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Abstract—The COVID-19 pandemic has necessitated disease
surveillance using group testing. Novel Bayesian methods using
lattice models were proposed, which offer substantial improve-
ments in group testing efficiency by precisely quantifying un-
certainty in diagnoses, acknowledging varying individual risk
and dilution effects, and guiding optimally convergent sequen-
tial pooled test selections. Computationally, however, Bayesian
group testing poses considerable challenges as computational
complexity grows exponentially with sample size. HPC and big
data stacks are needed for assessing computational and statistical
performance across fluctuating prevalence levels at large scales.
Here, we study how to design and optimize critical computational
components of Bayesian group testing, including lattice model
representation, test selection algorithms, and statistical analysis
schemes, under the context of parallel computing. To realize
this, we propose a high-performance Bayesian group testing
framework named HiBGT, based on Apache Spark, which
systematically explores the design space of Bayesian group testing
and provides comprehensive heuristics on how to achieve high-
performance, highly scalable Bayesian group testing. We show
that HiBGT can perform large-scale test selections (> 250 state
iterations) and accelerate statistical analyzes up to 15.9x (up
to 363x with little trade-offs) through a varied selection of
sophisticated parallel computing techniques while achieving near
linear scalability using up to 924 CPU cores.

Index Terms—Group testing, Bayesian, Lattice model, Apache
Spark, COVID-19

I. INTRODUCTION

Since the outbreak of COVID-19, there has been a renewed
interest in group testing due to the dire need for widespread
testing [1]–[4]. As new outbreaks emerge, large-scale and re-
peated testing will play an essential role in future surveillance.
Efficiencies of scale in testing are needed, and group testing
can provide massive gains.

Originated by Dorfman [5] in 1943, the intuitive group test-
ing formulation is described as follows: if biomarker samples
from N subjects are pooled, and if the prevalence is low,
most likely the test results for the pooled sample will return
negative, indicating that all N subjects are negative, using only
one test. Otherwise, a positive result would indicate there is
at least one positive sample present among the pool. Dorfman
suggested that subsequent individual-level tests be conducted
for each subject. The Dorfman group testing approach has
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found use in various applications, including COVID-19 testing.
Nonetheless, this approach can be problematic as it fails to
recognize the presence of testing error, e.g., dilution effect [6],
in which pooled tests may fail to return positive results (false
negatives) due to insignificant viral loads when pooled samples
contain few positives relative to a large number of negatives.
Another compelling aspect of COVID-19 is the constantly
changing prevalence and individual risk levels, such as through
seasonality, variable vaccination rates, and the emergence of
new variants. Deploying Dorfman’s group testing or even some
of the latest group testing approaches [7], [8] under these fluc-
tuating circumstances may result in inefficient classification
(i.e., use more tests than testing individually) or failure (e.g.,
unacceptable false positive/negative rates).

A. Motivation

In comparison, our previous study proposed an innovative
group testing approach by using lattice models and Bayesian
analysis to guide test selections [9]. This framework allows
consideration of potential sources of testing error, such as
dilution effects, as well as modeling heterogeneous individual-
level risk among samples. This approach is promising as it
achieves accurate, large-scale, flexible, and efficient group test-
ing. Figure 1 presents a high-level overview of our Bayesian
group testing workflow, along with the motivation and com-
putational challenges we recognize and address in this paper.

The workflow of Bayesian group testing can be summarized
as follows: the possible diagnostic outcomes of subjects can
be represented using a lattice model. Acknowledging varying
local prevalence and individual risk levels are done in a
Bayesian manner through prior probability specifications. By
iteratively performing a set of test selection algorithms, i.e.,
Bayesian Halving Algorithm (BHA) and k-step Lookahead
Halving Algorithm (k-BHA), and updating posterior probability
distributions on this lattice model, sequences of pooled test
selections can be made, and tree-based statistical analysis of
classification performance can be conducted.

Preliminary studies have shown that Bayesian group testing
can achieve outstanding statistical performance under varied
prevalence and individual risk levels while considering test
errors, e.g., it constantly reaches over 99.5% correctness in
identifying positive subjects with less than 0.1% false pos-
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Motivation: Most state-of-the-art methods are
accurate only at low-risk levels (<3% positive
rates). Our Bayesian Group Testing approach
works with ANY risk levels and is mathematically
elegant and efficient.

Challenges: Significant computation complexities
throughout core Bayesian Group Testing
components: O(2N) for lattice models, O(22kN)
for Test Selection Algorithms (BHA and k-BHA).
Additional O(2km) for m-stage statistical analysis 

Approaches: We propose a High-performance
Bayesian Group Testing framework (HiBGT)
with sophisticated designs, implementations, and
optimizations using state-of-the-art Big Data and
HPC technologies. 

Contribution: HiBGT can guide large-scale
(approaching applicable limit) COVID-19 group
testings under various risk levels. Tree-based
statistical analysis provides insights into accuracy
and efficiency of our Bayesian approaches.

