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a b s t r a c t

Reversal of synaptic plasticity has been the prevalent theory for extinction of animal conditioning.

Phenomena like faster reacquisition after extinction are explained via residual synaptic plasticity in the

relevant neural circuits. However, this account cannot explain many recent behavioral findings. This

includes phenomena like savings in extinction, reinstatement, spontaneous recovery and renewal.

formed during acquisition. It instead involves the superimposition of some separate decremental

process that works to inhibit the previously learned responses. We have explored this dual-pathway

account using a neurocomputational model of conditioning. In our model, associations related to

acquisition and extinction are maintained side by side as a result of the interaction between general

neural learning processes and the presence of lateral inhibition between neurons. The model captures

most of the relevant behavioral phenomena that prompted the hypothesis of separate acquisition and

extinction pathways. It also shows how seemingly complex behavior can emerge out of relatively

simple underlying neural mechanisms.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The relationship between the learning of an association and the
unlearning of that same association is commonly thought to involve
a singular representation of the strength of association, with that
strength rising during learning and falling during unlearning. In
animal conditioning, this view suggests that the extinction of a
behavior involves reversing the synaptic modifications made during
the initial acquisition of that behavior. During acquisition training,
the association between the conditioned stimulus (CS) and the
unconditioned stimulus (US) is encoded by changing the strength of
the synaptic interconnections between certain neurons in the brain.
During extinction training, the changes made to these connections
are reversed, causing the animal to stop producing the conditioned
response (CR) [1–3]. While this theory is simple and elegant, it is
not consistent with a growing body of behavioral findings.

Evidence from numerous studies points to the possibility that
extinction is not a mere reversal of the associations formed during
acquisition [4–15]. Phenomena like savings, reinstatement, sponta-
neous recovery and renewal suggest that extinction training
involves the superimposition of some separate decremental process
ll rights reserved.
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that works to inhibit previously learned response, leaving most of
the originally acquired CS–US association intact. The phenomenon of
savings [10–13,16,17] involves the relatively small amount of
reacquisition training needed to restore the response after extinction
training. In reinstatement [6,18], the response is restored through
the presentation of US, alone. In spontaneous recovery [7,10,14,19]
response to the CS is restored simply by the passage of time, after
extinction training. Renewal [4,5] is said to occur when a shift in
environmental context away from that in which extinction training
took place results in renewed responding.

Recognition of retained association knowledge, even after
responding has been extinguished, has led to theories involving
residual synaptic plasticity and sub-threshold responding [1–3].
These theories hold that extinction training does not completely
reverse synaptic changes made during initial acquisition, but only
reverses these changes enough to effectively inhibit responding.
When presented with the CS after extinction, the neural system
involved in producing a response continues to become somewhat
active, but not sufficiently active to produce an actual response.
Thus, only small changes in association strength are needed to
return this system to a state in which responding to the CS is robust.

However theories based on residual synaptic plasticity cannot
account for some important additional observations. In particular,
there is evidence that, just as extinction does not remove associa-
tions built up during previous acquisition training; subsequent
reacquisition training does not remove the inhibitory force built
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up during previous extinction training. For example, animals
continue to show spontaneous recovery—a phenomenon that only
arises after extinction training—even if they experience a subse-
quent period of reacquisition that removes the behavioral impact
of the previous extinction process [10]. Also, just as reacquisition
after extinction is faster than initial acquisition, subsequent
extinctions are also faster than the first extinction [10,16,17].

Other phenomena, including conditioned inhibition, counter
conditioning and feature positive discrimination shed further light
on the nature of the associative changes during extinction. In
conditioned inhibition [6], a CS is reinforced when presented alone,
while it is not reinforced when presented in combination with a
second CS. Due to this training, the second CS acquires inhibitory
associations. In counterconditioning [6], a CS that was initially
paired with one US is later paired with a contradictory US. This
causes the extinction of the response corresponding to the first US.
Finally, in a feature positive discrimination experiment [15], a CS is
not reinforced when presented alone, while it is reinforced when
presented in combination with a second CS. After this training, the
strongest responding is observed for the CS combination. The
second CS alone generates a somewhat weaker responding, while
the first CS alone generates negligible responding.

In this paper, we show that the fundamental principles of
neural computation, embodied in the Leabra modeling framework
[20], spontaneously capture these phenomena of extinction. In
particular, we show how synaptic plasticity, bidirectional excita-
tion between cortical regions, and lateral inhibition between
cortical regions interact, allowing the effects of previous acquisi-
tion and extinction to be maintained side by side. Of particular
importance are processes of lateral inhibition, which introduce
competition between neurons involved in the encoding of stimuli.
Our model encodes the acquisition and extinction using a separate
pool of neurons that compete with each other via the lateral
inhibitory mechanism. During acquisition training, synaptic
strengths change so as to encourage the activation of acquisition
neurons and discourage the activation of extinction neurons.
Similarly, during extinction training, synaptic strengths change
so as to encourage the activation of extinction neurons and
discourage the activation of acquisition neurons. As the extinction
training proceeds, one by one, the acquisition neurons start losing
the inhibitory competition. As soon as an acquisition neuron loses
the inhibitory competition, its activation level drops dramatically,
causing the synaptic modification process to effectively cease for
it. Hence, much of the associational knowledge embedded in the
synapses of the acquisition neurons is retained even after extinc-
tion. Similarly, many of the changes in extinction neuron synapses
wrought during extinction training are retained after reacquisition
training. Through this retention of synaptic strengths, our model is
able to capture many of the behavioral results described above.

The paper is organized as follows. In Section 3, we present a
brief description of the Leabra modeling framework. The details of
our model are described in the subsequent section. That is followed
by a detailed description of the different behavioral results along
with the results of our simulation experiments. We conclude the
paper with a general discussion of some relevant issues.
2. Related models

Temporal Difference Reinforcement Learning (TDRL) is unable
to reproduce data confirming faster reacquisition after extinction
due to the fact that it unlearns acquisition-related state values
during extinction. Redish et al. [21] proposed an insightful variant
of the TDRL model to address this issue. Their model introduced a
state-classification process that determines the subject’s current
state and creates new states and state spaces when observation
statistics change. The model hypothesized that tonically low
expected reward produces a splitting of the state representation,
with the different states being evaluated independently. How-
ever, the model leaves open issues such as the biological imple-
mentation of how the lack of expected reward would be signaled,
and how cues would be categorized into situations within the
brain. The proposed TDRL model captures the phenomenon of
cued renewal by generating a new state on receiving consistently
low reward during extinction. The renewal occurs because the
associations formed during acquisition are not forgotten, and new
extinction associations are formed in a different state. The Leabra
model proposed in this paper also captures renewal with context
units biasing the response of the subject in different contexts. This
allows the network to generate different representations of an
association for different contexts. Additionally, our model also
captures the acceleration in learning observed during repeated re-
acquisition and extinction trials (Section 5.1), a phenomenon that
the model by Redish et al. fails to capture.

