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Abstract We present a numerical method for the simulation of binary alloys. We make use
of the level-set method to capture the evolution of the solidification front and of an adaptive
mesh refinement framework based on non-graded quadtree grids to efficiently capture the
multiscale nature of the alloys’ concentration profile. In addition, our approach is based
on a sharp treatment of the boundary conditions at the solidification front. We apply this
algorithm to the solidification of an Ni–Cu alloy and report results that agree quantitatively
with theoretical analyses. We also apply this algorithm to show that solidification mechanism
maps predicting growth regimes as a function of tip velocities and thermal gradients can be
accurately computed with this method; these include the important transitions from planar
to cellular to dendritic regimes.

Keywords Solidification · Binary alloy · Dendritic growth · Sharp model · Stefan problem ·
Non-graded adaptive grid · Quadtree

1 Introduction

Metallic materials are at the core of a broad array of advanced engineering systems, with a
total global production of greater than a billion tons annually [1]. One of the grand challenges
for computational materials science is the development of a true predictive capability for the
structure and properties of metallic systems—through all the stages of processing and into
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the service environment. Since the vast quantity of all metallic systems undergo melting and
solidification early in their life cycle, models that accurately capture the solute segregation
and defects that may form during solidification is an essential first step. An example of
industrial importance where the most advanced degree of control of solidification is key is
nickel-base single crystals. These multicomponent single crystals are critical to virtually all
gas turbine systems in the energy and aerospace industries, where single crystals ranging in
mass from less than 1 kg up to 30 kg must be solidified. [2–5]. The processes of choice may
either be the conventional Bridgman process or the more recent liquid metal cooling (LMC)
technique, where the melt is slowly withdrawn from the hot zone of the furnace into a bath
of liquid tin [4,6,7].

The life and performance of superalloy single crystals is typically limited by defects that
form during solidification [4,5,8–10]. These include solidification-induced pores, phases
that precipitate due to strong solidification segregation or small grains that form due to
convection-induced fragmentation of the dendritic structure during withdrawal. Understand-
ing the formation and minimizing the occurrence of these features during solidification is
critical to the development of new materials and their deployment into new systems. In
addition, solidification mechanism maps predicting growth regimes as a function of ther-
mal gradients and front velocities are used extensively in the development of solidification
processing conditions for new alloys and/or new single crystal component designs. To date,
these maps have been partially or fully developed experimentally at great expense. Making
this capability available to industry could profoundly accelerate process development cycles
and expand the sets of materials that they could incorporate into their processes—not only
for investment cast materials, but across the entire spectrum of industrial casting processes.
Finally, while there is an ongoing need for new Ni-base alloys, the time and cost of develop-
ment has become prohibitive. This is an area where New Integrated Computational Materials
Engineering (ICME) approaches hold great promise for accelerating development and pre-
dicting performance could significantly impact the design of advanced materials and the
energy efficiency of both power generation systems and aircraft engines.

Efficient computational approaches therefore hold great promise for accelerating develop-
ment and predicting performance, but are challenged when multicomponent materials must
be analyzed. The growth is driven by heat and mass transfer, convective effects of fluid flows
as well as the effects of capillary forces, crystallographic anisotropy, thermodynamics and
kinetics [11–16]. In addition, the solidification front is time dependent and, depending on
the scale at which the solidification processes are studied, physically correct boundary con-
ditions must be imposed at the moving front. Indeed, when viewed on an atomistic scale, the
solidification front is seen to be a region where the solute concentration undergoes rapid but
continuous variations. Hence, in an atomistic theory, and in turn at the scale where atomistic
computations are feasible, boundary conditions would not be necessary and a continuous
concentration profile would be physically correct. When viewed with the much coarser res-
olution of the macroscopic description, on the other hand, these local variations can be
distinguished only as discontinuities. In the case of the study of dendritic growth, the char-
acteristic length scale of the dendrites is macroscopic and therefore imposes the use of the
continuum approximation. In turn, the correct physical model is that where the concentration
is discontinuous at the solidification front. This is the so-called sharp interface model that is
universally accepted as the physically correct model for dendritic growth [11]. It is therefore
necessary that a sharp numerical treatment of the boundary conditions be imposed.

