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Human behavior emerges from a complex dynamic interaction between graded and context-
sensitive neural processes, the biomechanics of our bodies, and the vicissitudes of our environ-
ments. These coupled processes bear little resemblance to the iterated application of simple
symbolic rules. Still, there are circumstances under which our behavior appears to be guided by
explicit mental rules. A prototypical case is when succinct verbal instructions are communicated
and are promptly followed by another. How does the brain support such rule-guided behavior?
How are explicit rules represented in the brain? How are rule representations shaped by expe-
rience?What neural processes form the foundation of our ability to systematically represent and
apply rules from the vast range of possible rules? This article reviews a line of research that has
sought a computational cognitive neuroscience account of rule-guided behavior in terms of the
functioning of the prefrontal cortex, the basal ganglia, and related brain systems.
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1. On the Neural Basis of Rule-Guided Behavior

Is human behavior guided by mental rules? If so, how are these rules instantiated in
the brain? As the cognitive sciences advance, a growing array of regularities are
discovered concerning human behavior, and, to the degree that these regularities
appear rule-like, it is natural to hypothesize that they arise from some form of in-
ternal representation of such rules, along with a neural rule-following mechanism. On
some occasions, behavioral rules seem to become observable, as when verbal
instructions are provided and those instructions are promptly followed. On other
occasions, the explicit rule-governed strategies that we employ may arise from
within, but can be verbally described.

This article provides a brief overview of a speci¯c line of research aimed at pro-
viding a computational account of how rule-guided behavior is supported by the
neural circuits of the human brain. This line of research is ongoing, so the proposed
computational account is still incomplete, but much progress has been made in using
formal models of neural mechanisms to relate anatomical and physiological data to
relevant cognitive and behavioral phenomena. Under this developing theoretical

Journal of Integrative Neuroscience, Vol. 11, No. 4 (2012) 453!475
°c Imperial College Press
DOI: 10.1142/S021963521250029X

453

http://dx.doi.org/10.1142/S021963521250029X


account, the bulk of human behavior is not rule-guided in the current sense. It is
asserted that the function of most neural networks is poorly described as imple-
menting mental rules, for a variety of reasons. In terms of representation, many
neural systems appear to manipulate information at a level below that of psycho-
logical concepts !!! at a sub-conceptual or sub-symbolic level (Smolensky, 1988).
These circuits are often highly context sensitive, in a manner that de¯es description
by compact mental rules (Elman, 1990), and they exhibit a continuity in their
dynamics that does not appear in the sequential application of rules (Spivey, 2008).
Still, there are some situations in which humans do appear to exhibit behavior driven
by explicit rules, and it is the neural mechanisms employed in these situations of true
rule-guided behavior that have been the target of the investigations described here.

In order to understand the nature of rule-guided behavior, it is important to clearly
distinguish it from rule-described behavior, in the following sense. In some situations, a
behaviormight be described by a simple rule, but it does not necessarily follow that the
simple rule is instantiated in the brain and is driving the behavior. For a behavior to be
rule-guided, the rule in question must be represented or encoded in neural tissue, and
that physical representation must have appropriate causal force in the production of
the behavior. This distinction is well illustrated by an analogy to a simple physical
process. Consider a thrown ball that is allowed to follow its natural parabolic ballistic
trajectory. There is a simple mathematical \rule" that accurately describes this tra-
jectory: the equation for a parabola. This quadratic equation does an excellent job of
describing the \behavior" of the moving ball. This behavior is in no way guided by the
quadratic \rule", however. There is no physical mechanism that explicitly computes
the location of the ball at each moment using this equation. Instead, the motion of the
ball is driven by inertia and gravity, with the parabolic description emerging from the
interaction of these physical processes. Similarly, a behavior may be well described by
a simple rule without that rule actually being instantiated in the brain. This is the
distinction between rule-guided behavior and rule-described behavior, with the former
generally being a proper subset of the latter.

This raises the question of howwe can recognize when a rule is explicitly represented
in the brain. Some have suggested that the only practical criterion is one of the rule
being verbalizeable!!! represented by a linguistic code and readily available for verbal
report (Ahsby et al., 1998). Others have risked confusing rule-described behavior and
actual rule-guided behavior by suggesting a looser criterion that includes implicit
patterns of responding such as the \unspoken rules for social interaction" (Bunge &
Wallis, 2008). The line of research reviewed in this article has largely remained ag-
nostic concerning the role of language in rule representation, but, like verbalizeable
sentences, sees explicit rules as constituents of working memory when being actively
applied. Thus, for an explicit rule to guide behavior, it must have a corresponding
neural representation that can become \active" in working memory. Grounded in
work on the neural basis of workingmemory (Goldman-Rakic, 1987; Funahashi, Bruce
& Golman-Rakic, 1989), these active representations are seen as being encoded in the
distributed pattern of sustained neural ¯ring across a delineated set of neurons, most
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noteably in portions of the prefrontal cortex (PFC). Under this view, a behavior is
rule-guided when it is at least partially caused by a pattern of sustained neural ¯ring in
the neural circuits supporting working memory, representing the given rule.

This account asserts that rule-guided behavior is exceptional, with many cognitive
processes operating °uently and e±ciently without the activation of explicit rule
representations in working memory. One might be tempted to contrast this theo-
retical stance with that proposed by symbolic cognitive architectures, such as
Soar (Laird, 2012) and ACT-R (Anderson & Lebiere, 1998), in which almost all
cognitive capabilities are seen as arising from the application of symbolic production
rules (Klahr, Langley & Neches, 1987). To highlight this contrast would be to
equivocate on the \rule" label, however, as neither Soar nor ACT-R view their
production rules as the kind of explicitly represented rules that we have associated
with rule-guided behavior. A Soar or ACT-R theory of rule-guided behavior would
need to explain how generic production rules could be used to interpret more explicit
working memory \chunks" that encode the explicit rule to be followed (Taatgen &
Lee, 2003). In contrast, the line of research described in this article grounds rule-
guided behavior in the neural processes of the prefrontal cortex and related brain
areas, rather than in symbolic production rules that are abstracted from the underlying
biology. The goal is to produce a formal theory of the neural basis of rule-guided
behavior, including the development and learning of rule-following capabilities.