More recently, Gershman et al. [22] extended the idea of state
splitting to renewal and latent inhibition and suggested a latent
cause model that allows for inference of new latent causes as the
model gathers observations. Courville et al. [23] present a novel
Bayesian account of change based on Pearce’s theory of surprise
in animal conditioning [24]. Their model infers that surprise
expedites learning because it signals change, which consequently
increases the uncertainty in the subjects’ current beliefs about the
world. An important difference between our model and these
prior models is that we have built our model as a network of
Leabra neural units, where each unit actually simulates neurons
in the brain. The models mentioned above manage to capture
much of the data presented in this paper, but these models tend
to be mathematically abstract in nature, often leaving it unclear
how these are to be translated into neural models.

The idea that acquisition and extinction involve learning in
separate pathways has been proposed as an explanation to
behavioral data by behavioral scientists [10,12] and has also been
used in some highly successful neural models. Grossberg et al.
[25] assume that extinction of conditioning happens not because
of the reversal of learning in the on-pathway, but due to an active
process of counter conditioning in the off-pathway. Our model
does not ‘assume’ that lateral inhibition is sufficient for the
emergence of independent pathways, rather it is a central finding.
In contrast use of separate pathways for learning and unlearning
was an assumption in Grossberg’s work, implemented via dedi-
cated learning rules which ensured that separate sets of weights
change during learning and unlearning.

Another recent neural network model developed by Grossberg
et al. [26]. simulates the interactions between different brain
regions in an effort to identify the roles played by the amygdala,
lateral hypothalamus and orbitofrontal cortex during condition-
ing. A relevant conclusion of their experiments is that none of the
simulated brain regions are specifically involved in acquisition of
conditioned responses. The paper further suggests that habit
learning involves brain structures that are relatively independent
of the brain structures involved in valuation like the amygdala
and orbitofrontal cortex. This is consistent with our model’s
prediction that the biologically grounded property of lateral
inhibition is sufficient for the emergence of separate independent
pathways for learning and unlearning.

Thus, it may be possible for conditioning-related phenomena
to emerge even in the absence of any specific brain architectures.
We have kept our network architecture generic i.e. a standard
three-layer network with an input layer, a hidden layer and an
output layer. This is not to suggest that specific brain areas do not
participate in the emergence of conditioning behaviors in specific
animals, however our model is consistent with findings that
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suggest that similar behavior should be exhibited in even the
most primitive of brains [27–30].
3. Background

Our proposed model utilizes the well-known Leabra cognitive
modeling framework [20] for developing a connectionist model
that is grounded in known neurobiological principles. This section
highlights the relevant properties of the Leabra framework that
enable the development of biologically plausible connectionist
models. Subsequently, the model proposed for demonstrating
extinction phenomenon is described in detail.

3.1. Leabra modeling framework

The Leabra framework offers a collection of integrated formal-
isms that are grounded in known properties of cortical circuits but
are sufficiently abstract to support the simulation of behaviors
arising from large neural systems. The framework has been used to
model a broad range of cognitive processes, including aspects of
perception, attention, language, learning, and memory. Leabra
includes dendritic integration using a point-neuron approximation,
a firing rate model of neural coding, bidirectional excitation
between cortical regions, fast feedforward and feedback inhibition,
and a mechanism for synaptic plasticity that incorporates both
error-driven and Hebbian learning. Of particular relevance to our
model is Leabra’s lateral inhibition formalism.

The effects of inhibitory interneurons tend to be strong and fast
in cortex. This allows inhibition to act in a regulatory role, mediating
the positive feedback of bidirectional excitatory connections
between brain regions. Simulation studies have shown that a
combination of fast feedforward and feedback inhibition can pro-
duce a kind of ‘‘set-point dynamics’’, where the mean firing rate of
cells in a given region remains relatively constant in the face of
moderate changes to the mean strength of inputs. As inputs become
stronger, they drive inhibitory interneurons as well as excitatory
pyramidal cells, producing a dynamic balance between excitation
and inhibition. Leabra implements this dynamic using a k-Winners-
Take-All (kWTA) inhibition function that quickly modulates the
amount of pooled inhibition presented to a layer of simulated
cortical neural units, based on the layer’s level of input activity.
This results in a roughly constant number of units surpassing their
firing threshold. The amount of lateral inhibition within a layer can
be parameterized in a number of ways, with the most common
being either the absolute number or the percentage of the units in
the layer that are expected, on average, to surpass threshold. A layer
of neural units with a small value of this k parameter (e.g., 10–25%
of the number of units in a layer) will produce sparse representa-
tions, with few units being active at once.

In our model, acquisition-related and extinction-related learn-
ing occurs in two distinct sets of neurons that compete with each
other via this lateral inhibition mechanism. Indeed, it is lateral
inhibition, in conjunction with Leabra’s synaptic learning mechan-
ism, that enables the retention of acquisition knowledge in the
face of extinction training and the retention of extinction knowl-
edge in the face of re-acquisition training. A more detailed account
of the kWTA function used by Leabra is provided in the Appendix.

3.2. Biological plausibility

The individual neural units in the Leabra modeling framework
mimic the basic electrophysiological properties of biological neu-
rons. Leabra incorporates the electrostatic and diffusion properties
of ions to compute membrane potentials in its simulated neural
units. Leabra adheres to the biological constraint of separating
excitatory and inhibitory inputs by only directly simulating excita-
tory neurons (i.e. pyramidal neurons of the cortex), while utilizing
the kWTA function described in the previous section to simulate the
inhibitory inputs produced by the inhibitory interneurons in the
cortex. Thus, the kWTA function allows Leabra to simulate the
biological constraint of separating excitatory and inhibitory inputs
by only directly simulating excitatory neurons. It also allows for
smoother, more consistent activation dynamics than models that
use direct inhibition between units, and is more robust while
sustaining distributed representations [20]. Leabra strikes a balance
between computational tractability and biological plausibility by
using a point neuron activation function [20]. The point neuron
activation function adheres to known dynamics of information
processing in real neurons and allows for dendritic integration,
thereby allowing for a reduction in the spatial geometry and
improved computational tractability.

