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Background

Forward PDE problems: Given the PDE, including its coefficients,
find its solution everywhere.

Inverse coefficient problem: Given the solution to the PDE (e.g. on
the boundary), for various choices of boundary data, frequencies,
times, find the coefficients.

Reduced Order Models (ROMs) for forward problems: If e.g. PDE is
linear, find a low dimensional matrix that acts like the differential
operator.

ROMs for inverse problems: Given data, find a ROM which matches
the data, use this ROM to extract the unknown coefficient.
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Framework

Find ROM that matches a given set of data exactly.

The ROM can also be viewed as a Galerkin method on a space of
exact solutions corresponding to the data.

Orthogonalize to localize the basis.

Due to sparsity, the basis functions depend only very weakly on the
coefficients. (Druskin et. al. 2016)

(Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data
generated internal solution.

(Druskin, Zaslavsky, M 2021) Use data generated internal solution in
a Lippmann-Schwinger formulation.

Time domain reconstruction of wave speed (Borcea, Garnier,
Mamonov, Zimmerling 2022 )
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Previous work with ROMs for inverse problems

other ways to use ROM to reconstruct, examples of previous work
time domain

Druskin, V. , Mamonov, A. and Zaslavsky, M., A nonlinear method
for imaging with acoustic waves via reduced order model
backprojection, SIAM Journal on Imaging Sciences, (2018).

Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and
Zimmerling, J., Reduced Order Model Approach to Inverse
Scattering, SIAM Journal on Imaging Sciences, (2020).
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Time domain SISO problem

utt + Au = 0 in Ω× [0,∞) (1)

u(t = 0) = g in Ω (2)

ut(t = 0) = 0 in Ω (3)

where
A = A0 + q (4)

A0 ≥ 0 is known background, (for example A0 = −∆),

q(x) ≥ 0 is our unknown potential

initial data g is localized (approximate delta) source

assume homogeneous Neumann boundary conditions on the spatial
boundary ∂Ω.
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Time domain SISO problem

The exact forward solution to (1) is

u(x , t) = cos (
√
At)g(x). (5)

We measure data at the source (modeled by integration against g) for
2n − 2 evenly spaced time steps t = kτ

F (kτ) =

∫
Ω
g(x) cos (

√
Akτ)g(x)dx . (6)

The inverse problem is as follows: Given

{F (kτ)} for k = 0, . . . , 2n − 2,

reconstruct q.
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Time domain SISO problem

If uk = u(kτ, x) for k = 0, . . . , 2n − 2 are the true snapshots,

then the n × n mass matrix k , l = 0, . . . , n − 1

Mkl =

∫
Ω
ukuldx (7)

from (6)

Mkl =

∫
Ω
g(x) cos (

√
Akτ) cos (

√
Alτ)g(x)dx , (8)

from the cosine angle sum formula

Mkl =
1

2
(F ((k − l)τ) + F ((k + l)τ)) , (9)

M can be obtained directly from the data.
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Time domain SISO problem

M is positive definite, compute its Cholesky decomposition

M = U>U

where U is upper triangular.

Define ~u to be a row vector of the first n snapshots
(k = 0, . . . , n − 1), and set

vk =
∑
l

ulU
−1
lk . (10)

. The functions {vk} will be orthonormal in the L2 norm
(Gram-Schmidt).
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Time domain SISO problem

We do not know the snapshots, but from the data we know the
transformation that orthogonalizes them sequentially.

It was first noticed in (Druskin et. al. 2016) that these
orthogonalized snapshots depend very weakly on q.

This is because we start with a local source, orthogonalize
sequentially, reflections overlap with previous times.

So do all of the above for the known background problem
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Time domain SISO problem

Background exact solution

u0(x , t) = cos (
√
A0t)g(x). (11)

and snapshots {u0
j }

mass matrix

M0
kl =

∫
Ω
u0
ku

0
l dx , (12)

Cholesky decomposition

M0 = (U0)>U0,

orthogonalized background snapshots

~v0 = ~u0(U0)−1. (13)
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Time domain SISO problem

Crucial step:
~v ≈ ~v0. (14)

From (10) and (14) we have that the true snapshots

~u = ~vU

≈ ~v0U.

Definition of our data generated snapshots

~u := ~v0U

= ~u0(U0)−1U. (15)
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Figure: Data generated internal snapshots

S. Moskow (Drexel University) L-S-L for inverse scattering June 8, 2023 12 / 31



Lippmann-Schwinger-Lanczos equation

Time domain Lippmann-Schwinger

F0(kτ)− F (kτ) =

∫ kτ

0

∫
Ω
u0(x , kτ − t)u(x , t)q(x)dxdt. (16)

Use data generated internal solution (interpolated in time)

F0(kτ)− F (kτ) =

∫ kτ

0

∫
Ω
u0(x , kτ − t)u(x , t)q(x)dxdt (17)
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Spectral domain SISO problem

Given u such that

−u′′ + q(x)u + λu = 0 for x on (0, 1)

−u′(0) = 1

u(1) = 0

Define the transfer function F (λ) := u(0;λ).