Just as the explicit rules being discussed in this report should not be confused
with symbolic production rules, they are distinct from the rules that capture the
grammar of natural language !!! grammatical rules that some have argued to be
implemented by a dedicated rule-based neural module. There has been a long run-
ning debate concerning the degree to which observed systematic and generative
language use in humans entails the existence of a specialized (and, perhaps, innate)
neural system for applying symbolic rules of language structure and language
use (Pinker, 1999). Extensive computational modeling work has shown that human
linguistic performance is better captured by adaptive, context-sensitive, dynamic
neural circuits than by separate modules for rules and exceptions (Plaut et al.,
1996). While the proposal of a separate rule module seems to have arisen from a kind
of confusion between rule-described behavior and rule-guided behavior, it is im-
portant to note that the grammatical rules discussed in this literature are distinct
from the explicit rules of interest, here. Speci¯cally, fundamental grammatical rules
are generally not thought to demand working memory resources to be applied. While
working memory may play a role in maintaining and integrating the information
sequentially presented in an utterance, it is not thought to actively contain the
grammatical rules, themselves.

In summary, the question at hand is how the brain represents and applies fairly
arbitrary explicit rules, rather than the kinds of implicit rules hypothesized by some
theories of language use or the kinds of production rules that appear in prominent
symbolic cognitive architectures. A prototypical case of such rule-guided behavior is
when we promptly and appropriately respond to simple verbal instructions (e.g.,
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\When the red light comes on, press this button".). In order to address this question,
this article reviews a historical sequence of computational cognitive neuroscience
models of the prefrontal cortex and related brain areas.

Computational cognitive neuroscience models focus on explaining cognitive and
behavioral phenomena in terms of the information processing capabilities of biolog-
ical neural circuits. All of the computational cognitive neuroscience models discussed
in this review have been implemented (or, in the case of earlier work, re-implemented)
in the Leabra modeling framework (O'Reilly, 1996). Leabra is a set of mathematical
formalisms for modeling neural circuits in a manner appropriate for capturing
complex cognitive phenomena. The framework includes both spiking and ¯ring-rate
neural models using a point-neuron approximation, bidirectional excitation between
brain areas, e±ciently computed feedforward and feedback inhibition, a biologically
grounded synaptic plasticity model that incorporates both correlational and error-
driven learning, and mechanisms for dopamine-modulated reinforcement learning.
A detailed understanding of the Leabra framework is not needed to grasp the the-
oretical contributions of the models being discussed, here, but such an understanding
might be had by perusing O'Reilly & Munakata (2000) or O'Reilly et al. (2012).

2. Rules as Neural Activity

Early brain-based computational accounts of cognition followed the slogan that \the
knowledge is in the weights", indicating that the knowledge needed to enact a cog-
nitive capability was implicit in the distributed collection of synaptic strengths that
played a central role in determining the behavior of amodeled neural circuit.With this
perspective in mind, it is natural to imagine that any explicit rules that guide behavior
might also be encoded in some pattern of synaptic weights. If this is the case, then the
synaptic strengths in question must be of a kind that can change by substantial
amounts in a very short amount of time, as explicit rules can be adopted and pro-
foundly in°uence behavior immediately upon their receipt in the form of verbal
instructions. This is consistent with the kind of rapid synaptic change thought to arise
in some memory systems, such as those hypothesized to exist in the hippocampus, but
it does not match the kind of integrative synaptic change hypothesized to take place in
much of neocortex (McClelland, McNaughton & O'Reilly, 1995). Furthermore, the
idea that explicit rules are those that become represented in working memory at the
time of their application suggests that the activated representation of a rule needs to
be of a form that changes very rapidly!!! as quickly as working memory contents can
be modi¯ed. Both electrophysiological and brain imaging data have suggested that
active information in workingmemory is encoded in neural ¯ring patterns in regions of
the prefrontal cortex (PFC), rather than patterns of synaptic strengths (Goldman-
Rakic, 1987; D'Esposito, Postle & Rypma, 2000). Neural ¯ring in PFC has been found
to encode a wide variety of working memory content, including spatial loca-
tions (Funahashi, Bruce & Golman-Rakic, 1989), other stimulus features (Cohen
et al., 1994), and even abstract behavioral rules (Wallis, Anderson & Miller, 2001).
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Based on this evidence, explicit rules are seen as being encoded as patterns of neural
¯ring in PFC when they are actively available for application.

The neural circuits of PFC are well con¯gured to support the active maintenance
of a pattern of ¯ring that might encode an explicit rule. This region of cortex contains
many small patches or \stripes" of tissue within which dense recurrent excitatory
connections are found (Levitt et al., 1993; Pucak et al., 1996). These dense patterns of
recurrent connectivity suggest that neural activity in these PFC stripes should ex-
hibit attractor dynamics (Port & van Gelder, 1995), supporting sustained neural
¯ring (i.e., active maintenance of information in working memory) even after driving
input activity has been removed. Such attractor dynamics in densely recurrent neural
networks has been extensively modeled (Hop¯eld, 1982; Amit, 1989).

There are extensive projections both to and from PFC with most more posterior
cortical areas (i.e., areas posterior to PFC) (Roberts, Robbins & Weiskrantz, 1998).
These broad connections o®er a pathway through which an explicit rule, represented
as an actively maintained pattern of neural ¯ring in PFC, could in°uence a broad
range of neural circuits !!! not only prompting motor responses but also guiding
attention, in°uencing memory encoding and retrieval, and biasing any other neural
processes receiving input from PFC. This observation suggests an alternative to the
idea that rule-guided behavior is produced by separate cortical pathways than those
that produce more automatic forms of behavior. The broad projections from PFC to
more posterior brain areas suggests thatmore automatic processingmay arise from the
spontaneous dynamics of these posterior circuits, and more controlled and rule-guided
processing may stem from the modulation of these posterior circuits by neural activity
ariving from PFC (Miller & Cohen, 2001). In this way, an explicit rule is actively
represented by a pattern of neural ¯ring in PFC, and the rule produces appropriate
behavior by biasing neural circuits throughout cortex based on this PFC activity.