Leabra models simulate the spiking of a large number of
neurons via a rate code approximation to discrete spiking. The
output of a neural unit is a real-valued number that simulates the
instantaneous rate at which an otherwise equivalent spiking
neuron would produce spikes. The rate code approximation is
supported by the fact that cognition is not impaired greatly by
disruptions in the detailed firing properties of biological neurons.
Also there is little evidence to support the fact that individual
neurons communicate via precise spike timing, as that would be
contradictory to a learning algorithm that is robust to noise in the
spike timing.

The bidirectional connectivity between the hidden and output
layers is crucial to the learning properties of our model. The Leabra
learning algorithm adopts two phases of activation (please refer to
Appendix for details). The difference between the two phases of
activation is a measure of the units’ contribution to the overall
error signal. Bidirectional connectivity avoids the problems with
backpropagation of computing error information and sending this
error information backwards across synapses. Both parts of the
signal are naturally propagated throughout the network via
bidirectional connectivity. The activation states are local to the
synapse where the weight changes must occur, and the biological
plausibility of these weight changes in brain synapses is grounded
in the properties of the GeneRec learning rule used by Leabra. The
learning rule allows an error signal occurring anywhere in the
brain to be used to drive learning everywhere, thereby allowing
error signals to originate from different sources. In addition this
form of learning is compatible with and in fact dependent on the
bidirectional connectivity known to exist throughout the cortex
[31,32]. Another advantage of GeneRec is that this difference in
activation of a hidden unit during plus and minus phases is a good
approximation for the difference in the net input to a hidden unit
during plus and minus phases, multiplied by the derivative of the
activation function [20].
4. The model

The three-layer Leabra network shown in Fig. 1 was used for
our simulations. This model is an extension of the traditional
Rescorla–Wagner [33] model of animal conditioning. In our model,
a CS was encoded as a single input unit. The stimulus was recoded
over the firing rates of 40 units grouped into a hidden layer. This
hidden layer incorporated strong lateral inhibition, using a kWTA

parameter of k¼5, encouraging only 5 of the 40 units to be active
at any one time. The hidden layer had a bidirectional excitatory
projection to the output layer. The output layer contained 7 units,
with k¼5. Thus, our model used kWTA-based lateral inhibition in
both the hidden layer and the output layer.



Fig. 1. The Leabra model used for our simulations. Each gray box corresponds to a

neural processing unit. Each arrow represents interconnectivity between the units

in two layers.

Fig. 2. Active hidden units in (a) context A and (b) context B.
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For the simulation experiments that only used a positive
reward, the first 5 units were interpreted as encouraging a
positive response in the face of the stimulus, the average activa-
tion over these units determining the strength of the response.
The final 2 units in the output layer encoded the ‘‘null response’’
generated after extinction training. These units offered a means to
suppress the activity in the first 5 units via lateral inhibition. For
fear conditioning, the last 2 units encoded the positive response,
while the first 5 units encoded the animal’s ‘‘freezing’’ response in
the presence of the CS. We have used more neurons to encode
CSþ rather than CS�(in the positive reward case as well as the
fear conditioning case) based on evidence supporting higher
neural activity during CSþ as compared to CS�[34]. However
the number of units used to represent CSþ/CS� in the output
layer is not a critical model parameter and similar results were
achieved with different output unit ratios as well.

In some of the behavioral experiments simulated by our
model, conditioning and extinction trainings are conducted in
different contexts. Contexts are different experimental chambers
with distinct background lights, sounds or odors. In our model,
context was encoded by weakly activating a single unit (setting to
a value of 0.25, maximum possible value being 1.0) from a pool of
contextual input units. These units were connected to the hidden
layer units via a random pattern of connectivity, with a 90%
probability of each connection being formed. These connections
were randomly initialized at the beginning of each simulation
trial and remained unchanged until the end of the trial. The
weights of these connections were also randomly initialized.

Fig. 2 shows how switching on a unit of the context layer results
in some activity in the hidden layer. This activation, although
small, gives some units in the hidden layer a bias for activation. The
units that are activated are the ones that are more strongly
connected from the context layer as compared to the other hidden
layer units. Thus, during a training trial, if the context layer is
switched on, these units will have a greater chance of winning the
kWTA competition, and thus, participating in the learning process.
For different contexts, different units get a bias, thereby increasing
the chances that different sets of units get involved in learning in
different contexts. A switching of context in the simulation
experiments was achieved by the switching of the active unit in
the context layer. For the experiments in which the context was
never switched, a single unit in the context layer remained active
throughout the simulation.

It should be noted that the context layer and the CS layer
connect to the same hidden layer and interact with the same
hidden units with a high probability. The connection weights from
the CS to the hidden layer were also randomly initialized. When
simulating more than one CS, each was encoded over a separate
input unit and a separate layer of 40 hidden units. All of the
hidden layers participated in bidirectional excitatory connections
with a single shared output layer, identical to the one previously
described. Thus, different stimuli could not be represented using
shared neural resources. This amounts to an assumption that the
stimuli are all highly dissimilar, with each activating different
neurons in the brain. This simplifying assumption is not a critical
feature of this model.

Leabra’s default parameters were used in these simulations,
with only a few exceptions. To accommodate the relatively small
size of this network, the range of initial random synaptic weights
was reduced ([0.0; 0.1] rather than the default range of [0.25;
0.75]) and learning rate for synaptic modification was set to a
smaller value (0.005, half of the default of 0.01). Also, individual
neuron bias weights were removed.

Leabra allows users to specify scaling factors that determine the
influence of the different projections into a receiving layer. This is
achieved by setting the wt_scale.rel parameter, with a higher value
enhancing the contribution and lower value weakening the con-
tribution of a set of projections. In our model, the strength of the
backward projection from the output layer to the hidden layer was
weakened by setting the wt_scale.rel parameter to a value of 0.05
instead of the default value of 1. This decrease was required because
with the default strength, the backward projections strongly acti-
vated all the hidden layers in the network, even those for which the
corresponding input stimulus was not provided. Modifications of
these kinds are common in smaller Leabra networks.

