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Inverse problems aim to reconstruct a medium characteristics from knowledge
of the response of the medium to a known incident field.
In this talk we seek to reconstruct the transmisivity by recording the
medium’s response to one or more known excitations.

We consider a sparse unknown : the unknown image often has a low
dimensional structure and admits a sparse representation in certain bases.
Measurements : intensity-only.
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Inverse problems in wave propagation

Applications

At high frequencies intensities only can be recorded
e.g., CCD’s, light detectors can record only intensities

Optics
Digital microscopy
X-ray crystallography

We have developed a computational imaging approach that allows for phase and
absorption contrast recovery from intensity measurements.

Multiple illuminations are needed (usual in phase retrieval ; masks).

The keystone for the efficiency of the method is a robust dimensionality reduction
strategy carried in two steps accounting for both the incoherent (absorption
contrast) and coherent contributions (phase contrast) in the data.
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Model problem

Imaging problem setup

We seek the transmissivity vector

t = [t1, . . . , tK ]ᵀ = [|t1|eiϕ1 , . . . , |tK |eiϕK ]ᵀ ∈ CK

from intensity measurements of the form z

Fsk

source plane

ith illumination

imaging plane

measurement plane

tkwik

K∑
k=1

Fsktkwik

|(bi)s|2 =

∣∣∣∣∣
K∑
k=1

Fskwiktk

∣∣∣∣∣
2

=

K∑
k=1

|Fsk|2︸ ︷︷ ︸
=cste

|wik|2|tk|2 +

K∑
k=1

K∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′

|(bi)s|2 is the intensity recorded at the s-th transducer when the ith illumination

wi = [wi1, . . . , wiK ]ᵀ ∈ CK

impinges on the object plane. Fsk is the propagator from the object plane to the
receiver plane. F and wi are assumed known.
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Model problem

Imaging problem setup

This problem can be written in matrix form as

Wincoh χd +Wcoh χcross = d

The data are
d = [dT1 ,d

T
2 , . . . ,d

T
S ]T

with ds = [|(b1)s|2, |(b2)s|2, . . . , |(bN )s|2]T the intensities recorded at the
detector s for the illuminations 1, 2, . . . , N .
The unknown is decomposed into

χd = [|t1|2, |t2|2, . . . , |tK |2]T

and
χcross = [t1t

∗
2, t1t

∗
3, . . . , t1t

∗
K , t2t

∗
1, t2t

∗
3, . . . , t2t

∗
K , t3t

∗
1, . . . , ] ,

The bottleneck for the inversion is the size of the problem, which is enormous if
one wants to form high resolution images. An image with 1000× 1000 pixels,
amounts to solving a linear system with 1012 unknowns !
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Model problem

Imaging problem setup

The problem of recovering t from intensity measurements is nonlinear and there is
much interest in finding algorithms that give the true global solution effectively.

Iterative projection methods

R.W. Gerchberg and W.O. Saxton, A practical algorithm for the determination of
phase from image and diffraction plane pictures, Optik 35, 237-246 (1972).

J.R. Fienup, Reconstruction of an object from the modulus of its Fourier transform,
Optics Letters 3, 27-29 (1978).

simple to implement & very flexible in practice

do not always converge to the true solution unless good prior

information is available.
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Model problem

Imaging problem setup

The problem of recovering t from intensity measurements is nonlinear and there is
much interest in finding algorithms that give the true global solution effectively.

Quadratic methods seek for the matrix unknown tt∗ using nuclear norm
minimization

A. Chai, M. Moscoso and G. Papanicolaou, Array imaging using intensity-only
measurements, Inverse Problems 27 (2011), 015005.

E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski, Phase Retrieval via
Matrix Completion, SIAM J. on Imaging Sci. 6 (2013), 199-225.

convex problem  convergence to the true solution

computational complexity limits the usefulness of this approach
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Dimension reduction

The noise collector and dimension reduction

We propose the following robust dimensionality reduction strategy.