Tree-based Statistical Analysis 

Fig. 1: Overview of Bayesian Group Testing Workflow, Motivation, Challenges, Our Approaches, and Contribution

itive/negative across different prevalence and individual risk
levels, while saving up to 7x in numbers of expected tests com-
pared to individual testing. However, this work suffers from
significant computational challenges. Its modeling complexity,
i.e., constructing lattice models, its test selection algorithms,
i.e., BHA and k-BHA, and its tree-based exhaustive statistical
analysis setting, will all grow exponentially as the number
of subjects increases. We illustrate these data and algorithmic
complexities using N = 25, which is approaching an upper
limit for practical COVID-19 group testing application [10],
[11] i.e., dilution effects were still manageable relative to
pooled test accuracy. At N = 25, a corresponding lattice
model will comprise 225 (over 33 million) different states,
with each state corresponding to a unique test selection. In
order to find the best test selection, BHA needs to iterate
through these states and perform computation for over 250

(1.15×1015) times; using k-BHA, k=2, the required iterations
will immediately explode to 2100. Moreover, the tree-based
statistical analysis adds another layer of complexity on top of
test selections, as it can potentially spawn millions of lattice
models along branches, requiring millions of test selections.
As can be seen, without leveraging state-of-the-art HPC stacks
and sophisticated algorithmic optimizations, this Bayesian
group testing approach will quickly become impossible to
compute when N gets large.

B. Contribution

To address these challenges, this paper adopts a three-
step research methodology illustrated in Figure 1 to explore
the design space for the intricate interplay across Bayesian
group testing components, including modeling, i.e., how to
construct a lattice model efficiently; Bayesian-based test se-
lection algorithms, i.e., how to optimize BHA and k-BHA
by leveraging parallel computing; and tree-based statistical
analysis, i.e., how to design tree structures for performance
evaluation and to exploit Bayesian probabilities on lattice
models for acceleration.

We realize our research by developing a high-performance
Bayesian group testing framework based on Apache
Spark [12], named HiBGT. The framework aims to deliver a

high-performance, scalable, easy-to-use Bayesian group test-
ing system and to show the effectiveness and efficiency of our
optimized modeling, test selection algorithms, and statistical
analysis workflow through large-scale parallel computing and
is the first framework to do so for Bayesian group testing. In
HiBGT, we propose numerous novel designs and optimizations
to achieve this goal, comprehensively covering each step in
our research methodology. For example, we propose three data
and computation parallelisms that target different computation
stages and allow a dynamic combination to achieve better
computation efficiency and load balance. We propose algo-
rithmic optimizations for k-BHA to drastically bring down its
asymptotic complexity. We also propose three tree construction
schemes for tree-based statistical analysis to adapt to different
real-world analysis scenarios and requirements.

We systematically evaluate our artifacts on two HPC clus-
ters, one is Intel-based with up to 924 CPU cores, and the
other is AMD-based with up to 528 CPU cores. Based on
evaluations, we show that HiBGT can 1⃝ handle large-
scale test selections, e.g., N = 25 in 4 hours (> 250 state
iterations) through sophisticated intra-lattice parallelism; 2⃝
accelerate statistical analyzes up to 15.9x, or up to 363x
with little trade-offs by leveraging a varied selection of tree
parallelization schemes compared to naive parallelization; and
3⃝ achieve near-linear scaling efficiency in both test selections
and statistical analyzes.

II. LATTICE MODEL

In Bayesian group testing, the classification objective is
to identify the “true” profile that characterizes positive and
negative disease status among the individuals being considered
for pooling. Given N subjects considered for pooling and
classification, there are 2N possible profiles of individual-level
negative and positive diagnoses. A natural partial ordering
arises among the states through inclusion, with states repre-
senting the subset of subjects that are negative. For example,
the top element is the state reflecting that all subjects are
negative, the bottom element is the state that all subjects are
positive, and other states represent a mix of negatives and
positives. Lattices are partially ordered sets that further assume
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for any two elements, and there is a unique greatest lower
bound and unique least upper bound. This structure is key
to understanding how statistical discrimination between states
can occur in Bayesian group testing. More details on lattice
classification models are provided in [9], [13]–[16].

In a Bayesian setting, each state j in the lattice model
is associated with a value π(j), which reflects the posterior
probability value that state j is the true profile. Here, a key
concept in lattice models is the notion of an up-set, which is
defined as follows:

Definition II.1 (Up-set of a State in a Lattice). For a state s
in the lattice, the up-set

xs is the subset of states within the
lattice that are at least as great as (i.e. contain) s.

Ex II.1. As shown in Figure 2a, in a lattice model with
3 subjects, A, B, and C,

xA = {A,AB,AC,BC,ABC},xBC = {BC,ABC}, and for
x̂0 it is all 8 of the states.

A practical interpretation of an up-set in a lattice model
under group testing is as follows:

xABC is all the states for
which a pool of A, B and C would contain only negative
subjects,

xA is all the states such that A is negative. Con-
versely, the complement of the up-set of

xAc = {BC,B,C, 0̂}
represents the states for which a test sample from subject A
is likely to be positive. Therefore, the up-set of a state and
its complement generate a partition of the classification states
based on whether the corresponding pooled test would contain
all negatives or at least one positive. The posterior mass on
these partitions will be the basis for test selection and for
“halving” the lattice.

A lattice model can be efficiently constructed using bit-
wise operations since the lattice model is a powerset, which
is the set of all possible combinations of pooled subjects.
The next task is finding an appropriate data structure to store
state-wise posterior probability values. Such data structure
should effectively accommodate critical operations, including
insertion, deletion, and look-up in constant time for <state,
prob> key-value pairs, which naturally drives us to choose
a hash map. On the other hand, the high space complexity
of a lattice model (O(2N )) necessitates the design of a high-
performance hash map rather than the Java default. Therefore,
we choose the FNV1 hash function, which has been widely
used in many places (e.g., Domain Name Servers) [17]. This
hash function has an extremely low collision rate and high
speed, which is a good fit for our requirements. Additionally,
we use an up-set cache to speed up collecting the up-set of
any given state. We design the caching process to interleave
with lattice model generation using multithreading, which
completely hides the caching overhead behind the generation
process.