A randomly initialized network was used for each training
trial. Each training session was terminated when the sum squared
error (SSE) between the network’s output and the expected
output patterns fell below a criterion value of 1. All simulation
experiments were repeated 25 times, and mean results across
these runs are reported.
5. Experiments

The current section reports simulation results capturing beha-
vioral data from phenomena like Savings, Reinstatement, Renewal,
Feature Positive Discrimination and Conditioned Inhibition. A key
feature of the Leabra framework that allows for these results is
lateral inhibition. Lateral inhibition allows for sparse representa-
tions of network input–output mappings. This enables different
sets of neurons to be active during acquisition and extinction and
is critical to the savings experiments described in Section 5.1.
Furthermore, the error-driven GeneRec learning algorithm used by
Leabra allows the network weights to be updated in a biologically
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plausible manner, thereby allowing the network to learn associa-
tions during acquisition and extinction. Finally, the role of context
has been highlighted previously in Section 4 and the context units
in our model play an important role in the Renewal, Reinstate-
ment experiments as these bias different neural pathways to be
active in different contexts.
Fig. 3. Simulation 1A. The number of training trials required to reach criterion

(Y-axis) decreases as the number of prior acquisition and extinction training

sessions (X-axis) increases. Error bars report standard errors of the mean.
5.1. Savings

It is generally seen that a relatively small amount of reacquisi-
tion training is needed to restore responding after extinction
training. Rescorla [11,13] identified two different mechanisms
that might be responsible for faster reacquisition of responding
after extinction. First, it is possible that the association with the
CS is not completely removed by extinction training—that resi-
dual synaptic plasticity retains some associational connection.
Second, it might be the case that extinction training triggers faster
subsequent learning—that a CS undergoing retraining is particu-
larly quick to acquire new associative connections with the US
due to its prior history. To investigate these two alternatives,
Rescorla conducted the following experiments.

In one experiment, two stimuli, A and C, were initially trained
and then extinguished. Two other stimuli, B and D, were presented
without reinforcement. Once A and C were extinguished, A and B
then each received the same number of conditioning trials,
encouraging responding to these stimuli. At the end of this training
sequence, A elicited stronger responding than B. This is a demon-
stration of savings, since A was previously acquired and extin-
guished and B was not. This observation does not distinguish
between Rescorla’s two alternatives, however. The A stimulus
could have begun reacquisition training with some residual synap-
tic plasticity or the re-acquisition process could have operated at a
faster rate for A. In order to separate these hypotheses, Rescorla
tested responding to the compound stimuli AD and BC. Any
residual synaptic plasticity in A should also be present in C, so
responding to these two compounds should be roughly equivalent
if both A and B grow equally in associational strength during
reacquisition training. If, however, an association to A is learned
faster because of its previous extinction, then greater responding
should be seen to the AD compound. Surprisingly, neither of these
outcomes was observed. Responding to BC was stronger than
responding to AD. Rescorla concluded that A’s dominance over B
was the result of residual synaptic plasticity, and he explained the
dominance of the BC compound in terms of a blocking-like effect. If
associative change is governed by an error correction learning
mechanism, and if stimulus A begins reacquisition training with a
‘‘head start’’ over stimulus B, there will be less error when stimulus
A is presented, so the associational strength for A will grow more
slowly than that for B. Since A’s residual synaptic plasticity is
shared by C, and since B’s associational strength grows faster than
that of A during re-acquisition training, the BC compound dom-
inates over AD [11].

This explanation gave rise to a question: would A or B show
greater associative change if the error signal during reacquisition
training was equilibrated between them? In another experiment,
Rescorla addressed this question by presenting the AB compound
stimulus, rather than A and B separately, during reacquisition
training [13]. When this was done, greater responding was
generated by the AD compound than by the BC compound. Hence,
Rescorla concluded that, in addition to leaving residual associa-
tive strength, extinction also causes the stimulus to gain new
associative strength at a faster rate when it is, once again,
reinforced. Through a similar set of experiments, he concluded
that a stimulus that was previously extinguished and reacquired
is more sensitive to subsequent non-reinforcement.
5.1.1. Simulation 1A

Our first simulation experiment was designed to uncover the
degree to which our model exhibits savings. Recall that animals
are faster to reacquire an extinguished behavior, as compared to
initial acquisition, and they are faster to extinguish a reacquired
behavior, as compared to initial extinction. A randomly initialized
network was trained to respond upon the presentation of the CS
(Aþ). Once this training reached criterion, the network was
trained to not-respond upon the presentation of the CS (A�).
This pattern was repeated five times. Fig. 3 shows the number of
trials required for successive acquisition and extinction trainings.
Note that the required time quickly decreases. The model predicts
that the required number of trials will asymptote to a small value
after just a few acquisition-extinction iterations.

Why does this model exhibit savings? The network starts with
small initial synaptic weights. Hence, a large change in weights is
required for success during the first acquisition training session.
During the first extinction training session, the weights to the
acquisition neurons start decreasing and the weights to the extinc-
tion neurons start increasing. As soon as the extinction neurons win
the inhibitory competition, the acquisition neurons tend to fall
below their firing threshold. At this stage, the weights to the
acquisition neurons stop decreasing, as these neurons are no longer
contributing to erroneous outputs. Hence, a significant amount of
acquisition-related association strength is retained through the
extinction process. During the reacquisition training, the weights
to the acquisition neurons increase once again and the weights to
the extinction neurons decrease. Once again, the weights stop
changing as soon as the extinction neurons lose the inhibitory
competition. Hence, most of extinction-related plasticity is retained
through the acquisition process. In this manner, subsequent acquisi-
tion and extinction trainings require a very small change in weights
(Fig. 4). Effectively, acquisition and extinction associations are
maintained side by side in the network, allowing for the rapid
switching between them based on recent conditioning feedback.
5.1.2. Simulation 1B

The design of this simulation experiment is shown in Table 1.
As previously discussed, Rescorla designed this experiment to
assess whether the rapidity of reacquisition was a result of
residual synaptic plasticity or of an increase in acquisition speed
after extinction [11]. A randomly initialized network was first
trained on two CSs (Aþ and Cþ) while two other stimuli were
non-reinforced (B�and D�). Once the network reached criterion,
it was then trained to extinguish A and C (A�and C�). During this
session, B and D were presented in a non-reinforced manner
as well (B�and D�). This was followed by training on A and B



Table 1
The three training sessions, and single testing session, used in simulation 1B.

