

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406

ISSN: 1861-1680

Teaching Cognitive Modeling Using PDP++

David C. Noelle

University of California, Merced

5200 North Lake Road Merced, California 95344USA, dnoelle@ucmerced.edu

urn:nbn:de:0009-3-14069

Abstract. PDP++ is a freely available, open source software package designed to support the development,
simulation, and analysis of research-grade connectionist models of cognitive processes. It supports most
popular parallel distributed processing paradigms and artificial neural network architectures, and it also provides
an implementation of the LEABRA computational cognitive neuroscience framework. Models are typically
constructed and examined using the PDP++ graphical user interface, but the system may also be extended
through the incorporation of user-written C++ code. This article briefly reviews the features of PDP++, focusing
on its utility for teaching cognitive modeling concepts and skills to university undergraduate and graduate
students. An informal evaluation of the software as a pedagogical tool is provided, based on the author’s
classroom experiences at three research universities and several conference-hosted tutorials.

Keywords: PDP++, connectionism, neural networks, cognitive modeling, computational neuroscience,
education

Citation: Noelle DC (2008). Teaching Cognitive Modeling Using PDP++. Brains, Minds & Media, Vol.3,
bmm1406, in: Lorenz S, Egelhaaf M (eds): Interactive Educational Media for the Neural and Cognitive Sciences,
Brains, Minds & Media, 2008.

Published: May 26th, 2008; revised references on August 4th, 2008.

1 Introduction

Computational modeling has been a central component of cognitive science since the field’s inception.
Computational cognitive models have also played an increasingly central role in many areas of
cognitive psychology and cognitive neuroscience. While the utility of computational models for
formalizing theories is now broadly recognized, the skills necessary to construct, analyze, and
evaluate computational cognitive models have often been difficult to instill in students and new
researchers. A commonly cited cause for this difficulty is the need for disparate intellectual skills when
modeling, ranging from mathematical analysis and computer programming to an understanding of
theories of cognition and an appreciation for the complexities of experimentally testing such theories.
Courses on computational cognitive modeling often attract both computationally sophisticated
students and computational novices. In such courses, students with strong backgrounds in psychology
or neuroscience will sometimes be seated next to students who are completely ignorant of the long
history of studies and speculations concerning the mind and the brain. It is rare to find students who
are uniformly strong in all of the foundational skills that are important for the modeling enterprise. This
difficulty is magnified when teaching connectionist, parallel distributed processing, artificial neural
network, and computational cognitive neuroscience modeling. These approaches to the modeling of

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 2

cognition involve mathematical formalisms unfamiliar to many computer scientists and they depart
radically from familiar characterizations of cognitive process in terms of stages or functional modules.
Many students face substantial challenges when attempting to learn these modeling frameworks, and
even those who obtain a reasonable conceptual understanding often struggle to master the skills
necessary to construct models of their own.

Like other skills, the acquisition of cognitive modeling skills is facilitated by hands-on exploration and
practice. The centrality of such computational experience can introduce obstacles for students who
lack strong computer skills, however. While some courses on connectionist modeling insist that
students face these obstacles head-on, requiring them to write computer programs in some standard
high-level language like C++, Java1 or MATLAB2 many other courses attempt to reduce the
computational burden through the use of cognitive modeling software packages. These software
packages typically allow for the construction of cognitive models through the instantiation of provided
template model types, offering the user the ability to specify a variety of model parameters while
offering core connectionist algorithms as fully implemented modules. Through the use of such
simulation software, students without computer programming skills are often able to gain experience in
building models, executing simulations, and collecting and analyzing data concerning model
performance.

PDP++ is one such cognitive modeling simulation software package. Like many other simulators,
PDP++ was primarily developed to support broad and ongoing research activities involving the
construction, analysis, and evaluation of computational models of cognition. It’s use in education
settings has been a secondary, though still important, concern influencing its design. Thus, students
learning cognitive modeling using PDP++ gain experience using a research-grade software tool,
supporting a more direct transfer of knowledge acquired in the classroom to actual research practice.
PDP++ provides direct support for the most common connectionist architectures and learning
algorithms, including:

• spreading activation, constraint satisfaction networks, including Hopfield networks (Hopfield
1982)

• Hebbian learning (Hebb 1949, Grossberg 1998), competitive learning (Rumelhart and Zipser
1986, Grossberg 1987), and self-organizing feature maps (Von der Malsburg 1973, Grossberg
1976a, Grossberg 1976b, Kohonen 2001)

• feed-forward backpropagation of error networks (Rumelhart et al., 1986a)

• recurrent backpropagation of error networks, including simple recurrent networks (Elman
1990) and the “long short-term memory” architecture (Hochreiter and Schmidhuber 1997)

The package also provides support for computational cognitive neuroscience models intended to
make more substantial contact with biological measures, offering an implementation of the LEABRA
framework (O’Reilly and Munakata, 2000) as well as the Real-time Neural Simulator program (see
Section 3.3). Models may be fabricated and manipulated in PDP++ using its elaborate graphical user
interface, avoiding any need for students to write program code. The simulator is an open source
software project, however, and utilities are provided to augment PDP++ with user-written C++ code if
substantial departures from the provided algorithms are required. A detailed reference manual is

1 Java is a trademark of Sun Microsystems.
2 MATLAB is a registered trademark of The MathWorks.

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

available both as a printable document and as a collection of linked web pages. The entire PDP++
package, including example models, may be downloaded free of charge.

This paper provides a brief description of the most salient features of PDP++, focusing on the role that
it can play in teaching connectionist modeling concepts and skills. The use of PDP++ in classroom
settings, involving either undergraduate or graduate students, is of primary interest here, though many
of the issues raised are equally relevant to the education of established researchers or to self-learning
situations. After providing an overview of the software, an informal evaluation of the pedagogical
strengths and weaknesses of PDP++ is offered. This evaluation is based on the author’s experience
using PDP++ when teaching courses on parallel distributed processing, artificial neural networks, and
computational cognitive neuroscience at Carnegie Mellon University (1999), Vanderbilt University
(2002–2006), and the University of California, Merced (2007). This evaluation also draws on
experience using PDP++ in tutorial settings, including its use at an International Brain Research
Organization (IBRO) summer school (2004), and during single day presentations at the International
Conference on Cognitive Modeling (ICCM 2007) and the Cognitive Science Society Conference (CSS
2007). Importantly, this report does not provide instruction in the use of PDP++ for research purposes.
It offers only an overview and informal assessment of the role that this free software package can play
in the education of future cognitive scientists.

2 Overview of PDP++

2.1 Development History

PDP++ gets its name from a previous cognitive modeling software package. The letters abbreviate
“Parallel Distributed Processing,” which was the title of the seminal volumes that reinvigorated interest
in connectionist models several decades ago (Rumelhart et al. 1986b; McClelland et al. 1986). The
PDP initials also labeled the software that accompanied the simulation exercises workbook associated
with those tomes (McClelland and Rumelhart 1988). The developers of PDP++ saw the package as
the progeny of the original PDP programs. Since PDP++ was written in C++, it was natural to augment
the name with the C++ “increment” operator, suggesting that PDP++ moved one step beyond its
predecessor.

The initial development of PDP++ took place at the Center for the Neural Basis of Cognition, hosted
by Carnegie Mellon University and the University of Pittsburgh. The principal architect of the software
was Randall C. O’Reilly, with additional substantial development provided by James L. McClelland
and Chadley K. Dawson. A fully functional version of PDP++ was available by 1995. This package is
now primarily supported by the O’Reilly laboratory at the University of Colorado at Boulder. This
review discusses Version 3.1 of the software, which was released in 2003. This is the most current
release at the time of this writing. Since 2003, efforts have been underway to produce a major rewrite
of the PDP++ system, and a substantially updated release appeared late in 2007, as this article was
being completed. The software was given a new name with this release — Emergent — and this major
update is briefly discussed in Section 2.5.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 3

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 4

2.2 Supported Platforms, Access, & Installation

Originally, PDP++ was developed for use on UNIX3 machines. Since its initial release, PDP++ has
been ported to a number of other operating systems, though it still retains traces of its roots. In
particular, support on a variety of Microsoft Windows4 platforms (including 95, 98, 2000, NT, and XP)
is provided through the use of the Cygwin5 package. CYGWIN provides some aspects of UNIX-like
functionality within a Windows environment, allowing PDP++ to run on Windows machines without
requiring an excessive amount of platform-specific code. Similarly, the Darwin project for Mac OS X6
provides sufficient UNIX-like functionality to allow PDP++ to run under Max OS X Versions 10.3 or
10.4 (Tiger). Ongoing development of PDP++ is primarily performed within Linux7 environments, and
software updates have been most thoroughly tested under UNIX-like operating systems.

