Lippman-Schwinger-Lanczos algorithm for inverse scattering problems.

V. Druskin ${ }^{1}$ S. Moskow ${ }^{2}$ M. Zaslavsky ${ }^{3}$
${ }^{1}$ WPI
${ }^{2}$ Drexel University
${ }^{3}$ Southern Methodist University

SIAM OP AWM Workshop:
Women in Inverse Problems
Seattle, WA, June 8, 2023

Background

Background

- Forward PDE problems: Given the PDE, including its coefficients, find its solution everywhere.
- Inverse coefficient problem: Given the solution to the PDE (e.g. on the boundary), for various choices of boundary data, frequencies, times, find the coefficients.

Background

- Forward PDE problems: Given the PDE, including its coefficients, find its solution everywhere.
- Inverse coefficient problem: Given the solution to the PDE (e.g. on the boundary), for various choices of boundary data, frequencies, times, find the coefficients.
- Reduced Order Models (ROMs) for forward problems: If e.g. PDE is linear, find a low dimensional matrix that acts like the differential operator.

Background

- Forward PDE problems: Given the PDE, including its coefficients, find its solution everywhere.
- Inverse coefficient problem: Given the solution to the PDE (e.g. on the boundary), for various choices of boundary data, frequencies, times, find the coefficients.
- Reduced Order Models (ROMs) for forward problems: If e.g. PDE is linear, find a low dimensional matrix that acts like the differential operator.
- ROMs for inverse problems: Given data, find a ROM which matches the data, use this ROM to extract the unknown coefficient.

Framework

- Find ROM that matches a given set of data exactly.

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.
- Orthogonalize to localize the basis.

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.
- Orthogonalize to localize the basis.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.
- Orthogonalize to localize the basis.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.
- Orthogonalize to localize the basis.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.
- (Druskin, Zaslavsky, M 2021) Use data generated internal solution in a Lippmann-Schwinger formulation.

Framework

- Find ROM that matches a given set of data exactly.
- The ROM can also be viewed as a Galerkin method on a space of exact solutions corresponding to the data.
- Orthogonalize to localize the basis.
- Due to sparsity, the basis functions depend only very weakly on the coefficients. (Druskin et. al. 2016)
- (Borcea, Druskin, Mamonov, Zaslavsky, M 2020) Produce a data generated internal solution.
- (Druskin, Zaslavsky, M 2021) Use data generated internal solution in a Lippmann-Schwinger formulation.
- Time domain reconstruction of wave speed (Borcea, Garnier, Mamonov, Zimmerling 2022)

Previous work with ROMs for inverse problems

- other ways to use ROM to reconstruct, examples of previous work time domain

Previous work with ROMs for inverse problems

- other ways to use ROM to reconstruct, examples of previous work time domain
- Druskin, V., Mamonov, A. and Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM Journal on Imaging Sciences, (2018).
- Borcea, L., Druskin, V., and Mamonov, A., Zaslavsky, M. and Zimmerling, J., Reduced Order Model Approach to Inverse Scattering, SIAM Journal on Imaging Sciences, (2020).

Time domain SISO problem

$$
\begin{align*}
u_{t t}+A u & =0 \text { in } \Omega \times[0, \infty) \tag{1}\\
u(t=0) & =g \text { in } \Omega \tag{2}\\
u_{t}(t=0) & =0 \text { in } \Omega \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
A=A_{0}+q \tag{4}
\end{equation*}
$$

- $A_{0} \geq 0$ is known background, (for example $A_{0}=-\Delta$),
- $q(x) \geq 0$ is our unknown potential
- initial data g is localized (approximate delta) source
- assume homogeneous Neumann boundary conditions on the spatial boundary $\partial \Omega$.

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) \tag{5}
\end{equation*}
$$

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) . \tag{5}
\end{equation*}
$$

- We measure data at the source (modeled by integration against g) for $2 n-2$ evenly spaced time steps $t=k \tau$

$$
\begin{equation*}
F(k \tau)=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) g(x) d x \tag{6}
\end{equation*}
$$

Time domain SISO problem

- The exact forward solution to (1) is

$$
\begin{equation*}
u(x, t)=\cos (\sqrt{A} t) g(x) \tag{5}
\end{equation*}
$$

- We measure data at the source (modeled by integration against g) for $2 n-2$ evenly spaced time steps $t=k \tau$

$$
\begin{equation*}
F(k \tau)=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) g(x) d x \tag{6}
\end{equation*}
$$

- The inverse problem is as follows: Given

$$
\{F(k \tau)\} \text { for } k=0, \ldots, 2 n-2
$$

reconstruct q.