Instead of solving the problem with K2 unknowns we reduce its dimensionality
constructing linear problems for only O(K) unknowns & absorb the error, that is
the contribution of the unmodeled unknowns using a Noise Collector.

We solve linear systems of the form

Aχ+ Cη = d

A a matrix with O(K) subsampled columns of [Wincoh|Wcoh].
χ is a sparse vector that represents the object
η is an auxiliary unknown introduced to absorb the error
C is a Noise Collector matrix.
This approach allows us to find the exact support of χ for each linear
problem we solve (incoherent & coherent)
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Dimension reduction

The Noise collector

The Noise Collector is a method that allows us to find the sparse solution χ ∈ CK
of

Aχ = d(= d0 + e)

from highly incomplete (1� N < K) and noisy data d ∈ CN (noise e ∈ CN ).

Main result : The support of χτ found as

(χτ ,ητ ) = arg minχ,η (τ‖χ‖`1 + ‖η‖`1) ,
subject to Aχ+ Cη = d

is exact when the noise is not too large.

C is the Noise Collector matrix C ∈ CN×Σ, Σ = Nβ , for β > 1 and τ is an O(1)
no-phantom weight that is independent of the dimension of the problem and the
level of noise in the data.

η does not correspond to a physical quantity. It is introduced to provide an
appropriate linear combination of the columns of C that produces a good
approximation to the noise vector e. Cητ absorbs all the noise (and possibly some
signal).
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Dimension reduction

The Noise collector

The columns of C are chosen independently and at random on the unit
sphere SN−1 so that we could approximate well a typical noise vector.

The weight τ > 1 is chosen so it is expensive to approximate e with the
columns of A. τ cannot be taken too large because then the collector
becomes too "cheap" and we lose the signal χ that gets also absorbed by the
Noise Collector. In practice, it is chosen as the minimal τ so that χ = 0 when
d = e (pure noise data) - no-phantom weight.

The main result is obtained under the assumption that the columns of A are
incoherent,

|〈ai,aj〉| 6
1

3M
for all i and j,

and that the noise is not too large

max (1, ‖e‖`2) 6 c1
‖d0‖2`2
‖χ‖`1

√
N

lnN
,
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Dimension reduction

The Noise collector
Noise Collector at work

`1 reconstruction without the Noise Collector
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`1 reconstruction with the Noise Collector
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N = 1369 measurements. K = 1681 pixels in the images. 100% noise.

The Noise Collector allows for exact support recovery !
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Dimension reduction

The algorithm

The algorithm has three steps
(1) In the first step, we seek the strong absorbing objects. We set A =Wincoh,

and solve
Aχ+ Cη = d (=Wincohχd +Wcohχcross),

for χ = χd = [|t1|2, |t2|2, . . . , |tK |2]T .

Cη absorbs the contributions of χcross to the intensities which are treated in
this step as noise. The model is not exact so only the strong absorbers are
detected.

The first term in |(bi)s|2 =

K∑
k=1

|wik|2|tk|2︸ ︷︷ ︸
indep of s

+

m∑
k=1

K∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′

is independent of s ⇒ use total intensity as data ; no need to know the
propagator Fsk.

Consider m strong absorbers |ti| = O(1), i = 1, . . . ,m and n weak (phase
contrast) |tj | = O(ε), j = 1, . . . , n. During the first step we only recover
|ti|2, i = 1, . . . ,m because the contribution from |tj |2 = O(ε2) j = 1, . . . , n
is lost in the noise.
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Dimension reduction

The algorithm

Example. Imaging two strong (red squares) and two weak (white crosses)
absorbers m = 2, n = 2.

true χd reconstructed χd
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First step : Recovering the two strong ones. The total power received for
N = 300 illumination patterns is used as data. The unknown dimension is
K = 961 (K2 = 923521)
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Dimension reduction

The algorithm

(2) In the second step :
We first remove from the data the contributions already found (O(1)
contributions) what remains is

|(bi)s|2 =
n∑

k=1

|wik|2|tk|2︸ ︷︷ ︸
O(ε2)

+
m∑

k=1

m∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′

︸ ︷︷ ︸
O(1)

+
m∑

k=1

n∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′

︸ ︷︷ ︸
O(ε)

+

n∑
k=1

n∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′

︸ ︷︷ ︸
O(ε2)

Then for every pixel i = 1, . . . ,m detected during the first step we seek for its
interactions t∗i tj with all the other K − 1 pixels in the object plane,
j = 1, . . . ,K, j 6= i (O(1) and O(ε) contributions).

