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Abstract

In this paper, we derive a generalized second fluctuation-dissipation theorem (FDT) for stochastic
dynamical systems in the steady state and further show that if the system is highly degenerate, then the
classical second FDT is valid even when the exact form of the steady state distribution is unknown. The
established theory is built upon the Mori-type generalized Langevin equation for stochastic dynamical
systems and hence generally applies to nonequilibrium systems driven by stochastic forces. These
theoretical results enable us to construct a data-driven nanoscale fluctuating heat conduction model
based on the second FDT. We numerically verify that our heat transfer model yields better predictions
than the Green-Kubo formula for systems far from the equilibrium.

1. Introduction

The fluctuation-dissipation relations are one of the most important results in statistical mechanics. In 1966,
Kubo, in his renowned paper [1], proposed a general relationship that connects the response of a given system to
the external perturbation and the internal thermal fluctuation of the system in the absence of disturbance. This
groundbreaking result, together with many generalizations for open systems, is now categorized as the
fluctuation-dissipation theorems (FDTs) which provide a far reaching generalization of Einstein’s theory of
Brownian motion and Nyquist’s work on thermal noise in electrical resistors. In his original paper [1], Kubo
presented two results which characterize the fluctuation-dissipation relationship for arbitrary Hamiltonian
systems. The aforementioned response result is called the first FDT, whereas another relationship which builds
connections between the thermal fluctuation of an observable and the memory kernel for the corresponding
generalized Langevin equation (GLE) is now known as the second FDT. It is not widely known that Kubo actually
provided two derivation methods for these two relationships. The first method is based on a phenomenological
linear GLE for a system observable u(f):

d t 1 1
“u(t) = —j; K(t = uds + —f(0) + —g (1), %)

where K(#) is known as the memory kernel and f(#) is the fluctuation force satisfying (f(#)) = 0 and (u(s)f (1)) =0
fort > s. Here (-) is the ensemble average in the thermal equilibrium. The system is assumed to be perturbed by a
periodic external force g (t) = g, cos(wt). For such a case, the first FDT is proved using the standard Fourier-
Laplace transform and the second FDT is derived from the first FDT hence can be viewed as a corollary of it [ 1].
The second method differs for the derivation of these two FDTs. In particular, the first FDT is derived using a
perturbation method which is known as the linear response theory. During the derivation, the
phenomenological GLE (1) is not used. The second FDT, however, can be derived using Mori’s equation [2],
which can be interpreted as the (1) in an operator form. In fact, since the evolution operator for the Hamiltonian
system is given by e'%, the second FDT is a natural result of the skew-symmetry of the Liouville operator £ with
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respect to the Hilbert space inner product {-,-), » where p,, is the equilibrium distribution. Detailed explanations
can be found in section 3.

Since the establishment of the FDTs in the 1960s, there has been a considerable amount of work on its
verification, violation, generalization and applications. In fact, the FDT-related linear response relation has
become the cornerstone of nonequilibrium statistical mechanics, which provides a powerful tool to study
various transport phenomena for near-equilibrium systems [3—5]. Here we only mention some recent studies in
active matter [6], turbulence [7, 8] and heat conduction [9—11]. We note that most of these studies are about the
first FDT and relatively less attention has been paid to the second FDT. For most applications, the second FDT
was required for the construction of the GLE when it was used as a reduced-order model for particular
observables. Its generalization and verification has not yet been widely studied except for some recent work [12—
15]. One of the reasons why this is the case is that, unlike the first FDT which is directly related to the Green-
Kubo formula for transport theory, the study on the second FDT is difficult to translate into useful,
experimentally verifiable results. In fact, Kubo’s second derivation method reviewed in the previous
paragraph clearly indicates the first and the second FDTs are actually quite different. Specifically, the second
FDT is an intrinsic property for Hamiltonian systems in the thermodynamic equilibrium and its validity does
not rely on perturbation arguments. This observation hints that one can possibly derive the second FDT or its
generalized form from the operator-form GLE, i.e. the Mori-Zwanzig equation [2, 16], for generalized stochastic
dynamics in the nonequilibrium steady state. In addition, noting a gradually increasing interest in open systems
and far-from-equilibrium phenomena, we anticipate that a classical or generalized second FDT for the
nonequilibrium system will provide insights on the system dynamics. All these thoughts motivated the current
research.

The main purpose of this paper is two-fold. First, we will follow Kubo-Mori’s methodology to establish a
generalized second FDT for stochastic dynamical systems driven by Gaussian white noise. Such stochastic
models are widely used in coarse-graining modeling for molecules [17-21], nonequilibrium heat conduction
models [9, 10, 22] and many other open systems [7, 23]. Secondly, the second FDT is shown to be valid in the
nonequilibrium steady state, therefore can be applied to address the far-from-equilibrium transport problem.
To this end, we will introduce an effective reduced-order model for the heat conduction and further show that
the second FDT leads to a new way to calculate the heat conductivity for far-from-equilibrium systems.

This article is organized as follows. Section 2 provides a short summary of the theoretical results obtained in
this paper. Section 3 briefly reviews the derivation of the GLE for stochastic systems using the Mori-Zwanzig
equation. In section 4, as a comparison, we first review the derivation of the first FDT for stochastic systems via
perturbation analysis, then we use the GLE to derive a generalized second FDT which holds in the
nonequilibrium steady state. In section 5, this newly established relation is applied to equilibrium and
nonequilibrium systems commonly used in the statistical mechanics. In particular, we show the validity of the
classical second FDT for the averaged heat flux in a heat conduction model. The theoretical results are verified
numerically in section 6 via the molecular dynamics simulation of the heat conduction model. In addition, two
reduced-order models are proposed and shown to faithfully characterize the thermal conduction for far-from-
equilibrium systems. The main findings of the paper are summarized in section 7.

2. The main theoretical results

In this section, we give a short summary of the main theoretical results obtained in this paper and provide simple
examples to explain them. In statistical physics, open systems normally refer to dynamical systems in contact
with thermal reservoirs. These reservoirs are modeled by deterministic or stochastic thermostats. Ifa
nonequilibrium condition is imposed, for instance, one may choose thermostats with different temperatures
and attach them to a Hamiltonian system, then the external force exerted by the thermostats will drive the system
out of the thermal equilibrium. In this paper, we are mainly concerned with the nonequilibrium systems with
stochastic thermostats. Mathematically, they can be described by a general stochastic differential equation
(SDE):

dx(t) = F(x(1)) + o(x(t)dW (1), x(0) = xo ~ py(x), (@)

Stochastic analysis already told us [24] after a finite transient time, SDE (2) satisfying some suitable conditions
will converge to a unique steady state. For stochastic force o (x(¢))d W (t) in a nonequilibrium setting, such a
steady state is normally termed as the nonequilibirum steady state (NESS). The primary goal of the current paper
is to investigate whether the classical second FDT still holds in the NESS of SDEs. To this end, we follow the
aforementioned Mori-Kubo’s methodology and use the following GLE for the (open) stochastic system as the
starting point of our analysis:
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d t
Zu(t) = Qu) + fo Kt — syu(s)ds + f (1), 3)

where u(t) = ¢'*1(0) is an arbitrary observable function of the stochastic system. Using the properties of the
Kolmogorov backward operator K (generator of the stochastic dynamics), we proved the following result
regarding the validity of the second FDT:

(D) In GLE (3), the memory kernel K(#) and the fluctuation force f () satisfy a generalized second FDT:

(f(), f(0)), N (f (), w(0)),
(u2(0)>,, <”2(0)>p

K() = — (©))

where (-), is the ensemble average in the NESS. In (4), the first term yields the classical second FDT. The
additional term ( f (¢), w(0)), /(1*(0)), constitutes the generalized relation that the current paper studies.
However, since w(0) in (4) depends on the steady-state probability density p (see its explicit expression (5)),
which is hard to obtain for most high-dimensional stochastic systems, this generalized relation cannot be used
directly. To overcome this difficulty, we notice an important fact about the obtained second FDT (4) which is the
second main result of this paper:

(II) The additional observable w(0) can be explicitly written as

w(0) = Su(0) = 202Au(0) + 202V(lnp) - V, (5)

where § is a second-order differential operator in the non-degenerate coordinate of the stochastic system. If in
addition, observable u(0) is a function of the degenerate coordinate, then w(0) = Su(0) = 0 and the generalized
second FDT (4) degenerates to the classical second FDT.

We can use the Langevin dynamics as an example to explain the meaning of the degenerate coordinate and
result (II). As it is well-known, the Gaussian white noise for a Langvein dynamics is only imposed in the
momentum coordinate p;. We shall call the momentum coordinate p;non-degenerate and the position coordinate
q; degenerate. Bearing this in mind, the reason why the special case discussed in (II) has w(0) = Su(0) = 0
becomes obvious. Since the initial condition of the observable 4(0) = f(g;(0)), then we have

w(0) = Su(0) = Sf (q,(0)) = 20°03 £ (q,(0) + 20°0,,(In p)d,, f (q;(0)) = 0.

This result can be physically interpreted as follows: For the linear GLE of an arbitrary (open) stochastic system,
the validity of the classical second FDT of an observable u(¢) depends on whether u(f) has direct interactions with
the environment through the white noise. In reality, many nonequilibrium systems can be modeled by highly
degenerate stochastic systems. Hence most observables in such nonequilibrium systems satisfy the classical
second FDT.

Notably, similar conclusions on the validity of the classical second FDT for far-from-equilibrium systems
were discovered independently by Jung and Schmid [14], with additional numerical evidence provided therein
via the DPD simulation of a colloid particle immersed in fluids.

Lastly, we will use (I), (Il) and the GLE (3) to build effective reduced-order models for low-dimensional
observables. In section 6, we show the application of such an effective model in studying the far-from-
equilibrium transport phenomena, which are generally hard to handle using the linear response theory.