Consider the inverse problem: Given {F (λ),F ′(λ) : λ = b1, . . . bm} ,
find q(x)
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Spectral domain SISO problem.

Consider the inverse problem: Given {F (λ),F ′(λ) : λ = b1, . . . bm} ,
find q(x)

Given 2m spectral data values to reconstruct q(x)

Can do a modified version of what follows for other forms of spectral
data

We will construct a ROM that matches this data exactly
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Spectral domain SISO

Consider exact solutions to above u1, . . . , um corresponding to
spectral points λ = b1, . . . bm. and the subspace

G = span{u1, . . . , um}

Although we do not know these solutions, we can obtain the Galerkin
system (ROM) from the data

Given by the mass and stiffness matrices

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .
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They are given by the formulas

Mij =
F (λi )− F (λj)

λj − λi
, Mii = −dF

dλ
(λi ). (18)

and

Sij =
F (λj)λj − F (λi )λi

λj − λi
, Sii =

d(λF )

dλ
(λi ). (19)
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Spectral domain SISO

Searching for the unknown coefficients {ci} for the solution

uG = Σm
i=1ciui

Mij =

∫ 1

0
uiuj

and

Sij =

∫ 1

0
u′iu
′
j +

∫ 1

0
quiuj .

For forward solution would solve (S + λM)~c = ~F where
Fi = F (bi ) = ui (0).
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Spectral domain SISO

Spectral snapshots are not like in the time domain, will not
orthogonalize in the same way sequentially.

Here we orthogonalize by using the Lanczos algorithm.

Lanczos is Gram-Schmidt using the M inner product (L2) on the
Krylov subspaces generated by powers of A = M−1S and initial vector
M−1b (projection of a delta function source onto G ).

in the new basis A is tridiagonal (for SISO)

Why does this work in the spectral domain?

because the Krylov subspaces are the same as those generated by
ROM- projected sequential time snapshots.
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Spectral domain SISO

That is, if d ∈ Rm satisfies the Galerkin problem

Sd(t) + Md(t)tt = 0, d(0) = b, dt t=0 = 0,

which is a time-domain (the wave) variant of the ROM.

Then d(τ i) satisfy the second order finite-difference scheme

d [τ(i + 1)] = (2I − τA)d [τ i ]− d [τ(i − 1)], i = i , . . . ,m − 1,

d(0) = M−1b, d(τ) = d(−τ)

where A = M−1S .

span{d(τ i)} are the same as the above Krylov subspaces w/ powers
of A.
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span{d(τ i)} are the same as the above Krylov subspaces w/ powers
of A.
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Spectral domain SISO

So the entries of this orthogonalized reduced order model (which can
be obtained from the data) are the entries of the stiffness matrix

Ŝij =

∫
û′i û
′
j +

∫ 1

0
qûi ûj

and the mass matrix

M̂ij =

∫
ûi ûj .

correspond to sequentially orthogonalized projected time snapshots,
which depend only very weakly on the coefficient .

S. Moskow (Drexel University) L-S-L for inverse scattering June 8, 2023 21 / 31



Spectral domain SISO

So the entries of this orthogonalized reduced order model (which can
be obtained from the data) are the entries of the stiffness matrix
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Weak dependence of orthogonalized spectral basis on q
(positive λ = bi)
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Weak dependence of orthogonalized spectral basis on q
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Spectral domain Lippmann-Schwinger Lanczos approach

Since the basis depends weakly on the unknown coefficient, we can
get a data generated internal solution

u =
√
b∗M−1bV0Q0(A + λI )−1e1

where A = M−1S .

Again we use the Lippmann-Schwinger equation

F0 − F =

∫
Ω
uu0(q − q0) (20)

For inverse Born one would replace u by u0

With data generated ROM we replace by u , the data generated
internal solution.
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 2: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 3: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Non-symmetric data: Lippman-Schwinger Lanczos
approach

Figure: Experiment 1: True medium (top left) and its reconstructions using
’Cheated IE’ (top right), Born linearization (bottom left) and our approach
(bottom right)
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Helmholtz 2d (with E. Cherkaev and J. Baker)
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Figure: 2-D Helmholtz (positive λ)
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Conclusions

Time domain mass matrix gives orthogonalization of time snapshots
sequentially

In the spectral domain, the Lanczos algorithm exactly mimics this.

In both cases the new basis is close to that from reference medium.

Can use the reference medium basis to obtain approximations of
internal solutions from data only

Lippmann-Schwinger-Lanczos: use these internal solutions in
Lippmann Schwinger, extendable to more general data sets.
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