III. TEST SELECTION ALGORITHMS

This section first introduces core test selection algorithms
used in Bayesian group testing: BHA and k-BHA. We then
propose an approximation for k-BHA to drastically bring down
its asymptotic complexity from O(22kN ) to O(k22N ). At the

ABC

AB BCAC

A CB

(a) BHA

ABC

AB BCAC

A CB

(b) 2-BHA

Fig. 2: Examples of Partitioning Lattice Model with BHA and
k-BHA Using Up-set Information. In 2a, Model is Partitioned
Through A using BHA; In 2b, Model is Partitioned Through A and
BC using k-BHA, k = 2.

end of this section, we propose two types of parallelism for
parallelizing test selections at different levels.

A. BHA: Bayesian Halving Algorithm
We propose BHA as an optimal strategy for test selection.

The key objective of BHA is to systematically partition the
lattice model based on the current posterior distribution on
the lattice. After observation, by partitioning as close to half
as possible, the posterior probability mass will increase in one
of the two partitions and decrease in the other. This property
systematically implies that the posterior probability mass will
quickly accumulate to a single state. Importantly, purposeful
and systematic test selections can be made based on observed
test outcomes that eventually lead to the correct classification
of the true state. In fact, BHA attains the optimal rates of
convergence of the Bayesian posterior probability for the true
state to 1 almost surely, regardless of the true state, and even
under strong dilution effects. Critically, the convergence rates
are exponential due to the discrete nature of the lattice model,
which is reflected in real practice with short testing horizons
needed for high accuracy.

We describe BHA using mathematical formula as follows:
BHA selects a pooled experiment comprised of the subjects
depicted as negatives for a state s that satisfies

min
s

|m(s)− 1

2
| s.t. m(s) =

∑
j∈
xsπ(j) (1)

We illustrate partitioning using BHA in Ex III.1.

Ex III.1. Consider a lattice generated by subjects A,B,C,
depicted as a Hasse diagram in Figure 2a, to illustrate the
partitioning of a lattice model using BHA in order to find a
desired pooled test. As shown in Figure 2a, the lattice model
is partitioned through state A. States highlighted in green is
hence

xA and states highlighted in red is
xAc. If the sum of

posterior probabilities of all states highlighted in green is the
closest to 0.5 among partitioning through any other states, then
A is the desired test selected by BHA.

As we can see, BHA iterates through every state and
compute its posterior probability mass to find the desired
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test selection. The asymptotic complexity can be expressed
as

∑N
i=0 C

i
N · 2i, which sums to O(22N ).

B. k-BHA: k-test Look-ahead Bayesian Halving Algorithm

k-BHA is the high-throughput extension of BHA, which
allows k tests to be selected simultaneously. High-throughput
test selection is more attractive as it can reduce the back and
forth in preparing pooled samples for testing. Formally, k-
BHA selects k states s1, . . . , sk as follows:

min
s1...sk

|
∑

j∈s1∩s2...sk

πn(j)− 1/2k| +

|
∑

j∈s1∩s2...sck

πn(j)− 1/2k| +

. . . +

|
∑

j∈sc1∩sc2...s
c
k

πn(j)− 1/2k|

(2)

We illustrate how to perform partitioning using 2-BHA in
Ex III.2.

Ex III.2. Assume the model is partitioned through states
A and BC, where

xA = {A,AB,AC,ABC},
xAc =

{B,C,BC, 0̂},
xBC = {BC,ABC} and

xBCc =

{A,B,C,AB,AC, 0̂}. As shown in Figure 2b, states are
hence partitioned into four groups, each containing states ofxA∩xBC = ABC,

xA∩xBCc = A,AB,AC,
xAc∩

xBC =

{BC} and
xAc ∩

xBCc = {B,C, 0̂} respectively. If the four
partitions generated by halving through A and BC contain
more evenly distributed posterior probability sums than any
other two-state combinations, then A and BC are the desired
tests selected by 2-BHA.

As we can see in Ex III.2, to find the two desired states
using 2-BHA, a total of 64 combinations of tests need to be
evaluated. In general, k-BHA has an asymptotic complexity
of O(22kN ).

C. An Approximation Algorithm for k-BHA

k-BHA is prohibitively costly to compute. Therefore, we
strive to explore opportunities to optimize this computationally
demanding algorithm. Here, we propose an approximation al-
gorithm for k-BHA, which reduces the asymptotic complexity
from O(22kN ) to O(k22N ). In the approximation algorithm
for k-BHA, instead of selecting k tests simultaneously, we
successively select each test. Given current posterior probabil-
ity πn at stage n, we first choose state e1 using BHA, then
choose state e2 that minimizes Equation 2 given πn and e1.
We keep doing so until all k tests are selected.

Ex III.3. We illustrate the procedure of this approximation
algorithm using the lattice model depicted in Figure 2a with
k = 2. Assuming the first selected test is A, then the
lattice model is partitioned into two groups as shown in
Figure 2a. Next, based on the two existing partitions, the ap-
proximation algorithm finds the second desired test by halving
through every state and examining each partition’s posterior

probability sum. Figure 2b illustrates the partitioning status
where the approximation algorithm performs a second halving
through BC. By using the up-set information, the first group
{A,AB,AC,ABC} is further divided into {A,AB,AC} and
{ABC}, and the second group {B,C,BC, 0̂} is divided into
{B,C, 0̂} and {BC}.