It is worth noting that PDP++ provides support for symmetric multiprocessing (SMP), allowing the
software to leverage parallel processors when such hardware is available. Parallel processing support
is built into a number of the network algorithms, and it is fairly fine-grained, distributing the
computations associated with individual connectionist units or batches of connections across machine
processors. The degree of threading over processors is parameterized, with controls provided in the
PDP++ graphical user interface. Performance improvements due to the use of parallel processors vary
largely with the nature of the connectionist simulation being conducted, but some substantial time
savings have been reported using this feature of PDP++.

The PDP++ software package may be freely downloaded from the internet. There are three primary
ways in which this software has been packaged for downloading. The first two ways are accessible
from The PDP++ Software Home Page, located at:

http://psych.colorado.edu/~oreilly/PDP++/PDP++.html

The software is available from the “FTP” links. At these FTP sites, the PDP++ software is packaged in
two general ways: binaries and source code. Binary executable files are provided for a variety of
operating system platforms. In addition, an auto-installation executable for Windows is provided, and a
Mac OS X package is available. Downloading and unpacking the PDP++ binary executables is the
easiest way to get PDP++ up and running quickly. Alternatively, the PDP++ source code can be
downloaded, compiled on your own computer, and installed. While “makefile” support and installation
scripts are provided with the PDP++ source code, compiling PDP++ from the source code is often
prone to minor dependency glitches, making the process inappropriate for those without extensive
programming experience. A source code based installation is required, however, if you intend to
augment PDP++ with your own C++ components. Fortunately, few PDP++ users need to incorporate
new C++ modules, and this is particularly true in classroom situations, so downloading binary
executables generally remains the option of choice. Details are provided in the “INSTALL” file provided
on the FTP sites.

The third way to download PDP++ is only appropriate when all models to be developed and run make
use of the LEABRA framework for computational cognitive neuroscience modeling. Binary executables
for the PDP++ implementation of LEABRA, along with a collection of simulation exercises from
O’Reilly & Munakata (2000), may be found on the web site supporting this textbook:

http://psych.colorado.edu/~oreilly/cecn_download.html

3 UNIX is a registered trademark of The Open Group.
4 Windows and Windows NT are registered trademarks of Microsoft.
5 Cygwin is a registered trademark of Red Hat.
6 Mac OS is a registered trademark of Apple.
7 Linux is a registered trademark of Linus Torvalds.

http://psych.colorado.edu/%7Eoreilly/PDP++/PDP++.html
http://psych.colorado.edu/%7Eoreilly/cecn_download.html

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

This is the downloading option of choice if the full range of connectionist architectures and learning
algorithms supported by PDP++ are not needed. Using the LEABRA framework to teach cognitive
modeling is discussed further in Section 3.3.

It is worth noting that PDP++ may require the installation of other software in order to function
properly. In particular, the Windows version requires Cygwin (www.cygwin.com), and the Mac OS X
version requires support for the X Window System (www.apple.com). Also, compilation of the PDP++
source code requires the availability of a variety of standard C++ libraries, with details provided in the
online installation instructions.

2.3 Features

2.3.1 System Overview

The functional organization of PDP++ reflects the object-oriented nature of the C++ programming
language in which it is written. This structural organization is evident both to those augmenting PDP++
with user-written C++ code and to those using the graphical user interface. All aspects of connectionist
cognitive models implemented in PDP++ are composed of objects. This structure is natural for
describing the components of a connectionist network. Processing units are objects. Layers of such
units are objects. Weighted connections between units are objects. Collections of such connections,
called projections, are also objects. There are network objects that group all of these components
together. The experiences from which networks learn their connection weights are also naturally
described as objects. The structure of inputs and outputs to a network are encoded as pattern objects.
Individual experiences, including both input patterns and target output patterns, are grouped into event
objects. Collections of events form environment objects. Less intuitive for many students is the
implementation of connectionist activation propagation algorithms and learning algorithms as
hierarchies of process objects, which control the timing of event presentation and information
processing within network structures. Even measures of network performance are reified as statistic,
or stat, objects, and the data collected can be recorded by log objects. Components of the graphical
user interface are also C++ objects which the user can customize.

Unlike standard C++ programs, PDP++ maintains information about the class structure of its objects
during the execution of model simulations. Data structures recording the properties of each class are
automatically generated, based on a parsing of the PDP++ source code at compile time, including any
user-written augmentations to the system. This is accomplished through use of a subsystem of PDP++
called TypeAccess. Having class information available while PDP++ is running makes it easy for users
to dynamically examine and modify the objects that make up a model in the midst of analysis and
debugging. The components (members) of objects can be referenced by name, and type checking can
be done dynamically when objects are modified. Maintaining this kind of dynamic type information
offers extreme flexibility during the development and refinement of models, without requiring any sort
of recompilation process.

The object-based structure of PDP++ models is strongly reflected in the system’s graphical user
interface. While this interface contains a number of tools specifically designed to ease the most
common model construction and analysis tasks, virtually every object in a model may also be directly
examined and modified through the use of default object editing windows. These editing windows are
automatically constructed using class structure information. This makes them somewhat generic and
often cluttered with rarely modified information, but it allows virtually all of the objects that make up a
simulation to be modified through a forms-based graphical interface. The TypeAccess system allows

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 5

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

these editing windows to do dynamic type checking, keeping users from modifying objects in grossly
invalid ways. TypeAccess also extracts comments from the underlying C++ source code, and this
allows editing windows to contain short online help messages describing the various components of
each object, based on the source code comments. Thus, even a generic editing window of this kind
includes some guidance concerning the structure of the object being edited and the meaning of its
various fields. An example generic editing window, for a layer object, is shown in Figure 1.

Figure 1: Generic Editing Window for a Layer Object

In many connectionist modeling frameworks, some parameters and features of a model component
are relatively static and others are highly dynamic. For example, a processing unit’s maximum
possible activation level does not typically change during the course of model simulation, and this
upper bound is typically shared by all of the units in a layer or in an entire network. Conversely, the
activation level of each unit is typically highly dynamic, changing radically over the course of each
event and changing in different ways for different units. PDP++ leverages this distinction between
rarely changing shared parameters and more dynamic variables through its inclusion of specification
objects, or specs. Each spec contains a collection of fairly static parameter values for a particular kind
of network component. Thus, a unit spec contains information about the maximum activation level,
while a unit object, proper, contains the unit’s current activation level. This organization allows spec
objects to be shared, when appropriate. For example, all of the units in a network can make use of the
same unit spec object, allowing the user to change the maximum activation level of all units in the
network simply by modifying that single unit spec object. Example editing windows for a unit and for a
unit spec are shown in Figure 2.

Any object in PDP++ can be saved to a file for later use. Thus, a particular unit specification
developed for one model can be saved into a file and then loaded into another model. Similarly, an
environment object containing a collection of training events can be saved for later presentation to
other model networks. By default, saved object files are written in plain text, allowing them to be
viewed in any standard text editor, though the format of the files does not make for easy reading.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 6

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

Because these plain text files can become quite large, they are compressed by default. This is done
using the GNU Zip compression algorithm (for information on GNU Zip, see
http://www.gnu.org/software/gzip/). PDP++ automatically compresses and uncompresses such files,
as appropriate. Object files are given name extensions that reflect the type of object. For example,
saved environments typically appear with an “env” filename extension. Files compressed with GNU
Zip are traditionally given a “gz” filename extension, so PDP++ object files typically include this
extension, as well. Thus, a saved environment might have a file name like “xor.env.gz”. When an
object is saved, many of the objects that it references are also saved into the same file. Thus, saving
an environment object also saves all of the events in that environment. PDP++ provides a top-level
object type for individual models, called project objects, and each project references all of the key
components of a model simulation. Thus, saving a project object into a file is sufficient to save all of
one’s work on a given model. Such files have names like “xor.proj.gz” and are commonly called
“project files”. Example project files are available from the PDP++ web site, and it is common for
students and researchers using PDP++ to share their models with others by sharing project files.
Instructors can provide demonstration models to students as project files, and student models can be
submitted for evaluation in this same format.