3. Mori-type generalized Langevin equations for SDEs

The starting point of our analysis is the Mori-Zwanzig (MZ) equation for stochastic differential equations
(SDEs). Such stochastic system MZ equation was derived independently by different researchers using various
methods [17, 25, 26]. Here we briefly review the derivation used in [26]; more detailed explanations can be found
therein. Let us consider a d-dimensional SDE on RV:

dx(t) = F(x(0)dt + o (x(£)dVV (1), x(0) = x0 ~ py(x), (6)

where F: RN — RN and o: RN — RN are smooth functions, W (t) is an m-dimensional Wiener process
with independent components, and x, is a a random initial state characterized in terms of a probability density
function py(x). For the deterministic initial condition we have p,(x) = H?N: 1 6(xi — x;(0)). The Markov
property of (6) allows us to define a composition operator M (¢, 0) that pushes forward in time the average of
the observable u(f) = u(x(t)) over the noise, i.e.,

By o [u(x(0)) Ixo] = M(t, 0)u(x0) = e u(x). 7

Using Itd’s interpretation of the white noise, M (t, 0) is known as a Markovian semigroup generated by the
backward Kolmogorov operator [27, 28]:
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m dN 2
K = F + ; 8
(x0) = Z k(xo)a ot zjzhkz:l Uj(xo)Uk](xo)a Olaka (8

From now on, with a slight abuse of notation, we will use u(x(t)) to represent its noise-averaged quantity (7). In
fact, without any further specification, all u(x(#)) that appear in the rest of this paper represent the noise-averaged
quantity (7). We also note (7) is only a conditional expectation. When the initial condition is random, (7) is still a
stochastic quantity with initial randomness. We now introduce a projection operator ¥ and its orthogonal
operator Q = 7 — . Bydifferentiating the well-known Dyson’s identity

t
eth:etQIC+f oK KCet-99K Ok ds,
0

itis straightforward to obtain the following MZ equation governing the evolution of the noise-averaged
observable (7):

t

get’cu 0) = e Ku(0) + ¢'<*OKu(0) + f ek e 9K QK u(0)ds. 9)
t 0

The three terms at the right hand side of (9) are called, respectively, streaming term, fluctuation (or noise) term,

and memory term. Applying the projection operator 9 to (9) yields the projected MZ equation

gpeﬁcu(O) = Pe*PKu(0) + ft e KPICet=9KQICu(0) ds. (10)
t 0

Note that the MZ equation (9) and its projected form (10) for stochastic systems have the same structure as the
classical MZ equations for deterministic (autonomous) systems [26, 29, 30]. However, the Liouville operator £
is now replaced by the Kolmogorov operator K. Let us consider the weighted Hilbert space H = L*(RY, p) with
inner product

(hgh = |, h@®g®pG)dx,  h g€ H, (11)

where p s a positive weight function on RN which is often chosen to be a certain type of probability densities.
With this Hilbert space, we can introduce the Mori-type projection operator:

N

h= %" G;'(ui(0), h),u;(0), he€H, (12)
ij=1

where Gjj = (1;(0), 1;(0)), and u;(0) = u;(x(0)) (i = 1,..., M) are M linearly independent functions. It is easy to

check that ! andits orthogonal @ = Z —  are both symmetric projection operators in L>(R4N, p),i.e.

=99 0% = Q = Q% where *, Q*arethe L2(R™N, p)-adjoint operatorof , Q.With ¥ defined as

(12), the memory integral of the MZ equation (9) and its projected version (10) can be simplified to a convolution

term. Therefore these two MZ equations can be rewritten as

WO uery + f K(t — s)u(s)ds + f (1), (13)
dt
% u(t) =Q u(t) + f; Kt —s) u(s)ds, (14)
where u(t) = [uy(t),...,up1)]F and

G,-j = (ui(0), u;j(0)), (Gram matrix), (15a)
Z Y1 (0), Ku; (0)), (streaming matrix), (15b)

M:
Kii(t) = Z Gj?(uk(O), Ke'¥QKu;(0)), (memory kernel), (15¢)
f,(0) = e CQKu;(0) (fluctuation term). (15d)

Equations (13)—(14) are known as the (linear) generalized Langevin equation (GLE) in statistical physics. The
projection operator method provides a systematic way to derive such closed equations of motion from the first
principle. Depending on the choice of the Hilbert space weight function p, the linear GLE (13) and its projected
form (14) yield evolution equations for different dynamical quantities. When considering SDE (6) in the context
of statistical physics, the most common setting of pis p = py = ps, where ps s the steady state distribution of the
stochastic system satisfying the Fokker-Planck equation 0, pg = K*pg = 0 (see details in section 4). For sucha
case, GLE (13) yields the full dynamics of the noise-averaged quantity Eyy ) [u (x (t))|xo] and the projected GLE
(14)yields the evolution equation of the steady state time-autocorrelation function C;(t), which is defined as
[31,32]
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Cij(t) = By [Eyy 1) [ (1) 1 (0) [x0]] = (M (2, 0)1;(0), u;(0)),, = (M2, 0)u;(0), u;(0))p,.

For deterministic Hamiltonian systems with the unitary evolution operator e'~, the Mori-Zwanizg equation is as
(9) but with the Kolmogorov operator K replaced by the Liouville operator £. As we mentioned in the
introduction, the second FDT the thermal equilibirum holds naturally as a result of the skew-symmetry of the
Liouville operator £ with respectto (-, pp Where peg is the equilibrium distribution [3, 29]. In fact, we have

Kij(t) = Z Gy (uk(0), Le'FQLu;(0)),, Z G (Luy(0), e 9CQLu; (),

= —Z G71 QLu(0), etgﬁgﬁui(onpﬂi
k=1
M

Z i (£ 0), f(D),,» (16)

where we used the 1dempotence of the projection operator, i.e. @ = Q and the fact that Mori-type projection
operator Q is symmetric in L (RN, P.y)- For stochastic systems studied in this paper, since the Kolmogorov

operator K is not skew-symmetric with respect to the inner product (-,-),, the classical second FDT has to be
generalized accordingly.

4. Generalized fluctuation-dissipation theorem

In this section, we first review the derivation of the generalized first FDT for stochastic systems and emphasize its
difference from the second FDT. As a mathematical preparation, we need to assume that there exists a unique
probability measure dy = pdx which is invariant under the Markovian semigroup generated by SDE (6). This
implies the existence and uniqueness of a time-independent probability density p that satisfies the Kolmogorov
forward (Fokker-Planck) equation:

Op=K*p=0, (17)

where K* is the L?(IRN)-adjoint operator of K. Throughout the paper, we further assume that p = p(x) isa
smooth function that decays to 0 as |x| — + oo . For frequently used statistical physics models, these two
assumptions are generally hard to prove since it involves the analysis of the degenerate elliptic operator K. Some
recent studies on hypoellipticity [33, 34] have shown the possibility of obtaining affirmative answers using the
rather complicated Hormander analysis. These theoretical results, together with numerical studies such as [10,
35], suggest that the uniqueness, smoothness and decaying properties of p(x) are rather technical assumptions.

4.1. Derivation of the first FDT

The first fluctuationdissipation theorem describes the linear response of a given dynamical system to external
perturbations. This relationship was established by Kubo [1] for classical and quantum Hamiltonian systems
and then has been extended to open systems by different researchers [6, 8, 36, 37]. As we briefly mentioned in the
introduction, the derivation of the first FDT relies on the perturbation theory. To demonstrate this point, we
consider a general perturbation to the stochastic system (6):

dx(t) = F(x(1)dt + o (x(®)dW (1) + 6G(t) - F(x(t))dt + JOH () - &(x()dW (1), x(0) ~ p,
(18)

where 0 < 6 < 1, §G(t) - F(x(t))dt and VEH (1) - &(x(t))dW (1) characterize respectively the dynamics of
the pertubative frictional and fluctuating forces added to the stochastic system. We denote p as the steady state
distribution for the unperturbed stochastic system (6) and p; as the one for the perturbed stochastic system (18).
For the sake of simplicity, we assume that 0G(#), JE H (1), the diffusion matrix o(x(f)) and the perturbed
diffusion matrix &(x (¢)) are all d x d diagonal matrices. As a consequence, the diffusion part (second-order
derivatives) of the Kolmogorov backward operator corresponding to the perturbed system is of the diagonal
form and we have

d
K =3 Fi(x)0y, + 07(x)0%, + 6G;i() Fi(x)x, + 6H (1)} (x) 05,
i=1
where 0;(x), 3;(x), §G(t) and 6H?(t) are the i-th diagonal elements of the corresponding matrices. Using the
standard perturbation theory, we obtain the following generalized first FDT:

Theorem 1. (Generalized- 1st-FDT) Assuming that the steady state distribution p = p(x) is a smooth function of x
and decays to 0 as |x| — +oc. For the perturbed SDE (18), the following generalized first FDT holds for state space
observable u = u(x):
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(u(®),, — (u(®), = Zf <—[a Fiplu(t — s)> 8Gi(s)ds

p

13
+ Zf <(8i,.&i + zaxi@QXip + lﬁi@i,p)u(t - s)> SHi(s)ds + O(8).  (19)
i=1v0 P P B

Ifthe perturbative forces 6G (t) and JE6H (t) are homogeneous, i.e. 6G;(t) = 6G(t) and J6H;(t) = JEH (t), then
the generalized first FDT (19) has a vector-form representation:

(u(®))p, — (u(@®), = —fot <%V - [Fplu(t — s)> 6G(s)ds

P

+ft V- To+ 2Te Vot iDuplutt—s) ) 6HX)ds + 06D, (20)
0 p p )

where the vector function T; = [0,,5,]0_, and Dy is a second-order differential operator defined as

Dy =4, 5,03, The proof of theorem 1 follows a perturbation analysis similar to the one used in [1] or more
recent papers such as [6, 8]. We also outline the procedure in A. In the absence of the stochastic perturbation, i.e.
J6H (1) = 0, for homogeneous perturbation 6G(f) = 6G(¥), we get the commonly used linear-response relation
[6,8]:

(u(t)),, = f< 2V - [Fp] u(t—s)> G (s)ds. 1)

p

We note that to apply formulas (19)—(21), it is required to know the steady state distribution p. For
nonequilibrium systems, this is generally hard to obtain due to high dimensionality of the Fokker-Planck
equation (17). Various approaches such as the Gaussian approximation [8] and the information theory method
[7] were proposed to address this issue. As we will see in the following section, the generalized second FDT also
contains additional terms that involve p. However, for specifically chosen observables u(x), calculation of the
density p can be avoided.

