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ABSTRACT: Complexity is widespread in neuronal spike trains and propagation of spike activity, in that variations 
in measurements of neural activity are irregular, heterogeneous, non-stationary, transient, and scale-free. There are 
numerous possible reasons for this complexity, and numerous possible consequences for neural and behavioral func-
tion. The present review is focused on relationships among neural plasticity, learning, and complex spike dynamics 
in animal nervous systems, including those of humans. The literature on complex spike dynamics and mechanisms 
of synaptic plasticity are reviewed for the purpose of considering the roles that each might play for the other. That is, 
the roles of complex spike dynamics in learning and regulatory functions are considered, as well as the roles of learn-
ing and regulatory functions in generating complex spike dynamics. Experimental and computational studies from a 
range of disciplines and perspectives are discussed, and it is concluded that cognitive science and neuroscience have 
much to gain from investigating the adaptive aspects of complex spike dynamics for neural and cognitive function.
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I. INTRODUCTION

A fundamental fact of nervous systems is that they 
are perpetually in flux as energy flows through them.1 
Neuron membrane potentials are always fluctuat-
ing; action potentials are always being generated; 
synaptic strengths are constantly being modulated; 
and network structures never stop changing, albeit 
these changes may happen on slower or faster time 
scales.2 Together, these factors result in complex 
variations in neural activity.3 We will define “com-
plex variations” over the course of this review, but 
to begin, variations range widely in their magnitude 
and time course, and it has proven challenging to 
characterize their intricate regularities, irregulari-
ties, and dependencies.4,5 

Whereas complex variations are generally rec-
ognized as widespread in nervous systems, their im-
plications for theories of neural function are open to 
debate. Regularities and dependencies indicate co-
ordination among neural components, in the sense 

that degrees of freedom in activity are far less than 
what is possible given the numbers of components.6,7 
But coordination per se does not have to be so com-
plex, so why the complexity? One might first reason 
that complexity could be an inevitable byproduct of 
complicated systems.8 That is, nervous systems have 
many different parts made of parts made of parts, 
and so on. Their aggregated effects may end up ap-
pearing as complex variations in measurements. If 
so, complex variations may be nothing more than 
noise with respect to functions like perception, at-
tention, memory, and motor control. Complex varia-
tions would be a hindrance to neural function in this 
case, unless noise is helpful for signal encoding and 
transmission, as in stochastic resonance.9 

Plasticity is particularly interesting with regard 
to complex variations in neural activity. Learning 
theories and algorithms tend to rely on stable, station-
ary relations between neural activity and the environ-
mental conditions in which learning occurs.10 Also, 
plasticity is hypothesized to aid in regulating and 
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stabilizing activity.11 The prevalence of complex 
variations suggests either that the goals of stabiliza-
tion and stationarity are not fully achieved or that 
these are not primary goals of learning and regula-
tory functions.12 If stability and stationarity are in-
deed primary goals, then complex variations would 
seem to interfere with the shaping of neural activity 
on the basis of stable relations among sensory in-
puts, and between sensory inputs and behavioral ac-
tions.13 But what if complex spike dynamics play an 
important role in learning and regulatory function, 
and what if plasticity contributes to this complex-
ity? Then it would seem that stabilization and sta-
tionarity are not primary goals of neural function.14 

In the present article, we selectively review the 
literature on complex variations in neural activity 
and mechanisms of plasticity in nervous systems, 
with an emphasis on exploring how findings in 
these studies might inform one another. We focus 
on action potentials, often referred to as “spikes,” 
as a level of analysis that bridges neural dynam-
ics, neural mechanisms of plasticity, and behavior. 
Our overarching goal is to highlight questions, hy-
potheses, and research directions at the junction of 
plasticity, complexity, and function in neurosci-
ence and cognitive science.

II. COMPLEX VARIATIONS IN  
SPIKE DYNAMICS

One of the most basic issues in the physical and 
life sciences is how the physical becomes infor-
mational.15,16 In neuroscience, this issue goes by 
the name neural coding. Nearly all contemporary 
theories and approaches identify spikes as central 
to how neurophysiological processes encode infor-
mation.17 Specifically, spikes are treated as discrete 
events that occur at instantaneous points in time, 
which means that spikes code information only in 
terms of when they occur. Temporal coding is the 
hypothesis that information is coded in the precise 
timing of individual spikes from individual neu-
rons, whereas rate coding is the hypothesis that 
information is coded more coarsely in the num-
bers of spikes occurring within given windows of 
time. Rate coding is nearly universally accepted as 

playing some role in neural function. There is less 
consensus on whether precise spike times carry in-
formation,17 but evidence has been mounting that 
temporal coding does indeed play a role in neu-
ral function (e.g., Van Rulen et al.18 and Dan and 
Poo19). 