Figure 2: Generic Editing Windows for a Unit and for a Unit Spec

2.3.2 Supported Architectures

The PDP++ system is not committed to a particular connectionist modeling framework. Instead,
support is provided for a variety of the most common parallel distributed processing paradigms.
Different connectionist frameworks vary in their standard practices for model construction and model
simulation, however. Since PDP++ provides support for many of these frameworks, it risks confusion
and difficulties if components of the various frameworks are inappropriately mixed. In order to
minimize such problems, PDP++ offers a collection of separate executable programs, each configured
to support one general framework, by default. When starting PDP++, the user simply selects the
framework of interest by executing the corresponding program. These programs include:

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 7

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

• cs++ — constraint satisfaction — This executable configures PDP++ to model constraint
satisfaction networks. These networks focus on the dynamics of activation flow through
recurrent connections to solve pattern completion problems. Attractor neural networks (Amit
1989, Grossberg 1988), such as Hopfield networks (Hopfield 1982), are easily modeled in this
framework, as are networks similar to the Interactive Activation and Competition (IAC) model,
which was used to explain the word superiority effect in letter perception (McClelland and
Rumelhart 1981).

• so++ — self-organization — This executable configures PDP++ to model a variety of
unsupervised learning networks, focusing on variants of Hebbian learning (Hebb 1949,
Grossberg 1998). Extracting statistical regularities from experienced input patterns is the
primary focus of these networks. Competition between units plays an important role in these
algorithms, and PDP++ provides direct support for such. Competitive learning (Rumelhart and
Zipser 1986, Grossberg 1987) and self-organizing maps (Von der Malsburg 1973, Grossberg
1976a, Grossberg 1976b, Kohonen 2001) are easily implemented with this program.

• bp++— backpropagation — This executable configures PDP++ for networks using the
generalized delta rule (Rumelhart et al. 1986a) to learn connection weights based on error
feedback. This includes both single-layer networks (involving directly connected input and
output units) and multi-layer networks (including hidden units). This program also supports
forms of the backpropagation of error algorithm appropriate for recurrently connected
networks, including simple recurrent networks (Elman 1990), backpropagation through time
(Rumelhart et al. 1986a), and various techniques for learning fixed-point attractors in recurrent
networks (Almeida 1987; Pineda 1989).

• bpso++ — backpropagation with self-organization — This executable integrates the features
of backpropagation networks with those of unsupervised self-organization networks,
supporting models akin to counterpropagation networks (Hecht-Nielsen 1989).

• lstm++ — long short-term memory — This executable configures PDP++ to employ the kind of
gated recurrent backpropagation networks used in the “long short-term memory” algorithm
(Hochreiter and Schmidhuber 1997). This algorithm uses multiplicative connections in order
improve the learning of long sequences, as compared to backpropagation through time.

• rns++ — real-time neural simulator — This executable configures PDP++ to use unit models
and activation propagation algorithms appropriate for comparing processing unit activation
directly to the time course of biological neural firing rates. Additional support for fitting these
models to data is also provided. (Details may be found at the RNS++ web site at
http://ccsrv1.psych.indiana.edu/rns++/.)

• leabra++ — LEABRA — This executable configures PDP++ for computational cognitive
neuroscience modeling using the LEABRA framework (O’Reilly and Munakata 2000). These
networks share many properties with other connectionist networks, but they also incorporate
biological constraints at multiple scales. (See Section 3.3.)

It is important to note that all of these programs share a common structure and interface. Typically,
skills involving the use of one executable largely transfer to the others. Thus, while broken into
separate programs, PDP++ does offer a unified approach to building and exploring connectionist
models. The only difference between the various executables is the library of specific object types
used during network construction and the algorithms for activation propagation and weight learning
that are readily available.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 8

http://ccsrv1.psych.indiana.edu/rns++/

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 9

2.3.3 Environments

Specifying the inputs and expected outputs for connectionist network simulations is an important part
of the modeling process. Models of human or animal learning, in particular, will only produce relevant
results if the collections of training experiences presented to the models adequately capture the key
properties of learning environments actually experienced by experimental participants. Rich training
environments for computational models can be both difficult and tedious to generate, however.
Typically, either every input to the model must be specified by hand, which can be tiresome if the
learning environment is large and varied, or some algorithm must be implemented for automatically
generating training experiences. PDP++ attempts to ease the process of developing training and
testing environments by supporting three primary ways for entering experiential events into a model.

The first method for loading events into PDP++ involves the use of “pattern files” generated outside of
the system. This is a common approach, taken by a variety of other connectionist simulation
programs. Events are listed in a plain text file, with numerical input activation levels and target output
activation levels provided explicitly. Such a file can be generated by hand, using a standard text editor,
or it can be produced as the output of some other computer program. Thus, any available software
that can produce plain text output can be used to generate a file of network input and output patterns.
If a user is comfortable using a scripting language, like Perl, then script code may be used to
automatically generate a pattern file. Similarly, spreadsheet programs like OpenOffice Calc or
Microsoft Excel8 may be used to generate such files. This approach to generating PDP++
environments provides the maximum of flexibility to the model developer, but it requires that the set of
events be relatively static and unresponsive to model outputs, as the events are written to a file and
loaded into PDP++ before simulations are run.

Figure 3: Environment View Window for the XOR Problem

8 Excel is a registered trademark of Microsoft.

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

The second method for producing a PDP++ environment involves use of the system’s graphical user
interface to manually construct events. The PDP++ Environment View window, shown in Figure 3,
allows users to populate an environment object with individual events and to specify the input and
output activation values for each of those events. Using a kind of “painter’s palette” at the bottom of
the window, users can select an activation level and then “paint” the input and output values for
different events with that level. This process of manually constructing events is easy and appropriate
for environments containing a small number of events, but it can become tedious and error-prone
when large environments are needed.

The third technique for populating a PDP++ environment with events is the most dynamic, but also the
most intellectually demanding. PDP++ includes types of environments that automatically construct
events by running user-written scripts written in a C++-like scripting language called CSS (see Section
2.3.5). Modelers willing to learn this scripting language, as well as the inner structure of the relevant
environment and event classes in PDP++, can generate environments that produce events in a
manner that is sensitive to such things as model performance over time. Arbitrarily complex and
responsive environments can be produced in this way, but only at the cost of writing code. While such
an effort is within the reach of many modeling researchers, many students new to PDP++ find this
approach difficult.

Once constructed, environment objects may be saved into their own files. Frequently, such
environments can be loaded into other PDP++ projects for use with other models, allowing the labor
cost of environment construction to be amortized over multiple modeling efforts.

2.3.4 Graphical User Interface

The primary mode of interaction with PDP++ is through its graphical user interface. Virtually all of the
common tasks associated with model construction and analysis can be accomplished through such
point-and-click interactions. In addition to the generic editing windows that were previously described,
PDP++ provides a number of graphical tools that are specifically designed to support the most regular
operations on connectionist models. If, at any point during model development or use, the graphical
interface is found lacking, a command line interface which provides direct access to the underlying
objects is also available. This textual command line interface appears in the operating system shell
window from which PDP++ was launched on some platforms (e.g., Linux), and it appears in a
separate window generated by PDP++ on others (e.g., Windows). Textual commands are entered
using an interpreted scripting language that has syntax similar to that of C++ (see Section 2.3.5). This
scripting language allows objects to be directly inspected, and it allows objects to be modified in fairly
arbitrary ways. While almost all interaction with PDP++ can be accomplished graphically, this
command line interface allows advanced users to quickly and easily get “under the hood” of the
system.

The graphical interface requires computational power to function, with CPU time needed to refresh
displays and the like, and this means that use of the interface can slow simulations. Many of the
graphical tools make it easy to temporarily disable updating of their contents, which can speed
processing of a simulation, but there are times when it is desirable to disable the graphical user
interface in its entirety. This is particularly useful when running a fully developed PDP++ simulation on
a remote compute server or server cluster, where the time costs of keeping a graphical interface
operating over a network connection can be prohibitive. In this case, PDP++ can be run “in batch
mode”, with the graphical interface disabled and, optionally, top-level control of the simulation
orchestrated by a short script. Example batch scripts are available with the PDP++ software.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 10

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

Figure 4: Project View Window for the XOR Problem

There are a number of graphical interface tools that are worthy of special mention, as they play central
roles in the design and operation of PDP++ simulations. One such tool is the Environment View
Window, which was previously discussed. Of the other important tools, the highest level one is the
Project View Window. This window provides an overview of an entire model simulation, collecting and
organizing all of the key objects that make up that simulation. This tool also provides an array of
menus for creating and modifying the primary components of a simulation, including: specs, networks,
environments, processes, and logs. An example Project View Window is shown in Figure 4.