Compared to k-BHA, which simultaneously selects k tests
from a lattice model, the approximated k-BHA drastically
brings down the asymptotic complexity to O(k22N ) by divid-
ing test selection into k BHA-like procedures and computing
each sequentially. In the rest of this paper, we refer to this
approximation algorithm as k-BHA.

D. Parallelizing Test Selections

Besides reducing algorithmic complexity, parallel comput-
ing provides another promising passage toward speeding up
test selection algorithms. In HiBGT, parallel test selection
algorithms must accommodate real-world test selection re-
quirements and other critical components used for Bayesian
group testing, i.e., lattice modes and statistical analysis. After
careful evaluation, we conclude that the design space for
parallelizing test selection algorithms can be characterized
using two pairs of contradicting adjectives.
Overlapped and Independent: test selection algorithms rely
heavily on computation over the same, complete lattice model,
which results in profound overlapping in memory access
patterns, especially for distributed memory models such as
Spark. Nonetheless, these computations can also be performed
independently of each other at the state level, which exposes
an excellent opportunity for computation parallelization.
Heterogeneous and Homogeneous: the heterogeneity repre-
sents the varying needs in real-world test selections, where
group testing pools are divergent regarding the number of indi-
vidual subjects and risk levels, resulting in significantly varied
computation workloads among test selections. Furthermore,
many such pools will often query HiBGT simultaneously,
necessitating considerable efforts to calibrate their varied
workloads in parallel. On the other hand, the homogeneity can
be referred to in the sense that designing parallel computation
for these algorithms falls into the same spectrum, as they share
similar algorithmic coherency.

Based on these observations, we immediately realize that no
one-size-fits-all solution exists in designing parallelized test
selection. We thus propose two abstractions of parallelism:
intra-lattice parallelism and inter-lattice parallelism.
Intra-lattice parallelism solves the overlap-independence
contradiction by parallelizing test selection algorithms inside
the lattice model. It also serves the purpose of speeding
up test selection algorithms. Intra-lattice parallelism allows
many computing processes to work on a single test selection
task over a lattice model by first performing efficient data
parallelization (the complete lattice models) over a distributed
memory model. After that, computations of posterior prob-
ability masses can be computed in parallel for each state in
the lattice model. Additionally, it provides coordination among
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processes to achieve good load balance. More details about
intra-lattice parallelism will be discussed in Section VI-B1.
Inter-lattice parallelism addresses the heterogeneity-
homogeneity contradiction by parallelizing the test selection
process among multiple lattice models. Importantly, inter-
lattice parallelism focuses on orchestrating a fine-tuned
schedule to achieve load balance for nondeterministic
workload introduced by heterogeneous test selection tasks. It
also serves an indispensable mechanism to seamlessly bridge
test selections with HiBGT’s parallel statistical analysis
design. More details will be given in Section V-B.

Additionally, given the homogeneity in the design space,
we conclude that the two proposed parallelisms will offer
the same effectiveness and efficiency for all discussed test
selection algorithms. They also reciprocally adapt to HiBGT’s
other components without any design-wise modifications.

IV. TREE-BASED STATISTICAL ANALYSIS SCHEMES

HiBGT performs statistical analyses to evaluate the effi-
ciency and effectiveness of performing Bayesian-based test
selection algorithms over lattice models. This is achieved by
constructing all possible testing sequences formulated into a
tree structure. Statistical analysis is then conducted by explor-
ing every tree branch, which comprises the probabilities of all
testing sequences. The tree size will depend on two factors: the
test selection algorithms used and the maximum test sequence
length (stage) allowed. For example, in constructing a 24-
stage tree using BHA as its test selection rule, BHA selects
one test at the first stage, which can return two possible
results: negative or positive. For the negative branch, after the
root lattice model updates its posterior probability distribution
based on the negative response, a second-stage BHA can be
performed. This holds similarly for the positive branch at the
first stage. Therefore, this tree can be spawned like a fully-
grown binary tree up to 24 stages, generating a total of 224

(over 16 million) branches (test sequences). For k-BHA, k
selected tests in every stage correspond to 2k potential testing
results. Hence for m stages, the total branches will be 2km.
Since this tree can grow huge, we refer to it as the big tree.
After the big tree is constructed, a statistical analysis evaluates
the tree, which essentially examines and summarizes every
branch’s metadata given each state being assumed as true.
As discussed in Section III, there are a total of 2N possible
true states, so this evaluation must be performed on the big
tree for 2N times. As we can see, the complete statistical
analysis process adds extra complexity on top of lattice model
generation and test selections computation, which motivates
us to speed up this process.

To speed up statistical analysis using parallel computing,
HiBGT offers a whole tree-parallelization scheme named the
multi-tree scheme to split the tree-construction process into
generating a sequence of smaller trees specified by true states,
which allows a statistical analysis to parallelize the tree con-
struction and the statistical evaluation processes at each tree
level. On top of the multi-tree scheme, we propose two extra

schemes for achieving more aggressive computation speed,
each making trade-offs in generality and statistical accuracy.