Given our focus on spikes, what kinds of vari-
ations are found in spike activity, and what is the 
evidence for complexity in these variations? Re-
cordings of spike trains from individual neurons 
tend to yield spike times that deviate from any kind 
of simple, regular pattern. Instead, spike trains 
generally show highly irregular interspike inter-
vals (ISIs) in raster plots (Figure 1a). One might 
assume that these irregularities can be explained 
as random variations in synaptic inputs and other 
factors that cause membrane potentials to fluctu-
ate. However, Softky and Koch20 showed that ir-
regularities in single-cell recordings from macaque 
visual and extrastriate cortices cannot be explained 
by random inputs to neurons. The coefficients of 
variation for ISIs are far too high. These authors 
and others have interpreted such high coefficients 
as evidence that inputs to neurons are temporally 
correlated,21 despite the apparent irregularities in 
spike times. This is our first hint of complexity in 
spike variations—dependencies among irregular 
sources of input are indicative of complex coor-
dination among neurons that reduces potential de-
grees of freedom in spike activities. 

We can also consider whether irregularities in 
spike trains are themselves complex. Irregular spike 
times appear as intermittent bursts and clusters of 
spikes, but such bursts and clustering are not nec-
essarily complex. Even simple, randomly timed 
spikes exhibit bursts and clustering by chance. 
Random spike times can be described by Poisson 
point processes, which have high coefficients of 
variation near unity and ISI distributions with expo-
nential tails.22 Some studies, such as that of Softky 
and Koch,20 have treated spike trains as Poisson 
point processes, which is to treat their irregularities 
as correlated but random nonetheless, and hence 
non-complex. However, a comprehensive review 
of the literature yields evidence for many different 
statistical patterns in spike trains. ISI distributions, 
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for instance, have been associated with bimodal,23 
bi-exponential,24 lognormal,25 inverse Gaussian,26 

gamma,27 and power-law ISI distributions.28 This 
heterogeneity is our second hint at complexity in 
spike time variations. ISI distributions are useful 
but limited as expressions of spike time statistics, 
because ISI distributions discard the temporal 
distributions of spikes. Thus we can ask further 
whether spike trains exhibit complex temporal 
structures. The Poisson process again serves as our 
baseline of simplicity, because each Poisson spike 
time provides no information about previous or 
subsequent spike times—Poisson spike trains ex-
hibit no temporal correlations beyond chance. To 
the contrary, Teich et al.29,30 found temporal corre-
lations in spike clustering beyond what is expected 
from Poisson processes. They used methods like 
Fano factor and Allan factor analyses to examine 
clustering as a function of temporal scale in spike 
trains from cat visual and auditory systems. Results 
showed that, starting at the time scale of seconds, 
the smallest spike clusters are nested within larger 
ones, which are nested within even larger ones, in 
a lawful scaling relation over more than three or-
ders of magnitude in time (Figure 1b). These tem-
poral correlations add to the complexity of spike 
trains by showing that irregularities in spike times 
at least partly reflect fractal clustering of spikes. 

Investigations of spike trains emphasize the 
neuron as a unit of analysis, but spikes are signals 
that propagate among neurons in networks. Studies 
of propagating potentials have found that activity 
spreads in so-called “neuronal avalanches” under 
a range of preparations and measurement condi-
tions.31 These avalanches are complex in that their 
sizes follow a scaling law similar to clustering in 
spike trains. Spontaneous local field potentials 
were examined in vitro in the original studies of 
neuronal avalanches in rat somatosensory cortical 
slice preparations.32,33 Activity was measured as 
voltages from electrodes on a microarray, and most 
activities were short-lived, isolated events over 
just one or two adjacent electrodes. But sometimes 
activity spread to a few adjacent electrodes, and 
sometimes it spread farther and for longer periods 
of time (Figure 1c). Beggs and Plenz32 measured 

these spreading events as avalanches of various 
sizes, where size was measured as the cumulative 
voltage over contiguous events on electrodes.32 
Results showed that avalanche sizes followed a 
scaling law similar to earthquakes: most avalanch-
es were very small, and the probability of observ-
ing avalanches decreased with their size according 
to P(S) ~ 1/Sα, where α ~ 3/2 (Figure 1d). Neuronal 
avalanches are complex partly because sizes vary 
over a wide range of scales but also because ava-
lanches are transient, even when exogenous factors 
are held constant. Avalanches do not comprise a 
simple, steady “hum” of background noise in neu-
ral activity. 

Another kind of transience in the propagation 
of neural activity is found in the synchronization 
of spikes across neurons. It is well known that 
large-scale brain activity is characterized by os-
cillatory waves generated by synchronous neural 
activity. Synchronization has been hypothesized 
as a temporal basis for neural information process-
ing,34 and as such, synchronizations are theorized 
and observed to be locally transient. For instance, 
Bressler and Kelso showed that 12-Hz oscillations 
in local field potentials at striate and inferotempo-
ral cortical sites come into phase with each other 
transiently, with the onset of visual stimuli.7 These 
and other local transients create fluctuations that 
extend over a wide range of frequencies and am-
plitudes.35 Once again, we find these fluctuations to 
follow a scaling relation, this time between power 
and frequency: P(f) ~ 1/fα, where α is often ob-
served to be near one (Figure 1e and 1f ).36,37

In summary, neurons continually produce 
complex variations in spike dynamics that can be 
characterized as irregular, heterogeneous, non-sta-
tionary, transient, and scale-free. The term “com-
plex” can refer to other characteristics of neural 
networks as well, most notably chaotic dynamics38 
and complex network structures.39 These charac-
teristics are all interrelated, and together they pose 
basic questions for neural theories of learning and 
regulatory function: Do complex variations help 
or hinder these functions as expressed in spike dy-
namics, and do these functions themselves contrib-
ute to such complex variations? Before we address 
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these questions directly, we first review neural 
mechanisms of plasticity as a basis for considering 
relations with complex spike dynamics.