Letters correspond to different stimuli. A plus indicates acquisition training, and a

minus indicates extinction training.

Acquisition Extinction Reacquisition Test

Aþ A�

B� B� Aþ AD

Cþ C� Bþ BC

D� D�

Fig. 4. This graphs plot the change in the summed connection weights in the

acquisition pathway and in the extinction pathway (Y-axis) during the successive

acquisition and extinction trainings (X-axis). The change in weights decreases in

both the pathways as the number of prior acquisitions and extinctions training

sessions increases. There seems to be a slow upward going trend in the weights in

both the pathways, which appear to be a quirk of the simulator.
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(Aþ and Bþ) for 17 trials.1 At the end of these training sessions,
the response to A was much stronger than the response to B
ðtð48Þ ¼ 2:517, po0:0187Þ, as shown in Fig. 5. This is in accor-
dance with Rescorla’s observations. Finally, the network was
tested on the compounds: AD and BC. As observed behaviorally,
the network showed greater responding for BC than for AD
ðtð48Þ ¼ 55:72, po0:0001Þ (see Fig. 6).

While the simulation results show a qualitative match to the
behavioral data, they are more exaggerated. This pattern can be
seen in many of the subsequent experiments as well. We report the
activations as the sum of the output layer unit activation values.
While Leabra units can take any real numbered value, in practice, it
is generally seen that due to recurrent activation patterns, the
default network parameters (including the parameters of the
sigmoidal activation function) typically result in individual units
either strongly responding or very weakly responding.

In addition to capturing these general results, our model also
matches more subtle nuances in Rescorla’s data. First, the com-
pound BC produced a much stronger response in animals than
either B or C alone. Second, the compound AD was found to
produce significantly weaker responding than stimulus A, alone.
Our model captures both of these results. How can these results
be explained?

The compounds AD and BC are logically equivalent at the end
of the extinction training. During the retraining phase, stimulus A
quickly reacquired the responding due to its prior history of
acquisition and extinction. The acquisition pathway for stimulus
B also strengthened during this phase. However, the 17 training
trials of this phase prove to be insufficient to strengthen the
pathway enough to generate any noticeable gain in B’s respond-
ing. At this stage, stimulus C had strong weights in both the
pathways. However, due to the more recent extinction training,
1 This number of trials was chosen to make these results comparable to those

from simulation 1C. In simulation 1C, it was found that 17 trials were needed, on

average, to train the AB compound to criterion.
the extinction neurons won the inhibitory competition when C
was tested alone. When C was presented in combination with B,
B’s additional support proved to be sufficient to push the
acquisition neurons ahead in the inhibitory competition, causing
a dramatic increase in responding. In comparison, the weakly
extinction-biased weights of D, when combined with the strong
but balanced weights of A, were enough to start to tip the
inhibitory competition in the direction of a null response when
A and D were combined.

5.1.3. Simulation 1C

Table 2 shows the design of this simulation. As previously
discussed, Rescorla designed this experiment to identify acceler-
ated learning after extinction by equalizing for the amount of
error experienced by both A and B during reacquisition training. A
randomly initialized network was trained as before, with the only
difference being the use of a compound stimulus (ABþ) during
reacquisition training. Reaching criterion during reacquisition
required 17 trials, on average. As observed in animals, the net-
work produced stronger responding for AD than for BC ðtð48Þ ¼
12:225, po0:0001Þ. See Fig. 7.

Our model contains no mechanism for increasing the rate of
learning for A after its extinction. So, how did our model capture this
pattern of performance? This was not due to a speeding of learning
with regard to the A stimulus, but due to a blocking of learning with
regard to the B stimulus. During the reacquisition phase, due to
stimulus A’s prior history of conditioning and extinction, the
responding for the AB compound increased quickly. Hence, the error
signal which was responsible for the weight update dropped
quickly. Hence, the change in weights for stimulus B became smaller
and smaller with each trial. The average weight increase for
stimulus B during the retraining phase of this simulation was
0.212. In comparison, the average weight increase during the
retraining phase of the previously described simulation was 0.342.
This happens because in the last simulation, stimulus A and B were
presented individually. Stimulus B, which had no prior conditioning
experience continued to generate a very small response and hence
received a large error signal throughout the training.

5.2. Reinstatement

The phenomenon of reinstatement involves the restoration of
an extinguished response through the presentation of the US
alone. Reinstatement has generally been reported in the domain
of fear conditioning. Fear memory is believed to be stored in the
amygdala [35] . In a typical experiment [18], the animals are first
given baseline training, where they are trained for lever pressing
(by rewarding them with food pellets). This is followed by fear
conditioning, where the animals learn to suppress the lever
pressing behavior in the presence of a CS, by pairing that CS with
a foot shock. Then, the fear conditioning is extinguished via the
omission of the foot shock. At the end of the extinction training,
the animals are subject to a non-contingent foot shock without
the presentation of the CS. When tested in the presence of the CS,
it is observed that the lever pressing behavior is suppressed2

once again.
Many theories have been proposed to explain this phenom-

enon. One theory states that during the acquisition training,
along with the CS, the US is also encoded as part of the stimulus
[6,18]. Hence, when the US is presented alone, the strength
of the response-related association would still change, resulting
in reinstatement. Another theory states that the background
2 Suppression is measured as a ratio; suppression ratio¼(responding in the

presence of CS)/(responding in the presence of CSþbaseline responding).



Fig. 5. Simulation 1B. Left: results reproduced from Rescorla’s experiment—mean responding for A and B after the reacquisition phase. Right: simulation result—response

magnitude for A and B at the end of the reacquisition phase, with error bars showing standard errors of the mean.

Fig. 6. Simulation 1B. Left: results reproduced from Rescorla’s experiment—mean responding for AD and BC. Right: simulation result—response magnitude for AD and BC

compounds, with error bars showing standard errors of the mean. Note that BC produced a stronger response than AD.