A. The Multi-tree Scheme

The multi-tree scheme is motivated by the fact that for a
given true state, most of the test sequences in the big tree
are statistically non-significant and can hence be omitted. For
example, assume the true state is ABC (subject A, B, and C
are all negative), then the test sequence {<ABC, Positive>,
<A, Positive>, <C, Positive>, <B, Positive>} is practically
impossible. However, this sequence will potentially be enu-
merated by the big tree because it is considered highly possible
for true state 0̂ (subject A, B, and C are all positive). Based
on this observation, a tree can be structured specifically based
on a given true state, where practically impossible branches
(test sequences) can be pruned, which helps drastically reduce
the complexity of this tree. Since each state is considered true
at some point in the computations, multiple trees are required
to evaluate all of the states, namely the multi-tree scheme.

A benefit of the multi-tree scheme is that it can generate
true-state-specific trees independently, which exploits paral-
lelization for both tree constructions and statistical evaluation,
namely tree-level parallelism. Note that this parallelism is a
derivation of inter-lattice parallelism with a stricter setting,
where the heterogeneity lies at the tree level instead of at the
lattice level. Nevertheless, the load balance technique remains
similar (discussed in Section V-B).

Figure 3 depicts an architecture example for the multi-
tree scheme with three nodes, where each node constructs
one tree per given true state using depth-first construction
(DFC). DFC exposed opportunities to enable branch pruning
in a tree and reduce the computation workload in constructing
trees by detecting low probability branches based on the given
true state. After each tree is generated, the same process can
immediately start statistical analysis for this tree.

Worker 2Worker 1

Master

Worker 3

Statistical 
Information

1

Statistical 
Information 

2

Statistical 
Information 

3

Multi-Tree Paradigm

True
State 1

True
State 2

True
State 3

Statistical Analyzer

Data Flow to Worker Node Data Flow to Master Node

Fig. 3: Architecture Overview of Parallelizing Tree-based
Statistical Analysis

B. Symmetry in Non-heterogeneity Pooling

While HiBGT is based on the prior probability informa-
tion about individual risk levels, in practical use cases, this
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information may not be easily available due to the lack
of effective background tracing or privacy concerns. In this
common scenario, homogeneity is assumed across all testing
subjects, in which individual prior probability values p0 are
all set equal, and the constructed lattice model probability
distribution becomes symmetric in the sense that states hav-
ing an equal number of negatives will have the same prior
probability value. Computational savings can be leveraged by
avoiding redundant computations involving true states with the
same number of negatives in the multi-tree scheme. We hence
name this technique as symmetric scheme, which reduces the
number of generated trees from 2N to N+1, e.g., starting with
a 3-subject pool, we only need to evaluate four true states: 0̂,
A, AB, and ABC.

C. Trade-off between Accuracy and Complexity

In computing averages, metrics and statistical parameters
such as the average number of tests and stages are computed
at the state level, and the overall weighting is done by the
respective prior probabilities of the states. When constructing
the lattice model, some states will have substantially lower
prior probabilities compared to others, which means contri-
butions to the total statistical summary by these states can
be relatively small. For example, assume a 3-subject pool
where each subject has a probability of having COVID-19
is 0.02, then true state ABC will have a prior probability
value of 0.983 ≈ 0.941 and the true state 0̂ will have prior
probability value of 0.023 = 8× 10−6. So statistics evaluated
from 0̂ will contributes much less than the one from ABC. We
can hence skip assessing such less contributing states as true
states when performing statistical analyses while maintaining
acceptable statistical accuracy. For example, we can achieve
99% statistical accuracy by removing states with the lowest
prior probability values that sum up to 1%, which, in this
case, we name as the 99% scheme. One thing to note is that
the effectiveness of this scheme will vary depending on the
inputted individual risk. We will illustrate more in Section VI.

D. Shrink the Lattice Model by Removing Classified Subjects

Intuitively, if an individual subject is classified at some
stage, it can be removed from the model. This occurs when
the posterior mass on the up-set of the corresponding atom
(profile only containing the individual) is greater or less than
the respective thresholds for classifying as negative or positive.
In a lattice model, it means removing all states containing the
individual, which reduces lattice size by half. This strategy
can lead to a significant reduction in computation for the
remaining tree constructions. Note that to preserve statistical
information for precise classification and for consistency in
interpretation, posterior probabilities of the removed states are
combined with those of corresponding states that represent
the same individuals once the classified individual is removed.
Consider the following example:

Ex IV.1. Denote the new posterior distribution after shrinking
as π′

n, and consider the lattice model shown in Figure 2a. If
B is classified at stage n, then B̃ = B,AB,BC,ABC will

be removed and the posterior probability of B will grouped
with its equivalent state 0̂, leading to π′

n(0̂) = πn(0̂)+πn(B).
Respectively, π′

n(A) = πn(A) + πn(AB), π′
n(C) = πn(C) +

πn(BC) and π′
n(AC) = πn(AC) + πn(ABC). As for the

lattice model, we remove all states in the up-set of B, B̃,
mapping the current lattice model into a powerset lattice of
only A and C.

V. IMPLEMENTATION AND OPTIMIZATION

A. Spark Implementation

HiBGT provides two basic operations for updating
lattice models during statistical analyses: test ←
partition(rule) and update(test, outcome),
where (test, outcome) is a <String, Boolean>
tuple indicating the selected test with its observed testing
outcome; and rule is a string representing which test
selection rule is used for finding the partitions of the lattice
model associated with tests. For BHA and k-BHA, one
test and k tests will be outputted respectively by calling
partition(rule, and update(test, outcome)
must be called for the corresponding times to completely
update the posterior probabilities and metadata of the lattice
model. To aid this process, the lattice model generation
process includes generating and maintaining state-wise
metadata such as up-sets, classification status, history of
conducted tests, etc. This metadata is used for accelerating
test selections and statistical analyses.