An early demonstration of the power of this approach to account for both neu-
roscienti¯c and behavioral data appeared in the form of a computational model of
cognitive control in the Stroop task. In the classic Stroop task, participants are
presented with words written in colored typefaces, and they are instructed to either
name the printed word or name the color of the characters. While error rates tend to
be low on this task, responding is slowed when an ink color is requested and the
presented word form is, itself, the name of a color (Stroop, 1935). Performance on this
task was modeled by a simulated neural circuit that maps from input stimulus fea-
tures to the output names of those features, with synaptic strengths con¯gured so
that word forms would be produced at the output in preference to ink colors. In the
model, this circuit received additional input from a model of PFC function, which
contained simulations of frontal pyramidal cells whose ¯ring rates encoded either the
\name the word form" rule or the \name the ink color" rule. By activating the PFC
activation pattern for \name the ink color", the model could overcome its prepotent
tendency to name words, but not without a slowdown in the case of con°ict stimuli.
(See Fig. 1(a) for a schematic of the network architecture that was used.) This model
accounted for healthy Stoop performance data, as well as the performance of patient
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populations, including those with frontal damage and those with schizophre-
nia (Cohen, Dunbar & McClelland, 1990; Cohen & Servan-Schreiber, 1992).

It is worth noting that Stroop performance de¯cits in schizophrenia were captured
by this model by weakening the sustained ¯ring pattern in PFC encoding the
instructed task rule. This manipulation was justi¯ed by the reduction in tonic do-
pamine (DA) levels in PFC commonly observed in patients with schizophrenia, and
an account of DA modulation of frontal pyramidal cells in which DA in°uences the
mathematical gain of each neuron's mapping from its inputs to its ¯ring rate. Under
this account, reduced tonic DA results in PFC neurons that are less sensitive to the

(a) (b)

(c) (d)

Fig. 1. Schematic diagrams of model architectures: Ellipses represent collections of modeled neurons,
and arrows represent projections between these collections. Tasks typically involve producing an
appropriate motor response for each sensory input, with this mapping mediated by association cortices
(unlabeled ellipse). Explicit rules are encoded in patterns of neural ¯ring in the prefrontal cortex (PFC),
which modulates more posterior circuits. (a) The network con¯guration for the Stoop model and the
instructed category learning model, with rules communicated to PFC by direct inputs. (b) The network
con¯guration for the AX-CPT model, the IDED model, and the XT model, with gating of PFC contents
controlled by a midbrain dopamine (DA) signal. Not shown are projections from all other modeled brain
regions to the midbrain, allowing the gating signal to be shaped in a context-senstivity manner by a
reinforcement learning process. (c) The network con¯guration for the PBWM model, with PFC gating
controlled by the basal ganglia (BG) through topographically organized thalamocortical loops. The
DA-based reinforcement learning process shapes BG performance in this architecture. (d) The network
con¯guration for the indirection model, with both the PFC and the BG topographically arrayed along
an anterior to posterior axis. More anterior PFC neurons may in°uence the gating of more posterior
PFC neurons through projections to more posterior areas of the BG.
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excitation that they are receiving from their neighbors, reducing the stability of the
attractor states that encode the instructed task rule, allowing the rule representation
to \fade" (Cohen & Servan-Schreiber, 1992). This connection between DA and the
active maintenance of an explicit rule in PFC will be revisited in the next section of
this review.

Similar computational models have been applied to other tasks involving the
following of explicit instructions (Noelle & Cottrell, 1995). These neural network
models learned, through a process of experience-based modi¯cation of synaptic
strengths, to translate sequences of input tokens in a simple instructional language
into an appropriate pattern of activity across simulated neurons in a PFC-like
working memory circuit. This actively maintained rule representation (an internal
representation, learned from experience) then modulated a network representing
more posterior brain areas, mapping sensory inputs to motor outputs. Models of this
kind were applied to an instructed category learning task which had been empirically
investigated. In such an instructed category learning task, the learner is asked to
categorize simple geometric stimuli into one of two categories, with the categoriza-
tion rule provided through direct verbal instruction (Noelle & Cottrell, 1996b). One
interesting aspect of these models involves interactions between rule-following per-
formance and synaptic change, driven by experience categorizing stimuli. Extensive
practice on the categorization task, using only a limited subset of the possible geometric
stimuli, can cause learners to deviate from perfect rule-following behavior, producing a
pattern of performance that re°ects an interaction between explicit rule-following and
incrementally learned associations between stimulus features and category
labels (Noelle & Cottrell, 2000). The proposed neural basis of rule-guided behavior
captures this interaction by incorporating more than a \mere implementation" of a
simple symbolic rule-interpretation system, with the activation-based representation
of the rule interacting in complex ways with the processes of synaptic plasticity,
adjusting synapic strengths, that are driven by extensive practice on the task.

In summary, the proposed computational account of rule-guided behavior views
explicit rules, when ready to be applied, as patterns of neural activity in PFC,
actively maintained by dense recurrent excitation in this part of cortex. Broad
projections from PFC to more posterior brain areas allow this rule representation to
modify the activation dynamics of the sensory-motor circuits that produce overt
behavior, producing performance aligned with the actively maintained explicit rule.

3. Adaptive Rule Selection

The attractor network account of the active maintenance of explict rules works well
when the rule to be applied in the current situation is clearly speci¯ed through
sensory input, as it is in the case of verbal instruction. Models of instruction fol-
lowing, in which the explicit rule that is to guide behavior is communicated through
the senses (e.g., verbally), could simply update the pattern of ¯ring rates in the
simulated PFC when instructions were presented as input and actively maintain the
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corresponding rule representation thereafter. Everyday occurrences of rule-guided
behavior are not so straightforward. In general, the world does not provide clear and
reliable signals concerning which explicit rule should be applied in each situation.
Instead, some brain system must determine when the currently active rule is to be
maintained and when it should be abandoned, perhaps in favor of another explicit
rule. Even under direct verbal instruction, we have the option to obey the commu-
nicated rule or ignore it.

The dynamics of attractor networks are not su±cient to account for the need to
intelligently toggle between states of active maintenance of the current rule and rapid
updating of PFC. In broad strokes, if recurrent connections are stronger than input
connections, an attractor network will persistently maintain its current state, ig-
noring its inputs. If the input connections are stronger, such a network will rapidly
update its state with every new input that is presented, regardless of its semantic
content. Thus, in order to adaptively toggle between these two states, some addi-
tional mechanism is needed. In the line of research under consideration, inspired
by recurrent arti¯cial neural networks making use of multiplicative synap-
ses (Hochreiter & Schmidhuber, 1997), the need to intelligently control the state of
PFC has been met by an adaptive gating mechanism. The metaphor employed, here,
involves seeing PFC as a fenced enclosure with a gate. When the gate is closed, the
contents of the enclosure cannot escape, and the corresponding PFC contents are
actively maintained. When the gate is opened, the contents leave the enclosure, and a
new pattern of neural ¯ring may be instantiated by the inputs to PFC.