We note that the physically correct continuous variation of the solute’s concentration at
the atomistic scale is to be distinguished from numerical approximations that use an artificial
smearing of the concentration field as a means to avoid the difficult numerical treatment of
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sharp boundary conditions. Many such approaches exist in the literature, including the phase-
field method [17–36], delta formulations used in the front tracking methodology [37,37–41],
homogenization or smooth particle hydrodynamic techniques [42,43], finite element methods
[38,39,44,44–47] or the level-set techniques, with the recent work of Zabbaras et al. [48–50]
being probably the current state-of-the-art. Although such numerical approximations have
produced interesting results, it is important to note that such numerical smearings may not
be accurate approximations of the underlying physics since, even though the sharp interface
model is accurately approximated when the phase-field thickness parameter approaches zero,
this theoretical limit is not reached on grids with cell sizes orders of magnitude larger than
the physical diffuse interface.

In this paper, we present a numerical method that approximate the sharp interface model.
We build on the adaptive mesh refinement framework of Min, Gibou and Chen [51–53],
who presented a method to solve the standard Stefan problem where only one materials
component is considered (hence only the temperature field is computed). The present work is
a computational approach to the simulation of the solidification of binary alloys that demands
that the concentration be computed in addition to the temperature field, that jump conditions
be imposed at the solidification front and that the interplays between the temperature and
concentration fields be taken into account.

2 Physical Model

Consider a domain �, decomposed into two subdomains �s and �l corresponding to the
solid and liquid phases, respectively and denote by � the solid–liquid interface (Fig. 1). The
dynamic of dendritic growth can be viewed as a nonlinear Stefan-type problem in which
the evolution of the solute’s concentration, C , and the temperature, T , satisfy the following
diffusion equations: ⎧

⎨

⎩

∂T/∂t = λ�T , ∀x ∈ �s ∪ �l ,

∂Cl/∂t = Dl�Cl , ∀x ∈ �l ,

∂Cs/∂t = Ds�Cs , ∀x ∈ �s,

(1)

We have assumed that the density ρ is constant, that the heat capacities and thermal conduc-
tivities are constant and identical in each phase and equal to c and k, respectively. We have
also assumed that the solutal diffusion coefficients are constant in each phase, and equal to
Dl and Ds in the liquid and solid phase, respectively. We denote λ = k/ρc.

This system of partial differential equations needs to be completed by a set of interfacial
conditions. We assume that the temperature is continuous across the solid–liquid interface:

[T ]∣∣� = 0 (2)

and that the Gibbs–Thompson relation is satisfied at the interface:

T∣
∣�

= Tm + mLCl
∣
∣
�

+ εc(θ)κ + εvV� , (3)

where Tm is the melting temperature, mL is the liquidus slope, εc and εv are the curvature
and kinetic undercooling coefficients with θ the angle between the principal direction and
the normal to the interface (see Fig. 1), κ is the front’s curvature and V� is the interface’s
normal velocity. The anisotropy in the curvature undercooling is a direct consequence of
the crystalline anisotropy and several models have been proposed in the literature [11]. For
example, the most commonly used expression for a fourfold crystalline structure in two
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Fig. 1 Geometric configuration
of a computational domain. The
solid and liquid phases are
represented by �s and �l ,
respectively. The solidification
front, with outward normal n is
denoted by �. The angle θ

between the x-axis and the
normal direction to the interface
is used in defining the surface
tension anisotropy Ωs

Ωl

θ

Γ

n

spatial dimensions is εc(θ) = εc (1 − 15ε cos 4θ). The heat flux balance at the interface is
given by:

V� = k

L

[
∂T

∂n

]

�

= k

L

(
∂T s

∂n
− ∂T l

∂n

) ∣
∣
∣
∣
�

, (4)

where L is the latent heat, T s and T l refer to the temperature in the solid and in the liquid
phases, respectively, and n is the outward normal to the solidification front (see Fig. 1). This
set of conditions is supplemented by the solute-rejection equation:

V� (Cs − Cl)
∣
∣
�

= Ds ∂Cs

∂n

∣
∣
∣
∣
�

− Dl ∂Cl

∂n

∣
∣
∣
∣
�

.