III. NEURAL PLASTICITY IN  
SPIKING NETWORKS

Nervous systems are fundamentally adaptive, in 
that their structures and activities change in re-
sponse to conditions and stimuli in the environ-
ment, and within the organism itself. These adap-
tations happen across many different time scales, 
from evolutionary to developmental to experi-
ential. Plasticity refers to all adaptive processes 
in nervous systems that unfold on time scales 
no longer than the lifespan, and result in lasting, 
structural changes. Learning refers to plasticity 
that improves specific cognitive functions like per-
ception, memory, motor planning, and language. 
Other mechanisms of plasticity are more regula-
tory in nature, resulting in changes that establish 
and maintain the capacity for learning and healthy 
function.

With respect to spike dynamics, plasticity most 
often refers to processes that affect the potentiation 
of synapses as well as the response properties of 
neurons. Synapses connect presynaptic neurons 
to postsynaptic neurons. Synaptic potentiation 
and depression govern the efficacy of presynaptic 
spikes in triggering or suppressing postsynaptic 
spikes, as supported by neurotransmitter release 
and regulation. Spikes on some neurons are caused 
primarily by spikes on neurons projecting into 

them, and spikes on other neurons are caused by 
sensory transduction and other inputs from outside 
of the nervous systems in question. Thus learning 
and regulatory mechanisms are theorized to modu-
late spike dynamics primarily via synaptic effica-
cies, and in conjunction with extrinsic factors. 

Our first hint that plasticity might give rise to 
complexity is found in the very mechanisms hy-
pothesized to modulate synaptic efficacy. Because 
spikes are the primary currency of neural informa-
tion transmission and processing, spike times are 
hypothesized to play a primary role in mechanisms 
of synaptic plasticity. Thus, spike dynamics affect 
synaptic dynamics, and vice versa. Moreover, ef-
fects of plasticity on synaptic efficacies are rela-
tively long lasting, whereas spike dynamics unfold 
on much faster time scales. The result is bi-direc-
tional interactions between processes on disparate 
time scales. These interactions are potential sourc-
es of complexity, as explained later, but first we 
elaborate the mechanisms of plasticity.

The most widely studied and accepted mecha-
nisms of learning are long-term potentiation (LTP) 
and long-term depression (LTD). LTP generally 
occurs when two neurons connected by a synapse 
are depolarized together, resulting in a long-term 
increase in synaptic efficacy.40 By contrast, LTD 
generally occurs when the presynaptic neuron re-
mains hyperpolarized while the postsynaptic neu-
ron becomes depolarized, resulting in a long-term 
decrease in synaptic efficacy.41 Depolarization and 
hyperpolarization correspond with the presence 
and absence of spike activity, respectively. While 

FIGURE 1: A: Example spike train raster plots from model neurons in Kello’s (2012)1 critical branching res-
ervoir (blue), and Poisson spike trains (green) for comparison. B: Mean Allan factor analyses of spike trains 
showing that clustering scales with window size T, A(T) ~ Tα, with dashed line showing α = 1. C: Local field 
potentials recorded from multi-electrode array in Beggs and Plenz (2003),32  with raster plot showing spon-
taneous periods of synchronized activity, and bubble plot showing example avalanche “burst” of activity. D: 
Probability density function from Beggs and Plenz showing avalanche probability scales with size, P(S) ~ 1/
S3/2, with size measured as either summed electrodes or voltages. E: Band-pass filtered signal (6.7–13.3 Hz, 
thin blue lines) from a single channel (0.1–100 Hz) of magnetoencephalography recording from (118), shown 
at two time scales and filtered through a Morlet wavelet. F: Log-log power spectrum of the amplitude envelope 
of oscillations from data like those shown in E. Evidence for 1/f scaling is seen in the negatively sloped line 
for data (open red circles), and evidence against an artifactual explanation is seen in the flat line for reference 
channel control data (filled black circles).
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there are numerous exceptions to these rules,42 
synaptic efficacies generally change in relation to 
coincidences of depolarized and hyperpolarized 
states. 