Importantly, just as explicit rules can be learned through direct instruction or
through experience, the situations in which such rules are useful can also be learned.
Thus, no simple ¯xed gating mechanism will address the problem of rule selection.
Instead, any such mechanism must be adaptive, learning from experience when to
maintain the current rule and when to abandon it.

This focus on learning led researchers to further consider interactions between
PFC and the midbrain DA system. A growing body of research has related phasic DA
bursts from the substantia nigra pars compacta (SNC) and the from the ventral
tegmental area (VTA) with changes in expected future reward (Schultz, Dayan &
Montague, 1997). Such a reward prediction signal is central to temporal di®erence
accounts of reinforcement learning (Sutton, 1988), leading to neural models of
learning from reward, grounded in the DA system (Montague, Dayan & Sejnowski,
1996). These computational neural models provide accounts of how the brain can
learn to produce rewarding sequences of overt actions, matching both neuroscienti¯c
and behavioral data. Given this mechanism for the learning of overt actions, Braver
& Cohen (2000) suggested that the same DA signal could be used to learn the covert
choice of opening or closing the metaphorical gate on PFC working memory contents.
If the active maintenance of an explicit rule in a given situation leads to reward, its
maintenance can be encouraged in similar future situations. If the active maintenance
of an explicit rule fails to produce expected reward, the rule can be abandoned in
similar future situations. In this way, an adaptive gating mechanism for PFC could
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be grounded in the same DA-based reinforcement learning mechanisms previously
explored in the context of motor sequence learning.

This hypothesis concerning adaptive gating of PFC contents is also consistent
with known widespread DA projections from the VTA to PFC, as well as observed
properties of DA receptors in PFC pyramidal cells (Wang, Vijayraghavan & Gold-
man-Rakic, 2004), suggesting that a phasic DA signal from the VTA could con-
tribute to active maintenance through the triggering of speci¯c maintenance currents
in these cells (Camperi & Wang, 1998). This has led to computational models in
which a neural reinforcement learning process learns to predict future reward based
on both the sensory state of the system and the maintained contents of PFC, with
changes in expected future reward encoded in a VTA DA signal, and adaptive gating
of PFC contents directly driven by this DA signal (Braver & Cohen, 2000).

An early model of this type captured human performance on the AX Continuous
Performance Task (AX-CPT). In this task, participants are presented with a se-
quential stream of stimuli, such as individual letters. Each stimulus in the sequence is
to be quickly labeled as target or non-target (e.g., by a button press), with targets
being a speci¯c stimulus (\X") but only when it is immediately preceded by another
speci¯c stimulus (\A"). Thus, a target response needs to be given for an \X", but
only when it immediately follows an \A". By manipulating the frequencies of speci¯c
stimulus pairs, in sequence, di®erent patterns of errors can be invoked in human
participants. These patterns are well captured by a computational model in which
explicit rules like \produce the target response if the next stimulus is an X" (i.e., an
\A" stimulus was just presented) may be gated into PFC, with gating determined by
a DA-based reinforcement learning process (Braver & Cohen, 2000). (See Fig. 1(b)
for a schematic characterization of this network model.)

Perhaps more relevant to the study of rule-guided behavior is a computational
model of this kind that was applied to the Intra-Dimensional/Extra-Dimensional
(IDED) categorization task. In this task, learners are presented with a pair of stimuli
and required to choose one of the two. If the correct stimulus is chosen, a reward is
given. Each stimulus is composed of two features: one feature from each of two
stimulus dimensions. For example, each stimulus might involve the superposition of a
foreground black line shape on a background ¯lled blue shape. For each stimulus pair,
one speci¯c stimulus feature predicts reward. For example, the presence of a blue
¯lled triangle in the background may identify that stimulus as the rewarding stim-
ulus. Learners must discover the rewarding stimulus feature by trial and error.
Critically, once the learner's behavior indicates that the rewarding feature has been
discovered, the rewarding feature is changed without notifying the learner. The ra-
pidity with which the learner adapts to this change is used as a measure of °exibility
of explicit rule selection, making this task much like the more common Wisconsin
Card Sorting Test (WCST) (Berg, 1948). The IDED task gets its name from the
di®erent kinds of changes that are explored (Dias, Robbins & Roberts, 1997). For
example, an \intra-dimensional reversal" involves a case in which a speci¯c feature in
one stimulus dimension (e.g., a blue background triangle) is initially rewarding, and
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another feature in that same dimension is initially not rewarding (e.g., a blue
background circle), and the change involves reversing these contingencies, so the
rewarding feature becomes non-rewarding, and vice versa (e.g., the blue background
circle is now rewarding, and the blue background triangle, when presented, is not).
This can be contrasted with an \extra-dimensional shift", in which a novel stimulus
feature in the opposite stimulus dimension becomes rewarding (e.g., while a blue
background triangle was initially rewarding, the presence of a novel foreground black
line cross becomes rewarding, with the blue triangle no longer appearing as a back-
ground in any stimulus).

A computational model of DA-based PFC updating applied to the IDED task was
able to capture the performance of marmosets, including both healthy animals and
those with experimental lesions to various regions of PFC (O'Reilly et al., 2002).
In this model, the explicit rules involved perceptual attention, indicating which
feature(s) of the currently perceived stimulus pair should be attended, with
attention implemented as an increase in the neural activation of the perceptual
cells encoding the feature(s) being attended, driven by top-down projections from
PFC (Desimone & Duncan, 1995). The attentional highlighting of rewarding stim-
ulus features, in this way, supported the association of those features with the se-
lection of stimuli that contained them, with that association emerging in learned
synaptic strengths. Importantly, di®erent parts of marmoset PFC were assumed to
encode the attentional rules at di®erent levels of abstraction, with more dorsal areas
encoding more general rules (e.g., \attend to the background blue shapes") and more
ventral areas encoding more speci¯c rules (e.g., \attend to the background blue
triangle"). This gradient of abstractness in the neural rule representaions allowed the
model to capture di®erences in °exible rule switching between animals with dorsal
PFC lesions versus animals with ventral PFC lesions. Of most relevance, here, is that
fact that the DA-based PFC updating mechanism worked well at capturing °exible
rule switching in this task.