Figure 5: Network View Window Displaying the Architecture of an XOR Network

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 11

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

The main tool used to construct and examine connectionist network models in PDP++ is the Network
View Window. The central pane of this tool displays the network architecture, and various properties of
the network can be displayed in an overlayed fashion on this architectural diagram. An example
Network View Window is shown in Figure 5. By default, layers of processing units are displayed as
large rectangles, with each unit displayed as an embedded square. Collections of connections
between layers, called projections, are displayed as arrows between the connected layers. These
projections are often “complete” in that every unit in the sending layer is connected to every unit in the
receiving layer, even though only one arrow is displayed between the layers, but projections can also
involve random or structured patterns of connectivity between layers. By default, the network
architecture is displayed in a form of 3D perspective, with layers stacked one above the other.

Networks can be constructed and modified through direct interaction with the Network View Window.
A button on the left side of the window allows for the generation of new layers. Layers selected with
the mouse can be edited using the corresponding generic editing window, or they can be reshaped
directly with the mouse in the Network View Window, with processing units being added or deleted
from the layer as it is reshaped. Projections are quickly and easily created by a pair of mouse
selections on the layers to be connected. Mnemonic textual labels can be easily added to any part of
the network display.

Figure 6: Browsing Values in a Network View Window: (a) Activation Values, (b) Connection Weight
Values Entering Hidden Unit One

Numeric properties of a network can be graphically displayed on the network architecture diagram. For
example, values associated with individual processing units, such as their current activation level, their
current net input, or their current backpropagated error (delta) value, can be graphically superimposed
over each displayed unit. The way in which these values are displayed — textually, through the height
of a bar, through the degree to which a square is filled, through a color-coded scale, or through some
combination of these — is under user control. For example, Figure 6(a) shows the display of unit
activation values encoded textually, through the height of individual unit columns, and color-coded
according to the scale on the right side of the window. Variable values associated with connections
are more difficult to display on the network architecture diagram, as there are typically many more
connections than units in a connectionist network. PDP++ resolves this problem by allowing for the
display of connection-specific values, such as connection weights, only for connections associated
with a selected unit, at any one time. Figure 6(b) shows an example of this, with the connection weight
values received by Hidden Unit 1 displayed as text, column height, and color-coded according to the
scale on the right edge of the window.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 12

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

PDP++ offers much fiexibility in the way in which quantitative information is displayed in the Network
View Window. The perspective view on the network can be flattened. Graphical bars can take on
various shapes. The numerical value associated with a unit can be encoded by the degree to which
that unit’s square is filled, as is done in Hinton diagrams. The user may sample from a range of color
scale options, and custom color scales may also be created. Some examples of customized network
diagrams are shown in Figure 7.

Figure 7: Some Network View Window Display Variations

 Information about network performance can also be recorded from the Network View Window. After
selecting a model component in the central pane, such as a layer or unit, pressing the “Monitor
Values” button on the left side of the window will initiate a dialog during which the user can specify the
properties of the selected component to be recorded (e.g., a units activation level) and the temporal
granularity at which this data should be recorded (e.g., at the end of every event presentation). The
result of this dialog will be the creation of a statistic, or stat, object which can be graphically displayed
and logged to a plain text file.

While the Network View Window contains most of the instruments necessary to construct and
examine a connectionist network model, the step-by-step execution of the algorithms for activation
propagation and connection weight learning is orchestrated by a hierarchy of objects called process
objects. Different process objects control the timing of the simulation at different levels of granularity,
with some coordinating the settling of the recurrent flow of activation through the network, while others
operate at the level of event presentations, and still others function at the level of complete passes
(i.e., epochs) through entire sets of training events. The organization of the hierarchy of processes is
one of the more complicated aspects of PDP++, and many students have difficulty initially grasping
the role of these objects. In order to ease the use of process objects, PDP++ provides special
windows for performing the most common operations on processes. These windows are called control
panels. An example control panel for a training process is shown in Figure 8. This example control
panel allows the user to change the training environment object being used for training. The user can
also specify the maximum number of training epochs to be executed. Buttons near the bottom of the
window allow the simulation to be initialized, to run the simulation, and to step through the simulation

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 13

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

one epoch at a time. Thus, the actual execution of the simulation can be completely controlled through
the use of process control panels.

As network simulations are run, it is often useful to display measures of network behavior and
performance. In PDP++, this is accomplished through the use of log objects and their corresponding
view windows. Log objects typically record sequences of statistic object values, and present those
sequences in some easy-to-read form. The most basic kind of log is a simple textual log, which
consists of columns of textual, often numeric, data. Such tables can be displayed in a window in the
PDP++ interface, and they can be written to plain text files. Additionally, the PDP++ web site contains
a number of tools for parsing log files and converting them into other formats. Some quantitative data
are best viewed as a line curve over time, and PDP++ supports such displays through its Graph Log
objects. The kinds of data displays provided by the Network View Window, organized by network
layer, are also sometimes worth recording, so PDP++ provides Grid Log objects to display data in a
format similar to that shown over grids of processing units. More sophisticated log objects are also
provided to perform calculations on collected data, such a principal component analysis and
hierarchical clustering of vectors. Some simple example log views are shown in Figure 9.

Display of network performance in Network View Windows and Log View Windows provides useful
guidance as models are being developed and analyzed, but it is often useful to share the results
displayed in such windows with others. For the researcher, it is useful to extract these results for use
in scientific papers and presentation slides. For the student, captured exercise results can be included
in assignment reports. PDP++ provides support for recording the data displayed in these windows.
Still images of the central pane of a Network View Window can be saved, as can images of displayed
logged results. PDP++ can also produce animated movies of these displays, allowing users to share
their observations concerning network dynamics in a fairly direct manner.

Figure 8: An Example Training Process Control Panel

The graphical user interface of PDP++ is rich, elaborate, and fairly comprehensive. It is designed to
maximize flexibility and the user’s access to the underlying C++ objects that make up a PDP++ model
simulation. This flexibility can sometimes make it difficult for novice users to find a particular bit of
information or tool of interest, as the desired item may be hidden among a variety of other tools and
options. With practice, however, the graphical user interface can provide extensive easy-to-use
support for a wide range of modeling tasks.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 14

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

2.3.5 Scripting Language

While the graphical user interface provides extensive means to examine and modify the objects that
make up a PDP++ simulation, some modeling activities require the specification of algorithmic model
components that are not well captured by the range of defined object types. For example, one might
wish to normalize the activation levels in a layer in some unusual way, or one might want to
automatically change the size or number of layers in a network while a simulation is running,
according to some criterion. In many simulation systems, such radical and unforeseen algorithmic
modifications would require a modification to the system’s source code. In PDP++, an interpreted
scripting language based on C++ syntax, called CSS, is provided to the user as a means to allow for
the integration of small program fragments into a model simulation. The CSS interpreter built into
PDP++ has full access to the dynamic type information provided by TypeAccess, allowing runtime
type checking to be done in CSS scripts, as well as other operations that are sensitive to class
properties. The CSS scripting language is used in PDP++ in three main ways.

First, interaction with the PDP++ system through its command line interface is done in the CSS
language. While the graphical user interface usually provides adequate support for interacting with
PDP++ objects, there are times when a more algorithmic interface is welcome. For example, if one
wanted to provide textual names to each processing unit in a large network, where the name of a unit
was to be a systematic function of the names of the units providing it with input, it might easier to write
a small snippet of CSS code that iterates over all of the units and computes their textual names, rather
than manually clicking on each unit and setting its name by hand.

Figure 9: Simple Example Log View Windows: A Graph Log and a Grid Log

Second, many PDP++ objects provide hooks for user-defined CSS scripts, where the hooks specify
when the scripts are to be called during the normal functioning of those objects. For example,
environment objects are designed to call a user-written script, if provided, at the beginning of any pass
through the set of events contained in that environment. Thus, a modeler could provide a script for this
hook that generates a whole new collection of events, using some event generation algorithm, with
each pass through the environment. In this way, the standard behavior of many PDP++ objects can be
customized with user-written script code.