Spike dynamics come into play more precisely 
in a phenomenon known as spike timing dependent 
plasticity (STDP ).43 STDP is characterized by op-
posite effects on synaptic efficacy depending on 
whether a spike on the presynaptic neuron is shortly 
preceded or followed by a spike on the postsynap-
tic neuron. Canonically, efficacy increases when 
a postsynaptic spike shortly follows a presynaptic 
spike, and it decreases for the opposite timing re-
lation. STDP captures properties of both LTP and 
LTD, but experiments have shown non-additive ef-
fects for multiple spikes in close succession, sug-
gesting that the latter cannot be simply subsumed 
by the former.44,45 Regardless, all three are theorized 
as Hebbian learning mechanisms because they can 
be used to learn associations among stimulus-driven 
and behavior-driven spike patterns.46 A fundamental 
challenge for these learning mechanisms is to ex-
plain how changes in efficacy support new learning 
while also preserving older learning—the stability–
plasticity dilemma.47 

Stability of learning is a regulatory function 
that must be integrated with mechanisms of syn-
aptic plasticity used for learning. Another regula-
tory function associated with synaptic plasticity is 
homeostasis of spike rates.48 Spikes cannot support 
neural function if there are too few or too many 
spikes per unit of time. These extremes would re-
sult in insufficient variability in spike times, not 
to mention insufficient capacity for complex varia-
tions. Synaptic scaling is a term used for homeo-
static mechanisms hypothesized to potentiate and 
de-potentiate synapses in non-specific ways to 
regulate overall spike rates. Another challenge for 
theories of plasticity, akin to the stability–plastic-
ity dilemma, is to explain how homeostatic and 
learning mechanisms are integrated.49 Otherwise, 
changes in efficacy for purposes of learning could 
be “undone” by changes for purposes of homeo-
stasis, and vice versa. STDP is promising in this 
regard because it inherently balances potentiation 
and de-potentiation. 

Finally, we have focused on mechanisms of plas-
ticity driven by spike times and spike rates, but 
there are also neuromodulatory mechanisms driv-
en by rewards and reward prediction. For instance, 
concentrations of the neuromodulator dopamine 
at some synapses serve to gate mechanisms of 
learning like LTP, LTD, and STDP.50,51 Gating is 
hypothesized to increase probability of reward, 
or increase reward expectation, because major 
dopamine nuclei are associated with both actual 
and predicted rewards.52 These neuromodulatory 
mechanisms are hypothesized to implement re-
inforcement learning,53 but neuromodulators also 
have been associated with arousal, attention, mo-
tivation, and other regulatory functions.54 Again, it 
appears that learning and regulatory functions are 
supported by common mechanisms of plasticity, 
presumably helping to minimize interference be-
tween synaptic changes driven by learning versus 
regulation. 

IV. ROLES OF NEURAL PLASTICITY IN  
COMPLEX SPIKE DYNAMICS 

Our review of plasticity highlights the bi-direction-
al relationship between spike dynamics and synap-
tic dynamics. This relationship suggests that expla-
nations of complex variations in spike dynamics 
will include roles for mechanisms of plasticity, but 
what these roles might be is an open question. Here 
we review three of possible roles: Mechanisms of 
plasticity may generate complex variations 1) as a 
byproduct of regulation, 2) as an adaptive aspect 
of learning, and 3) as a reflection of complexity in 
the environment.

Most generally, mechanisms of plasticity 
may directly generate complex variations in the 
course of implementing their learning and regu-
latory functions. As mentioned previously, we 
have some inkling of this possibility in the fact 
that spike times unfold on a much faster time 
scale than the effects of learning and plasticity 
on synapses. This disparity in time scales means 
that the bi-directional relationship between spike 
and synaptic dynamics spans a wide range of time 
scales. Interactions between processes at disparate 
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time scales are sometimes associated with critical 
point dynamics,55 and models of criticality exhibit 
complex variations in the form of pervasive scal-
ing laws.56–59 Critical points generally occur when 
interactions among system components are poised 
between two or more phases of dynamics.60 Theo-
rists have argued that nervous systems operate 
near such critical points,4 and findings of complex 
variations are interpreted by some as evidence for 
criticality.61 

Mechanisms of plasticity are usually theorized 
to affect excitation and inhibition in neural net-
works, so these mechanisms are implicated in phas-
es of spike dynamics defined in terms of excitation 
and inhibition. If plasticity draws spike dynamics 
toward a critical point between such phases, then 
spike dynamics are predicted to exhibit scaling 
laws. Kello1 recently investigated these hypotheses 
and predictions in a spiking neural network model. 
The model was developed around a mechanism of 
homeostasis that draws spike dynamics to a criti-
cal point by virtue of bi-directional interactions be-
tween spiking and synaptic time scales. 

The critical point was formulated in terms of 
critical branching,62 whereby spike propagation is 
formulated as a branching process.63 Each spike 
may branch into some number of future spikes, 
where the number of branches is the number of 
times a neuron is “blamed” for subsequent spikes. 
A neuron may be blamed each time one of its spikes 
is followed by a subsequent spike on one of the 
neurons toward which it projects. Excitatory neu-
rons can trigger spikes, and inhibitory neurons can 
fail to prevent spikes, so blame can be assigned to 
either type of neuron. Critical branching is the state 
whereby each spike is blamed for one subsequent 
spike, on average. This state is homeostatic because 
spikes are conserved, statistically speaking, as they 
propagate through a network. This conservation re-
quires a balance between excitation and inhibition, 
which previously has been associated with com-
plex, chaotic variations in neural activity.64

The mechanism formulated by Kello1 targets 
critical branching by tracking blame locally for in-
dividual neurons. If a neuron is blamed more than 
once during an ISI, one of its axonal synapses is 

depotentiated with some probability, to reduce the 
chance of being blamed more than once in the fu-
ture. If a neuron is not blamed during an ISI, one of 
its axonal synapses is potentiated with some prob-
ability, to increase the chance of being blamed in 
the future. To create disparity between spike and 
synaptic time scales, rates of synaptic change were 
set to be much slower than spike rates by setting a 
low probability of (de)potentiation (5%). Thus bi-
directional interactions between slow synaptic dy-
namics and relatively fast spike dynamics resulted 
in continual adjustments in connectivity toward 
and around critical branching. As predicted, these 
adjustments caused complex variations in the form 
of scaling laws in spike clustering, ISI distribu-
tions, neuronal avalanches, and 1/f scaling. 