4.2. Derivation of the second FDT

The second flutucation-dissipation theorem gives the proportionality between the noise amplitude and the
friction kernel in the GLE. For open systems, depending on the form of the GLE and the observable of interest,
the explicit expression of the second FDT will be different. A well-organized review in this regard is given by
Maes in [12]. In this section, we provide a novel way to generalize the second FDT using the first-principle GLE
derived in section 3. The derivation only uses the mathematical properties of the Kolmogorov operator K.
Without loss of generality, we consider the SDE (6) with the Kolmogorov (backward) operator (8) of the form:

N N
K=L+D=3 FE®x0x+ Y 0005, (22)
i=1 ij=1
where 03, 0jare constants. Note that here £ represents a general advection operator instead of the skew-
symmetric Liouville operator. For such a stochastic system in the steady state p, by introducing the Mori-type
projection operator (12) in weighted Hilbert space L*>(RY, p), we can prove the following generalized second
FDT for the GLE (13)—(14). This is the main theoretical result of this paper.

Theorem 2. (Generalized-2nd-FDT) For SDE with infinitesimal generator (22), if we assume that the steady-state
distribution p(x) is a smooth function of x and decays to 0 as |x| — oo, then the following generalized second FDT
holds for any state space observable u = u(x) in GLE (13)—(14):

(f(0), f(D), n (w(0), £ (1)),

K@) =— (23)
(u*(0)), (u*(0),
where w(0) = Su(0) and S is a second-order differential operator defined as
N N
S=2 Z Uiajﬁ,zcixj + 1 Z 0;0;0x,p0x; + 0;0;0x,p0x.. (24)

ij=1 ij=1

For a special case where K is a degenerate elliptic operator and the diffusion term is of the diagonal form D = oA,
where Ais an-dimensional Laplacian with n < N, then S is an n-dimensional operator and admits a simple form:

S =202A +20*V(Inp) - V. (25)

Proof. For any operator O defined in weighted Hilbert space L*>(RY, p), where pis the steady state distribution,

6
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we denote C’);’j as the adjoint operator of O in L*(RY, p) with respect to inner product (-,-),. Correspondingly,

we denote O* as the adjoint operator of the unweighted Hilbert space O in L2(RN) with respect to the weight-
less inner product (-,-). First we aim to find the L(RY, p) adjoint of the Kolmogorov operator K (22). Using the
integration by parts formula and the fact that p(x) — 0as|x| — 400, itis easy to obtain

L+ L=V Fx) - 1cp. (26)
p

Similarly, for the second-order differential operator D in (22), using the integration by parts formula twice leads
to

1 Y 1
D =D + =) 0i0;0x,p0x, + 0;0;05,p0x, + —Dp. (27)
Pij=1 P
Naturally, we have
1Y 1 1
D+ Di=2D+ ;Z 010 0x,p0x; + 0;0;0x,p0x, + ;Dp =S+ ;Dp, (28)
ij=1

where operator S is defined as (24). For the special case where D = 02/, itis easy to see that S has the simple
form (25). Summing up formulas (26) and (28), we can get that

Ki+K=-V-Fx) — %ﬁp—i— %Dp—ks. (29)

Using a similar procedure for operator £ and D defined in the unweighted Hilbert space L?(RY), we have
L+ L¥= -V - F(x), D* =D. (30)
On the other hand, since p satisfies the steady state Fokker-Planck equation 9,p = K*p = 0, we obtain an
operator identity 9,p = K*p = L*p + D*p = 0. Combining this with formula (30) and noting that
—V - F(x)isamultiplication operator, we obtain
L L*p=—pV - F
Z+ p==r (x)} SN POELY VIR I Jon gy 31)
D*p =Dp p P
Substituting this relation into (29) we get ICZ< = —K + S.Now we note that symmetric projection operator Q
satisfies Q* = Q = Q2. For the formally defined GLE memory kernel (15¢), we obtain the generalized second
FDT:
(u2(0)), K (1) = (u(0), Ke'¥u(0)), = (IC’;M (0), e OKu(0)),
= —(OKu(0), etQ’CQICu(O)>p + (w(0), etQ’CQICu(O»,,
=—(f(0), f (), + (W(0), f (1))

Theorem 2 can be readily generalized to the N-dimensional GLE (13)—(14) and for the general Kolmogorov
operator (8). When the dissipative term in the Kolmogorov operator (22) is given by D = Zf:’j:l o (x)0j(x) aix_, .
then we obtain w (0) = Su(0) with

N

1 1

S= )" 200;0%, + S Ds,p0Os, + 010 Ox;p0x; + 0x,[0:0,10x; + Ox;l0i07]Ox, (32)
ij=1

where the shorthand notation ¢i(x) = 0;and oj(x) = o;are used. The derivation of (32) follows directly from the

proof of theorem 2 and is given in B. On the other hand, the result of theorem 2 holds for an arbitrary Mori-type

projection operator 9. Hence for the N-dimensional GLEs (13)—(14), we have

N
Kty =>" Gﬁcl(_<ﬁ<(0)7fi(t)>p + (Sur(0), f,(0)). (33)
k=1

When one tries to apply the first and the second FDTs such as (21) and (23), it is normally necessary to know
the exact form of the steady state distribution p, which, however, is generally hard to deduce for nonequilibrium
systems such as turbulence [7] and heat conduction models [10]. This difficulty can be bypassed because of the
following corollary which is already announced in section 2:

Corollary 2.1. If the phase space observable u = u(p(t), q(t)) is a function of the degenerate coordinates of the
stochastic system, then w(0) = Su(0) = 0 and the GLE (13)—(14) for u(t) satisfies the classical second FDT.
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The proofis obvious since S is an operator in the non-degenerate coordinate. A typical example is the
Langevin dynamics for a molecular dynamical system. Since the Gaussian white noise is only imposed in the
momentum coordinate p;, the position coordinate g; is therefore degenerate. Hence we have
w(0) = Su(0) = Sf (g,(0)) = 0. For more general, nonequilibrium systems in the steady state, this result still
holds which is somewhat surprising because the nonequilibrium steady state (NESS) measure is generally
unknown! As we will see in the following section, many statistical physics models are generated by highly
degenerate operator /C, i.e. the dissipative forces act on a small subset of the phase space coordinates. For such
models, if the observable u(x) of interest is a function of the degenerate coordinate, we can simply avoid the
calculation of p in evaluating w(0) and use the classical second FDT to build reduced-order models for the
observable. An application of this fact in heat conduction problems is presented in section 6. We also have the
following result:

Corollary 2.2. For SDE with infinitesimal generator (8), if the linear GLEs (13)—(14) for observable u(t) satisfying
the classical second FDT with w(0) = 0, then §2; = 0in (13)—(14).

Proof. It is sufficient to prove the one-dimensional case. According to the definition of €2;; (15b), for one-
dimensional GLE (13)—(14), we have

(Ku(0), u(0)),  (u(0), IC;'fu(O))p (1(0), Ku(0)), N (u(0), w(0)), B (u(0), Ku(0)), —o

<”2(0)>p <”2(0)>p <”2(0)>ﬂ <”2(0)>p <“2(0)>p

O

Remark 1. One might have observed similarities in the derivation of the generalized first and second FDT since
they are based on the integration by part formula and the properties of the Kolmogorov operator. However, we
note the vital difference between these two operator-form FDTs. Namely, the validity of the generalized second
FDTs (23), (33) are intrinsically non-perturbative and generally applicable to arbitrary stochastic systems in the
equilibrium or nonequilibrium steady state. In fact, as we reviewed in the Introduction, the derivation we
presented is a manifestation/extension of Kubo-Mori’s second derivation approach of the second FDT for
stochastic (open) systems. The underlying philosophy is: different from the first FDT which is a linear response
result hence depends on the magnitude of the external stimuli, the second FDT describes the connection
between the internal fluctuation force and the memory kernel for a reduced-order observable, therefore can be
derived using only the properties of the dynamics generator K.

Remark 2. The derivation mainly uses the Mori-type projection operator which leads to linear GLEs. The above
theory also applies to nonlinear GLEs such as the Zwanzig’s equation [38], essentially because the Zwanzig-type
projection operator is an infinite-rank operator which is similar to the Mori-type projection operator. The proof
is rather technical therefore will be deferred to C.

5. The generalized second FDT for specific systems

5.1. The generalized second FDT for equilibrium systems

The application of the generalized FDTs to equilibrium systems leads to explicit expressions of formula (19), (20)
and (23) since the equilibrium distribution p is given by the Gibbs-Boltzmann form p = e~7"/Z for the
canonical ensemble. In this section, we will derive such expression for some frequently used statistical mechanics
models. Before we move onto analyzing stochastic systems, it is worth noticing that for equilibrium systems
generated by deterministic forces such as the Nosé-Hoover thermostats, the classical second FDT holds as a
result of the skew-symmetry of the Liouville operator L.

5.1.1. Langevin dynamics

The Langevin dynamics for a d-dimensional system of N interacting particles is given by the following SDE in
R24xN .

1
dq; = —p;dt
i N , (34)
N
dp; = S Fidt — Epi dt + cdWi(t)
where m; is the mass of each particle, > i F,C] is the total conservative force acting on particle i, and W;(t) is a
d-dimensional Wiener process which satisfies d W;(t) = &;(t)dt with

8
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(&;®) =0, (€O (9)) = 29kg T 0jr6 (t — 5).