This IDED model also o®ers a reminder that the account of rule-guided behavior
being developed, here, does not involve a neural implementation of a general rule-
interpretation mechanism that operates independently of other neural processes. In
the IDED model, associations between stimulus features and stimulus selection
actions were captured in changing synaptic strengths, with synaptic plasticity pro-
foundly a®ected by top-down biasing of neural activity from PFC. In this way, the
explicit attentional rule interacted with non-rule-guided neural processes in order to
produce rewarded performance. Similarly, when the ventral PFC of the IDED model
was lesioned, the model was still able to learn the initial rewarding stimulus feature,
as were the lesioned animals, but profound de¯cits were observed upon rule
switching. In the model, this is captured by an initial learning process that involves
no detailed explicit attentional rule, with all learning occurring as synaptic changes.
These synaptics strengths are then much slower to reverse than when PFC is intact,
allowing for the rapid updating of PFC to contain a new rule calling attention to a
di®erent stimulus feature. Thus, this model requires both its dynamically gated PFC
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and its synaptic plasticity mechanisms for adjusting synaptic strengths to capture
the full range of experimental observations. Indeed, since the rules maintained in
PFC in this model are attentional in nature, rather than specifying speci¯c responses,
synaptic strength modi¯cations are needed to allow even the non-lesioned model to
learn the task, at all. In short, while rules are explicitly represented as neural ¯ring
patterns in PFC, under this account, the application of those rules involves complex
interactions with the activation and synaptic dynamics of non-rule-guided neural
processes.

In summary, neural reinforcement learning mechanisms based on the midbrain
DA system can provide a means for learning, from experience, when to actively
maintain the current explict rule and when to abandon it for another.

4. Learning Rule Representations

Our conceptual vocabulary is shaped by our experience. To the degree that the
explict rules that guide our behavior leverage our full conceptual vocabulary, the
representational scheme used to encode those rules in PFC must also be shaped by
our experience. A frontal neural representation of a very simple rule-like instruction,
like \press the space bar", must interact with learned neural circuits in more pos-
terior brain areas for, say, visually recognizing a \space bar" and implementing a
motor \press" action. While all of the models discussed in this review, so far, involved
PFC representations that were hand-designed by the model builder, we know that
these representations must actually arise in the human brain through a process of
learning and development.

If the range of explicit rules that could guide our behavior was small, allowing us
many opportunities to practice each possible rule over the course of development,
standard formal accounts of synaptic plasticitywould easily explain the learning of rule
representations.More-or-less arbitrary patterns of neural ¯ring in PFC, used to encode
a given rule, could come to provide appropriate top-down biasing of posterior circuits
through standard synaptic learning mechanisms. This is not the case, however.

Humans are remarkable in their ability to rapidly apply novel rules in a highly
systematic and generative manner. Consider only simple verbal instructions of the
form, \When you see X, do Y". A new rule of this kind exists for every possible pair of
visually identi¯able objects and performable actions. The space of possible rules is
truly huge, arising largely due to the ability to combine fairly independent compo-
nents of a rule in a combinatoric number of ways. While the ability to internally
represent and successfully apply virtually any rule from this huge space is a hallmark
human capability, this poses a serious problem for standard neural learning
mechanisms, because these statistical learning methods generally fail to exhibit the
kind of combinatoric generalization inherent in human instruction-following abili-
ties (Hadley, 1999).

When rule representations are learned through a general statistical learning pro-
cess, the problem of combinatoric generalization is one of spurious correlations,
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including spurious anti-correlations. Most mechanisms for neural learning are
exquisitely sensitive to the statistical structure of the experiences presented to the
system. Thus, if a perfect anti-correlation incidentally appears in my experience (e.g.,
while I have been asked to push buttons, and I have seen dinosaurs, I have never been
asked to press a button when I see a dinosaur), a neural learning mechanism will
implicitly assume that the anti-correlation is real !!! that the anti-correlated com-
ponents can never appear together. Similarly, if an accidental perfect correlation
occurs in my experience (e.g., all of the buttons I have ever pushed were square),
standard neural learning mechanisms will make it impossible to represent items that
violate that accidental correlation (e.g., I won't be able to represent pushing a cir-
cular button). Because of this problem, learning PFC representations that support
combinatoric generalization across the full space of explicit rules is a substantial
challenge (Noelle & Cottrell, 1996a; Noelle & Zimdars, 1999).

The Cross-Task Generalization Model (XT Model) was produced in order to
investigate the possibility that the DA-based adaptive gating mechanism might
interact in a favorable way with standard methods of synaptic plasticity so as to
produce more componential rule representations that supported some measure of
combinatoric generalization (Rougier et al., 2005). This neural network model was
presented with a simple neural encoding of multi-dimensional stimulus objects, much
like the cards used in the WCST (Berg, 1948). Each stimulus item varied along ¯ve
di®erent stimulus dimensions (e.g., size, color, shape, . . .), with each dimension
having four discrete levels (e.g., tiny, small, large, huge). Also input into the model
was a pattern of activity that encoded the task to be performed (e.g., name the color
of the stimulus, indicate if two stimuli are of the same shape, specify which of two
stimuli is larger, . . .). The network learned to perform these tasks through a process of
experience-based synaptic plasticity (the standard synaptic strength change model
used in the Leabra framework), with the response properties of neurons in the sim-
ulated PFC also shaped by experience. Importantly, as the model learned to perform
these tasks, some features were never used with some tasks. For example, the model
might be asked to name the color of a blue stimulus, but it might never be asked if
two blue stimuli are of the same color. The ability of the network to perform its tasks
on stimuli that were novel to the task at hand was used as a measure of generalization
performance. The XT Model was directly compared with alternative PFC models,
including one that possessed all of the properties of the XT Model except for the DA-
based gating mechanism. Simulation studies found that good generalization to novel
situations could be had only when both (1) the DA-based gating mechanism was in
place, and (2) the model experienced training across many di®erent tasks, rather
than only across a randomly sampled pair of tasks. Importantly, good generalization
was strongly correlated with the learning of isolated and dimensional representations
across the simulated PFC neurons, with each PFC cell encoding a full stimulus
dimension (e.g., color or size) to be attended. In other words, when the network
model exhibited good generalization, few or no PFC cells contributed to the repre-
sentation of multiple dimensions (e.g., ¯ring when shape is relevant and when color is
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relevant), and few or no cells encoded more arbitrary collections of stimulus features
(e.g., attend to red squares). In this way, the XT Model learned the relevant inde-
pendent components of the various tasks!!! namely, the stimulus dimensions!!! and
encoded explicit rules to attend to the di®erent dimensions across disjoint subsets of
the PFC neurons.