The critical branching model shows how plas-
ticity for maintaining homeostasis can result in 
complex variations in spike dynamics. The critical 
branching mechanism was not designed for learn-
ing, but as mentioned earlier, neuroscientific evi-
dence indicates that learning and regulatory func-
tions are supported by common mechanisms. This 
evidence leads to the consideration of whether a 
learning mechanism like STDP might be inte-
grated with critical branching. Kello1 showed that 
adding an STDP mechanism to the critical branch-
ing model does not interfere with homeostasis and 
complex variations in spike dynamics. It remains 
to be seen whether STDP or other mechanisms 
might support learning in conjunction with critical 
branching, and thereby also play a role in complex 
variations.

The homeostatic function of critical branching 
is adaptive in itself, but by virtue of attraction to a 
critical point, critical branching spike dynamics also 
are associated with computational benefits. This as-
sociation raises the possibility of a second role for 
plasticity in the creation of complex variations in 
spike dynamics. Learning mechanisms may draw 
spike dynamics toward critical points and thereby 
benefit from associated computational capacities. 
For instance, Kinouchi and Copelli65 reported a 
stochastic model of critical branching that was not 
mechanistic and self-tuning like Kello’s,1 but none-
theless showed that the dynamic range of sensory 
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systems is maximized at the critical branching point 
(see also Chen et al.66). Similarly, Haldeman and 
Beggs67 showed that critical branching maximizes 
information transmission, and Kello1 showed that 
critical branching maximizes the memory and en-
coding capacities of spike dynamics. These model-
ing results suggest that some learning mechanisms 
may be designed to target these maxima near critical 
points, and thereby produce complex variations in 
spike activity. Thus far, we have considered ways 
that mechanisms of plasticity intrinsically might 
result in complex spike dynamics. That is, critical 
point dynamics have been hypothesized to emerge 
regardless of stimuli or task conditions, or any 
other factors extrinsic to nervous systems them-
selves. The third and final role of plasticity that 
we consider is the shaping of spike dynamics to 
reflect complex variations that originate outside of 
nervous systems. Natural environments are irregu-
lar, heterogeneous, non-stationary, transient, and 
scale-free, just like neural and behavioral activity. 
Therefore, it may be adaptive for nervous systems 
to shape themselves to match the complex varia-
tions that constantly impinge upon them.68 For in-
stance, the long-run statistics of both visual and au-
ditory stimuli are characterized by 1/f scaling.69,70 
Recent evidence shows that eye movements and 
the response properties of auditory nerve cells also 
exhibit scaling laws.71–74 Complex spike dynamics 
underlying these scaling laws may reflect the sta-
tistics of visual and auditory inputs. 

V. ROLES OF COMPLEX SPIKE DYNAMICS 
IN NEURAL PLASTICITY 

In the previous section, a wealth of studies were 
reviewed, illustrating different ways that mecha-
nisms of plasticity may be at least partly responsi-
ble for complex variations in spike dynamics. In all 
cases, adaptive qualities of these mechanisms led 
to complex variations. However, as mentioned at 
the outset, complex variations may appear to pose 
a challenge for learning and regulatory functions if 
neurally mediated relations among sensory inputs 
and behavioral actions are made less stable or reli-
able. If this is the case, then complex variations 

need to be shaped for purposes of learning. In fact, 
some evidence from brain imaging studies is con-
sistent with this possibility.75 Complex variations 
also need to be overcome by learning mechanisms. 
Consistent with this idea, a spike-based mecha-
nism akin to back-propagation has been shown to 
support learning in the face of complex variations 
treated as noise.76 But rather than treat complexity 
as something to be overcome, we turn to model-
ing studies in which complex variations were hy-
pothesized and shown to be adaptive for learning 
and regulatory functions. The overarching theme of 
these studies is that the heterogeneity of complex 
spike dynamics makes available a wide range of 
useful patterns and nonlinear functions of external 
inputs. 

