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Abstract

Turbulent flows strain resources, both memory and CPU speed. DLN
has greater accuracy and allows larger timesteps, requiring less memory
and fewer FLOPS. DLN can also be implemented adaptively. The classi-
cal Smagorinsky model, as an effective way to approximate a (resolved)
mean velocity, has recently been corrected to represent a flow of energy
from unresolved fluctuations to the (resolved) mean velocity. In the re-
port, we apply a family of second-order, G-stable time-stepping methods
called DLN method to one corrected Smagorinsky model and provide the
detailed numerical analysis about the stability and consistency. We prove
that the numerical solutions under any arbitrary time step sequences are
unconditional stable in long term and converge at second order. Numeri-
cal tests are given to confirm the rate of convergence and also to show that
adaptive DLN helps to control numerical dissipation so that backscatter
is visible.

Model Equations

• The CSM model reads ∇ · w = 0 and
wt − C4

sδ2µ−2∇wt + w · ∇w − ν∇w + ∇q − ∇ ·
(

(Csδ)2|∇w|∇w
)

= f.

In [1], the CSM model derivation and some basic properties of the CSM
are developed and two algorithms (BE and CLNE) for its numerical
simulation are proposed.

• µ is a constant from Kolmogorov-Prandtl relation, and (w, q) ≈ (u, p),
νT = (Csδ)2|∇w|, Cs ≈ 0.1, δ is a length scale.

Notations

• X := {v ∈ L3(Ω) : ∇v ∈ L3(Ω) and v = 0 on ∂Ω}, Q := L2
0(Ω) = {q ∈

L2(Ω) : ∫
Ω q dx = 0}, and V := {v ∈ X : (q, ∇ · v) = 0, ∀q ∈ Q}.
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• Minimum Dissipation criteria, χ =
∣∣∣∣ND
VD

∣∣∣∣ < Tol.

Full Discretization
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Stability of DLN for CSM
The one-leg DLN method is unconditionally, long-time stable, i.e. for any
integer N > 1,
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Error Estimate

• Timestep condition:
C(θ)kmax

ν3
(
k6

max∥∇wtt∥4
L2(0,T ;L2) + C∥∇w∥4

L∞(0,T ;L2)
)

< 1. (1)

• Let (w(t), q(t)) be sufficiently smooth, strong solution of the CSM.
When applying one-leg DLN’s algorithm, there is a constant C > 0 such
that under timestep condition (1), the following error estimates hold

∥wN − wh
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max, h2, δk3/2
max, δh3/2).

Convergence Rate

Table 1: Errors by ∥ · ∥∞,0-norm and Convergence Rate for the constant DLN with θ = 2/3

Timestep k Meshsize h ∥|ew|∥∞,0 Rate ∥|∇ew|∥∞,0 Rate ∥|ep|∥∞,0 Rate
0.08 0.09 6.03 - 56.85 - 10.86 -
0.04 0.042 0.049 6.92 1.36 5.39 0.08 7.10
0.02 0.02 0.01 2.06 0.39 1.76 0.02 2.04
0.01 0.01 0.003 2.009 0.12 1.94 0.005 1.98
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Figure 1: Variable Step DLN with Re = 10, 000, θ = 0.95, Cs = 0.1, µ = 0.4. (a): The
pattern is visible when there is no backscatter and b): The pattern is visible when there is
backscatter.

Important Result

The adaptive variable timestep DLN method applied to the Turbulent model (CSM) succeeds in showing backscatter while constant timestep fails.
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Figure 2: Constant DLN with Re = 10, 000, θ = 0.95, Cs = 0.1, µ = 0.4.

MD and CSMD (Variable Timestep)
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Figure 3: Adaptive DLN with Tol = 0.05, Re = 10, 000, θ = 0.95, Cs = 0.1 µ = 0.4.

ND and VD

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60
ND

(a) ND (Constant DLN)

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18
VD

(b) VD (Constant DLN)
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Figure 4: Adaptive DLN with Tol = 0.05, Re = 10, 000, θ = 0.95, Cs = 0.1 µ = 0.4.

Total Timesteps

Table 2: Total timesteps taken to reach T = 10 while using variable DLN for different values
of θ.

θ Tol Total Timesteps
0.98 0.01 9575
0.95 0.01 6505
0.95 0.05 1604
2/

√
5 0.01 8988

2/
√

5 0.05 5680
2/

√
5 0.15 1973

2/3 0.01 9944
2/3 0.05 9575
2/3 0.15 7149

Conclusion and Future Work
The closer θ = 1, the closer DLN method gets to be exactly conservative. If
it is exactly conservative, we do not need tight control over ND. The further
we go away from exactly conservative, the tighter control we need over ND
to see bacscatter. Next, to avoid the timestep condition we will work on the
linearly implicit DLN method.
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