Lastly, CSS scripts provide a good way to coordinate the overall execution of a large simulation. For
example, a top-level CSS script might initialize network connection weights, invoke a training process
until a particular criterion is reached, save the resulting connection weights into a file, and then test the
performance of the trained network on a different collection of events by running a testing process,

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 15

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

saving the results into a log file. Each of these steps could be taken manually through the graphical
user interface, but the use of a top-level CSS script allows the whole simulation to be automated.

A variant on this last use of CSS involves defining a new C++ class from within a CSS script, with this
class acting as a kind of “front end” or “control panel” for the whole simulation. Such a class can
contain member variables for the most interesting model parameters and member functions that
orchestrate the training and testing of models in the same manner that a top-level CSS script would.
When an object of this new class is instantiated, the PDP++ graphical user interface will automatically
generate a generic editing window for the newly defined “control panel” object, providing edit fields for
the member variables and buttons corresponding to specified member functions. In this way, a CSS
script can be used to produce a window that contains only the most relevant controls for the simulation
at hand.

In classroom environments, students almost never need to write CSS code. The graphical interface is
sufficient for learning exercises, removing any need to use the command line interface. Students will
typically be learning about established connectionist frameworks, so there will be little need to
customize PDP++ objects with user-written scripts. Pedagogical exercises are rarely so large that they
require the automation of the simulation process, and students gain valuable experience by stepping
through the stimulation steps manually. Despite this lack of relevance of CSS for the student, CSS
scripts provide a very valuable tool to the instructor. Providing CSS defined control panel objects along
with the models to be examined by the students offers important scaffolding and guidance to students
as they explore the demonstration models on their own. Such control panels help students focus on
the most salient aspects of the specific models being presented, keeping them from becoming lost
among the huge array of options offered by the general PDP++ interface. In short, use of the CSS
scripting language is in no way mandatory, and much productive work can be done in PDP++ without
use of CSS. However, student learning can be facilitated when instructors take the time to learn CSS
and, following examples from the PDP++ web site, construct control panel objects for the simulations
to be provided to their students.

2.3.6 Customizing Executables

PDP++ provides tools for compiling new executable programs that include the functionality of PDP++
along with user-written C++ augmentations. In many cases, such recompilation is unnecessary, as the
flexibility of CSS scripts allows many augmentations to be accomplished through the use of various
hooks in existing PDP++ objects. Still, more radical modifications are not always easy in CSS, and the
execution of CSS code can be slow, since it is interpreted at runtime. Thus, researchers working with
PDP++ sometimes opt to make their experimental modifications in C++ and compile new versions of
PDP++ that make use of those changes.

In classroom environments that include students with strong computer programming skills, it is
sometimes tempting to offer this option to more advanced students, perhaps as part of ambitious term
projects. This is a risky option, however. In order to augment the PDP++ system directly, one must be
intimately familiar with the existing source code. The object classes offered by PDP++ are highly
interactive, with apparently local modifications often having far-reaching effects. While students with
strong programming skills may be able to easily cast the algorithmic modifications of interest into C++,
there is rarely enough time within the scope of a single course to allow students to become sufficiently
familiar with the PDP++ source code to avoid the pitfalls of the potential side effects of their
modifications. Most of the time, it is better to direct strong students to the power of the CSS scripting
language, rather than encouraging them to modify the PDP++ source.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 16

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 17

2.4 Software Support

The PDP++ system is very powerful and highly flexible. It has been used to develop research-grade
connectionist cognitive models in domains as diverse as classical conditioning and cognitive
dissonance. It’s power and flexibility come at a cost, however, and that is its typical learning curve.
While demonstration simulations for classroom use are usually readily accessible to students,
particularly when they are accompanied by simulation-specific CSS control panels, initial student
efforts to construct new models and to make modifications to standard connectionist frameworks are
often met with substantial learning obstacles. PDP++ provides two main resources to assist in
overcoming these learning obstacles.

A largely comprehensive users manual for PDP++ has been written by the system’s original designers
(Dawson et al. 1997). A formatted version of this reference manual is available in PDF and PostScript9
from the PDP++ web site. A hyperlinked web-based version is also provided at:

http://www.cnbc.cmu.edu/Resources/PDP++//manual/pdp-user_toc.html

It is important to note that this document is a reference manual and not a tutorial. While Chapter 4 of
the manual provides some tutorial guidance, the bulk of this document was not written with pedagogy
in mind. A more tutorial introduction to PDP++ is available in O’Reilly & Munakata (2000), but this
textbook focuses exclusively on the LEABRA framework, rather than the full range of connectionist
frameworks available in the PDP++ system. (For a discussion of the advantages of using LEABRA in
a classroom setting, see Section 3.3.)

A second resource for learning PDP++ is an electronic mailing list that has been established for the
PDP++ user community. This is a low traffic mailing list used to address questions from both students
and researchers concerning the use and augmentation of the PDP++ system. Questions are
broadcast to the whole list and addressed by volunteers. The principal architect of PDP++, Randall
O’Reilly, regularly contributes to this mailing list. Instructions for subscribing to this mailing list may be
found on the PDP++ web site.

While further learning and teaching support for PDP++ would certainly be welcome, these two
resources, along with the example project files provided with the PDP++ system, are frequently
adequate to bring new users up to speed in the use of this powerful modeling tool.

2.5 Ongoing Development Efforts: Emergent

At the time of this writing, development efforts for a substantial upgrade to PDP++ have been
proceeding for several years. These efforts culminated in an initial release of the successor of PDP++,
called Emergent, late in 2007. Extensive work in the O’Reilly laboratory at the University of Colorado
at Boulder has gone into improving the graphical user interface of this system, and the process of
installation, even when recompiling from source, has been made more seamless. There have also
been substantial efforts to improve the documentation for the system.

Computational cognitive neuroscience courses at five or more major research universities are
scheduled to make use of Emergent in the classroom during the Spring of 2008, but it is too early to
evaluate the pedagogical strengths and weaknesses of this upgrade of the PDP++ software. A few

9 PostScript is a registered trademark of Adobe Systems.

http://www.cnbc.cmu.edu/Resources/PDP++//manual/pdp-user_toc.html

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

initial observations are made here, in hopes of assisting educators in anticipating the effects of placing
Emergent in the hands of their students.

The Emergent software is supported by a new web site, maintained by the O’Reilly laboratory at the
University of Colorado at Boulder, located at:

http://grey.colorado.edu/emergent/

This web site makes use of the MediaWiki system (www.mediawiki.com), which provides tools to allow
the site to be easily augmented and edited by a collection of geographically distributed authors. This
feature of the web site is being employed by the Emergent development team in order to quickly
enrich system documentation. Users of the software are contributing online documentation on topics
ranging from proper installation of the software on a variety of computer platforms to tips for the
construction of particular kinds of cognitive models. The use of this technology is one way in which the
Emergent developers hope to produce a more comprehensive and useful collection of software
support documents than what is available for the previous PDP++ releases. Upon the initial release of
Emergent, however, this documentation is still fairly sparse, despite the inclusion of many helpful
guides penned by the software developers. These initial documents include a small collection of
tutorials, including tutorials on building a connectionist network from scratch, on backpropagation
networks in Emergent, on the use of temporal difference learning in Emergent, on various new
components of the LEABRA framework, and on using some of Emergent’s new graphical and
multimedia capabilities. Importantly, Emergent contains methods for constructing links in its graphical
user interface to web-based resources, allowing the Emergent Wiki to act as a kind of online help
system that can be directly engaged from the software.