Table 2
The three training sessions, and single testing session, used in simulation 1C. Letters correspond to

different stimuli. A plus indicates acquisition training, and a minus indicates extinction training.

Note that ‘‘ABþ ’’ indicates that both A and B were presented together, as a compound, and this

compound was reinforced.

Acquisition Extinction Reacquisition Test

Aþ A�

B� B� ABþ AD

Cþ C� BC

D� D�

Fig. 7. Simulation 1C. Left: results reproduced from Rescorla’s experiment—mean responding for AD and BC. Right: simulation results—response magnitude for AD and BC

compounds, with error bars showing standard errors of mean. Note that AD produced a stronger response than BC.
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context, in which acquisition and extinction trainings take place
is encoded as a part of the CS [6]. Hence, the presentation of US
alone would still change the response-related associations, result-
ing in reinstatement.

The theory that extinction forms a new memory and is not
erased by conditioning is well supported in the literature. It has
been shown that destruction of the ventral medial prefrontal cortex
blocks recall of fear conditioning [36,37] hinting that the medial
prefrontal cortex may be responsible for the storage of long-term
extinction memory. Milad and Quirk [38] performed experiments to
show that infralimbic neurons recorded during fear conditioning
and extinction fire to the tone only when rats are recalling extinc-
tion on the following day. They further showed that stimulation
resembling extinction-induced infralimbic tone responses is able to
simulate extinction memory. Westbrook et al. [39] studied the role
of context in reinstatement and their model suggested that rein-
statement was specific to the context presented post-extinction.
5.2.1. Simulation 2

This experiment was performed to test if the non-contingent
presentation of the US alone results in the reinstatement of an
extinguished fear response. The design of this simulation experi-
ment is shown in Table 3. A randomly initialized network was given
baseline training, where it learned to press the lever (L�) stimulus.
Then, the network was subjected to fear conditioning in the
presence of a stimulus (LTþ ,L�). This was followed by the
extinction of the fear conditioning (LT� , L�). Then, the network’s
responding was tested for in the presence of the CS (LT) and in the
absence of the CS (L). This was followed by a single non-contingent
presentation of foot shock (Lþ). Finally, the network’s responding
for L and LT combination was tested once again. We found that
there was negligible change in the responding to L before and after
the single shock stimulus presentation. The response magnitude
before the shock presentation was 1:881ð70:014Þ while after the
shock presentation was 1:862ð70:005Þ ðtð48Þ ¼ 1:259, po0:2128Þ.
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However, the responding for the LT combination showed a significant
drop ðtð48Þ ¼ 20:504, po0:0001Þ (see Fig. 8).

Most theories of conditioning ignore the fact that the initial
baseline training, where the animal learns to press the lever must
entail the formation of some associations. In contrast, in our
simulations, the lever stimulus (L) forms an integral part of the
entire training process. During the baseline training (L�), the
lever acquires strong food associations. These food associations
survive through the fear conditioning, and L continues to elicit a
strong food response. In contrast, after fear conditioning, the fear
associations for the LT combination are stronger than the food
associations, thereby eliciting a strong fear response. During the
extinction training, the fear associations for the LT combination
weaken only to the extent required to lose the inhibitory
competition. Hence, a large proportion of these associations
survive the extinction training. A single shock presentation (Lþ)
results in a sufficient increase in L’s associations to cause the fear
associations for the LT combination to start winning the inhibi-
tory competition once again. The food associations of L still
remain strong enough to win the inhibitory competition when L
is presented alone.

5.3. Renewal

In the phenomenon of renewal, a change of background context
after extinction causes a robust return of conditioned responding.
Bouton et al. [4–6] have performed a thorough investigation of
several different variants of this phenomenon. In one of the
versions, called the ABA renewal [5], the animals are first given
baseline training (lever pressing) in two different contexts (context
A and context B). This is followed by fear conditioning in context A.
Then, the fear response is extinguished in context B. Finally, the fear
response is tested in both the contexts. A greater fear response is
observed in context A than in context B. As mentioned earlier,
contexts are separate and counterbalanced apparatuses housed in
different rooms in the laboratory that differed in their tactile,
olfactory or visual aspects.

In another variant called the ABC renewal [5] the same training
process as in ABA renewal is conducted. The only difference is
that the final test of responding is conducted in an additional
neutral context (context C), where the animal only received the
Table 3
The four training sessions used in simulation 2. L corresponds to the lever stimulus

and T corresponds to a conditioned stimulus. A plus indicates fear conditioning,

and a minus indicates extinction training. Note that ‘‘LTþ ’’ signifies that during

the fear conditioning with T stimulus, the lever (L) stimulus was also present, and

hence the LT compound was reinforced.

Baseline Conditioning Extinction Reinstatement

L� L� L� Lþ

LTþ LT�

Fig. 8. Simulation 2. Left: results reproduced from Rescorla’s experiment—suppression

results—suppression ratio in the presence of the CS before and after the presentation of

(smaller suppression ratio) after the shock presentation than before the shock present
baseline training. Animals display a greater suppression of the
responding in context A as compared to context C. Moreover, they
display a lesser suppression in context B than in context C.

Bouton has explored the possible explanations for these phe-
nomena. One explanation is that the context forms a part of the CS
and hence, forms associations with the US. However, Bouton et al.
show that the renewal effect can occur even in the absence of
demonstrable excitation in the contexts of training. Based on their
experiments [4], they postulate that the context itself does not
form any association. Instead, it modulates or ‘‘sets the occasion’’
for the formation of CS–US or CS–no US associations.

Wagner et al. [15] have proposed a real-time model that
provides an interesting explanation for the role of context in
renewal. In one of their experiments, a CS was presented for a
long duration (just like the background context), followed by, and
terminating with a short presentation of a second CS. This
combination was reinforced, whereas, the second CS alone was
presented without reinforcement. Through this training, the
animals learned to respond to the sequential presentation of the
two stimuli, but did not respond to either of the stimuli when
presented alone. Their model is able to capture this phenomenon.
In their model, each training trial is divided into smaller sub-
trials. The long duration presentation of the first CS is treated as
multiple non-reinforced presentations of that stimulus. The final
state of the training trial is treated as a reinforced presentation of
the CS combination. With this training, the model easily fits the
behavioral data.