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,
- then the $n \times n$ mass matrix $k, l=0, \ldots, n-1$

$$
\begin{equation*}
M_{k l}=\int_{\Omega} u_{k} u_{l} d x \tag{7}
\end{equation*}
$$

from (6)

$$
\begin{equation*}
M_{k l}=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) \cos (\sqrt{A} / \tau) g(x) d x \tag{8}
\end{equation*}
$$

Time domain SISO problem

- If $u_{k}=u(k \tau, x)$ for $k=0, \ldots, 2 n-2$ are the true snapshots,
- then the $n \times n$ mass matrix $k, l=0, \ldots, n-1$

$$
\begin{equation*}
M_{k l}=\int_{\Omega} u_{k} u_{l} d x \tag{7}
\end{equation*}
$$

from (6)

$$
\begin{equation*}
M_{k l}=\int_{\Omega} g(x) \cos (\sqrt{A} k \tau) \cos (\sqrt{A} / \tau) g(x) d x \tag{8}
\end{equation*}
$$

- from the cosine angle sum formula

$$
\begin{equation*}
M_{k l}=\frac{1}{2}(F((k-I) \tau)+F((k+I) \tau)) \tag{9}
\end{equation*}
$$

M can be obtained directly from the data.

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

- Define \vec{u} to be a row vector of the first n snapshots ($k=0, \ldots, n-1$), and set

$$
\begin{equation*}
v_{k}=\sum_{l} u_{l} U_{l k}^{-1} \tag{10}
\end{equation*}
$$

Time domain SISO problem

- M is positive definite, compute its Cholesky decomposition

$$
M=U^{\top} U
$$

where U is upper triangular.

- Define \vec{u} to be a row vector of the first n snapshots ($k=0, \ldots, n-1$), and set

$$
\begin{equation*}
v_{k}=\sum_{l} u_{l} U_{l k}^{-1} \tag{10}
\end{equation*}
$$

- . The functions $\left\{v_{k}\right\}$ will be orthonormal in the L^{2} norm (Gram-Schmidt).

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.
- This is because we start with a local source, orthogonalize sequentially, reflections overlap with previous times.

Time domain SISO problem

- We do not know the snapshots, but from the data we know the transformation that orthogonalizes them sequentially.
- It was first noticed in (Druskin et. al. 2016) that these orthogonalized snapshots depend very weakly on q.
- This is because we start with a local source, orthogonalize sequentially, reflections overlap with previous times.
- So do all of the above for the known background problem

Time domain SISO problem

- Background exact solution

$$
\begin{equation*}
u^{0}(x, t)=\cos \left(\sqrt{A_{0}} t\right) g(x) \tag{11}
\end{equation*}
$$

and snapshots $\left\{u_{j}^{0}\right\}$

- mass matrix

$$
\begin{equation*}
M_{k l}^{0}=\int_{\Omega} u_{k}^{0} u_{l}^{0} d x \tag{12}
\end{equation*}
$$

- Cholesky decomposition

$$
M^{0}=\left(U^{0}\right)^{\top} U^{0}
$$

- orthogonalized background snapshots

$$
\begin{equation*}
\vec{v}^{0}=\vec{u}^{0}\left(U^{0}\right)^{-1} . \tag{13}
\end{equation*}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} \tag{14}
\end{equation*}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} . \tag{14}
\end{equation*}
$$

- From (10) and (14) we have that the true snapshots

$$
\begin{aligned}
\vec{u} & =\vec{v} U \\
& \approx \vec{v}^{0} U .
\end{aligned}
$$

Time domain SISO problem

- Crucial step:

$$
\begin{equation*}
\vec{v} \approx \vec{v}^{0} \tag{14}
\end{equation*}
$$

- From (10) and (14) we have that the true snapshots

$$
\begin{aligned}
\vec{u} & =\vec{v} U \\
& \approx \vec{v}^{0} U .
\end{aligned}
$$

- Definition of our data generated snapshots

$$
\begin{align*}
\overrightarrow{\mathbf{u}} & :=\vec{v}^{0} U \\
& =\vec{u}^{0}\left(U^{0}\right)^{-1} U \tag{15}
\end{align*}
$$

Figure: Data generated internal snapshots

Lippmann-Schwinger-Lanczos equation

- Time domain Lippmann-Schwinger

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) u(x, t) q(x) d x d t \tag{16}
\end{equation*}
$$

Lippmann-Schwinger-Lanczos equation

- Time domain Lippmann-Schwinger

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) u(x, t) q(x) d x d t \tag{16}
\end{equation*}
$$

- Use data generated internal solution (interpolated in time)

$$
\begin{equation*}
F_{0}(k \tau)-F(k \tau)=\int_{0}^{k \tau} \int_{\Omega} u_{0}(x, k \tau-t) \mathbf{u}(x, t) q(x) d x d t \tag{17}
\end{equation*}
$$

Spectral domain SISO problem

- Given u such that

$$
\begin{aligned}
-u^{\prime \prime}+q(x) u+\lambda u & =0 \text { for } x \text { on } \\
-u^{\prime}(0) & =1 \\
u(1) & =0
\end{aligned}
$$

- Define the transfer function $F(\lambda):=u(0 ; \lambda)$.
- Consider the inverse problem: Given $\left\{F(\lambda), F^{\prime}(\lambda): \lambda=b_{1}, \ldots b_{m}\right\}$, find $q(x)$

Spectral domain SISO problem.