We begin with two studies that exploited the 
complexity of critical branching dynamics for 
purposes of learning nonlinear functions. First, 
de Arcangelis and Herrmann77 formulated a sim-
ple mechanism of synaptic plasticity for learning 
nonlinear functions like XOR embedded in criti-
cal branching networks. Their method of learning 
effectively “farmed” the intrinsic variability in 
spike dynamics to identify local patterns that could 
be modified slightly to compute particular func-
tions. The heterogeneity of complex variations af-
forded a variety of spike patterns for the learning 
mechanism to exploit. Kello similarly exploited 
variations in critical branching dynamics to com-
pute XOR functions,1 but unlike de Arcangelis and 
Herrmann,77 the functions were not learned by a 
mechanism of synaptic plasticity. Instead, ordinary 
least squares regression was used to map unlearned 
spike dynamics onto XOR functions, a technique 
known as reservoir computing.78,79 Mappings were 
computed for inputs at progressively distant points 
in time to show that fading memory inherent in 
recurrent network dynamics can be exploited as 
well, as demonstrated in previous reservoir-com-
puting studies.80  

XOR functions are useful probes for dem-
onstrating computational properties inherent in 
complex, recurrent dynamics. However, XOR 
functions are not easily relatable to functions like 
perception and memory under more natural con-
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ditions. To go beyond XOR, other reservoir com-
puting studies have demonstrated the usefulness of 
complex dynamics for learning more naturalistic 
tasks, such as speech recognition,81 syntactic pro-
cessing,82 visual object motion tracking,83 motor 
control,84 and navigation.85 In fact, a precursor to 
Kello’s critical branching model1 was applied to 
visual motion processing.86

The reservoir-computing results are useful 
proofs of concept for our purposes, but learning 
mechanisms are not part of the theoretical com-
mitments made by these models. One exception to 
this rule of reservoir computing was reported by 
Sussillo and Abbott.87 They developed a learning 
algorithm specifically designed for echo state net-
works, which represent a particular kind of reser-
voir computing model with feedback from outputs 
back to the reservoir. The authors parameterized 
recurrent connections in the reservoir to generate 
chaotic reservoir dynamics, and they used feed-
back connections to adjust synaptic weights on the 
basis of error between target and output time se-
ries. This method of integrating learning with echo 
state networks was shown to learn complex time 
series from the Lorenz attractor, and from dynam-
ics of human walking and running. Performance 
was best when reservoir dynamics were chaotic 
(i.e., complex).

We have claimed that complex variations 
in spike activity will result in heterogeneous dy-
namics useful for nonlinear functions and input-
output mappings in general. This claim may seem 
overblown if one assumes that specific functions 
require specific network architectures and input 
representations. If this assumption is correct, then 
complex spike dynamics per se would not be suf-
ficient to ensure robust learning. However, Cov-
er’s Theorem shows that, just by projecting inputs 
randomly and nonlinearly into high-dimensional 
spaces, one can increase the likelihood of learning 
arbitrary binary classifications using only linear 
learning mechanisms.88 The likelihood of learning 
increases with dimensionality of the space being 
projected into. This property suggests that robust 
learning can be ensured, as long as networks can 
be sufficiently large. 

A. Reinforcement Learning  
and Generalization

Cover’s Theorem provides a basis for understand-
ing the effectiveness of reservoir computing mod-
els, but it may also serve as a basis for understand-
ing the role of complex spike dynamics in other 
kinds of learning models. A recent study by Rodny 
and Noelle89 provides an excellent case in point. 
They developed a model of reinforcement learn-
ing that took advantage of Cover’s Theorem in its 
use of complex spike dynamics. The goal of re-
inforcement learning is to maximize actual and 
expected rewards by increasing the probabilities 
of behaviors that lead to them.90 Generally speak-
ing, an agent explores actions in an environment to 
find and then exploit those that increase rewards. 
Rodny and Noelle showed that complex variations 
can help a model find good action policies for ob-
taining rewards. 

The challenge addressed by these authors was 
to learn action policies online, in environments 
whose states cannot be exhaustively enumerated 
and explored. Reinforcement learning algorithms 
like the adaptive actor-critic model91 use tempo-
ral difference errors to learn relationships between 
states and reward values, both actual and expected. 
The action policy is based directly on these learned 
relationships. Sutton proved that, when states can 
be fully enumerated and explored, the actor-critic 
algorithm is guaranteed to find an optimal action 
policy.92 The algorithm also has support from neu-
roscience evidence of temporal difference error 
signals in the basal ganglia, in the form of firing 
rates of midbrain dopamine neurons.53,93 Several 
models have also combined reinforcement learn-
ing and spiking networks, with different objectives 
than the work described above. For instance, Rao 
and Sejnowski94 showed that temporal difference 
learning can be expressed in terms of STDP, and 
Florian95 and Izhikevich96 simulated reinforce-
ment learning by modulating STDP using a global 
reward signal. More recently, spiking networks 
have been formulated to simulate the actor-critic 
framework.97 These models are limited, however, 
in that they do not capture the full capacity of ac-
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tor-critic models to extrapolate information from 
experienced to novel states of the environment. 
The issue of extrapolating learning to novel states 
has been addressed by introducing value function 
approximators (VFAs) into reinforcement learning 
models. VFAs serve to generalize learning about 
expected rewards from experienced states in the en-
vironment to novel ones. VFAs have proven useful 
for environmental states that are continuous with 
respect to spatial and/or temporal extents, and for 
speeding up the learning process.98 However, the 
actor-critic model is no longer guaranteed to con-
verge with VFAs, and Boyan and Moore99 provid-
ed a demonstration of failure to learn using VFAs. 
The authors investigated a set of relatively chal-
lenging problems, including navigation of a simu-
lated agent in “puddle world”—a two-dimensional 
grid in which reward was located in the corner of 
a grid, bordered by two elliptical, perpendicular 
puddles that represented punishment (negative re-
ward). Finding an optimal action policy was chal-
lenging because the state space was large, and the 
conjunction of horizontal and vertical dimensions 
was required. The VFA failed to support learning 
of an optimal action policy. 