Under the assumptions that the solid concentration Cs at the interface is related to the liquid
concentration Cl through the partition coefficient, kp , as Cs = kpCl , the solute rejection
equation becomes:

(1 − kp)C
l V� = Ds ∂Cs

∂n

∣
∣
∣
∣
�

− Dl ∂Cl

∂n

∣
∣
∣
∣
�

. (5)

The system composed of the partial differential equations in (1) supplemented by the four
interfacial conditions (2)–(5) define a well-posed problem.

3 Description of the Solidification Front

The solidification front is time dependent and can undergo a change in its topology when
dendrites are blocked by the growth of surrounding dendrites or are fragmented due to local
thermal and fluid flow conditions. Several numerical approaches exist to capture the evolution
of a free boundary with their own virtues and drawbacks, as described next.

Volume of fluid methods [54–58] keep track of the mass fraction in each computational
cell. The main advantage of VOF is their ability to preserve volume. A drawback often cited
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is their difficulty at computing smooth curvatures, although we refer the interested reader to
the recent work of [59,60].

Explicit methods such as front tracking [37,61–63] have the advantage of being accurate
since the front is represented by markers with coordinates that can updated with high-order
accurate ODE solvers. The main difficulty within these approaches is the treatment of topo-
logical changes.

Phase-field methods represent the solid and the liquid phases by an order parameter (or
phase-field) that is constant within each phase but varies smoothly across an interfacial region
of finite thickness. Phase-field methods have been used extensively in the study of dendritic
growth [17–31]. The limitation of phase-field methods is that they do not approximate the
sharp interface model (this would require a grid size of the order of the atomistic transition
zone) and that the time step restriction is often dominated by the small width parameter.
Another difficulty is in relating the phase-field and the physical parameters.

The level-set method describes the solidification front as the zero-contour of a higher
dimensional Lipschitz function [64–66] and can therefore approximate the sharp interface
model. A drawback of the level-set method is that it is not volume preserving and prompts
the use of adaptive grids (see e.g. [51] and the references therein), special enforcement of
conservation [67] or hybridization with other methods (see e.g. [68,69] and the references
therein). Several efforts exist on the simulation of temperature-driven dendritic growth in the
level-set framework (see e.g. [52,70–72] and the references therein). In the case of binary
alloys, several authors have also used the level-set approach to keep track of the solidification
front [48–50]. However, while the solidification front can be described in a sharp sense using
a level-set function, it is important to note that the approximations of the temperature and
diffusion fields also need to impose the sharp boundary conditions, should the sharp interface
model be correctly approximated. This has been done for example with the immersed interface
methods [73], which imposes the boundary conditions with a Taylor-type analysis in the
interface’s normal direction. Sharp treatment of the boundary conditions is also done in the
ghost-fluid approach of [72,74,75], which has also been applied to the case where the grid
is encoded by quadtrees in the case of the solidification of a unary system [51,76]. In [77],
the authors also used the boundary treatment of [72,74] to simulate the growth of a binary
system on graded quadtree grids. The work of [77] is applied to cryopreservation, in which
the temperature field is assumed to be unaffected by the solidification process. In the present
paper, we focus on the solidification of binary alloys, for which this assumption is invalid,
as can been seen in Eqs. (1)–(5).

3.1 The Level-Set Method

The level-set method [64] represents the solidification front in two spatial dimension as the
zero cross-section of a three-dimensional Lipschitz continuous function φ. The solidification
front � as well as the solid and liquid phases are described as:

⎧
⎨

⎩

φ(x) < 0, ∀x ∈ �s,

φ(x) > 0, ∀x ∈ �l ,

φ(x) = 0, ∀x ∈ �.