The parameter yis the friction coefficient which is related to o through the fluctuation-dissipation relation
o=2vy/ 5)"/2, where 3= 1/kT, ky s the Boltzmann constant and T the temperature of the equilibrium system.
The stochastic dynamical system (34) is widely used in the mesoscopic modelling of liquids and gases. The
Kolmogorov backward operator (8) associated with the SDE (34) is given by

R L L SR LD o DL @
1]11 i 1

where *” denotes the standard dot product. If the interaction potential V(q) is strictly positive at infinity then the
Langevin equation (34) admits a unique invariant Gibbs measure given by

Peg (D> @) =~ re), (36)

where

H(p, q) = 2 ”2”’”2 + V(g (37)

i=1 <Mi

is the Hamiltonian and Z is the partition function. The formal expression of the Gibbs-Boltzmann distribution
enables us to get the explicit expression of the additional term w(0) in the generalized second FDT (23). As an
example, the Langevin dynamics (34) is often used to study the self-diffusion of Brownian particles, for which a
relevant physical observable is the tagged particle velocity v;. By choosing 1(0) = p;./m;and using (23) and (35),
we obtain

Y pjx N p]x 2’}/
W(O) Z ap1 + Z aplpeq 31,, = *?p]x (38)
i=1 Peg mj j

This implies that the GLE (13) for observable p;, can be rewritten as

%zyx(wzﬁpjx(t)— f <f<0>+ =0 (0), f(t—s)> P (5)ds + £ ().

Peq

Remark. Here we obtained a somewhat counterintuitive conclusion stating that the classical second FDT for
a Brownian particle does not hold in the statistical equilibrium since we have an additional term (38) in the GLE
memory kernel. This is because instead of using Hamiltonian dynamics, we used stochastic dynamics, i.e.
equation (34), to simulate the equilibrium. On the other hand, the form of the second FDT strongly depends on
the GLE under investigation. For other GLEs such as the nonlinear ones derived by Zwanzig-type projection
operators [19, 20, 39], it is possible that the classical second FDT still holds for a Brownian particle generated by
the Langevin dynamics.

Dissipative particle dynamics. For a d-dimensional interacting particle system of N particles, the SDE that
governs the particle position g;and momentum p; in dissipative particle dynamics (DPD) is given by [18, 40]

dg, = Pias
m; 39

= YL Fy (qpdt — X qw(gy) ey - viegde + Y1 ow'/2(q;) e d Wi (1)

where m; is the mass of i-th particle, q;; = q; — qj, q;; = ||q; — qill, e;; = qii/ 9> vij = vi — v}, vi= pi/m;and Fijc (qij)
is the conservative force exerted on particle i by particle j. The dimensionless weight function w(g;j) provides the
range of interactions of the dissipative and random forces. The friction coefficient and the noise intensity are
linked with each other through the fluctuation-dissipation relation o = (2v/ 5)"/% where 3= 1/kyT. For the
DPD model, the frictional forces are applied in a pair-wise form, such that the sum of thermostating forces
acting on a particle pair equals zero. Hence for d)V;;(t) = &;(t)dt, we have §;i(t) = &;(t) and

(i (DEi(D) = (biy 65t + i) 6 (t — s).
The Kolmogorov backward operator associated with the DPD model (39) is given by [17]
p N 1N
K= Z — - Og, + Z i 0p, = 2 (g ey - viey - Op + EZ (@)D, - Dp, — Bp, - Dp).
i,j=i i,j=1 i,j=1

Similarly, for the x-directional velocity of the h-th particle in the DPD model, the additional term w(0) in the
generalized second FDT can be calculated using (32) as:

9
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%
w(0) = S
my
1N 6:0:64: 6 0060 S 1 N, Gioiby .
_ 10 Ohj Ojj 107 0hi Ojj 10 Ohj 0i0j hla
-, PiPeq P,xpeq - _Z PicPeq + P,xpeq
ﬂ i,] mhpeq mhpeq ﬂi,iij mhpeq mhpeq
_ 0-10-]6}1]61] + 0-10-]5}1]61] + 0-10-]5}1] + 0-10-]5}11
= Pis Byt 20— P>
ij mpym; mhmj ii=] mpym; thZj

where 0;0; = yw(q;;) and we used the fact that 9, [0;0;] = 0. The resulting GLEs (13)—(14) can be obtained
accordingly. For the Langevin dynamics and the DPD model, the corresponding Kolmogorov operators are both
degenerate elliptic operators since white noise is only imposed in the momentum space. Hence if we choose the
tagged particle position g;as the quantity of interest, then the classical second FDT holds for GLEs (13)—(14) as
claimed in section 4.

5.2. The generalized second FDT for nonequilibrium systems

As an example of nonequilibrium systems, we consider an d-dimensional heat conduction model in [10, 33]. To
this end, we consider a lattice G of interacting oscillators. For each oscillator i € G, the position and momentum
are given respectively by g, € R? and p, € R?. The phase space is therefore given by Q = R*/99, where |G| gives
the cardinality of the set G which corresponds to the total number of particles. These oscillators are interacting
with the substrate and each other through the Hamiltonian

2
H(p, @) = Z( by Ui(qi)) + > Ve(éq,), (40)
icg 2m; ec&

where U; and V, are the pining potential and interactive potential, respectivly, Fore = (i, i') € £ = G x Gwe
have 6q, = q, — q; € R?. Themodel (G, £) can be viewed as an undirected graph with no on-site loop, i.e. self-
interactions of the kind V{(dq, = 0) are not allowed. The graph is undirected in the sense that the interactive
potential V,(q, — q;) = V.(q; — q;) appears only once in the Hamiltonian (40). Without the loss of generality,
we assume the uniform mass condition #; = m = 1. We now choose a subset of the boundary oscillators

B C 0§ toimpose thermal baths. For each b € BB we assume that a thermostat of the temperature T;, > 0 1is
given, along with a coupling constant -y, > 0. With this setting, we obtain an n-dimensional heat conduction
model given by the following system of stochastic differential equations:

{d‘li = pdt

dp, = —0, H(p, @ dt — vip;dt + 2kg Tiy; dW;(t) i€g 1)
wherey; = 0fori € G\Band~; =, Ti=Tyfor b € B. Since the Langevin forces only act on the boundary
oscillators, for a ‘bulk’ of oscillators that are away from the boundaries, the dynamics are kept deterministic and
Hamiltonian. For modeling purposes, different boundary conditions can be specified. Typical choices are
periodic, fixed or free boundaries. No matter which condition is used, the form of the Kolmogorov backward
operator K corresponding to SDE (41) can be written as:

K=" (wksTy0p, - Op, — WPy - Op,) + > (p; - 0o, — OgH(p» @) - ). (42)

beB i€g

When all added thermostats have the same temperature T, = 1/3, b € B, then the system admits a unique
invariant measure

1
dug = p,,dpdq = Ee‘/m(?’q)dpdq, (43)

which is known as the Gibbs measure for thermal equilibrium. When the boundary temperatures are different,
the Gibbs measure is no longer invariant and (41) describes the dynamics of heat flowing from the higher-
temperature thermostats to the lower-temperature thermostats. Under certain assumptions to the potential
energy (see [33]), it can be proved that the system approaches to a unique, steady state exponentially fast. In the
literature, such a state is often called the nonequilibrium steady state (NESS). We further denote the steady state
probability density as pngss. By introducing the Mori-type projection operator (12) in the Hilbert space
L2(R21914, Pness)> we can derive the GLE (13)—(14). According to theorem 2, we can obtain the following
proposition:

Proposition 1. For an n-dimensional heat conduction model given by the SDE (41), if the potential energy U;(q,)
and V,(0q,) satisfy certain conditions which ensure the smoothness and uniqueness of pypss, €.8. the one outlined in
[33], then the following generalized second FDT holds for state space observable u = u(p, q) in GLEs (13)—(14):

10
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(£ (0), £ (1)) pss + (w(0), £ (1)) sy

K(t) = —
® <u2(0)>pNESS <u2(0)>pNESS

>

where the additional term w(0) is given by
2

w(0) = 22 %kBﬂaaph : ap,,u(o) + Z ’kaBTbapprESS : aph”(o)-
beB PNESS beB

In particular, if observable u is a function of bulk coordinates G\ B, i.e. u = u(p, q) = u([ pi]lii\lg| , [qi]lii\lB| ), then
the classical second FDT holds in the nonequilibrium steady state:

0), f(t
K(t) = BROAC Q)N z SOy, (44)
<u (O)>/7NEss
Proof. The Kolmogrov operator (42) can be decomposed as
K= Z ’yka’E‘an ’ 8Pb - Z ToPy an + Z(pl ' 8%‘ - 8%‘ ’ H(p’ q)apx) =L+D.
beB beB ieG
D c
Itis easy to get the desired result using theorem 2 and corollary 2.1. O
For the heat conduction model (41), a physically meaningful observable u = u(q, p) is the heat flux. If we
consider an oscillator chain (one-dimensional case) with symmetric on-site and neighbourhood interaction
potential energy. i.e. U; = U(g;) and V(6q.) = V(qi+1 — g;)- The local and total heat flux of the system can be
defined as[10, 35, 41]:
]i = Pl- V/(q,‘+1 - ql‘); i€ g\B) Itot,N = ZP, V/(q]‘+1 - q])> ] S g\B (45)
j

where J; is the local heat flux and J,,,, iy is the total one with N' = |G\ BJ. Proposition 1 ensures the validity of the
classical second FDT for observables of the bulk coordinates. This implies that for the local and total heat flux
defined as (45), the classical second FDT holds in the NESS even though the explicit form of the steady state
probability density pygss is unknown. Note that our definition of the total heat flux excludes the heat flux at the
chain boundary. Another frequently used definition of ], n(f) contains such contributions and can be
decomposed as

Jiot.N(8) = Jo\5(t) + J5(2), (46)

where Jg\ 5(t) is the bulk contribution as (45) and Js(#) is the boundary contribution. When applying the
generalized second FDT to (46), we have a non-zero additional term w(0) which breaks the classical second FDT.
However, with some weak assumptions, we can show (see appendix D) that the dynamics of the averaged heat
flux J,,(t) = J1or.n(t)/ N can be approximated by the bulk contribution Jo\s(t)/N in the thermodynamic limit as
N — o0 . Hence we conclude that the GLE (13)—(14) model for the averaged heat flux satisfies the classical
second FDT in the thermodynamic limit.