A number of solutions to this problem with 
VFAs have been explored.99,100 While each has 
strengths and weaknesses, they all sidestep the 
original problem of online learning using VFAs for 
environments with very large numbers of states. 
Rodny and Noelle89 addressed the problem directly 
by using a VFA based in complex spike dynam-
ics. The rationale was that traditional VFAs using 
methods like back-propagation learning are overly 
restricted to interpolating between known states, 
rather than extrapolating beyond the space of ex-
perienced environmental states.101,102 The authors 
reasoned that, if states are represented as spike pat-
terns, then complex variations in spike dynamics 
might serve to expand the representational state 
space, as supported by Cover’s Theorem. This ex-
pansion should facilitate learning and generaliza-
tion because interpolation in the expanded space 
results in extrapolation in the environmental space. 
In fact, previous work using an echo state VFA 
network established that complex variations could 

be used to support online reinforcement learning 
when extrapolating to new environmental states.103

The model by Rodny and Noelle89 used a 
critical branching reservoir1 as the VFA for on-
line actor-critic learning in puddle world (Figure 
2). Their results showed that the model converges 
to a near-optimal action policy, similar to the of-
fline model reported by Boyan and Moore.99 While 
these results call for further analyses and modeling 
to understand the specific role of critical branching 
dynamics, we can tentatively conclude that spike 
patterns in the VFA reservoir captured the types 
of conjunctive feature representations needed to 
support generalization in the service of actor-critic 
learning. 

B. Selectionist Learning via Reinforcement

The heterogeneity of complex spike dynamics is 
central to their usefulness for learning in reservoir 
computing models, and also for generalization in 
reinforcement learning models. In both cases, 
the associated nonlinearities in complex varia-
tions are used to support classifications and in-
put-output mappings. Here we review a different 
possible role for heterogeneity in complex spike 
dynamics, one that is based on selectionist learn-
ing theories.104–107

In evolutionary theory, genotypic variation is 
created by processes of genetic mutation, recom-
bination, drift, and flow. These processes are not 
adaptive in and of themselves, because they pro-
duce variations that may be more or less fit than 
their starting points. Instead, these processes serve 
to instill heterogeneity in the genetic variations 
found in a given population, and natural selection 
preserves only the more fit variations as genera-
tions pass. Evolutionary adaptation is on a longer 
time scale than mechanisms of plasticity, but the 
basic process of selecting from heterogeneous 
variations may be recapitulated at the level of 
spike dynamics. Complex variations in spike activ-
ity may reflect a diverse repertoire of spatiotempo-
ral patterns, and selectionist learning mechanisms 
may increase the probability of certain patterns on 
the basis of fitness, for example, as measured by 
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association with expected or actual rewards. 
Heterogeneity in spike activity can arise by 

virtue of mechanisms of plasticity, as discussed 
previously, but this is not the only source. Het-
erogeneity can also arise from complexity in the 
connectivity patterns of neural networks, and 
complexity in the structures of nervous systems in 
general. Complexity from these structural sources 
may arise early in development through epigenetic 
processes. By analogy, network structures would 
be the genotypes and spike dynamics would be the 

phenotypes. Reward-driven learning would serve 
to select only those network structures and pro-
cesses that increase the probability of “fit” spike 
dynamics. Heterogeneity in spike activity would 
be critical for maximizing chances that more fit 
spike dynamics are expressed and available to be 
selected. 

A potential mechanism of selectionist learning 
was already discussed in the context of reinforce-
ment learning: Reward-modulated STDP108 can se-
lectively amplify or alter patterns of network con-

FIGURE 2: A: Schematic of the actor-critic architecture with the addition of a reservoir-supported VFA intro-
duced by Rodny and Noelle (2012).89 B, C, and D reproduced from Boyan and Moore (1995).99 B: Top-down 
view of the puddle world grid. Reward is located at top right, and negative reward is within the two elliptical 
“puddles”. C: Topology of optimal solution for puddle world value function. Z axis is cost-to-goal (future punish-
ment) starting from each location to reach reward. D: Solution to puddle world from Boyan and Moore, using 
an off-line grow-support learning method. E: Solution to puddle world from Rodny and Noelle (2012), using 
the reservoir-supported VFA. For E, Z axis is the inverse of mean VFA output, and results are aggregated over 
40 simulations.
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nectivity through both LTP and LTD. Izhikevich109 
showed that spiking networks can have intrinsical-
ly diverse, polychronous patterns of spike activity, 
and that STDP could be used to amplify specific 
patterns. A subsequent model96 demonstrated that 
dopamine modulation of STDP is a viable mecha-
nism for selectionist learning, while also shedding 
light on a number of classical and operant condi-
tioning principles. This model demonstrated learn-
ing only for selecting relative patterns of spike 
times between neurons—it is not expected to work 
for selecting more coarse-grained patterns of firing 
rates. 