The multi-tree scheme leverages the true-state-level par-
allelism to construct many small-scale trees synchronously.
The master first schedules each worker node to generate
the same initial lattice model using the mapPartition()
call. At the same time, asynchronously prepare true states in
separate threads, which allow computation overlap between the
master and workers and avoid data parallelization using the
broadcast() call. Meanwhile, the master establishes the
next-stage tasks by parallelizing all true states into a resilient
distributed dataset (RDD) [18] right after worker nodes finish
generating lattice models. Workers can hence start constructing
many trees in parallel. At each worker, the simulation tree
construction is performed as a Spark transformation using
the map() call, and the statistics data is collected and
aggregated as a Spark action through the reduce() call.
Finally, statistical data are sent back to the master for statistical
analysis. Overall, the computation workflow of the multi-tree
scheme comprises a single round of one-to-all + all-to-one
communications.

B. Optimizations

1) Towards Load Balance: In Section IV-D, we introduce
shrinking the lattice size during tree construction to diminish
the computation workload on generating statistical analysis
trees dramatically. However, from the load balance perspective,
this design introduces skewed data and computation in both
tree construction schemes, which can cause stragglers and
crash the expected speed up. To mitigate stragglers, for the
tree-level parallelism (inter-lattice parallelism with a stricter
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setting) used in the multi-tree scheme, we adopt a fine-
grained task scheduler for true-state parallelism such that
workers will acquire tasks in a first-come-first-serve style. In
Spark, this scheduling is achieved by increasing the number of
RDD partitions containing the true state. On the other hand,
finer-grained tasks usually bring more scheduling overhead
as more inter-node communications are required. Since our
task is computation-intensive, especially for larger N , and
each task only requires a small piece of RDD partition (a
string containing up to N characters) to be sent out, the
scheduling overhead can hence be amortized. Note that intra-
lattice parallelism used in speeding up test selection algorithms
can also benefit from finer-grained scheduling but can suffer
more from the scheduling overhead due to less computational
workload compared to statistical analysis. We hence propose
an exclusive optimization in the following subsection for the
intra-lattice parallelism to mitigate this overhead.

2) Multithreading on Spark: Inspired by the MPI + X hy-
brid architecture commonly found in the HPC field [19]–[21],
we propose to deploy multithreading on top of Spark to reduce
communication overhead, memory consumption, and further
improve load balance for intra-lattice parallelism for speeding
up test selection algorithms. We use a customized fork-join
pool that uses the famous work-stealing algorithm [22], which
allows a thread to “steal” unfinished tasks from other threads,
which is ideal for executing dynamic computations such as our
test selection algorithms. Note that the tree-level parallelism
used for statistical analysis does not explicitly benefit from
multithreading on Spark. In the two derived schemes: the
symmetry scheme and the 99% scheme, multithreading on
Spark can help augment their degree of parallelism, which
is crucial in improving their scaling performance. We will
illustrate this in more detail in Section VI.

VI. PERFORMANCE EVALUATION

A. Experimental Testbed

Table I details the specification of the clusters used for
evaluating HiBGT.

TABLE I: Specification of HPC Clusters

Cluster Intel-Cluster AMD-Cluster
Processor Intel Xeon Gold 6132 AMD EPYC 7302P
No. of Cores 28 16
Clock Speed 2.6 GHz 3.0 GHz
RAM 192 GB 128 GB
Interconnect IB-EDR (100 Gbps) 25 Gbps Ethernet
Storage SAS-HDD (128GB) SATA-SSD (500GB)
Spark Version Spark-3.2.1 Spark-3.2.1
Scale upto 33 nodes/924 cores upto 33 nodes/528 cores

To systematically evaluate the performance of test selection
algorithms and statistical analysis schemes in HiBGT, we pro-
pose comprehensive group testing scenarios to mimic the real-
world group testing scenarios. We first define three individual
risk patterns to reflect typical COVID-19 prevalence rates: 1)
low risk, where all individual risks are 2%; 2) mid risk, where
four individuals have risk levels equal to 20%, and the rest

are 2%; and 3) high risk, where all individual risks are 20%.
We choose a mid-range of N = 15, which is suitable for
differentiating performance metrics while not putting too much
burden on the cluster. For test selections, we choose to evaluate
four algorithms: BHA, 2-BHA, 3-BHA, and 4-BHA. We also
evaluate three tree schemes for statistical analysis: the multi-
tree scheme, the 99% scheme, and the symmetry scheme. We
threshold trees at 24, 16, 12, and 10 stages, respectively, for
evaluated test selection algorithms.

B. Performance Evaluation

1) Evaluating Optimizations: In this subsection, we eval-
uate our proposed optimization techniques discussed in Sec-
tion V-B for test selection algorithms and statistical analyzes
using parallel computing. We illustrate the quantification of
performance gains by sequentially adopting these optimiza-
tions in Figure 4. These optimization evaluations are con-
ducted using the Intel Cluster with 112 worker cores (140 total
cores). As depicted in Figure 4a, for test selection algorithms
at N = 20, tuning load balance improves the performance by
up to 1.67-2.37x, while leveraging multithreading on Spark
further enlarges the performance gain to 2.33x-2.74x compared
to the baseline. As depicted in Figure 4b, by utilizing lattice
size shrinking, we speed up the statistical analysis by 2.3x-5.7x
compared to the baseline (no optimization) for the multi-tree
scheme. By further tuning for load balancing, we achieve an
overall performance gain ranging from 3.8x to 10x.