Because of the nature of the tasks learned by the XTModel, it was able to perform
both the Stroop task and the Wisconsin Card Sorting Test (WCST) without sub-
stantial modi¯cation. The learned isolated and dimension PFC representations
allowed the XT Model to provide a good ¯t to human performance on Stroop and
WCST, both in the case of healthy individuals and in the case of frontally damaged
patients. Removing simulated PFC neurons from the model resulted in performance
that matched that of people with frontal lesions (Rougier et al., 2005). Also, in later
work, selective damage to the DA-based gating mechanism in the XT Model was
found to produce a pattern of Stroop and WCST performance that matched that
seen in people with autism spectrum disorders (Kriete & Noelle, 2005).

Work with the XT Model demonstrated that PFC rule representations could be
learned from experience over a developmental time scale, with the resulting repre-
sentations having properties that support combinatoric generalization to novel
situations. The full challenge presented by Hadley (1999), involving combinatoric
generalization over the space of verbalizeable rules, was not met by this model,
however. The model developed its own internal representations for rules like \attend
to the stimulus color", and it learned to apply those rules in novel situations, but it
did not learn to represent and apply a rule that it had never previously practiced.
Addressing the challenge of combinatoric generalization to novel rules will require
some additional neural mechanisms.

5. Gating Rule Components

All of the computational models discussed to this point have actively maintained a
single explicit rule in PFC at any one time. The DA-based adaptive gating mecha-
nism, thus, produced a global gating signal that called for either active maintenance
or rapid updating for all of the contents of PFC, as a whole. This is problematic if we
view humans as being capable of holding in mind multiple explicit rules at the same
time, with each rule independently maintained or abandoned, or even if we suggest
that components of rules might be independently gated into PFC. While working
memory capacity is seen as extremely limited, experimental evidence suggests that
more than a single \chunk" can be actively maintained (Cowan, 2001). This suggests
a need for independent adaptive gating mechanisms for di®erent \stripes" of PFC
tissue (Levitt et al., 1993; Pucak et al., 1996).

It is not immediately clear how reinforcement learning using the standard method
of temporal di®erences could support the adaptive gating of multiple PFC stripes.
Certainly, a unitary global DA-signal would be insu±cient to provide such re¯ned
control. Interestingly, this computational concern is mirrored by issues raised by
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neuroscienti¯c data. There is reason to doubt that direct phasic DA delivery to PFC
happens quickly enough to support the needs of PFC gating. Indeed, recent physi-
ological data suggests that the bistability of PFC cells, toggling between active
maintenance and rapid updating, is more readily controlled by glutamatergic
projections from the thalamus, through their e®ects on NMDA and metabotropic
glutamate receptors.

This has led to a much more anatomically detailed computational model of
thalamocortical loops, passing through the basal ganglia (BG) (Frank, 2005). The
basic idea is that medium spiny neurons in the matrix areas (matrisomes) of the
caudate, in the striatum, determine when a given stripe of PFC tissue is allowed to
rapidly update. Some of these matrix neurons, called \Go" cells, disinhibit the thala-
mus (particularly themedial dorsal and ventral anterior nuclei) through the substantia
nigra pars reticulata. Other matrix neurons, called \NoGo" cells, strengthen the tonic
inhibition of the thamalus from the substantia nigra pars reticulata by disinhibiting
the substantia nigra cells through the external segment of the globus pallidus. In short,
the ¯ring of \Go" cells tends to allow the thalamus to excite PFC, while the ¯ring of
\No Go" cells inhibits this thalamic signal to cortex. Thus, when \Go" activity dom-
inates over \NoGo" activity, the corresponding PFC stripe undergoes rapid updating.
(There is also amore global inhibitory signal through the subthalamic nucleus, but this
does not play a central role in themodels that are discussed here (Frank, 2006).) In this
detailed model of the BG, the reinforcement learning mechanisms of the DA system
modulate synaptic plasticity in the striatum, where thematrix cells receive projections
both fromPFC and frommore posterior brain areas. In this way, the DA system allows
adaptive gating to be learned, as in previous models, but the gating signal sent to PFC
is now mediated through the BG and the thalamus. Also, the matrix cells associated
with di®erent PFC stripes may acquire di®erent synaptic strengths, allowing di®erent
regions of PFC to rapidly update under di®erent conditions.

The resulting model, called the PFC-BG Working Memory (PBWM) Model, can
learn to selectively update multiple rule components, stored in di®erent PFC
stripes (O'Reilly & Frank, 2006). While early versions of this model reverted to
modeler-designed representations across simulated PFC neurons, later versions
allowed these representations to be learned, as they were in the XT Model (Hazy,
Frank & O'Reilly, 2006). (See Fig. 1(c) for a schematic characterization of this
network architecture.)

It was expected that the inherently componential structure of a collection of
independently gated PFC stripes would further support combinatoric generalization
in these models. An obstacle to such generalization remained, however. As in pre-
vious models, the explicit rules actively maintained in PFC in°uenced behavior by
biasing the activity of neurons in more posterior brain areas. If these posterior neural
circuits were shaped by experience-based synaptic plasticity, then they could su®er
from the same sort of spurious correlation problems that were previously discussed in
the context of learning PFC representations. Even if the rule representation in PFC
perfectly segregated the representation of independent rule components between
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separate pools of PFC cells, the posterior neurons receiving this full pattern of neural
¯ring from PFC could come to depend on accidental correlations that had appeared
during development. For example, even if the novel rule \when you see a dinosaur,
press the space bar" was cleanly encoded across multiple PFC stripes (perhaps a
stripe encoding the \seen" thing and a stripe encoding the action to take), more
posterior neural circuits may have di±culty generalizing to this rule, especially if it is
highly dissimilar to any explicit rule encountered in the past.

The proposed solution to this problem has been the introduction of an output
gating mechanism. The idea is to use DA-based reinforcement learning to not only
learn when a given PFC stripe, containing a rule component, should be rapidly
updated with new contents, but to also use this learning method to learn when the
sustained pattern of neural activity stored in a given PFC stripe should be released to
more posterior brain areas. Introducing such additional control on the top-down
biasing of posterior areas by PFC allows the posterior circuits to be sequentially
exposed to individual rule components, reducing the generalization demands placed
on posterior circuits. For example, if the novel rule \when you see a dinosaur, press
the space bar" is broken up into sequential components, \when you see a dinosaur, do
something" and \when it's time to do something, press the space bar", there is little
opportunity to learn spurious correlations. Once the posterior circuits had learned to
recognize a dinosaur, given a rule to do so, and had learned to press the space bar on
demand, the novel combination, presented sequentially, would follow naturally. This
strategy can only be learned, however, if there is a mechanism for exposing posterior
circuits to individual rule components at any one time. An output gating mechanism
provides this.