An excellent example of selectionist learning 
via reinforcement can be found in a recent study 
by Warlaumont,110 who used the Izhikevich mod-
el to simulate selectionist learning of speech-like 
babbling patterns (Figure 3A). Intrinsic, complex 
spike dynamics were generated by the spiking neu-
ral network, and a subset of model neurons were 
chosen as controllers of muscle inputs to a simu-
lated vocal tract. Spikes on muscle neurons were 
summed, smoothed, and then input to the simulat-
ed vocal tract as lip and jaw muscle activations. At 
the start of the simulation, a wide variety of sounds 
were generated by the vocal tract model, reflecting 
the diversity of polychronous patterns produced 
(Figure 3B). Segments of vocal-tract output were 
judged by human listeners as being more or less 
speech-like, and judgments were used to modu-
late the release of dopamine that encoded a reward 
signal. STDP was increased by dopamine, select-
ing for those spike dynamics that resulted in more 
speech-like sounds. 

Warlaumont found that, over the course of 
learning, the model exhibited increasingly ma-
ture syllabicity in its vocalizations compared to 
a yoked control model (Figure 3C).110 In the con-
trol model, dopamine signals were applied at the 
same rate, but at random with respect to vocal-
ization segments. These results demonstrate how 
rewards, be they social or intrinsic, can shape 
behavioral dynamics through selection of spike 
patterns. In this case, the shaping of behavior re-
sulted in the development of canonical-like bab-
bling, which is marked by speech-like timing, 

and is considered to be a critical milestone of 
early speech development.111 Complex variations 
in spike dynamics were a part of the selection-
ist learning process, and related work suggests 
that heterogeneity in spike activity is useful when 
networks must learn in the context of background 
noise.112 Further simulations are needed to test 
whether complex variations are necessary or fa-
cilitative for selectionist learning as implemented 
by reward-modulated STDP, and to test whether 
selectionist learning can promote complex, het-
erogeneous spike dynamics. 

C. Probabilistic Inference

For our last example of how complex spike dy-
namics may play a role in plasticity, we turn to 
the general framework of probabilistic inference. 
Bayes’ rule holds that optimal learning and reason-
ing from uncertainty requires computations over 
conditional probability distributions. That is, infer-
ences require estimations of probabilities for some 
variables, given known or hypothesized states of 
other variables.113 Exhaustive evaluations of these 
distributions quickly become intractable in spik-
ing networks as the numbers of variables and 
states grow (but see Steimer et al.114). To address 
this problem, heuristic methods have been devel-
oped based on efficient sampling from conditional 
probability distributions.115 Sampling in this case 
is typically viewed as a stochastic process,116 but 
deterministic chaos also may serve as a sampling 
method.117 Regardless, nervous systems may have 
learning mechanisms that implement probabilistic 
inference by sampling. If so, complex variations 
may reflect the process of sampling from condi-
tional probability distributions. This is a new, 
promising direction of research in spiking network 
models.

VI. CONCLUSION

We began with the question of whether complex 
spike dynamics might be a hindrance or a benefit 
to neural function, as supported by neural plastic-
ity. We then reviewed a diverse range of studies, 
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FIGURE 3: A: Schematic depiction of Warlaumont’s (2012) model.110 A neural network with complex spike 
dynamics was used to control muscle inputs to a vocalization synthesizer simulating the human vocal tract. 
A human listener selectively rewarded the model’s vocalization. Reward generated a surge of dopamine, 
temporarily increasing STDP. B: Examples of two sounds produced by the model. The sound on the left con-
tains three canonical-like syllables while the one on the right contains none. The top row shows the muscle 
activations as a function of time, the second row shows the sound waveforms, the third row shows the sound 
intensity envelope, and the fourth row shows spectrograms for each sound. C: Across learning, the human-
reinforced model exhibited increased production of canonical-like sounds while a yoked control model did not.

from a diverse range of perspectives, to elucidate 
some possible relationships between neural plas-
ticity and complex variations in spike activity. All 
of these studies support the idea that complexity 
is integral to neural plasticity and therefore is not 
a hindrance for neural function. Instead, complex 
spike dynamics were theorized to be adaptive in 
many cases, especially when expressed as scal-
ing laws. In other cases, complex spike dynamics 
were theorized as byproducts of synaptic plastic-
ity that do not interfere with learning and regula-
tory functions. 

Despite all these studies, it is still possible that 
complex variations in spike activity sometimes 
reflect noise in the detrimental sense of the word, 
at least for certain processes in certain contexts. 
Our perspective is that researchers must always 
consider seriously whether a given observation 
of complexity is just noise. But that said, cogni-
tive science and neuroscience have much more to 
gain from studying cases in which complex spike 
dynamics are shown to reflect integral, adaptive 
aspects of learning and regulatory functions as ex-
pressed in neural plasticity.
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