5.3.1. Simulation 3

This simulation demonstrates that shifting the animal to a context
different from the context of extinction results in a renewal of the
conditioned responding. The design of this simulation experiment is
shown in Table 4. A randomly initialized network was given baseline
training (L�) in three different contexts (A, B and C). After the
baseline training, fear conditioning (L� , LTþ) was conducted in
context A followed by extinction (L� , LT�) in context B. Finally,
responding with (LT) and without (L) CS was tested in all three
contexts. In accordance with the behavioral results, the network
exhibited a greater suppression in context A as compared to context C
ðtð48Þ ¼ 7:712, po0:0001Þ (see Fig. 9). The suppression in context B
was lesser than in context C ðtð48Þ ¼ 2:21, po0:0368Þ (see Fig. 10).
ratio in the presence of the CS, before and after reinstatement. Right: simulation

the non-contingent shock. Note that there is a greater suppression of the response

ation.

Table 4
The three training sessions and a single testing session, used in simulation 3. A, B

and C correspond to different contexts, L corresponds to the lever stimulus and T

corresponds to a conditioned stimulus. þ indicated fear conditioning and

� indicates extinction of fear conditioning.

Baseline Conditioning Extinction Test

A: L� A: L� B: L� A: LT

B: L� A: LTþ B: LT� B: LT

C: L� C: LT



Fig. 10. Simulation 3. Left: results reproduced from Bouton’s experiment—suppression ratio in context B and context C. Right: simulation results—suppression ratio in

context B and context C. Note that there is a lesser suppression of the response in context B, the context where fear conditioning was extinguished, as compared to context

C, the neutral context.

Fig. 11. Simulation 4. Left: results reproduced from Wagner’s experiment—percentage responding for AB compound, A and B. Right: simulation results—response

magnitude for AB, A and B. Note that the response magnitude is greater for AB compound than for A.

Fig. 9. Simulation 3. Left: results reproduced from Boutons experiment—suppression ratio in context A and context C. Right: simulation results—suppression ratio in

context A and context C. Note that there is a greater suppression of the response in context A, the context of fear conditioning, as compared to context C, the neutral

context.
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Fear conditioning is conducted in context A. Hence, A acquires
fear associations. In contrast, due to extinction training, context B
acquires extinction-related associations. Context C, the neutral
context, does not acquire either associations. The CS undergoes
acquisition training (in context A) and extinction training (in
context B). Hence, both the acquisition-related and extinction-
related associations strengthen for it. Hence, when the CS is
combined with context A, the response tends to shift in favor of
the fear response. When the CS is combined with context B, the
response tends to shift in favor of extinction. With context C, the
response remains intermediate. Additionally, the presentation of
context alone fails to generate any activity in the output layer of
our model. Hence, as observed by Bouton, the contexts of training
do not acquire any demonstrable associations during this training
process.

5.4. Feature positive discrimination

In feature positive discrimination [15], a CS is reinforced in
combination with a second CS, and it is not reinforced when
presented alone. With this training, the CS combination generates
a very strong response. The responding to the first CS alone is
negligible. The second CS alone exhibits an intermediate level of
responding. The single association theory makes a contradictory
prediction for this phenomenon. It predicts that the first CS,
starting with a net zero association, would acquire a net associa-
tion that is negative in magnitude. As a result, the association
acquired by the second CS will have to be especially strong in
order to overcome the subtracting effect of the first CS, when
presented in combination. Hence, the responding should be
stronger for the second CS alone as compared to the responding
for the CS combination.

5.4.1. Simulation 4

In this simulation experiment, a randomly initialized network
was trained on a stimulus combination (ABþ), while one of the
stimuli was presented without reinforcement (B�). At the end of
this training, the network’s performance was measured for A, B
and AB compound. In accordance with the behavioral data, the AB
compound showed a stronger responding than A ðtð48Þ ¼ 10:684,
po0:0001Þ. (see Fig. 11).

Stimulus B, which participates in both acquisition and extinc-
tion trainings, strengthens its associations in both pathways.
Hence, when B is presented alone, the two pathways cancel
each other’s effects via lateral inhibition, generating very small
output. Stimulus A only strengthens its acquisition-related asso-
ciations. As a result, when A is presented alone, it generates a
strong response. AB combination generates an even stronger
response due to the mutual support of acquisition associations
of A and B.
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5.5. Conditioned inhibition

In conditioned inhibition [6], a CS is reinforced when pre-
sented alone, but not reinforced when presented in combination
with a second CS. Due to this training, the second CS acquires
inhibitory capabilities—it can inhibit the responding, when it is
combined with some other reinforced stimulus. The single asso-
ciation theory predicts this result. It posits that the second
stimulus starting with net zero association would generate a net
association that is negative in magnitude. Hence, when combined
with the first stimulus, the summed strength of the association
becomes smaller, resulting in a diminished responding.

5.5.1. Simulation 5

The goal of this experiment was to test if our model predicts
conditioned inhibition. A randomly initialized network was rein-
forced for two different stimuli (Aþ , Bþ), while stimulus A was
presented without reinforcement in the presence of stimulus C
(AC�). At the end of this training, the network was tested for the BC
compound. As expected, the BC compound generated a weaker
responding as compared to B. The mean responding for the BC
compound was 1:459ð70:184Þ while that for B was 4:367ð70:045Þ
ðtð48Þ ¼ 15:374, po0:0001Þ. This happens because C acquires
extinction-related association which inhibits B’s responding.
6. Conclusions

We have proposed a neurocomputational model for the
extinction of animal conditioning. Contrary to the notion that
extinction involves only a reversal in previously acquired synaptic
associations, the model posits the existence of a separate pathway
that interacts with the acquisition-related pathway through the
interaction of foundational neural processes, including error-
driven synaptic plasticity, bidirectional excitation, and strong
lateral inhibition. We have shown that our model captures the
relevant patterns of performance exhibited by animals. Another
strength of our model is that it does not depend on the specific
properties of particular brain systems, such as the hippocampus
or the cerebellum. Hence, it helps in explaining why vastly
different brains produce similar patterns of learning.