Lastly, we want to comment on the mathematical difficulty to get similar results on the second FDT for
nonequilibrium systems generated by deterministic forces. Consider a similar heat conduction chain model
driven by Nosé-Hoover thermostats. By assuming that m; = m = 1 and there are only two thermostats with
temperature 77 and T, the dynamics is described by the following equations of motion [35]:

dq;

&P .
dp. s ifi€ By’ “47)
P o, Hp, 9 - L

At wrp;, ifi € Br

where By r are the set of boundary oscillators which interact with thermostats at the temperature T} . The
cardinality of I3y g are denoted as | 8] g|. The dynamics of the auxiliary variables ; r are given by:

dyyr 1 ( 1 Z pnz _ 1]) (48)

dt OL.r\ ks TLRIBr il e,

where 6;  are the thermostat response times. It is easy to check that the velocity field for the combined system
(47)—(48) has divergence

V- F(p,q,v) = —7(t) — @)

which changes back and forth between positive and negative values depending on the kinetic temperature of the
boundary oscillators [35]. As a consequence, the whole system oscillates between energy dissipating state and

11
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increasing state. Mathematically speaking, it is very hard to define a proper probability measure to quantify such
anonequilibrium steady state. Even the SRB measure [42, 43], which works for dissipative systems, is not
applicable to this case. In practice, one may assume the ergodicity of the deterministic system so that the
ensemble average (-),, - can be replaced by the time average. Then due to the similarity of the dynamics, it is
reasonable to expect the heat conduction model generated by deterministic thermostats shares some properties
with the stochastic model (41), including the classical and the generalized second FDT. This conjecture,
however, needs to be verified.

6. Application to reduced-order modeling

In this section, we apply the generalized second FDT to the reduced-order modeling of the heat conduction
problem. We first propose suitable methods to approximate the memory kernel K(¢) and the fluctuating force
f(#) for a GLE satisfying the classical second FDT. The resulting stochastic integro-differential equation serves as
the reduced-order model for Gaussian observables of the nonequilibrium system. This model enables us to
numerically verify the generalized second FDT. Secondly, we propose a polynomial chaos expansion method to
approximate the dynamics of non-Gaussian observables which satisfy the generalized second FDT. Applying
these two methods to the averaged heat flux J,,,(¢) leads to dynamical models which characterize the steady state
heat transfer in nonequilibirum systems. We note that a similar approach was used in [44] for Hamiltonian
systems and the resulting stochastic model is often referred to as the fluctuating heat conduction model.

6.1. Methodology
Without loss of generality, we consider a one-dimensional GLE for scalar observable u(#)

d t
Su(t) = Qu) + fo K(t — s)u(s)ds + £, (0). (49)

In (49), the streaming constant €2 is easy to obtain using the definition (15b). However, evaluating the memory
kernel K(¢) and the fluctuation force f,(¢) from the first principle is rather challenging since it involves the
approximation of the high dimensional orthogonal flow e'2X, To avoid such technical difficulties, here we adopt
a data-driven method introduced in [45] to approximate the memory kernel K(#). As for the fluctuation force
f.(9), it can be approximated by suitable series expansions of a stochastic process. The whole procedure can be
described as follows. First of all, we recall that the projected GLE yields (see section 3) the evolution of the steady
state correlation function C(£) of u():

(u(t), u(0)),
<”2(0)>ﬂ ‘

Hence with equation (50), the memory kernel K(f) can be represented formally using the inverse Laplace
transform if we know C,(¢). If we further assume that the dynamics of the observable u(#) is a stationary Gaussian
process, since GLE (49) is a linear equation for u(¢), this implies the fluctuation force f,(#) is also a stationary
Gaussian process. Then we can use the truncated Karhunen-Loéve (KL) expansion series to approximate f,,(),
namely

iCu(t) = QC,() + ft K(t — 5)C,(s)ds, where C.(t) = (50)
dt 0

K K
L@ = (f,0) + D &N Mker(®) = f, + D &N ek ). (51)
k=1 k=1

In the steady state, the mean value of the stochastic process satisfies ( f, (1)), = (f,(0)), = f,, which canbe
obtained by taking the ensemble average of the GLE (49) and then evaluatingitat ¢ = 0:

) (11(0), u(0),
= = (u - Qu =u T 200y
fu = (fO), = (u(©), — Au(0)), = (u(0), (12(0)),

The KL expansion random coefficients { £ }~_, are necessarily independent Gaussian random variables satisfying
(&€) = 6;and { i, ex}i, are, respectively, eigenvalues and eigenfunctions of the homogeneous Fredholm
integral equation of the second kind:

<“(0)>p- (52)

T
j; (D f,(O))pex(s)ds = Aeex(t), € [0, T], (53)

where T'is a certain numerical integration time. If the classical second FDT holds for GLE (49), by substituting
(£,(0), £,(0)), = =K (t)(u?(0)), into eqn (53) and solving for { A, e (t) K _ |, we can get the exact KL series
representation (51) for the fluctuation force f,(t). With all these terms available, we propose the following data-
driven modeling diagram for an arbitrary Gaussian observable u(?):

12
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K(t) = 2—1[5 —Q- Cf‘(o)]
Cu(s)

(u(®), u(0)),, (u(0)), = = Eqn (55), (54)

K
L@ = f, 4+ 3 G Aker(®)
=1

where £[C,(t)] = C,(s) is the Laplace transform of C,(f) and £ '[](¢) is the inverse transform. In

flowchart (54), the leftmost three terms are inputs of the diagram which can be obtained by solving numerically
the SDE (6) and then averaging samples collected from the steady state simulation. We note that solving (50) for
K(#) is a well-known inverse problem which is ill-conditioned. In this paper, we use the series expansion method
[45] and LASSO regression to approximate K(#). By combining all these approximations and executing (54), we
can get the first reduced-order model for u(f):

d Lot
£ =0 bt — L6,
u(t) = Qu() + }i:jlj; kibi(t — S)u(s)ds + f(t, £) (55)

where K () = Ef _ 1 kibi(t)is the series expansion approximation for K() and f (¢, £) is the truncated KL
expansion approximateing the fluctuation force f,(f). We want to emphasize that the key relation that
rationalizes the whole algorithm is the classical second FDT.

The above reduced-order modeling diagram cannot be applied to non-Gaussian cases nor the case where the
generalized second FDT holds. The main modeling difficulties stem from the fact that the steady state
distribution of the fluctuation force f () and the additional term w(0) in the memory kernel K(¢) are generally
unknown and cannot be easily constructed from MD simulation. However, we can use the polynomial chaos
expansion to directly simulate u(t). To this end, we propose the following modeling diagram for non-Gaussian

u(?):

K(t) = 2—1[5 -0 - CJ‘(O)] M

(u(0), u(0))y, p,p (u(0)), = Cu(s) | = u® =>" uiH;(v(, €)). (56)
i=1

Eqn (50)
In(56), u(t) = Zle LuiHi (v (¢, &) is the polynomial chaos expansion for a stationary non-Gaussian process,
which can be constructed from the time-autocorrelation and the steady state probability density p,,. Specifically,
the expansion coefficient 1;and a Gaussian process Y(t, £) is calculated via a modified Sakamoto-Ghanem
algorithm [46]. In appendix E, we explain the procedure in detail. By directly simulating the non-Gaussian
processes in the state space, we avoid the computation of the infinite Kramers-Moyal coefficients [27] or the
effective Fokker-Planck diffusion coefficient [44].

For these two reduced-order modeling methods, by approximating the full GLE or using the polynomial
chaos expansion method, we can construct a surrogate model for u(¢). Moreover, it also enables us to use a short-
time MD simulation data to predict the long-time dynamics of u(#). This part will be verified later via numerical
simulations in the following section.

6.2. Numerical result for a one-dimensional heat conduction model
We now study numerically the one-dimensional heat conduction model (41). In particular, we will use reduced
order models introduced in section 6.1 to build effective models for different phase space observables, from
which we can verify the validity of the generalized second FDT and demonstrate the effectiveness of these
reduced order models. Moreover, we will study in detail the model for the averaged heat flux J,,(f) and discuss its
usefulness in characterizing the heat transport intensity for systems in and out of the statistical equilibrium.

To this end, we set the on-site potential energy in (41) to be 0 and the neighbourhood interaction potential
energy to be the Lennard-Jones (L)) potential energy, i.e.:

12 6
Vi(8q,) = V(g , — q;) = 4e (L] _ Z(L) )
dir1— 4 41— 4

The whole chain is linked with two thermostats with temperatures T; and T which will be specified later for
different cases. Free boundary conditions are imposed and the modeling parameters are set as follows:

N = |G| = 256, =0.2,0 = 1,77 =g = 1. To solve (41) numerically, we use the Euler-Maruyama scheme
with step size dt = 10°. In figures 1 and 2, we show the schematic for the heat conduction model and the
sample trajectories of selected observables of this stochastic system.

6.2.1. Verification of the generalized second FDT
The reduced-order modeling method we introduced in section 6.1 enables us to numerically verify the
generalized second FDT by hypothesis testing. We will first choose an observable for which the classical second
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Figure 1. Schematic of the 1-D and 2-D heat transport model (41). The onsite potential and boundary Langevin forces are shown in
the top plot for the 1-D model. Note that only the boundary oscillators, marked in red, interact with the heat bath.

%t} W\WW» & K' 0 WW ‘}%/Mﬁf gz %w i \;W\ /:0; ’ L‘ J
3 : E

Figure 2. Sample trajectories of the particle momenta P;(f), Py,(t) and the averaged heat flux J,,(t). The temperatures of the
thermostats are set to be Ty = 1 and T = 5. The displayed time domain is [80, 100], where the system is verified to be in the NESS
after the transient time t = 80.