- Consider the inverse problem: Given $\left\{F(\lambda), F^{\prime}(\lambda): \lambda=b_{1}, \ldots b_{m}\right\}$, find $q(x)$
- Given $2 m$ spectral data values to reconstruct $q(x)$
- Can do a modified version of what follows for other forms of spectral data
- We will construct a ROM that matches this data exactly

Spectral domain SISO

- Consider exact solutions to above u_{1}, \ldots, u_{m} corresponding to spectral points $\lambda=b_{1}, \ldots b_{m}$. and the subspace

$$
G=\operatorname{span}\left\{u_{1}, \ldots, u_{m}\right\}
$$

- Although we do not know these solutions, we can obtain the Galerkin system (ROM) from the data
- Given by the mass and stiffness matrices

$$
M_{i j}=\int_{0}^{1} u_{i} u_{j}
$$

and

$$
S_{i j}=\int_{0}^{1} u_{i}^{\prime} u_{j}^{\prime}+\int_{0}^{1} q u_{i} u_{j} .
$$

They are given by the formulas

$$
\begin{equation*}
M_{i j}=\frac{F\left(\lambda_{i}\right)-F\left(\lambda_{j}\right)}{\lambda_{j}-\lambda_{i}}, \quad M_{i j}=-\frac{d F}{d \lambda}\left(\lambda_{i}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{i j}=\frac{F\left(\lambda_{j}\right) \lambda_{j}-F\left(\lambda_{i}\right) \lambda_{i}}{\lambda_{j}-\lambda_{i}}, \quad S_{i i}=\frac{d(\lambda F)}{d \lambda}\left(\lambda_{i}\right) \tag{19}
\end{equation*}
$$

Spectral domain SISO

- Searching for the unknown coefficients $\left\{c_{i}\right\}$ for the solution

$$
\begin{aligned}
& u_{G}=\sum_{i=1}^{m} c_{i} u_{i} \\
& M_{i j}=\int_{0}^{1} u_{i} u_{j}
\end{aligned}
$$

and

$$
S_{i j}=\int_{0}^{1} u_{i}^{\prime} u_{j}^{\prime}+\int_{0}^{1} q u_{i} u_{j} .
$$

- For forward solution would solve $(S+\lambda M) \vec{c}=\vec{F}$ where $F_{i}=F\left(b_{i}\right)=u_{i}(0)$.

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm.

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm.
- Lanczos is Gram-Schmidt using the M inner product (L^{2}) on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm.
- Lanczos is Gram-Schmidt using the M inner product (L^{2}) on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).
- in the new basis A is tridiagonal (for SISO)

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm.
- Lanczos is Gram-Schmidt using the M inner product $\left(L^{2}\right)$ on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).
- in the new basis A is tridiagonal (for SISO)
- Why does this work in the spectral domain?

Spectral domain SISO

- Spectral snapshots are not like in the time domain, will not orthogonalize in the same way sequentially.
- Here we orthogonalize by using the Lanczos algorithm.
- Lanczos is Gram-Schmidt using the M inner product $\left(L^{2}\right)$ on the Krylov subspaces generated by powers of $A=M^{-1} S$ and initial vector $M^{-1} b$ (projection of a delta function source onto G).
- in the new basis A is tridiagonal (for SISO)
- Why does this work in the spectral domain?
- because the Krylov subspaces are the same as those generated by ROM- projected sequential time snapshots.

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

- Then $d(\tau i)$ satisfy the second order finite-difference scheme

$$
\begin{gathered}
d[\tau(i+1)]=(2 I-\tau A) d[\tau i]-d[\tau(i-1)], i=i, \ldots, m-1, \\
d(0)=M^{-1} b, \quad d(\tau)=d(-\tau)
\end{gathered}
$$

where $A=M^{-1} S$.

Spectral domain SISO

- That is, if $d \in \mathbb{R}^{m}$ satisfies the Galerkin problem

$$
S d(t)+M d(t)_{t t}=0, \quad d(0)=b, \quad d_{t t=0}=0
$$

which is a time-domain (the wave) variant of the ROM.