Figure 10: Emergent Project Viewer Window

The foundational structure of PDP++ has not changed much in Emergent, with simulations
constructed from collections of objects, such as network objects, environment objects, and the like.
Object editing dialogs continue to exist in the new version, offering a graphical means to inspect and
modify the various components of any object in the system, as before. The basic organization of the
graphical user interface has changed in Emergent, however. In PDP++, separate windows are used
for each interaction with the system. For example, editing three different layer objects would typically

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 18

http://grey.colorado.edu/emergent/

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

produce three object editing windows, one for each layer object. This user interface design can result
in a large number of windows without any apparent overarching organization. Emergent attempts to
impose some structure on simulation projects by introducing an extensive Project Viewer Window.
This large window contains multiple panes, laying out common components of a simulation in a
manner that avoids occlusion. Rather than generating many different windows for interacting with
various objects, the active dialogs are “stacked” within the panes of the Project Viewer Window and
are accessible through “tabs” at the top of each pane. Thus, selecting a “tab” brings the desired dialog
to the top of the stack. A menu option allows any of these dialogs to be separated from the Project
Viewer Window and placed in its own window, but the default behavior of the interface is to avoid the
creation of such stand-alone windows. An example Project Viewer Window is shown in Figure 10. As
displayed in that figure, the Project Viewer Window contains three main panes, arrayed from left to
right. On the left is a pane that offers functionality similar to that provided by the PDP++ Project View
Window (Figure 4). A pallet of tools is offered in this pane alongside a hierarchically organized listing
of all of the objects in the project. This listing assists the user in quickly finding any specific object of
interest, allowing the object to be inspected or modified. The middle pane contains a stack of control
panels, editing dialogs, and other tools for interacting with the current simulation. Importantly, as
shown in Figure 10, this pane can include embedded documents, as described below. The rightmost
pane is used for graphical displays, including those that previously appeared in the PDP++ Network
View Window (Figure 6) and those that previously appeared in various PDP++ log view windows
(Figure 9). The graphical capabilities of Emergent are much more extensive than those of PDP++, as
discussed below.

One of the most substantive innovations of Emergent, over PDP++, is the inclusion of embedded
documents. These documents appear in the Emergent interface as typeset prose, like the content of a
web page, but they are written in an easy wiki-like text formatting language. These documents can
include active hyperlinks to the web, allowing direct points of contact to online documentation or any
other web resource. These documents can also contain active hyperlinks to Emergent objects, and
this feature allows the Emergent interface to be directly manipulated by simply selecting links in an
embedded document. This is a highly useful feature for the fabrication of pedagogical materials. Prose
guiding students through an exercise can now be incorporated into the simulation itself, avoiding the
need for shifts of attention between multiple resources. Also, educational scaffolding during early
experiences with Emergent can be had by directing students to manipulate initial simulations by simply
selecting appropriate document links, rather than forcing them to navigate the system’s control panels.
Preparing an embedded document is somewhat easier than producing a simulation specific control
panel using CSS, reducing some of the burden on instructors generating demonstrations and
exercises. Indeed, penning these embedded documents is sufficiently simple that some instructors
expecting to use Emergent in 2008 have suggested requiring that student term project reports take the
form of such embedded documents, allowing students to submit both their simulation work and their
“write-up” as a single Emergent project file. Support for embedded documents may very well become
the most educationally salient new feature of Emergent.

While previous PDP++ releases have provided a variety of means for graphically displaying
connectionist models and the results of simulations, Emergent contains a much expanded pallet of
visualization tools. The rightmost pane of the project viewer window typically contains a workspace for
the display of 3D graphical objects. These objects can include network displays and various graphs
and charts, as in PDP++, but they can also include a broader range of objects, including 3D plots,
embedded images containing relevant information (e.g., brain imaging data), and even simulations of
simple physical environments with which models can interact. A simple mouse-driven interface allows
the user to navigate through this graphical workspace, changing viewpoints in order to better examine
various components of the display. Graphical objects can also be directly manipulated with the mouse

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 19

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 20

pointer. The result is a powerful collection of tools for producing engaging and informative dynamic
graphical displays of simulation information. While these capabilities are sure to find use in the design
of classroom demonstrations and exercises, they do come with some costs. First, the reliance on 3D
graphics, using OpenGL10, increases the platform demands of Emergent. Computer systems without
graphics cards that provide hardware support for 3D rendering run Emergent simulations extremely
slowly. This is true even for simulations that avoid elaborate graphics, as even simple 2D graphs are
rendered as 3D graphical objects in Emergent. Second, it is likely that the attractive graphics
capabilities of Emergent will introduce a temptation for some students working on their own
simulations, causing them to direct an inappropriate amount of energy toward form over substance.

It is too early to evaluate the pedagogical strengths and weaknesses of Emergent, in comparison to
previous PDP++ releases. There is a clear effort to provide further system documentation with this
release, mostly through the collaborative construction of the Emergent web site, but the fruits of this
effort are still largely forthcoming. Efforts to improve the graphical user interface have produced
striking 3D visualization tools which may increase engagement by students and clarify the dynamics of
connectionist models, but further classroom experience will be needed to assess the utility of these
tools. The organization of the graphical user interface has been greatly simplified in Emergent by
gathering disparate PDP++ windows into a single Project Viewer Window. Support for embedded
documents will also allow for the generation of easy-to-use interfaces for specific model simulations,
and it is likely that such documents will find broad use in communicating model concepts and results
within an executable simulation. Active development of this software is ongoing, with electronic mailing
lists providing forums for reporting difficulties and discussing prospective improvements.

3 Using PDP++ in the Classroom

3.1 Flexibility, Usability, & Efficiency

PDP++ is primarily designed to be used by cognitive modeling researchers. It offers a powerful array
of highly flexible tools to those who are designing and testing new models and new connectionist
approaches to the modeling of cognitive phenomena. Those familiar with PDP++ find it fairly easy to
use it to generate new models, customize connectionist algorithms, and collect useful data on model
behavior.

In classroom settings, using PDP++ trains students in the use of research-grade software. If students
are asked to prepare term projects of their own design, it is unlikely that their imaginations will be
constrained by software limitations. If students are hoping to construct models after their classroom
training is complete, perhaps as part of graduate research activities, they will already be familiar with a
software system that can support their research needs. There will be no need for their learning
process to start over, moving from a limited pedagogically-friendly system to one with sufficient power
for research innovation. Thus, using PDP++ in the classroom can provide valuable practical skills to
students who intend to include cognitive modeling work as part of their professional activities.

Unfortunately, flexibility in software often introduces problems with usability. Offering myriads of
options for customization can make it difficult for the novice to find the specific controls of interest.
PDP++ clearly suffers from this problem of usability, with substantial amounts of training often being
necessary before students are comfortable with the important components of the interface. PDP++

10 OpenGL is a registered trademark of SGI.

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

tries to overcome usability obstacles in the classroom in two main ways. First, PDP++ provides
support for the development of model-specific control panels, allowing instructors to easily construct a
graphical interface window that collects only those model parameters and model operations that are
important for student learning (see Section 2.3.5). Orienting students to these compact control panels
is often sufficient to keep them from becoming lost in the many options available in the full PDP++
interface. Second, in order to assist in the construction of new models of fairly standardized types
(e.g., a feedforward multi-layer backpropagation network), recent versions of PDP++ have supported
wizard objects. Wizard Windows provide tools which automate the process of constructing standard
model components, such as network objects, environment objects, statistics objects, log objects, and
process object hierarchies. Buttons on the face of a Wizard Window launch short dialogs with the
user, querying for design parameters and then constructing objects according to the specified design.
As long as the desired model is moderately prototypical for a given connectionist framework, Wizard
Windows can greatly ease the process of creating new models while shielding novice users from the
complexities of the full PDP++ interface. In summary, the richness of the PDP++ interface can
sometimes make it difficult for students to master, but a number of tools exist for guiding students as
they perform common tasks. As long as students remain oriented to these tools, the danger of
hindering the learning process by introducing usability frustrations is greatly reduced.

The extreme flexibility of the internal structure of PDP++ also introduces a trade-off with regard to
efficiency of simulation execution. Since PDP++ is designed to support a wide variety of connectionist
frameworks, it is not optimized for any one approach. Thus, large models may run more slowly than
expected, particularly if full support of the graphical user interface is used during execution. This is
rarely a problem in classroom environments, where models designed to make instructional points are
often small, but issues may arise if students are allowed to design course projects on their own.
Students may not understand the computational demands imposed by large models, and it is not
uncommon for student project proposals to be overly ambitious. For example, many students show
interest in models that operate on photographic images, but they overlook the computational cost of
processing such large inputs. While PDP++ provides methods for disabling the graphical user
interface in order to speed processing, as well as some support for parallel processing when multiple
hardware processors are available, the large time cost of simulating large connectionist networks
should be clearly communicated to students considering such large scale models.