One hypothesized implementation of such an output gating mechanism involves
segregating those PFC pyramidal cells that undergo sustained activation when
representing a rule from those PFC cells that project to more posterior brain areas,
with local connections in place from the PFC cells exhibiting sustained ¯ring to those
sending outputs. This segregation of PFC neurons might involve cells at di®erent
cortical layers, or it might involve di®erent PFC stripes. With such a PFC archi-
tecture in place, di®erent striatal cells would control \input gating" and \output
gating" in much the same way. Striatal cells that controlled thalamic input to sus-
tained activity cells in PFC would provide an \input gate", determining when rapid
updating allowed these PFC cells to encode a new active rule component. Striatal
cells that controlled thalamic input to PFC output cells would provide an \output
gate", rapidly updating the output cells to match their corresponding sustained
activation cells, thereby making the content of the corresponding PFC stripe visible
to posterior areas (Hazy et al., 2006). Such an output gating mechanism has been
shown to greatly improve generalization performance (Kriete & Noelle, 2011).

The PBWM Model, with learned PFC representations within stripes and output
gating, demonstrates that a DA-based reinforcement learning mechanism can learn
to independently update individual rules or rule components in PFC, and it does so
using neural circuits more carefully aligned with known anatomy than previous
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models. This model also comes closer to achieving combinatoric generalization over
the space of rules by directly supporting a compositional encoding of rules across
multiple PFC stripes.

6. Indirection in Rule Representations

The PBWM Model provides an account of rule-guided behavior that allows for the
active application of multiple rules and/or the representation and application of rules
with multiple components. The componential nature of isolated PFC stripes, in the
model, greatly supports generalization to novel rules. Human generalization abilities
are still much greater, however, indicating a profound shortcoming of the model.

The isolated PFC stripes in the PBWM Model produce a kind of \role-¯ller"
representation scheme. In broad strokes, the collection of PFC neurons in a given
stripe come to be associated with a particular role, and the pattern of sustained ¯ring
exhibited by those neurons encodes the current ¯ller for that role. For example, the
PFC may learn, from experience, to encode rules of the kind, \When you see X, do
Y". This might be done by associating one collection of PFC neurons with the \X"
role (i.e., the thing that is to be seen) and associating another collection of PFC cells
with the \Y" role (i.e., the action to take). Appropriate neural activation repre-
sentations of any such rule will be formed in the PBWM Model, even for completely
novel rules, as long as the system experienced every possible \X" ¯ller in some rule
encountered during development and experienced every possible \Y" ¯ller in some
rule, as well. While the PBWM Model will generalize to novel pairs of \X" and \Y"
¯llers, it cannot generalize to the case in which a ¯ller had not been experienced in the
context of this rule template. For example, consider the novel rule, \When you see a
dinosaur, do a foot tap". If you know how to tap your foot, perhaps having done so in
response to an auditory cue, but you have never followed a rule involving perfor-
ming a foot tap in response to a visual stimulus, then PBWM would fail to account
for your ability to apply this rule. If \foot tap" had never been encoded over the \Y"
pool of PFC neurons during development in PBWM, then these cells will likely fail to
properly represent this action as part of this novel rule. Thus, PBWM can generalize
to novel combinations of ¯llers, but it cannot generalize to the case of assigning a ¯ller
to a role for which that ¯ller had never previously been assigned.

Current work, involving extending the PBWMModel to account for this weakness
in combinatoric generalization, has focused on the computer science concept of
indirection !!! of \pointers" (Kriete et al., 2012). The idea is that the neural ¯ring
pattern appearing in a PFC stripe need not encode a rule component directly, but
may, instead, encode a reference to a di®erent PFC stripe where the rule component
is currently being actively maintained. For example, the \X" neurons and the \Y"
neurons in a representation of \When you see X, do Y", do not encode things you see
and actions, respectively, but both the \X" cells and the \Y" cells encode pointers to
other PFC stripes, where the constituent components of the rule are being actively
maintained. Over developmental learning, the \X" neurons learn to encode for each
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of the various PFC stripes where a visual object representation had been stored, and
the \Y" neurons learn to encode for each of the various PFC stripes where an action
representation had been stored. In this case, if I have experience encoding rules
involving the \foot tap" action in PFC, perhaps in response to an auditory stimulus,
there will be one or more PFC stripes that have learned to encode the \foot tap"
action. When presented with the novel rule, \When you see a dinosaur, do a foot
tap", the \Y" neurons simply need to ¯re in a manner that references one of the
action PFC stripes that has learned to represent \foot tap". In this way, the indi-
rection version of PBWM can generalize to novel combinations of rule components,
even when one (or more) of those components had never been experienced in its
newly speci¯ed role.

In this augmented model, a reference to another PFC stripe is implemented by a
projection from the \role" PFC stripe to the output gating striatal \Go" units for the
referenced PFC stripe. With this pattern of connectivity in place, the network can
learn, from experience, to release the contents of the referenced PFC stripe to pos-
terior brain areas whenever the referencing \role" stripe receives its own output
gating signal. Thus, following the previous example, when the \Y" neurons receive an
output gating signal, the pattern of neural ¯ring over the \Y" units is released to the
output gating striatal cells for the PFC stripe containing the \foot tap" action
representation. This results in the \foot tap" representation being sent to more
posterior brain areas. Just as in the original PBWMmodel, sending an output gating
signal to a \role" PFC stripe results in an interatal representation of the associated
\¯ller" to be sent to posterior brain circuits. In the indirection model, this process
simply involves an intermediate step. The indirection model provides support for full
combinatoric generalization, allowing for the internal representation of novel com-
binations of rule components, even when a given component had never been expe-
rienced in a particular role before. The theoretical claims implicit in the indirection
model have yet to be empirically tested. One possibility is an anterior-to-posterior
gradient across PFC, with more anterior PFC stripes encoding for speci¯c more
posterior PFC stripes. (See Fig. 1(d) for a schematic diagram of this modi¯ed PBWM
network architecture.)

