10.1007/BF01391621
https://doi.org/10.1007/BF01391621
https://doi.org/10.1088/0951-7715/23/4/008
https://doi.org/10.1007/BF01008729
https://doi.org/10.1007/BF01008729
https://doi.org/10.1007/BF01008729
https://doi.org/10.1063/1.4935490
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1209/0295-5075/19/3/001
https://doi.org/10.1023/A:1004593915069
https://doi.org/10.1023/A:1004593915069
https://doi.org/10.1023/A:1004593915069
https://doi.org/10.4310/CMS.2019.v17.n2.a10
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1103/PhysRevE.89.032102
https://doi.org/10.1088/1742-5468/2015/03/P03007
https://doi.org/10.1088/1742-5468/2015/03/P03007
https://doi.org/10.1016/S0167-2789(02)00446-3
https://doi.org/10.1016/S0167-2789(02)00446-3
https://doi.org/10.1016/S0167-2789(02)00446-3
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1016/j.probengmech.2005.05.007
https://doi.org/10.1016/j.probengmech.2005.05.007
https://doi.org/10.1016/j.probengmech.2005.05.007
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826

	1. Introduction
	2. The main theoretical results
	3. Mori-type generalized Langevin equations for SDEs
	4. Generalized fluctuation-dissipation theorem
	4.1. Derivation of the first FDT
	4.2. Derivation of the second FDT

	5. The generalized second FDT for specific systems
	5.1. The generalized second FDT for equilibrium systems
	5.1.1. Langevin dynamics

	5.2. The generalized second FDT for nonequilibrium systems

	6. Application to reduced-order modeling
	6.1. Methodology
	6.2. Numerical result for a one-dimensional heat conduction model
	6.2.1. Verification of the generalized second FDT
	6.2.2. Stochastic modeling of the averaged heat flux


	7. Summary
	Data availability statement
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	References