3.2 Teaching Connectionism

As a tool for teaching connectionist cognitive modeling skills, PDP++ has many strengths. Training
students in the use of PDP++ in a classroom environment provides them with a set of practical
research skills, as PDP++ is primarily a research tool. Success with PDP++ in the classroom should
provide a good initiation to the use of PDP++ in the laboratory. PDP++ is also well designed to cover
the full range of topics contained within typical course curricula on connectionist modeling. Most
courses on connectionism include some form of survey of connectionist frameworks, often comparing
the relative strengths and weaknesses of various common frameworks. Since PDP++ provides rich
support for a wide variety of network architectures and learning algorithms, it can be used to provide
students with hands-on experience with all of these connectionist frameworks without demanding that
they learn different software interfaces for each framework explored. While the PDP++ graphical user
interface is extensive and complex, it contains a number of features that are particularly useful in
educational settings. First, the ability to construct simulation-specific control panels allows instructors
to guide student exploration of demonstration models, highlighting the aspects of the simulations most
important for the current learning goals. Second, the rich and varied graphical displays, including
dynamic displays in the Network View Window and the dynamic plotting of data in various graphical

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 21

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

logs, provide students with multiple perspectives on model behavior and performance. Providing
multiple views of the same underlying phenomena, in this way, can often provide the key that unlocks
the door to a deeper understanding of the mechanisms being simulated.

While PDP++ possesses many pedagogical strengths, it has weaknesses, as well. Perhaps the
greatest of these weaknesses is the lack of thorough tutorial materials supporting either the learning of
PDP++ or the learning of connectionist modeling concepts from a PDP++ perspective. While the
PDP++ users manual (Dawson et al. 1997) contains a wealth of information, it does not supply the
kind of step-by-step instruction that is needed to guide students toward mastery of this software
system. Ideally, materials for learning PDP++ should be integrated with materials for learning cognitive
modeling skills, allowing instructors to directly draw on these materials when designing their own
courses. Perhaps all that is needed is a more focused effort to compile teaching materials that have
been prepared by instructors who have used PDP++ in the classroom, so that the fruits of these
efforts can be shared.

It is worth noting that there does exist a strong tutorial introduction to cognitive modeling concepts
using PDP++ in the form of a textbook (O’Reilly and Munakata 2000). This text, which is discussed
further in Section 3.3, focuses exclusively on the LEABRA modeling framework, however, so it may
not be appropriate for all courses on connectionist cognitive modeling.

Many classes on cognitive modeling initially expose students to prepared demonstration models and
only expect students to build models of their own design later in course. This approach allows
students to become familiar with the properties of working model simulations before presenting them
with the challenges of model construction. In PDP++, this educational sequence introduces some
challenges, however. In order to quickly engage students with model simulations, it is common to
initially provide extensive guidance and “hand holding” concerning the specific model manipulations to
be performed during exercises. This guidance can even be built into simulations by providing model-
specific control panel windows that contain only the most relevant operations to be explored. Students
often come to depend on these simulation-specific control panels and other forms of guidance, leaving
them vulnerable to difficulties when they are later expected to use the standard PDP++ interface to
build models of their own design. These difficulties can sometimes be ameliorated through the use of
Wizard Windows, which provide generic guidance in the construction of new model components, such
as networks and environments. In general, however, extensive use of simulation-specific control
panels and wizard objects serves to mask the full PDP++ interface from students, providing them with
fewer opportunities to learn the full range of tools provided by the system. Thus, students often
stumble when they are expected, or expect themselves, to use the broader graphical user interface.
Perhaps the only way to address this problem is through the careful design of a sequence of
exercises, slowly removing the scaffolding provided by simulation-specific control panels and wizards
as the course develops. In this way, students become accustomed to standard PDP++ interface tools
in an incremental fashion.

When students are asked to design their own modeling projects, they often see the design of a
connectionist network as the primary task to be accomplished. They rarely recognize the labor
required to construct appropriate training and testing environments for their models. In many cases,
the construction of environment objects is the most time consuming component of such a term project.
This fact should be communicated clearly to students, and students should be encouraged to seek out
the easiest methods for environment fabrication. For most students, the easiest way to specify the
collection of events that make up an environment is within a plain text file, which can later be loaded
into a PDP++ environment object. Students can use their favorite tools (e.g., spreadsheets) to produce
such files, without needing to learn additional features of PDP++ (e.g., the CSS scripting language,
which could be used to dynamically create events).

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 22

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

PDP++ runs on a variety of platforms, and most pedagogical model demonstrations do not seriously
tax modern commodity hardware, including notebook computers. Thus, it is generally reasonable to
expect students to install this software on their personal machines, allowing them to explore
connectionist modeling within their standard work environments. Perhaps surprisingly, the main
limitation that sometimes arises when students use PDP++ on their own computers is not a
computational power limitation but a limitation on display size. The graphical user interface of the
PDP++ system is composed of many separate windows, and fitting all of the windows of interest on a
single desktop screen can become impossible on low resolution displays. Thus, if multiple computers
are available to students, they should be encouraged to seek out platforms for their PDP++ work that
offer large amounts of display real estate.

In summary, exercises using PDP++ can contribute positively to the teaching of connectionist
cognitive modeling skills. The primary challenge that PDP++ presents to instructors of cognitive
modeling courses is that of providing adequate guidance in simulator use early in the course, through
the use of such tools as simulation-specific control panels, while incrementally removing such
scaffolding throughout the course to encourage students to eventually master the full range of
powerful tools provided by the PDP++ system.

3.3 Teaching Computational Cognitive Neuroscience

Many courses on connectionist cognitive modeling contain a survey of various connectionist
frameworks. Thus, students examine different models, using different algorithms, for each framework.
These surveys sometime roughly follows the chronology of the history of connectionist research, but
they more often are organized to highlight the similarities and differences between frameworks. This
approach to teaching connectionism has a number of strengths, including the way in which it refiects
the diversity of connectionist frameworks still being explored in the scientific literature. There is an
alternative approach, however.

Connectionist cognitive modeling can also be taught from a more unifying perspective, stressing the
ways in which the conceptual contributions of various connectionist frameworks can be brought
together in order to share the strengths of these frameworks. This approach has been taken with the
LEABRA framework for computational cognitive neuroscience modeling. LEABRA is a collection of
computational formalisms for developing cognitive models that make contact with both observable
behavior and detailed biological mechanisms. LEABRA models are constrained by our knowledge of
processes at the level of membrane channels and individual neural functioning and also by our
knowledge of gross brain anatomy and the role of various neurotransmitter systems. From an
educational perspective, LEABRA is of particular interest because it incorporates many of the
mechanisms that have appeared in the history of connectionist research. Its recurrent activation
dynamics allow it to exhibit pattern completion and soft constraint satisfaction performance akin to that
seen in Hopfield networks, other attractor networks, and spreading activation models. Synaptic weight
learning in LEABRA includes a Hebbian learning algorithm, allowing for self-organization learning, and
an error-correction learning algorithm formally related to the backpropagation of error technique.
LEABRA networks can also make use of a reinforcement learning algorithm based on the role of the
dopamine neurotransmitter system in learning. By bringing all of these mechanisms together, LEABRA
provides a single focal framework through which a wide variety of connectionist concepts might be
taught. Rather than being required to master a library different connectionist frameworks, students can
be encouraged to focus on a single framework while learning about the relative strengths and
weaknesses of the various connectionist concepts and mechanisms that contribute to that framework.
In addition to focusing students’ attention, this unifying approach to teaching connectionism

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 23

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

discourages students from seeing the field as merely a “bag of tricks” by explicitly juxtaposing and
relating various connectionist mechanisms within a single framework.

One substantial advantage of adopting this unifying pedagogy is the availability of a rich educational
resource that takes this approach. The textbook entitled Computational Explorations in Cognitive
Neuroscience: Understanding the Mind by Simulating the Brain (O’Reilly and Munakata 2000)
provides a rich introduction to computational cognitive neuroscience, including foundational
connectionist concepts, using the LEABRA framework. LEABRA is fully supported in PDP++, and the
textbook contains an extensive array of PDP++ simulation exercises embedded within expository
prose. When a new modeling concept is introduced and discussed, the flow of the text is paused to
guide the reader, in a step-by-step fashion, through a PDP++ simulation illustrating the concept at
hand. All of the PDP++ project files, and related software, for these exercises are available from the
textbook’s web site at:

http://psych.colorado.edu/~oreilly/comp_ex_cog_neuro.html

Thus, while focusing on LEABRA, this textbook provides an incremental tutorial introduction to
PDP++, computational cognitive neuroscience, and connectionism in the form of accessible prose
tightly integrated with hands-on exercises. Example syllabi, lecture slides, and other teaching support
materials are also provided at the textbook’s web site.