The motion of the interface � under the normal velocity V� is described by the level-set
evolution equation:

∂φ

∂t
+ V�

|∇φ| = 0. (6)
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In this work, we also use the following reinitialization equation

∂φ

∂τ
+ Sign(φ0) (|∇φ| − 1) = 0, (7)

to transform an arbitrary level-set function to a signed distance function, in order to produce
robust numerical approximations of the front evolution. Here τ refers to a fictitious time step.
Finally, the normal to the interface n and the curvature κ are defined as:

n = ∇φ

|∇φ| and κ = ∇ ·
( ∇φ

|∇φ|
)

.

4 Adaptive Mesh Refinement

In addition to being discontinuous across the interface, the solute’s concentration displays a
steep gradient near the interface. It is important to accurately compute the concentration in
this region since it is intrinsically related to the front velocity. High resolution is therefore
needed in this region, but the solution in regions farther away can be accurately captured
on significantly coarser grids. In fact, the solution drops to 5 % away from its asymptotic
value in a small region of size δS = 2DL/V� , where DL is the solute diffusion constant in
the liquid and V� is the velocity of the interface. This characterizes the multiscale nature of
the solidification of superalloys. For typical growth parameters, this region is of the order
of 10μm and requires that a band of about 10 grid points of size 1μm be placed near the
interface to capture the variation of the concentration. The typical computational domain,
chosen to simulate a few dendrites, is about 1–10 mm. If a uniform grid were to be used to
capture the entire dendritic growth, O(106 − 107) grid points would be necessary in 2D and
O(109 − 1011) grid points would be necessary in 3D.

Solving the multiscale features with a uniformly fine computational mesh is therefore
impractical and too computationally costly, while coarser uniform meshes would under-
resolve the fine-scale features, leading to erroneous results. These considerations motivate
the use of adaptive mesh refinement and coarsening methods, which allow for locally vary-
ing mesh size and thus can potentially save many orders of magnitude in the number of
unknowns required for a given accuracy [38–40,51–53,76,78–93]. In this paper, we follow
the approach of Min and Gibou, who introduced a node-based PDE solvers on non-graded
quadtree data structures [51–53,76,79–88] and develop numerical methods for the simulation
of solidification processes of binary alloys.

Referring to Fig. 2, the root of the quadtree initially represents the computational domain,
which is then split into four equal size children according to the chosen refinement criteria.
The level is defined to be zero for the root and incremented by one every time a new generation
of children is introduced. Throughout the article we call a ‘grid of level n’ a quadtree of depth
n, i.e., a grid for which the corresponding uniform grid with the same resolution has 4n cells.
A quadtree is non-graded if the difference of levels between adjacent cells is unconstrained.

4.1 The Approach of Min and Gibou

We follow the approach of Min and Gibou [51–53], who developed discretization formulas of
general operators for node-sampled functions. The main difficulty in discretizing differential
operator on quadtree grids is in defining valid values of the solution at T-junctions nodes, i.e.
nodes that are missing a direct neighbor in one direction, as illustrated in Fig. 3. A third-order

123



336 J Sci Comput (2015) 63:330–354

Fig. 2 Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire
domain corresponds to the root of the tree (level 0). Each cell can then be recursively subdivided further into
four children. In this example, the tree is non-graded, since the difference of level between some adjacent cells
exceeds one

v0

v1

v2

v3

v4

v5

s1

s2

s5

s3

s4

sG

vG

Fig. 3 Local grid configuration near a node v0. The schematic on the right describes a T-junction where
a node is missing in the x-direction. In contrast, the grid near the interface � is locally uniform (left) and
therefore standard discretizations can be used

definition of a ghost node uG
g can be defined at T-junctions:

uG
g = u3s4 + u4s3

s3 + s4
− s3s4

s1 + s2

(
u1 − u0

s1
+ u2 − u0

s2

)