FDT holds (2 = 0 and w(0) = 0) and show that the stochastic model (55) gives correct statistics for observable u
(). Then we will repeat the procedure for an observable for which the generalized second FDT holds (€2 = 0 and
w(0) = 0). Since the algorithm works only when the classical second FDT holds, stochastic model (55) should
give wrong statistics for observable u(#). Throughout this subsection, the thermostat temperatures are set to be
Ty = 1 and T = 5 which makes the system approachingan NESSast — + oo.

Observable py;. We choose the momentum of the oscillator in midst as the observable. According to
proposition 1, the momentum p,, satisfies the classical second FDT (44) in the NESS. Figure 3 shows that psisa
Gaussian variable and the marginal probability density function (PDF) satisfies p,, ~ N(0.2955, 0.422)
approximately. Therefore the standard KL expansion can be used to represent the fluctuation term, which leads
to the reduced-order model for pj(?):

d I M
o0 =3 [ kb = 9p,0ds + 3 VR geio). (57)
t i=1 0 i=1

In this paper, the memory kernel expansion basis b(f) are set to be the Laguerre polynomials, and a LASSO
regression method is used to approximate the expansion coefficient k; [45]. In (57), I = 20 and M = 500 (the
same hereinafter). Since a stationary Gaussian process py(t) is fully characterized by its marginal distribution
and the time autocorrelation function, we solve (57) numerically and compare these two statistics with the exact
results obtained through MD simulation. In figure 3, we can see that the solution of the reduced-order model
(57) reproduces the correct statistics of the observable py(t).

Observable pr. We choose the momentum of the leftmost oscillator as the observable. According to
proposition 1, the momentum py satisfies the generalized second FDT (44) (w(0) = 0) in the NESS. Figure 3
shows that p; is also a Gaussian variable with the marginal PDF satisfying p, ~ N(—0.4169, 1) approximately.
If we assume that the classical second FDT holds, then the reduced-order model for p; (¢) is given by
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Figure 3. (First column) Marginal probability density for py; (Up-Left) and p;(Down-Left); (Second column) Normalized time
autocorrelation function C(t)/C(0) for observable p,, (Up-Right) and p; (Down-Right). The marginal PDF is obtained from the MD
simulation data using kernel density estimation. The correlation function is obtained by averaging 5000 sample trajectories within the
time domain [90, 100] while the system is in the NESS.

I M
%pL(t) =00+ X [ kbt — 9p, s + 3 TRk, (58)
i=1 i=1

Using the data we obtained in the NESS we obtain {2 &~ — 0.8622. When comparing the marginal distribution
and the time autocorrelation function with the exact MD simulation results, we find that the reduced-order
model reproduces the correct autocorrelation function for observable p; (¢), which is reasonable since the
evolution equation for C, (t) is given by (50) and only depends on the memory kernel K(#). However, since the
classical second FDT does not hold (w(0) = 0) for the GLE of p;(¢), the reduced-order model with the pre-
assumed classical second FDT must reproduce the wrong NESS marginal distribution Py,

Remark. Combining these numerical simulation results for observable pa,(f) and p; (1), we verify the existence
of the additional term w(0) in the memory kernel K(#) that violates the classical second FDT. In this paper, we
would not determine the specific form of w(0) and leave it as an independent research topic.

6.2.2. Stochastic modeling of the averaged heat flux

In this subsection, we use the reduced-order technique to build dynamical models for the averaged heat flux
Ja(2) and show that (55) is an effective, generic model for heat transport close to and far-from the statistical
equilibrium. In addition, we show that (55) with short MD simulation data can predict the correct long-term
dynamics of the averaged heat flux J,,(¢).

We firstly briefly review the classical Kubo’s linear response theory for heat transport. For a stochastic model
such as (41), the system is initially set to be in the statistical equilibrium (43) and then perturbed by a small
temperature difference acted on the boundary. This can be achieved by alternating the temperature of a
thermostatas T,, + AT. If ATis sufficiently small, then the thermal conductivity » of the lattice system can be
calculated using the first FDT, which is known as the Green-Kubo formula [9, 10, 35, 47]:

N
K= 5
ks T2,

fo U (0> T (0) gt (59)

where the ensemble average (-, is taken with respect to the equilibrium measure (43) with temperature T,, and
Nis the total particle number. Hence the Green-Kubo formula (59) links the equilibrium time autocorrelation
function of the flux with the transport coefficient near the statistical equilibrium. We note that many low-
dimensional heat conduction models exhibit a violation of Fourier’s law with x = xk(N) depending on N. This,
however, will not invalidate the Green-Kubo formula since the N-dependence for such special systems is
embedded in the time correlator ([, (t), Jay (0))eq- A more difficult case for some low-dimensional systems is the
anomalous long-time tail of the heat flux autocorrelation function since it scales as t~ %, 0 < d < 1. This anomaly
is normally associated with a chain-length dependent conductivity scaling x(N) o< N“ with o > 1, which will
lead to divergent Green-Kubo integral (59) and an infinite conductivity . This phenomenon is rather system-
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Figure 4. Marginal probability density p;(x) and the normalized time autocorrelation function Cy(t)/C,(0) for the averaged heat flux
J(t) in the statistical equilibrium. The presented numerical simulation time domain is [50, 130] to ensure the system is already in the
stationary state (equilibrium). Note that the short-time (¢ € [0, 10]) MD simulation for the correlation is displayed as a blue solid line
and the extrapolation result based on the stochastic modeling is shown as a blue dashed line, with a vertical red dashed line separating
these two. The presented simulation results are for systems with temperature T, = 1 (First row) and T,,, = 5 (Second row).

dependent and strongly related to the boundary conditions. The L] system under our investigation does not
exhibit such an anomaly, which agrees with the finding in [48] with fixed boundary conditions.

Equilibrium case. We first focus on the equilibrium case and show that the stochastic model we introduced in
section 6.1 yields a correct prediction of the equilibrium time autocorrelation function (4, (t), Jy (0))eq. Note
that the equilibrium case is a special case of the nonequilibrium model with T = Ty = T, and we already
proved that the GLE for the averaged heat flux J,,,(¢) in the NESS satisfies the classical second FDT. If the
equilibrium distribution for J,,,(¢) is Gaussian, then the full stochastic model can be constructed via (54), which
generates a simulated sample trajectory of J,,,(¢) as the solution of (55) with 2 = 0. Figure 4 shows that
equilibrium marginal distribution for J,,(¢) atlow temperature T,, = 1 is approximately Gaussian with
Jov () ~ N(0, 0.21%). Hence the corresponding fluctuation force f;(f) in (55) can be approximated by a truncated
KL series, which leads to the reduced-order model:

d I t M
EYNOEDD f kibi(t — 9)Ju()ds + 3 VN ei(D). (60)
dt i=1 0 i=1

The heat flux has alonger correlation time scale when comparing to observables such as py, pys. When solving
(60) numerically, we use a short MD trajectory data for t € [0, 10] to construct the memory kernel K(#). From
figure 4, we can see that the stochastic model (60) predicts the long time tail of the correlation function.

The situation is different when increasing the system temperature to T, = 5. In particular, the estimated
PDF of ],,(¢) is clearly non-Gaussian and has a long tail. For modeling such heat flux, we adopt the second model
(56) where J,,(¢) is approximated by a polynomial chaos expansion

M
Jov (1) = > TiHi(y (1, £)). (61)

i=1

The simulation result is shown in the second row of figure 4. We find that with short-term data, the generated
stochastic process (61) has a target distribution which agrees with the MD simulation result. Moreover, the
extrapolated correlation function of (61) predicates the correct long-time tail of the exact result.

Remark. The reduced-order modeling we introduced for J,,,(¢) is only semi-analytical. Namely, while the
second FDT induced GLE is closed and derived from the first principle, the calculation of the memory kernel is
extrapolated using a short-term data-driven method. This is less satisfying from a theoretical point of view. Here
we want to mention the technical difficulty of developing a pure analytical method to get similar results for the
system under our investigation. We note that the time autocorrelation function of the heat flux has multiple time
scales. Specifically, there are a short-time scale, 6-function alike fast decaying of the correlation close to t = 0 and
along-time scale, slow decaying of the correlationast — + 00 . Generally speaking, itis hard to find an
analytical method which generates such two-time-scale dynamics of the correlation simultaneously. Some
recently developed analytical methods such as the nonlinear fluctuating hydrodynamics [41, 49] used mode-
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Figure 5. Marginal probability density p;(x) and the normalized time autocorrelation function Cy(t)/ C,(0) for the averaged heat flux
Ja(t); The presented simulation results are for close-to-equilibrium systems with temperatures T; = 1, T = 1.1 (Firstrow) and
T, = 5, Tr = 5.25 (Second row). Other settings are the same as in figure 4.

coupling theory to approximate the memory kernel and successfully predicted the long-time tail of the
correlation function. But since the short-time scale dynamics cannot be captured within this framework, which
is important for accurately evaluating the Green-Kubo integral (59), it is hard to get the correct transport
coefficient based on purely analytical calculations.

Close-to-Equilibrium case. We now consider the close-to equilibrium case and use the classical Green-Kubo
theory to verify the validity of stochastic heat conduction model. To this end, we choose T; = 1 and Tr = 1.1in
the MD simulation of the SDE (41). By collecting the data from the nonequilibrium steady state, we find J,,,(¢) is
also approximately Gaussian with J,, ~ A(0.0170, 0.24%). Hence the reduced-order model for the close-to-
equilibrium averaged heat flux J,,(¢) is given by

I

¢ M
Dpr =3 [ kit = 9@ds + 3 YRgeito). (62
dt 0 Py

i=1

In figure 5, we compare the MD simulation result of the normalized time-autocorrelation function:
C](t) - <]av(t) - <]av >AT 5 ]m/ (0) - <]m/ >AT >AT >

where (-)ar is the ensemble average with respect to the NESS probability density with T, — T; = AT. Similar to
the previous case, we used the NESS simulation data for ¢ € [0, 10] to construct the memory kernel. The long-
term prediction of the correlation function is shown to be accurate. In addition, we calculate the averaged long-
term energy accumulation:

AE(t) = <f0t1av<s)ds> :
AT

where J,,() is the MD sample path for system in the near-equilibrium steady state. For stochastic model (62),
this quantity can be calculated by averaging the solution with respect to the probability measure introduced by
thei.i.d Gaussian random variables {£,}M |, i.e.