- Then $d(\tau i)$ satisfy the second order finite-difference scheme

$$
\begin{gathered}
d[\tau(i+1)]=(2 I-\tau A) d[\tau i]-d[\tau(i-1)], i=i, \ldots, m-1, \\
d(0)=M^{-1} b, \quad d(\tau)=d(-\tau)
\end{gathered}
$$

where $A=M^{-1} S$.

- span $\{d(\tau i)\}$ are the same as the above Krylov subspaces $\mathrm{w} /$ powers of A.

Spectral domain SISO

- So the entries of this orthogonalized reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$
\hat{S}_{i j}=\int \hat{u}_{i}^{\prime} \hat{u}_{j}^{\prime}+\int_{0}^{1} q \hat{u}_{i} \hat{u}_{j}
$$

and the mass matrix

$$
\hat{M}_{i j}=\int \hat{u}_{i} \hat{u}_{j}
$$

Spectral domain SISO

- So the entries of this orthogonalized reduced order model (which can be obtained from the data) are the entries of the stiffness matrix

$$
\hat{S}_{i j}=\int \hat{u}_{i}^{\prime} \hat{u}_{j}^{\prime}+\int_{0}^{1} q \hat{u}_{i} \hat{u}_{j}
$$

and the mass matrix

$$
\hat{M}_{i j}=\int \hat{u}_{i} \hat{u}_{j}
$$

- correspond to sequentially orthogonalized projected time snapshots, which depend only very weakly on the coefficient .

Weak dependence of orthogonalized spectral basis on q (positive $\lambda=b_{i}$)

Third basis function

Weak dependence of orthogonalized spectral basis on q (positive $\lambda=b_{i}$)

Spectral domain Lippmann-Schwinger Lanczos approach

- Since the basis depends weakly on the unknown coefficient, we can get a data generated internal solution

$$
\mathbf{u}=\sqrt{b^{*} M^{-1} b} V_{0} Q_{0}(A+\lambda I)^{-1} e_{1}
$$

where $A=M^{-1} S$.

Spectral domain Lippmann-Schwinger Lanczos approach

- Since the basis depends weakly on the unknown coefficient, we can get a data generated internal solution

$$
\mathbf{u}=\sqrt{b^{*} M^{-1} b} V_{0} Q_{0}(A+\lambda I)^{-1} e_{1}
$$

where $A=M^{-1} S$.

- Again we use the Lippmann-Schwinger equation

$$
\begin{equation*}
F_{0}-F=\int_{\Omega} u u_{0}\left(q-q_{0}\right) \tag{20}
\end{equation*}
$$

- For inverse Born one would replace u by u_{0}

Spectral domain Lippmann-Schwinger Lanczos approach

- Since the basis depends weakly on the unknown coefficient, we can get a data generated internal solution

$$
\mathbf{u}=\sqrt{b^{*} M^{-1} b} V_{0} Q_{0}(A+\lambda I)^{-1} e_{1}
$$

where $A=M^{-1} S$.

- Again we use the Lippmann-Schwinger equation

$$
\begin{equation*}
F_{0}-F=\int_{\Omega} u u_{0}\left(q-q_{0}\right) \tag{20}
\end{equation*}
$$

- For inverse Born one would replace u by u_{0}
- With data generated ROM we replace by \mathbf{u}, the data generated internal solution.

Spectral domain Lippman-Schwinger Lanczos approach

True q

Spectral domain Lippman-Schwinger Lanczos approach

True q

Born

IE

Spectral domain Lippman-Schwinger Lanczos approach

Figure: Experiment 3: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

Non-symmetric data: Lippman-Schwinger Lanczos approach

Figure: Experiment 1: True medium (top left) and its reconstructions using 'Cheated IE' (top right), Born linearization (bottom left) and our approach (bottom right)

Helmholtz 2d (with E. Cherkaev and J. Baker)

True

Born

Cheated

LSL

Figure: 2-D Helmholtz (positive $\bar{\lambda}$)

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- In the spectral domain, the Lanczos algorithm exactly mimics this.

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- In the spectral domain, the Lanczos algorithm exactly mimics this.
- In both cases the new basis is close to that from reference medium.

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- In the spectral domain, the Lanczos algorithm exactly mimics this.
- In both cases the new basis is close to that from reference medium.
- Can use the reference medium basis to obtain approximations of internal solutions from data only

Conclusions

- Time domain mass matrix gives orthogonalization of time snapshots sequentially
- In the spectral domain, the Lanczos algorithm exactly mimics this.
- In both cases the new basis is close to that from reference medium.
- Can use the reference medium basis to obtain approximations of internal solutions from data only
- Lippmann-Schwinger-Lanczos: use these internal solutions in Lippmann Schwinger, extendable to more general data sets.