,

which allows for the definition of standard approximations of derivatives in a dimension-
by-dimension framework. For example, referring to Fig. 4, we use the central difference
formulas for ux and uxx :

D0
x u0 = u2 − u0

s2
· s1

s1 + s2
+ u0 − u1

s1
· s2

s1 + s2

and

D0
xx u0 = u2 − u0

s2
· 2

s1 + s2
− u0 − u1

s1
· 2

s1 + s2
, (8)

the forward and backward first-order accurate approximations of the first-order derivatives:

D+
x u0 = u2−u0

s2
,

D−
x u0 = u0−u1

s1
,
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Fig. 4 A one-dimensional
adaptive grid

u2u0u1

s2s1

and the second-order accurate approximations of the first-order derivatives:

D+
x u0 = u2−u0

s2
− s2

2 minmod
(
D0

xx u0, D0
xx u2

)
,

D−
x u0 = u0−u1

s1
+ s1

2 minmod
(
D0

xx u0, D0
xx u1

)
,

with the operator D0
xx defined in Eq. (8) and where theminmod slope limiter [94,95], defined

as:

minmod(x, y) =
{

x if |x | > |y|,
y otherwise,

is used to avoid differencing across regions where gradients are large (i.e. near kinks). Sim-
ilarly, approximations for first-order and second-order derivatives are obtained in the y-
direction.

Although several refinement criteria could be defined, we are principally interested in
automatically refining the mesh where the interface lies. Based on the work of Strain [96]
and Min [97], Min and Gibou [51] proposed the following simple refinement criteria for
generating such grids: Starting from a root cell split any cell C if:

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag-size(C), (9)

where diag-size(C) refers to the length of the diagonal of the current cell C and v refers to a
vertex (node) of the current cell. Typical results are depicted in Fig. 3. We also note that it is
straightforward to generate a grid with a uniform band around the interface.

Remark The refinement criteria used is dictated by the multiscale nature of the dendritic
growth problem, i.e. small cells are used in a small band around the interface to capture the
solute boundary layer and the grid is coarsen away from the solidification front. A conse-
quence of this refinement is that the grid is uniform around the interface, which considerably
eases the treatment of boundary conditions.

5 Sharp Numerical Approach for Simulating Multimaterial SuperAlloys

As mentioned in the introduction, we seek to develop a numerical method that approximates
the sharp model for solidification of a binary alloy. The main focus is on (i) how to impose
the boundary condition in a way that does not artificially smear the concentration profile
across the solidification front and (i i) using efficient mesh refinement strategies to capture
small length scales while reducing the computational burden. In this section, we first present
the main steps of our solution process in Algorithm 1 before focusing on the details of the
different numerical techniques.
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Define all the parameters: mL , k, λ, DL , ρ, c, tinitial, tfinal, , εC , εV

Initialize T 0, Cl,0, Cs,0, φ0 and set t = tinitial
while t < tfinal do

Compute V� and time step �t
Advect φn to obtain φn+1 using (6)
reinitialize φn+1 using (7)
Remesh for the new interface φn+1 using (9)
Initialize Cl,n+1 = Cl,n , Cs,n+1 = Cs,n

while ||V p
�

− V p−1
�

||/||V p
�

|| > Tol do
Compute V� from Cl,n+1, Cs,n+1 according to (5)
Solve (1) for T n+1 with the jump conditions (4) and (2)
Use T n+1 and (3) to compute the interfacial concentration
Solve (1) for Cl,n+1, Cs,n+1

end
Update the quantities: t = t + �t , Cl,n = Cl,n+1, Cs,n = Cs,n+1, T n = T n+1

end
Algorithm 1: General steps.