AE(t) = <f0 ]“V(S)ds>gm,-wf

Here J,,(t) is the numerical solution of (62). On the other hand, the Green-Kubo formula can also be used to
calculate the energy accumulation as:
ar AT t

AB() = Wt~ K = [ U, Jan Oy s, (63)

where a is the equilibrium position spacing of the chain. For our example a = o = 1. (Ja,(s), Jay(0))eq can be
obtained from the equilibrium MD simulation result or the solution of (60). Note that the second approximation
in (63) is valid since normally a linear temperature profile is formed for the heat conduction model [35]. The
simulation result verifies that both the Green-Kubo formula and the reduced-order model (62) predicate rather
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Figure 6. Marginal probability density p;(x) and the normalized time autocorrelation function Cy(#)/ C,(0) for the averaged heat flux
Ja(t); The presented simulation results are for far-from-equilibrium systems with temperature T; = 1, T = 5 (Firstrow)and T} = 5,
Tr = 9 (Second row). Other settings are the same as in figure 4.

accurately the long-term energy accumulation. In fact, stochastic model (62) gives a different definition of
thermal conductivity  based on the second FDT:

t
f ]tot,N(s)ds
(T, AT, N) := lim aLM ~ lim g—o-o— & (64)
t—+o00 AT t t—+00 AT t

For our example, K(T =1, AT = 0.1, N = 256) ~ x = 0.0178, where k is the Green-Kubo transport coefficient
(59). We also consider a high temperature case. By choosing T; = 5 and Ty = 5.25, we found the steady state
distribution for J,,,(¢) is similar to the result we obtained for the high-temperature equilibrium case. Because of
the non-Gaussian feature of J,,,(f), we need to use the aforementioned polynomial chaos expansion method to
generate the stochastic model. The simulation result is shown in figure 5, and we see that the constructed
fluctuating heat conduction model faithfully captures and predicates the static and dynamical properties of
Ja(t). When comparing the accumulated energy AE(#), the calculated result is more accurate than the
predication of the Green-Kubo formula, with an estimated conductivity (given by (64)) k(T = 5, AT = 0.25,
N =256) =~ 0.0271. This might stems from the fact that for temperature difference AT = 0.25, the system is
already out of the linear response regime (see explanations below).

Far-from-equilibrium case. When a large temperature gradient AT'is imposed to the system through the
boundary thermostats, the system is outside of the linear response regime. For such far-from-equilibrium cases,
the validity of the Green-Kubo formula (59) is questionable since it is based on perturbation theory. However,
we can still use methods introduced in section 6.1 to build reduced-order models for J,,,(¢) and use it to quantify
the intensity of heat transfer. Form the MD simulation result presented in figure 6, we find that the heat flux
probability density in the far-from equilibrium steady state is non-Gaussian, strongly asymmetric and has long
tails. Similar results were reported for Hamiltonian systems [49], where the PDF was shown to approximate the
Baik-Rains distribution. Here we did not pre-assume the form of the PDF and directly used the numerically
evaluated density function to build a model. Specifically, since the heat flux is a non-Gaussian process, we adopt
the second methodology (56) and repeat what we have done for the high temperature near-equilibrium case to
calculate J,,,(¢) using J,, (t) = Z,M: JiHi (v (8, €)). Figure 6 clearly shows that the simulated J,,(f) predicts the
energy accumulation more accurately than the Green-Kubo formula (with T, = 1, 5), as expected. The
estimated conductivity for the two cases we considered are K(T'= 1, AT =4, N = 256) ~ 0.28 and k(T =5,
AT =4,N=256)=0.29.

Remark. We may compare the classical Green-Kubo transport theory with the second FDT-induced
transport theory from the information theory point of view. The Green-Kubo theory uses the equilibrium
information (correlation function) of the flux to predict the near-equilibrium transport. In our method, we used
the short-time information of flux to predict the long-time transport. These two methods have their own merits
and drawbacks. Specifically, the Green-Kubo theory is uniformly valid for equilibrium systems with various
perturbations, such as thermostats with different temperature gradients AT. However, it only applies to near-
equilibrium systems. The second FDT-induced transport theory has larger range of applicability and can be used
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to predict far-from-equilibrium transport. But up to this point, we can only reply on data-driven methods to
calculate the GLE, which means that the heat transport for systems with different temperature gradients has to be
handled on a one-to-one basis.

7. Summary

In this paper, we discussed the generalization of the second fluctuation-dissipation theorem (FDT) for stochastic
dynamical systems driven by white noise and its application to the heat conduction model. Following Kubo-
Mori’s methodology, the derivation of this new FDT only uses the property of the Komogorov operator K, and
hence generally holds for observables in both equilibrium and nonequilibrium steady states (NESS). We also
note a surprising fact that for observables in the degenerate coordinate of the Kolmogorov operator, the classical
second FDT holds in the NESS even when the steady state probability measure is generally unknown. The
generalized second FDT was applied to various statistical physics models in and out of equilibrium such as the
Langevin dynamics and the DPD model. In particular, we focused on alow-dimensional heat conduction model
and proved the validity of the classical second FDT for the averaged heat flux. We also introduced two reduced-
order modeling methods based on the second FDT. The first one works for Gaussian observables which satisfy
the classical second FDT, whereas the other method is based on the polynomial chaos expansion approach which
is generally applicable to observables satisfying the generalized second FDT. With these two methods, we were be
able to numerically verify our main theoretical result, theorem 2. Moreover, we derived a fluctuating heat
conduction model and introduced a new definition of thermal conductivity which holds for both near-
equilibrium and far-from-equilibrium heat transport. For a nanoscale open system out of the linear response
regime, this second-FDT-induced conductivity yields a more accurate prediction of heat transfer than the
classical Green-Kubo theory. We conclude by emphasizing that the presented work can be generalized to other
transport processes. Further applications of the proposed methodology can be expected.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Proof of the generalized first FDT

For the perturbed stochastic system (18) evolving from the steady state p(0) = p, the evolution equation of the
probability density is given by the Fokker-Planck equation:

O N ek
8tp(t) = KX(t) p(t), (A1)

where K*(¢) is the Kolmogorov forward (Fokker-Planck) operator of the form
*

K¥@t) = K* + Kk () = K¥ + | Y 6Gi(OE(x) 0y, + > 6H} ()57 (x) 0% | -

Since the added forces are of the order O(6), which is assumed to be a small quantity, the solution of
equation (A1) can be written as a perturbative expansion of p(%), i.e.

p(t) = p =+ 6p,(t) + 6%p,()+--+, (A2)

where the steady state solution satisfies X*p = 0. By substituting the perturbation series (A2) into equation (A1)
and retaining only the first order term O(6), we get the formal expression of 6p; (1):

£ *
o) = [ dset KL ().

Hence in the phase space, for observable 1 = u(x), the change of ensemble average induced by the perturbation
can be expressed as:

(u(®),, — (u(®), = < j; l e<”>’c*lC:;t<s)dspu(0>> + 0(8?)
= <pft /Cext(S)e(”)’Cdsu(O)> + 0(6%) = ft (Kext(s)u(t — 5)),ds + O(6%),
0 0

where ps = ps(?) is the formal solution of the Fokker-Planck equation (A1). Using the integration by parts
formula to simplify (K. (s)u(t — s)),, we obtain the generalized linear-response formulas (19)-(20).
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Appendix B. Proof of the generalized second FDT (32)

Following the proof of theorem 2, we have

£+£;’,<:—V~F(x)—l£p.
p

Using integration by parts twice and a shorthand notation D = Zf\; 10i(x) 0j(x) 02 WS Zf\j _ 10i0; 8i,xj , we
have

Zax,ax] 0:0;()] + 3 POx010;()] + 5 POy loioi()] + pmcfjaiixjp
i,j=1

=D + le + _ax,anj[o—io—j(')] + _axjpax;[o—io—j(‘)] + 8xi[o—io—j] 8x; + ax,'[o—io—j] 8x; + 892(,‘36]‘ [0'10']]
P p P

1
P

where A is a second-order differential operator. Then it is straightforward to obtain

D;ﬁ+D:2D+le+A,
p

Kf+K=-V-Fx) — lﬁp—&—ll)p—i-ZD—i-A.
p p
Since K*p = L¥p + D*p =0, L + L* = —V - F(x)and D* = D + B, where operator B is defined as

N
B =3 0.10:0]10x, + Ox0i010s, + 03, [0i0j],

ij=1

we now obtain

Lp+ L*p=—pV - F(x)

1 1 1
= ——Lp+ —Dp -V - F(x) = ——DBp. (B1)
D*p =Dp + Bp } P P p

By substituting the above equality into lC”; + K, we can get the desired result:

iij+lC=—pr+2D+A
P

=2D + Z —0;070x,p0x; + Ulojax]p(?x, + Ox,[010j10y; + Oyloi07]0x,
i,j=1 P
=S, (B2)

where S is defined as (32).
Appendix C. The generalized second FDT for nonlinear GLEs

The nonlinear GLEs are normally derived using the Zwanzig-type projection operator [16, 29, 50]:

x) p(x)dx
M, dx = dxadxy, - dxy dxm 1dxm 0 dxy = dRdX. (C)
[p(x)ax = &

Zwanzig’s projection (C1) is a conditional expectation operator satisfying §° = 9. It is also a symmetric operator
in L*(RY, p),ie. (-, ), = ( -, Using(Cl)to derive the Mori-Zwanzig equation for stochastic system (6),
we obtain a nonlinear GLE:

(H® =

ge”cu(O) — % Ku(0) + f "ok Ket-9K K u(0)ds + e XOKu(0), (C2)
" ¢ QKu(0)

0
u(r) F(u (1) f f®
f R(t—s,5)ds
0

where F(u(t)) is a nonlinear vector function of u(f). The memory integral fo ‘R (t — s, s)ds isnot directly given
by a convolution form such as the one in (13). To simplify this equation, we note that in the conditional
projection (C1) is an infinite-rank operator [29, 50], therefore can be formally written as [51]:
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= > (-4(0)), ;(0),
j=1

where {¢;(0)}}°_ ;and {¢,(0) 17"~ 1 aresetof phase space functions which are linearly independent in
L*(RN, p). Asaresult, the Zwanzig-equation memory kernel is given by:

ft e’k Ket=9%KQICu; (0)ds = ft eSKi (1(0), ICe(t*S)Q’CQICu,»(O»p¢j(0)d5
0 o O

= fot i(lﬂj(o), e~ QLCu;(0)), ¢;(s)ds.
j=1

K;j(t—s)

Hence using the proof of theorem 2, the memory kernel can be rewritten as:
K1) = Y _(5(0), Ke'COKu;(0)), = — (K¢(0), Ke'*QKu;(0)), + (Sj(0), Ke'&* QKu;(0)),

=1

-
—_

Z — (QKY;(0), e QKu;(0)), + (S1j(0), €' QKu;(0)),

-
Il
—_

[
Mg

= (g;(0), £;,(D) + (h;(0), £,(1))y,

-
Il
—_

(C3)
where gj(O) = QK4);(0)and h;(0) = Sv);(0). After all these steps, we obtain a nonlinear GLE:
0 <t
E”i(t) = F(u(@)) + ]Z:lj; Ki(t = s)¢;(s)ds + f;(1), (C4)

where the memory kernel and the fluctuation force satisfy the generalized second FDT (C3). The above
derivation is of course quite formal. However such mathematical rigorous discussion clearly indicates for
stochastic systems the classical second FDT has to be generalized by including more observables such as g;(0) and
h;(0) in the time correlations with the noise fi(t). At the current stage, it seems difficult or even unnecessary to get
the explicit expressions for terms such as 1;(0), ¢;(0) and g;(0), /;(0). However, nonlinear GLE (C4) and the
generalized second FDT (C3) may be used as the ansatz for proper reduced-order modellings for stochastic
systems, such as the ones used in [19].

Appendix D. Validity of the classical second FDT for the averaged heat flux

Itis sufficient to prove the result for d = 1 system and the generalization to multi-dimensional cases is direct.
The local heat flux at the boundaries have to be handled independently. Since the Langevin forces act on the
momentum coordinates of the boundary oscillators, the heat reservoir only exchanges energy with the oscillators
through the kinetic part [35]. From this observation we may define the boundary heat flux as the non-
Hamiltonian contribution of the time derivative of the kinetic energy i.e.,
2 2
2 by Py
Jo = %kBTban = VP, 0 "y = ks Ty — Yop;» bebB.

In the steady state, a stable kinetic temperature profile is often obtained through numerical experiments and the
boundary oscillators admit a kinetic temperature Tx = T; [35]. We further assume the marginal distribution for
the momentum of the boundary oscillators p,, b € B is Gaussian, i.e.

= fp dqdp\ {p,} x e 'Y, (D1)

where p\ {p;} represents allmomenta p but py, 3, = 1 /kpTf and p = pngss is the probability density
corresponding to the NESS. To be noticed that this assumption is verified numerically in section 6.2.1 (see figure
3). In the stationary regime, we get the boundary heat flux ensemble average

Jo@®) = yks(Ty — Tp),
2@ =1k BT + T; — 2T Ty).
Hence for the total heat flux we have

oty ) = Uas®) + Us®)y = Jo\s®) + > voks(T, — T5),
beB
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where Jg\ s and J denote respectively the bulk and boundary contributions to the total heat flux. As itis shown
in [35], in the stationary regime the average bulk heat flux (Jg\ 5 (1)), is an extensive quantity which scales as the
order of volume for the lattice system i.e. O(L %), where L is the length of the lattice system. For fixed coupling
constant A\, and thermal bath temperature T}, the average boundary heat flux (Jz(t)), scales as the order of
surface area for the lattice system. i.e. O(L® ). Naturally since N ox L“, we have

hm%%mm> <mmm. (D2)

N—oo
The above limit can be seen as the first-order moment estimation of the total heat flux in the stationary regime.

We also need to verify whether the above estimation hold in the second order. To this end, we use the triangle
inequality to get

o8Oz — WMl < Voen®Ollzey < Pas®llegy + s® |l (D3)

Then by combining another triangle inequality

T8Oy < D Ie®llzgy = S [(veki B(TH? + TF — 2T, T2, (D4)
b b

we have

o\5 @2 — ZHJb(t)HLZ @ < Wrorn 2y < as® 2y + Z\Ub(f)ﬂﬂ -

Using the embedding inequality associated with L*(p) — L'(p) and Cauchy—Schwartz inequality, we get that
ClUa\s®)| < Cla\sOlle < [To\s0) 2 (D5)

where Cis the embedding constant. Inequality (D4) also implies H JB (1) ||12(p) scales at most of the order oL,
while (D5) indicates || Jg\ 5 (¢)[|12() Scales at least of the order O(L %), Hence dividing by N and then taking the
limit N — oo in both sides of inequality (D3), we have

. 1 1
A}ljnooNHJwr,N(t)||LZ<p) = NH]G\B(t)”LZ(p)- (D6)

Using the similar technique and the stationary condition || Jo\ 5 () |i2(0) = [lJg\ 5(0)[|z2¢0)> 15 (O] 22y =
[l78(0)[|2()» it is easy to obtain the following estimate

(Jo\8®), J5O0)), — 2|\ 8Oz T8OI2¢0) — ITBO)[72¢) < Trorn (85 Jror.n (0)),
<{Ja\8®)s Jo\80)), + 2[[Jg\ 8|2y T8O |20y + [TBO)][Z2(,) - (D7)

For the same reason, dividing by N* and then taking the limit N — oo in both sides of inequality (D7), we obtain

. 1 1
I\}linoo NZ Jiot.N ()5 Jior,n (0)), = N2 {(Jo\5(1), Jg\5(0)),. (D8)
Estimates (D2) and (D8) imply that the averaged total heat flux J,,, n(1), as a stationary second-order process, can
be approximated by its bulk contribution Jg\ 5 (t)/N in the L? sense.

Appendix E. Polynomial chaos expansion for stationary non-Gaussian processes

For strongly non-Gaussian stochastic processes such as the far-from equilibrium heat flux J,,(¢), the KL
expansion is no longer suitable to represent such processes since the random coefficients &, are noti.i.d Gaussian
and cannot be easily determined. Some methods were proposed to address the approximation problem of a non-
Gaussian process. For instance, Chu and Li [44] suggested to use a Gaussian multiplicative noise to approximate
the random force in the extended stochastic system. Zhu and Venturi [26] used Phoon’s algorithm [52, 53] to
generate a sample-based, iterated KL expansion to represent the non-Gaussian process. In this paper, we adopta
modified Sakamoto-Ghanem [46] method to approximate J,,,(¢). The numerical merits of the new algorithm are
highlighted in two aspects. First, it is generally appliable to non-Gaussian stochastic process u(f) with arbitrary
steady state distribution p, and correlation function C(t;, ,) = (u(t1), u(t,)). Secondly, it works much more
efficiently when comparing to similar approaches such as Phoon’s algorithm [52, 53], which enables us to rapidly
generate sample trajectories from the GLE. Here we only briefly explain the main steps of Sakamoto-Ghanem
algorithm and our modification of it. More details and extension of such a method can be found in [46].

Suppose u(?) is a second order, stationary non-Gaussian stochastic process with an arbitrary steady state
distribution p, and the stationary correlation function C,(¢ + s, s) = C,(t, 0) = (u(#), 4(0)). Then the following
polynomial chaos expansion approximates u(f) in the L> senseas M — 00 and K — +oo0:
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=1

M K
u() =3 wiHi(y(t, €),  where (1, €) = Y \[Ai&ei(0). (E1)
: P

Here H; is the i-th order probabilist’s Hermite polynomials. Being represented as a truncated KL expansion
which can be determined by solving the Fredholm equation (53), y(t, £) has steady correlation function
C(0) = (1(t, &), (0, &)) satisfying the following algebraic equation:

Mol .
Cu(t) = Y =——Cl(), (E2)

=UST udk!
k=1

where u;are the coefficients of the Hermite-chaos expansion of the random variable u with probability density
pu- Specifically, u; can be obtained (see more details in [54], section 6) using Gaussian quadrature by evaluating
the integral:

1
(H})

where U™} (x) and G~ (x) are, respectively, the inverse of the cumulative distribution function (CDF) for an
arbitrary random variable u ~ p, and a Gaussian random variable g ~ A/(0, 1). In the original version of the
Sakamoto-Ghanem algorithm [46], algebraic equation (E2) is solved exactly for C,(t) and C.(¢) in a discrete
lattice {0, At, 2At, -+ ,T} by assuming that C,(f) > 0 for ¢ € [0, T]. Here we generalize the algorithm by solving
(E2) approximately in the same lattice for the part C,(#) < 0. i.e. For the lattice point iA¢such that C,(iAf) < 0,
we find an approximated solution C,(iAt) in [—1, 1] for the following algebraic equation:

u; =

f U ) HA(G () dx, (E3)
0

Moy .
Cu(iAt) = 3~ ———CI(iAt). (E4)

=ES " udk!
k=1

To apply the modified Sakamoto-Ghanem algorithm in the stochastic modeling of the far-from equilibrium
heat flux J,,(t), we only need to input the NESS probability density p;and correlation function C;(t) which can be
obtained numerically via the MD simulation. We finally obtain the polynomial chaos expansion of J,,,(f)

M
Jav(£) = Z]iHi(’y(t} 5)) (E5)

i=1
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