7. Future Directions

Work with the indirection model is in its early stages, but it o®ers promise as a means
to produce the kind of combinatoric generalization seen in human rule-followers. This
generalization problem is but one of many issues that have yet to be addressed by this
line of research.

For example, in the models discussed in this review, rule selection has involved
choosing between maintaining a current rule (or rule component) and abandoning it.
These models lack any intelligence in how the space of possible rules is searched,
seeking out a rule that results in rewarding behavior. When the adaptive gating
mechanism indicates that it is time for rapid updating of PFC contents, the newly
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generated PFC activation pattern is generally sampled randomly, though some
models guide this sampling process through attention to sensory inputs. (For
example, in the IDED model, if one of the current stimuli contains a background blue
circle feature, attention to that feature becomes one of the candidate rules that may
be gated into PFC. Gating in that rule is much more likely than gating in a rule that
makes no contact with the stimulus features that are present in the current stimulus
pair.) Future models will need to incorporate more sophisticated neural mechanisms
for searching the space of explicit rules in a systematic (or, at least, not overly
redundant) manner.

All of the models reviewed in this report have focused on explicit rules that are
actively maintained in a PFC-based working memory, ready to be applied. Some of
these models focused on scenarios in which the rules were seen as arriving in working
memory through a recent language understanding process, operating on direct verbal
instructions. More often, explicit rules are retrieved from memory, prompted by
situational cues. Fully understanding this latter phenomenon will require computa-
tional models that integrate prefrontal function with that of the hippocampus and
cortical declarative memory systems, allowing these longer-term memory circuits to
provide appropriate inputs to PFC. Good computational models of hippocampal
function exist, but detailed integration with PFC has been elusive (Norman &
O'Reilly, 2003).

The rule selection process might be guided by more than a prediction of expected
reward. In particular, there is some evidence to suggest that the behavioral control
provided by the PFC is modulated by perceived task di±culty. One such di±culty
measure is that of cognitive con°ict, with brain imaging and event related potential
(ERP) data suggesting a special role for the anterior cingulate cortex in con°ict
monitoring (Botvinick et al., 2001). Future computational models of rule-guided be-
havior should further explore the possibility that situations exhibiting persistently
high con°ict, as monitored by the ACC, may contribute to the abandonment of a rule.

Finally, it is worth noting that this particular line of research has consistently been
built upon a foundation of neural network modeling methods that focus on rate-
coding in cortical pyramidal cells and learning through the experience-based modi-
¯cation of synaptic strengths (Parks, Levine & Long, 1998). This history need not
constrain future models of rule-guided behavior. Future research e®orts should ex-
plore the role that spike-timing might play in the encoding of explicit rules, perhaps
by encoding working memory contents as reverberating polychronous neuronal
groups (Szatm!ay & Izhikevich, 2010). While the models that have been discussed,
here, have incorporated molecular level e®ects in their mechanisms for synaptic
plasticity (O'Reilly & Munakata, 2000) and the in°uence of modulatory neuro-
transmitters (Cohen & Servan-Schreiber, 1992), there is much room for further in-
vestigation into the role that molecular biological mechanisms, including physical
processes such as broad electrical ¯elds, might play in rule-guided behavior (Aur, Jog &
Poznanski, 2011). Alternative modeling frameworks that eschew a focus on syn-
aptic strengths in favor of a detailed account of the e®ects of individual action
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potentials (Poznanski, 2002a), as well as those that focus on dynamic and integrative
approaches (Poznanski, 2002b; Cacha & Poznanski, 2011), could provide novel
insights into the neural basis of explicit rules.

8. Summary and Conclusion

The article has brie°y reviewed a speci¯c line of research aimed at producing a
detailed computational account of the neural basis of rule-guided behavior. Together,
the computational models that have been developed as part of this e®ort o®er a short
list of hypotheses concerning the use of explicit rules:

. Explicit rules, when ready to be applied, are encoded as actively maintained neural
¯ring patterns over the pyramidal cells of the prefrontal cortex. In all of the models
discussed here, these encodings are seen as distributed patterns of ¯ring rates over
PFC neurons.

. In order to intelligently determine when a given explicit rule should be applied and
when it should be abandoned, the contents of prefrontal cortex working memory
circuits must be controlled by an adaptive gating mechanism. Such an adaptive
gating mechanism can learn to identify when given rules are useful, using a neural
reinforcement learning process grounded in the midbrain dopamine system.

. The rule representations in prefrontal cortex must be learned from experience. A
dopamine-based gating mechanism interacts with standard models of synaptic
plasticity to support the development of appropriately isolated and dimensional
prefrontal representations, giving rise to improved generalization to novel situa-
tions when adequately diverse training experiences are provided.

. An anatomically detailed account of interactions between the prefrontal cortex and
the basal ganglia can explain how individual rules or rule components can be
independently manipulated in prefrontal cortex, supporting further componential
generalization to novel rules and novel situations, particularly if an output gating
mechanism is assumed to be present.

. Some regions of prefrontal cortex, perhaps those closer to the frontal pole, may
encode references or \pointers" to other prefrontal areas. Such a representational
scheme, utilizing indirection, allows for essentially full combinatoric generalization
to novel rules.

These conjectures form the foundation of an ongoing e®ort to understand, in formal
computational terms, how the human brain supports °exible rule-guided behavior.

It is important to note that, while these computational models have progressively
improved in their ability to demonstrate combinatoric generalization, they do not
embody \mere implementations" of symbolic rule-interpretation mechanisms.
Complex interactions between the rule representations actively maintained in pre-
frontal cortex and the dynamic processes of more posterior neural circuits give rise to
graded and context-sensitive patterns of performance that escape description by a
purely symbolic rule account. Also, statistical regularities in the experiences present
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during the development of prefrontal cortex can profoundly shape the kinds the
explicit rules that can robustly be represented and applied. In this way, this line of
research o®ers an account of how the \language of thought", at least with regard to
explicit rules, may be shaped by experience, rather than being innate.

Much work remains. In addition to addressing the mechanisms underlying the
longer term retention of explicit rules, as well as their retrieval, e®orts to scale up
previous simulations are necessary to demonstrate the viability of the proposed
approach to rule-guided behavior. Existing models are far from addressing the
challenge of Hadley (1999), allowing complex acquired rule-based skills to be mixed
and stacked, guided by direct verbal instruction. Still, much progress toward this
level of systematic generalization has been made, o®ering insights into how neural
circuits can give rise to the profoundly generative performance sometimes observed in
humans.

Author Note
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