The convergence criteria ||V p+1
�

− V p
�

||/||V p
�

|| > Tol is based on the relative difference
in the interface velocity V� between two functional iterations, which we require to be under
a certain tolerance Tol. We take the L1-norm and consider only the nodes in a band of 4�x
around the interface. We take Tol = 10−5 and note that the iterative method was found
to converge to the same solution even for very small tolerance (10−8). We note that other
iterative processes could be considered in terms of ordering the variables update. We have
observed that the proposed ordering produces convergent results, although no mathematical
proofs are given in the present manuscript. The proof would make for interesting future work

5.1 Solving for the Concentration Fields

When solving for the concentration field, we seek to impose the boundary condition at the
solid–liquid interface in a sharp fashion, namely the Gibbs–Thompson equation (3) and the
solute rejection equation (5). We follow the approach of Chen et al. [76] and present here the
main steps. The Gibbs–Thompson equation is a Dirichlet boundary condition on the moving
solidification front �:

Cl
∣
∣
�

= T − Tm

mL
− εc (θ)

mL
κ − εv

mL
V� x ∈ �. (10)

The concentration diffusion equation for the solid phase in (1) is discretized in time using a
Crank-Nicholson scheme:

(

I − Dl�t

2
�n+1

h

)

Cl,n+1 = Cl,n + Dl�t

2
�n

hCl,n, x ∈ �l , (11)

where �n
h and �n+1

h are approximations of the Laplacian at time tn and tn+1, respectively.
For grid nodes that are not adjacent to the interface, Eq. (8), and the similar approximation
corresponding to the y-direction, are used to fill one row in the linear system described by
Eq. (11) for Cl,n+1. For the nodes adjacent to the interface, the discretizations are modified
to enforce the Dirichlet boundary condition (10): Consider the case depicted in Fig. 5, where
the node v1 is outside the irregular domain �l . By enforcing a band of uniform cells along
the interface, we guarantee that v0 has a direct neighboring node in each direction. The
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sI

vIv0 v1v2

φ

Ωl Ωs

Fig. 5 Schematic representing the case where the solidification front crosses between the nodes v0 and v1 at
the location vI . We denote by sn the distance between v0 and vn

discretization of Cl
xx (v0) is then given by:

∂2Cl

∂x2 (v0) =
(

Cl
I − Cl

0

sI
− Cl

0 − Cl
2

s2

)
2

sI + s2
+ O(�x2),

where Cl
i = Cl(vi ), Cl

I = Cl
∣
∣
�

is given by Eq. (10) and the distance sI between v0 and
vI is calculated from the level-set function. This discretization has been shown to provide
second-order accurate approximation (in both L1 and L∞-norms) for both the solution of the
diffusion equation with Dirichlet boundary condition on arbitrary domains and its gradient.
Similarly, the solid concentration diffusion is discretized in the same way. We refer the
interested reader to [76] for the detailed methodology.

5.2 Solving for the Temperature Field

The remaining interfacial conditions, i.e. the continuity of the temperature (2) and the heat
flux balance (4). Combined with the diffusion equation this interfacial conditions define the
following jump problem:

⎧
⎨

⎩

∂T/∂t = λ�T, ∀x ∈ �,

[T ] = 0, ∀x ∈ �,

[∂T/∂n] = (L/k)V� , ∀x ∈ �.

(12)

As for the concentration field we start by discretizing the heat diffusion equation in (12)
using a Crank–Nicholson scheme:

(

I − λ�t

2
�n+1

h

)

T n+1 = T n + λ�t

2
�n

h T n, x ∈ �.

For nodes that are not adjacent to the interface this above equation is easily discretized using
formula (8) in the x-direction and similar one in the y-direction to build the corresponding row
in the linear system for T n+1. For nodes adjacent to the interface, we propose here a simple
and robust method to enforce the jump conditions (4) and (2). The two main advantages of this
method are that (i) the discretization stencil is compact, i.e. only nodes adjacent to the current
node v0 are used and (ii) the structure of the resulting discretization matrix is not affected;
only the right-hand side is, which makes the implementation straightforward. In particular the
positive definiteness of the matrix is preserved, which guarantee the convergence of iterative
solvers.