What is the biological plausibility of the dual-association hypoth-
esis? The inhibitory circuits that are responsible for reducing the
expression of fear are not fully understood. However, there is
evidence highlighting the role of the medial prefrontal cortex
(mPFC) in memory circuits for fear extinction [35,40,41]. The ventral
and dorsal mPFC have been shown to be differentially involved in
acquisition and extinction of conditioned fear responses [36].
Several distinct nuclei of the amygdala have been shown to be
differentially involved in acquisition, extinction and expression of
fear responses [42–44]. Simulations of savings-related mechanisms
in the cerebellum during eyelid conditioning reveal that extinction
does not cause a reversal of plasticity in the acquisition-relevant
brain areas [3]. This evidence when pieced together lends support to
the notion that extinction is new learning, rather than erasure of
conditioning. Moreover, the extinction pathway does not necessarily
need to comprise of neurons solely dedicated to suppress the
conditioned response. The neurons used for generating alternative
responses could serve the dual purpose of simultaneously suppres-
sing the conditioned response as shown in some of our simulations.

One unresolved issue is concerning the phenomenon of spon-
taneous recovery. Spontaneous recovery has traditionally been
used as one of the strongest arguments in favor of the dual-
association theory of conditioning. However, simply the use of
two separate associations is insufficient to provide any explana-
tion for the phenomenon. An understanding of how the passage of
time influences the two associations would be required to explain
spontaneous recovery. Spontaneous recovery seems to be selec-
tively biased toward the recovery of the extinguished behavior.
A closer examination of the phenomenon could thus shed more
light on whether and how the learning that happens during
acquisition and extinction differs.

Leabra’s error-driven learning algorithm has been used for
these simulations. The Leabra framework also implements the
temporal difference learning algorithm [45]. This algorithm has
been used to simulate several conditioning phenomenon where
rewards are temporally delayed. Our future work will also focus
on extending the model to simulate these type of phenomena
as well.
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Appendix A

A.1. Lateral inhibition

The processes involved in lateral inhibition are particularly
relevant to the model presented in this paper. Lateral inhibition
allows for competition between neurons involved in the encoding
of stimuli. Along with the mechanisms of synaptic learning, this
competition separates the neurons that associate the stimulus
with responding, or acquisition neurons, from those which
associate the stimulus with non-responding, called extinction
neurons. The class of inhibitory functions that Leabra adopts are
known as k-winners-take-all (kWTA) functions. A kWTA function
ensures that no more than k units out of a total of n in a layer are
active at any given point in time. This is attractive from a
biological perspective because it captures the set point property
of inhibitory interneurons, where the activity level is maintained
through negative feedback at a roughly constant level (i.e. k).

A.1.1. kWTA function implementation

The k active units in a kWTA function are the ones receiving
the most excitatory input (ge). Each unit in the layer computes a
layer-wide level of inhibitory conductance (gi) while updating its
membrane potential such that the top k units will have above
threshold equilibrium membrane potentials with that value of gi,
while the rest will remain below firing threshold. The function
computes the amount of inhibitory current gy

i that would put a
unit just at threshold given its present level of excitatory input,
where y is the threshold membrane potential value. Computing
inhibitory conductance at the threshold ðgy

i Þ, yields

gy
i ¼

gn
e g�e ðEe�yÞþglg

�
l ðEl�yÞ

y�Ei
ð1Þ

where gn
e represents the excitatory input minus the contribution

from the bias weight and glg
�
l ,geg�e are the total conductances

from the Potassium and Sodium channels respectively. El and Ee

are the equilibrium potentials for the Potassium and Sodium
channels respectively [20]. gi is computed as an intermediate
value between the gy

i values for the kth and kþ1th units as sorted
by level of excitatory conductance (ge). This ensures that the
kþ1th unit remains below threshold, while the kth unit is above
it. Expressed as a formula this is given by

gi ¼ gy
kþ1þqðgy

i ðkÞ�gy
i ðkþ1ÞÞ ð2Þ
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where 0oqo1 determines where the inhibition lies between the
k and kþ1th units.
A.2. Leabra learning algorithms

Leabra provides for a balance between Hebbian and error-
driven learning. Hebbian learning is performed using a conditional
principal components analysis (CPCA) algorithm. Error-driven
learning is performed using GeneRec, which is a generalization
of the Recirculation algorithm, and approximates Almeida–Pineda
recurrent backpropagation.
A.2.1. Hebbian learning

The objective of the CPCA learning rule is to modify the
weights for a given input unit (xi) to represent the conditional
probability that the input unit (xi) is active when the correspond-
ing receiving unit (yj) is also active. This is expressed as

wij ¼ Pðxi ¼ 19yi ¼ 1Þ ¼ Pðxi9yjÞ ð3Þ

In Eq. (3) the weights reflect the frequency with which a given
input is active across the subset of input patterns represented by
the receiving unit. If an input pattern occurs frequently with such
inputs, then the resulting weights from it will be relatively large.
On the other hand if the input pattern occurs rarely across such
input patterns then the resulting weights will be small. The
following weight update rule achieves the CPCA conditional
probability objective represented by Eq. (3).

Dwij ¼ e½yjxi�yjwij� ¼ eyjðxi�wijÞ ð4Þ

where e is the learning rate parameter. The weights are adjusted
to match the value of the sending unit activation xi, weighted in
proportion to the activation of the receiving unit (yj). Thus
inactivity of the receiving unit implies that no weight modifica-
tion will occur. Conversely, if the receiving unit is very active
(near 1), the update rule modifies the weight to match the input
unit’s activation. The weight will eventually come to approximate
the expected value of the sending unit when the receiver is active
(consistent with Eq. (3)).
A.2.2. Error-driven learning

GeneRec implements error backpropagation using locally
available activation variables thereby making such a learning rule
biologically plausible. The algorithm incorporates the notion of
plus and minus activation phases. In the minus phase, the outputs
of the network represent the expectation or response of the
network, as a function of the standard activation settling process
in response to a given input pattern. Then, in the plus phase, the
environment is responsible for providing the outcome or target
output activations.

The learning rule for all units in the network is given by

Dwij ¼ eðyþj �y�j Þx
�
i ð5Þ

for a receiving unit with activation yi and sending unit with
activation xi. The rule for adjusting the bias weights is just the
same as for the regular weights, but with the sending unit
activation set to 1:

Dbij ¼ eðyþj �y�j Þ ð6Þ

The difference between the two phases of activation is an
indication of the units’ contribution to the overall error signal.
Bidirectional connectivity allows output error to be communi-
cated to a hidden unit in terms of the difference in its activation
states during the plus and minus states ðyþj �y�j Þ.
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