Full Parallelism Comparison Intel

Baseline Shrinking Balance

BHA 133 24.6 13.3
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(b) Statistical Analyzes

Fig. 4: Performance Evaluation of Optimization Techniques
for Test Selection Algorithms using the Intra-lattice Paral-
lelism at N = 20 and Statistical Analyses using the Multi-tree
Scheme at N = 15 with High-risk Pattern.

2) Evaluating Test Selection Throughput: Compared to
statistical analyses, which are usually conducted offline to give
insights into how efficient and effective the Bayesian group
testing can address real-world group testing scenarios, a test
selection offers more practical usage in guiding a pooling
decision and should be considered as an online operation.
Therefore, this necessitates the evaluation of test selection
throughput. As discussed in Section III-D, we propose a
novel intra-lattice parallelism for speeding up test selection
algorithms. We thus assess its performance in the throughput
test to see how big we can push the scale. For this evaluation,
we use the AMD cluster with 512 worker cores. Based on
its asymptotic complexity, we focus on testing the throughput
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of BHA, which offers a much better test selection throughput
than other test selection algorithms. The evaluation result is
illustrated in Figure 5, where we use intra-lattice parallelism
to perform parallel BHA starting at N = 15. As we can
see, the throughput reaches over 9,100 test selections per hour
(2.54 per second) at N = 15. When N ≤ 18 (still achieves
around one selection per second, which we consider as a
real-time response), we see the throughput drop slower than
BHA’s asymptotic complexity (O(22N )), meaning the primary
computation bottleneck at this scale is Spark’s scheduling
overhead. After that, we see an accelerated throughput drop
that is faster than BHA’s asymptotic complexity, meaning
the primary bottleneck at this scale is shifting to intra-lattice
parallelism’s data parallelization overhead. At N = 20, the
throughput is 452 test selections per hour, or 8s per selection.
We consider that this throughput can meet the real-world rapid
testing requirement. When N reaches 25, which is approaching
the upper limit of the suggested COVID-19 sample size, one
test selection takes 14218s (3 hours 57 minutes), which is
selecting the desired test out of over 33 million states from
the lattice model by computing and iterating through these
states for over 1.1 quadrillions (1015) times.
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Fig. 5: Test Selection Throughput using BHA at Different
Scale

3) Evaluating Statistical Analysis Schemes: In this subsec-
tion, we evaluate our proposed statistical analysis schemes
discussed in Section IV. An overall picture of statistical
analysis performance is given in Figure 6. These scheme
evaluations are conducted on the Intel Cluster with 448 worker
cores (476 total cores). We first set up the baseline, which is
by constructing the big tree. To allow fair comparison, we
enable intra-lattice parallelism for test selections during the
big tree construction. We first compare the execution time
between the multi-tree scheme and the baseline, which is
shown that the multi-tree scheme outperforms the baseline by
2.1 - 15.9x, 2.1 - 8x, 2.9 - 3.3x, and 2.2 - 4.2x for BHA,
2-BHA, 3-BHA, and 4-BHA, respectively. As we can see, the
multi-tree scheme is significantly faster than generating the big
tree across all testing scenarios, which proves its effectiveness
and sophistication in accelerating statistical analysis. When
comparing the baseline with the 99% scheme, we see that
the speed ups enlarge to 92 - 363x, 21 - 224x, 28 - 97x,
and 26 - 96x for respective test selection algorithms. When
comparing the baseline with the symmetry scheme, we see

that the speed-ups reach 104 - 342x, 50 - 128x, 67 - 77x, and
52 - 108x for respective test selection algorithms. Note that
the symmetry scheme does not apply to the mid-risk pattern
since the individual risk levels are heterogeneous.

When we characterize the execution time for different
test selection algorithms with different COVID-19 prevalence
levels, we observe that the execution time will significantly in-
crease due to the test selection complexity. Comparing BHA to
4-BHA shows up to a 20.3x increase in execution time. On the
other hand, we also observe the execution time increase along
with COVID-19 prevalence levels. When comparing high-risk
and low-risk patterns, we see execution time increase up to 6x
due to the construction of more complex tree structures. We
also notice that the two auxiliary schemes adapt differently
to varied prevalence levels. In the low-risk pattern, the 99%
scheme is generally faster than the symmetry scheme, while
in the high-risk pattern, the symmetry scheme outperforms the
99% scheme. This is because prevalence levels can alternate
the effectiveness of reducing true states for the 99% scheme,
where a higher prevalence level will generally result in less
reduction.

Low-risk Mid-risk High-risk

Fig. 6: Performance Evaluation of Three Statistical Analysis
Schemes at N = 15. Base(line) is Constructing the Big Tree using
Intra-lattice Parallelism for Test Selections.