In this case A = (Wcoh)sub, where (Wcoh)sub contains the m (K − 1)
columns that correspond to the interactions between the m detected objects
in the first step and all the other pixels in the image.

Since we are neglecting the O(ε2) contributions, the system is not exact.
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Dimension reduction

The algorithm

Example. Imaging two strong (red squares) and two weak (white crosses)
absorbers m = 2, n = 2.
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Second step : Recovering the two weak ones. The power received on 5× 5
receivers for N = 300 illumination patterns is used as data. The unknown
dimension is 2(K − 1) = 1920 (K2 = 923521)
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Dimension reduction

The algorithm

(3) The third step is optional. It is used to obtain more precise quantitative
images.

Once the strong and weak absorbing objects are found, we solve the full
problem but restricted to the recovered support.

This is now a small problem that can be solved using an `2 minimization
method that gives very accurate results.
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Dimension reduction

Setup : transmission problem with multiple illuminations

imaging plane

source plane measurement plane

z

Wavelength λ = 500 nm
Source plane : 21× 21 evenly
distributed sources on 8mm×8mm
at z = −8mm. (8mm = 16000 λ)
N = 300 different illumination
patterns are used.
Imaging region 31× 31 pixels
centered at the origin. Thin object.
pixel size λ/2 = 250nm.
Measurements sampled on 5× 5
receivers located on a 8mm×8mm
aperture at z = +8mm.
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Dimension reduction

Results (1 strong and 9 weak absorbers)
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2nd step
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First step and second steps for 1 strong and 9 weak absorbers (m = 1, n = 9)
SNR= 30dB.
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Dimension reduction

Results (1 strong and 9 weak absorbers)

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Third step for the full unknown X = tt∗ restricted to the recovered support
The dimension of the unknown is 102.

true SNR=30dB
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True and recovered phase maps for the 10 absorbers.
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Dimension reduction

Partially coherent data

We use the following model to generate the data

|(bi)s|2 =

K∑
k=1

|wik|2|tk|2 + αcoh

K∑
k=1

K∑
k′=1
k′ 6=k

FskF
∗
sk′wikw

∗
ik′tkt

∗
k′ ,

with 0 ≤ αcoh ≤ 1. If αcoh = 1, the sources are fully coherent, and if αcoh = 0
they are fully incoherent. This parameter is unknown for the inversion of the data.
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Dimension reduction

Partially coherent data
1s
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ep

true χd reconstruction
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Imaging 2 strong and 2 weak absorbers with partially coherent illumination.

Here αcoh = 0.5. As αcoh decreases we may lose the weak absorbers. This depends
on the transparency of these objects, their number, and the noise in the data.
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Conclusions

Concluding remarks

We presented a two (three) step algorithm for phase retrieval based on a
robust dimensionality reduction strategy carried in two steps accounting for
both the incoherent (absorption contrast) and coherent contributions (phase
contrast) in the data.
The algorithm is efficient because its cost is linear in the number of pixels !
It guarantees exact recovery if the image is sparse with respect to a given
basis.
May be used, without any modification, for partially coherent data. This is
very important for phase-contrast X-ray imaging because fully coherent
sources of X-rays are very hard to be obtained.
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Conclusions

Concluding remarks

More on the Noise Collector and its theoretical analysis in

M. Moscoso, A. Novikov, G. Papanicolaou, CT, Imaging with highly
incomplete and corrupted data, Inverse Problems, 36(3), p. 035010, 2020.
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