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Introduction

Fourier samples are collected in a variety of applications including magnetic resonance imaging
(MRI) and synthetic aperture radar (SAR). In an idealized situation, recovering images from partial
Fourier data may be done simply and efficiently by using the inverse fast Fourier transform (FFT).
However, the quality of the solution deteriorates in practice due to the facts that

• the data acquisition system is noisy;
• the underlying function is not periodic.

Figure 1: The function f (x) = x and its Fourier partial sum fN(x) with N = 128.

Here we use a Bayesian approach to construct a posterior using the given Fourier data and
a prior based on properties of orthogonal polynomials.

Problem set up

Consider a real-valued L2 integrable function f on [−1, 1]:

f : [−1, 1] → R s.t.
∫ 1

−1
|f (x)|2dx < ∞.

We are given noisy Fourier measurements b̂ =
(

b̂k : −N

2
≤ k <

N

2

)
∈ CN such that

b̂k = 1
2

∫ 1

−1
f (x)e−ikπxdx + ϵk

where ϵ =
(

ϵk : −N

2
≤ k <

N

2

)
∈ CN corresponds to a typically unknown noise vector.

Our goal is to construct point values of the function f .

Model problem
We construct the linear inverse problem

b̂ = F f + ϵ (1)
to recover function f on a set of uniform points. In particular,

• b̂ ∈ CN is the given Fourier measurements vector;
• F ∈ CN×N is the discrete Fourier transform matrix;
• f =

(
f (xj) : 0 ≤ j < N

)
∈ RN is the vector of unknowns corresponding to the function

evaluation on the uniform grid points xj = −1 + 2j

N
, j = 0, 1, ..., N − 1;

• ϵ ∈ CN is the complex noise vector.

Numerical approximation by orthogonal polynomials
The function f (x) can by approximated by its the Gegenbauer expansion based on the first m+1 terms

fλ
m(x) =

m∑
l=0

f̂λ
l Cλ

l (x), (2)

where its Gegenbauer coefficients f̂λ
l are given by

f̂λ
l = 1

hλ
l

∫ 1

−1
(1 − x2)λ−1

2 f (x) Cλ
l (x)dx. (3)

The hierarchical Bayesian model

posterior ∝ likelihood × prior × hyper-prior

Likelihood Fourier data (
Re (b̂)
Im (b̂)

)
∼ N

((
Re (F)
Im (F)

)
f , α−1I2N

)
,

b̃ ∼ N (F̃ f , α−1I2N ). (4)

p(b̃ | f , α) = (2π)−2N/2α2N/2 exp
{

−α

2
∥F̃ f − b̃∥2

2
}

. (5)

Prior Numerical approximation

f ∼ N (fλ
m, β−1IN ),

f ∼ N (G f , β−1IN ). (6)

p(f | β) = (2π)−N/2βN/2 exp
{

−β

2
∥(IN − G) f∥2

2

}
. (7)

Hyper-prior

p(α) = Γ(α | c, d) = dc

Γ(c)
αc−1 exp(−d α), (8)

p(β) = Γ(β | c, d) = dc

Γ(c)
βc−1 exp(−d β). (9)

Posterior from Bayesian inference

p(f , α, β | b̃) ∝ p(b̃ | f , α) p(f | β) p(α) p(β). (10)

p(f , α, β | b̃) ∝ αc+N−1βc+N/2−1 exp
{

−α

2
∥F̃ f − b̃∥2

2 − β

2
∥In(fλ

m,N − f)∥2
2 − d α − d β

}
. (11)

Numerical scheme: Bayesian coordinate descent (BCD)

The maximum a posterior (MAP) estimate could be obtained equivalently as minimizing the neg-
ative logarithm of the posterior, that is, the objective function is

G(f , α, β) = − (c + N − 1) log(α) − (c + N

2
− 1) log(β) + α

2
∥F̃ f − b̃∥2

2

+ β

2
∥(IN − G)f∥2

2 + d α + d β.

Algorithm 1 BCD algorithm for the MAP estimate
Initialize α(0), β(0)

for l = 1 to Maxiter do
Update f by solving (α(l) F̃T F̃ + β(l) (IN − G)T (IN − G))f (l+1) = α(l) F̃T b̃

Update α by setting α(l+1) = 2(c + N − 1)
∥F̃ f (l+1) − b̃∥2

2 + 2d

Update β by setting β(l+1) = 2c + N − 2
∥(IN − G)f (l+1)∥2

2 + 2d

Break if convergence criterion is satisfied
end for

Note: The algorithm above provides one approach to solve for the MAP estimate. Indeed the whole
posterior distribution could be characterized based on the results of Bayesian inference.

Numerical results

Figure 2: The function f (x) = x and its reconstructions.

Figure 3: The function f (x) = ex sin(5x) and its reconstructions.

Figure 4: The function f (x) = 1
1 + 25x2 and its reconstructions.

• More accurate reconstruction;
• Resolution of Gibbs phenomenon and Runge phenomenon;
• Uncertainty quantification.

Future directions

• Theoretical analysis on the connection with spectral reprojection;
• Extension to the case of incomplete data;
• Inference on the auto selection of numerical parameters;
• Application on 2D images.
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