C. Scalability Evaluation

1) Evaluating Strong Scaling Efficiency: As illustrated in
Figure 7, we conduct the strong scaling evaluation for three
statistical analysis schemes and the intra-lattice parallelism
for test selections using our Intel cluster using 56, 112,
224, 448, and 896 worker cores. As shown in Figure 7b.
The multi-tree scheme achieves near-perfect scaling efficiency,
ranging from 96.3% to 99.5%. This is primarily benefited
by the efficient parallelism nature of the multi-tree scheme
discussed in Section IV-A, where each tree can be constructed
and evaluated independently without data shuffle. Also, the
load balance techniques discussed in Section V-B1 also sig-
nificantly contribute to achieving these strong numbers. On
the other hand, in Figure 7c, it is shown that the 99%
scheme achieves strong scaling efficiencies of 75.7%, 83.1%,
93.1%, and 93.9% for BHA, 2-BHA, 3-BHA, and 4-BHA,
respectively. The reduced efficiency compared to the multi-
tree scheme is likely due to 1) reduced number of tasks due
to a reduced number of true states, hence resulting in more
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skew and worker dangling, and 2) multithreading on Spark
causes lead to side effects such as thread contention in the
multi-tree-like schemes. We also expect similar or even worse
scaling efficiency in the symmetry scheme, as it performs even
fewer tasks. In Figure 7d, we observe this trend till using 448
cores, which maintain strong scaling efficiency between 72.2%
to 77.4%. However, at 896 cores, we notice an efficiency stall.
By investigating this abnormality, we conclude that this is due
to an insufficient degree of parallelism in using 896 cores
for the symmetry scheme as 448 cores (16 worker nodes)
have saturated 16 tree-construction tasks at N = 15 (with
multithreading on Spark applied).

Figure 7a shows the strong scaling efficiency of test selec-
tion algorithm using the intra-lattice parallelism at N = 22.
With the help of multiple load balance optimizations, we
achieve 84.4%, 84.5%, 88%, and 90.1% scaling efficiency
for BHA, 2-BHA, 3-BHA, and 4-BHA, respectively. The
increased efficiency along more complex test selection algo-
rithms reflects the increasingly amortized data communication
and task scheduling overheads in larger workloads.
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(b) Multi-tree Scheme
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(c) 99% Scheme
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(d) Symmetry Scheme

Fig. 7: Strong Scaling Efficiency of Test Selection Algorithms
using the Intra-lattice Parallelism at N = 20 and Three
Statistical Analysis Schemes at N = 15 Note that Values for
Statistical Analysis Schemes are averaged by 3 Risk Patterns.

2) Evaluating Weak Scaling Efficiency: Figure 8 illustrates
our weak scaling studies using the AMD cluster. To evaluate
test selection algorithms using the intra-lattice parallelism,
we evaluate N ranges from 16 to 20, using 2, 8, 32, 128,
and 512 cores, respectively. The weak scaling efficiency is
shown in Figure 8a, where the scaling curve is overall leveled,
meaning the weak scaling performance generally follows
the algorithms’ asymptotic complexities. Next, we evaluate

statistical analyzes using the multi-tree scheme. As discussed
in Section IV-A, the structure and complexity of each small
tree are closely related to the testing pool and given true
state, which is opaque and hard to predicatively quantify. On
the other hand, the asymptotic complexity of test selection
algorithms and the number of true states is known, which
can be represented as a cubic function. Therefore, we choose
to evaluate N = 13, 14, and 15 with 2, 16, and 128 cores,
respectively, using pools with low risk pattern. As illustrated
in Figures 8b, we see that statistical analyzes using all four
test selection algorithms can hold the weak scaling curve.
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(b) Multi-tree Scheme

Fig. 8: Weak Scaling of Test Selection Algorithms using
the Intra-lattice Parallelism and Statistical Analyzes using the
Multi-tree Scheme with Low Risk Pattern.

VII. OTHER RELATED WORK

Recently, it has been of interest to develop one-stage group
testing methods. High-throughput and one-stage pooled test
designs have recently been proposed in [7], [8], and for in-
stance, rely on error-correcting techniques. These state-of-the-
art group testing approaches suggested for COVID-19 are only
effective for the low-risk scenarios with low prevalence rate
(like < 1− 4%), however, and do not necessarily disentangle
the confounding from positive pooled test results. For the sake
of consistent accuracy in light of dynamic prevalence levels,
multiple-stage testing is needed.

Scalable epidemiological tasks that are enabled with HPC,
including forecasting, planning, response, etc., have garnered
interest since Covid-19 [23]. A rich body of work focuses
on accelerating Bayesian-based algorithms through parallel
computing has been extensively studied in multiple forms
and has been widely adopted, such as with parallel Markov
chain Monte Carlo (MCMC) methods [24], parallel Naive
Bayes text classification [25] and parallel Bayesian Networks
for genome-scale gene networks [26]. Implementations based
on different parallelism frameworks include OpenMP [27],
MPI [28], Hadoop [25], Spark [29] and GPU computing [30].
We do not conduct iterative Bayesian simulation methods
for estimation of posterior distributions, as in MCMC, but
rather simulate from specified probability distributions based
on the realistic dilution effect models that are assumed. In
practice, these distributions would be estimated from data. In
group testing, a halving algorithm that uses prior probabilities
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to pool samples to split aggregate risk is described in [31].
The approach studied here differs in that posterior probability
updating is conducted here, which serves as the basis for pool
selection and stopping.

VIII. CONCLUSION

The Bayesian approach to group testing is appealing as it
can directly reflect variable levels of individual risk in the
classification process and is accurate and efficient even when
accounting for dilution effects. However, the required precision
level comes with the cost of being computationally challeng-
ing. We hence propose a high-performance Bayesian group
testing framework named HiBGT, which allows for accurate,
scalable, flexible, and efficient guidance for group testing and
the statistical analysis of performance. Through systematic
evaluations of various designs and optimizations on Spark-
based implementations, we show that our proposed HiBGT can
perform large-scale test selections and significantly accelerate
statistical analyses while achieving near-linear scalability in
multiple designs up to 924 CPU cores.
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