At the time of this writing, at least twenty research universities worldwide have offered courses on
computational cognitive neuroscience using this textbook as a primary resource. There is good
evidence that this unifying approach to teaching cognitive modeling can equip students with a strong
understanding of foundational connectionist concepts while providing them with the practical skills
necessary to develop research-grade model simulations using the PDP++ system. The author of this
report has taught both survey-structured courses and courses using LEABRA, and these experiences
suggest that students are somewhat more engaged by the unified approach and they also welcome
the opportunity to relate their modeling explorations to findings from the field of cognitive
neuroscience.

4 Summary & Conclusion

This article has provided a brief overview of the PDP++ connectionist cognitive modeling simulation
system, with a focus on its role in educating future cognitive modelers. In broad strokes, the primary
strength of PDP++ is its flexibility, making it an appropriate tool for cutting edge research in the
computational modeling of human behavior and brain function. Thus, teaching students to use PDP++
provides them with skills that transfer directly into research practice. This strength of PDP++ is also
one of its main weaknesses, from a pedagogical standpoint, as its flexibility makes the standard
PDP++ interface difficult for the novice to master quickly. PDP++ provides some tools to scaffold early
learning, however, including the means for instructors to design simple “front ends” or “control panels”
for demonstration simulations. Additional tutorial documentation and teaching support materials for
PDP++ would greatly improve its utility in the classroom, though an excellent textbook that makes use
of PDP++ throughout already exists for those who are willing to take a more unifying approach to the
teaching of connectionist concepts.

Several of the recommendations that have appeared in this article warrant highlighting, based on the
author’s experience using PDP++ in educational settings. These recommendations include:

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 24

http://psych.colorado.edu/%7Eoreilly/comp_ex_cog_neuro.html

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

• Encourage students to install PDP++ on their own computers. Encourage them to select
platforms that provide good graphics support, including those offering as much screen real
estate as possible. Encourage them to install the software using the available binary
packages, rather than recompiling the software from the source code.

• Direct the attention of students to all available system documentation as early as possible.
This includes online help tools, such as the descriptions of object members in object editing
windows, and the PDP++ reference manual.

• Construct compact “control panels” for early simulation demonstrations and exercises, hiding
the complexities of the PDP++ interface during initial exposure to the software.

• Incrementally remove the scaffolding of provided simulation specific “control panels” as the
course advances, introducing components of the general interface, such as process objects
and their respective generic control panels, one by one. This is important if students are to
build simulations of their own design.

• Encourage students to regularly disable the graphical display of results while large simulations
are running, allowing the simulations to run faster. Encourage them to examine simulation
results in the form of logs, such as graphs and tables, once simulation runs are complete.

• Warn students of the extensive labor needed to construct environments for connectionist
simulations. Encourage them to generate large collections of events using tools with which
they are familiar, such as spreadsheets, loading them into PDP++ as plain text files.

• Warn students of the time cost of running large simulations. In particular, be wary of projects
involving the use of real visual image data.

• Discourage students from writing C++ augmentations to PDP++ as part of course term
projects, directing them to the CSS scripting language, instead.

Every educational forum is different, and conscientious instructors should certainly adapt their
teaching activities to the particular backgrounds and needs of their students. Still, these
recommendations have been supported by experiences in a variety of settings, ranging from the
university classroom to academic conference tutorials.

At the time of this writing, PDP++ is an active ongoing open source software project, though it has
taken a new name, Emergent, in its most recent instantiation. Emergent offers several improvements
to the ease-of-use of the system’s graphical user interface, and technical support for further system
documentation, integrated with the software, is included. As the community of instructors using PDP++
in their classrooms grows, it would be useful to compile teaching resources in a central repository
associated with the PDP++ web site. These resources should include both documents, such as syllabi
and lecture slides, and also PDP++ project files containing carefully packaged and pedagogically
relevant simulation exercises. In the end, such auxiliary materials are as critical to teaching success
as the properties of the educational software, itself.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 25

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

References

Almeida LB (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Caudil, M. and Butler, C., editors, Proceedings of the IEEE First International
Conference on Neural Networks, volume 2, pages 609–618, New York. IEEE.

Amit DJ (1989). Modeling Brain Function: The World of Attractor Neural Networks. Cambridge
University Press.

Dawson CK, O’Reilly, R. C., and McClelland, J. L. (1997). The PDP++ Software Users Manual.
Version 1.2.

Elman JL (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Grossberg S (1976a). Adaptive pattern classification and universal recoding I: Parallel development
and coding of neural feature detectors. Biological Cybernetics, 23:121–134.

Grossberg S (1976b). Adaptive pattern classification and universal recoding II: Feedback, expectation,
olfaction, and illusions. Biological Cybernetics, 23:187–202.

Grossberg S (1987). Competitive learning: From interactive activation to adaptive resonance.
Cognitive Science, 11:23–63.

Grossberg S (1988). Nonlinear neural networks: Principles, mechanisms, and architectures. Neural
Networks, 1:17–61.

Grossberg S (1998). Birth of a learning law. INNS/ENNS/JNNS Newsletter, 21:1–4. appearing with
Neural Networks, 11(1).Hebb DO (1949). The Organization of Behavior. Wiley, New York.

Hecht-Nielsen R (1989). Neurocomputing. Addison-Wesley, New York.

Hochreiter S and Schmidhuber J (1997). Long short-term memory. Neural Computation, 9:1735–1780.

Hopfield JJ (1982). Neural networks and physical systems with emergent collective computational
abilities. In Proceedings of the National Academy of Sciences, volume 79, pages 2554–2558,
Washington, D.C.

Kohonen T (2001). Self-Organzing Maps, volume 30 of Springer Series in Information Sciences.
Springer, New York, third edition.

McClelland JL and Rumelhart DE (1981). An interactive activation model of context effects in letter
perception: Part 1. an account of basic findings. Psychological Review, 88:375–407.

McClelland JL and Rumelhart DE (1988). Explorations in Parallel Distributed Processing. MIT Press,
Cambridge, Massachusetts.

McClelland JL, Rumelhart DE, and the PDP Research Group (1986). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 2. MIT Press, Cambridge, Massachusetts.

O’Reilly RC and Munakata Y (2000). Computational Explorations in Cognitive Neuroscience:
Understanding the Mind by Simulating the Brain. MIT Press, Cambridge, Massachusetts.

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 26

 Teaching Cognitive Modeling Using PDP++ © 2008 David C. Noelle

 http//:www.brains-minds-media.org May 2008, Vol.3 | bmm1406 27

Pineda FJ (1989). Recurrent backpropagation and the dynamical approach to adaptive neural
computation. Neural Computation, 1(2):161–172.

Rumelhart DE, Hinton GE, and Williams RJ (1986a). Learning internal representations by error
propagation. In (Rumelhart et al., 1986b), chapter 8, pages 318–362.

Rumelhart DE, McClelland JL, and the PDP Research Group (1986b). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 1. MIT Press, Cambridge, Massachusetts.

Rumelhart DE and Zipser D (1986). Feature discovery by competitive learning. In (Rumelhart et al.,
1986b), chapter 5, pages 151–193.

Von der Malsburg C (1973). Self-organization of orientation sensitive cells in the striate
cortex. Kybernetik, 14:85–100.

	1 Introduction
	2 Overview of PDP++
	2.1 Development History
	2.2 Supported Platforms, Access, & Installation
	2.3 Features
	2.3.1 System Overview
	2.3.2 Supported Architectures
	2.3.3 Environments
	2.3.4 Graphical User Interface
	2.3.5 Scripting Language
	2.3.6 Customizing Executables

	2.4 Software Support
	2.5 Ongoing Development Efforts: Emergent

	3 Using PDP++ in the Classroom
	3.1 Flexibility, Usability, & Efficiency
	3.2 Teaching Connectionism
	3.3 Teaching Computational Cognitive Neuroscience

	4 Summary & Conclusion
	References