A general configuration is depicted in Fig. 6, where the current node v0 ∈ �s has two
neighbors, v2 and v4, both across the solidification front. Following ideas of the ghost-fluid
method set forth in [98,99], we introduce ghost values, T s

2 and T s
4 , for the temperature field
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Fig. 6 Solving for the
temperature field: grid
configuration near the interface

Γ

n
v0v1

v3

v2

v4

P

Q

Ωs

Ωl

δP

δQ

in the solid phase at these two nodes. These fictitious values are related to the real values of
the temperature field at the corresponding nodes through the jump conditions:

T s
2 = T l

2 + [T ]P + δP

[
∂T

∂n

]

P
+ O

(
h2) ,

T s
4 = T l

4 + [T ]Q + δQ

[
∂T

∂n

]

Q
+ O

(
h2) ,

where h = max(�x,�y), the points P and Q are the orthogonal projections of nodes v2 and
v4 on the interface � and δP and δQ are the distances from P and Q to v2 and v4, respectively.
Since the temperature is continuous across the interface, these equations simplify to:

T s
2 = T2 + δP

[
∂T

∂n

]

P
+ O

(
h2) , (13)

T s
4 = T4 + δQ

[
∂T

∂n

]

Q
+ O

(
h2) . (14)

The standard central difference approximation of the Laplacian operator at the node v0, using
the ghost nodes T s

2 and T s
4 reads:

�h T (v0) = T s
2 − 2T0 + T1

�x2 + T s
4 − 2T0 + T3

�y2 + O
(
h2) .

Using Eqs. (13) and (14), this discretization is written as:

�h T (v0) = T2 − 2T0 + T1

�x2 + T4 − 2T0 + T3

�y2

+ δP

�x2

[
∂T

∂n

]

P
+ δQ

�y2

[
∂T

∂n

]

Q
+ O

(
h2) ,

or,

�h T (v0) = ˜�h T0 + δP

�x2

[
∂T

∂n

]

P
+ δQ

�y2

[
∂T

∂n

]

Q
+ O

(
h2) ,
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where ˜�T0 is the standard central difference discretization of the Laplacian operator. It is
clear that the only difference with the discretization of a standard Laplace equation is seen
on the right-hand side of the linear system; the matrix itself is unchanged. Note that this
approach is different from the ghost-fluid treatment of [99] that considers the jump in the
Cartesian direction only.

Remark We note that this approach is only valid in the case where there is no jump in the
diffusivity coefficient, which is the case in this problem. In the more general case where the
diffusivity coefficient λ is different in each phase, we refer the interested reader to the method
presented in [100] and the references therein.

5.3 Interface Velocity Calculation

The calculation of the interface velocity V� follows from Eq. (5):

V� = − DL

(1 − kp)Cl

∂Cl

∂n

∣
∣
∣
∣
�

,

and is calculated in three steps. First the solute concentration Cl , is extended to the entire
domain using a third-order extrapolation procedure described in [51,101]. The concentration
gradient at every node is then computed using standard central differencing and then used
to compute the velocity everywhere according to the above equation. Finally the velocity
field is extrapolated in a constant fashion in a small band around the interface in the normal
direction as originally suggested by [70,102].

5.4 Time Step Definition

Once the interface velocity is known, the level-set function is advected using the second-
order accurate semi-Lagrangian method on quadtree of [51]. This method is unconditionally
stable, therefore does not introduce any time step restriction. Since the Crank–Nicholson
scheme used to discretize the temperature and concentration diffusion equations are also
unconditionally stable, the time step restriction of the present algorithm is dictated by accu-
racy concerns only. We take a time step that accounts for the maximum interface speed, i.e.
prevents the interface to move by more than α�x :

�t = α
�x

Vmax
,

where �x is the size of the smallest grid cell and Vmax is the maximum value of the interface
normal velocity. In addition, in order to capture interesting developing features such as the
growth of dendrite secondary arms, we further consider a time step of

�t ≤ 1

max
(|κV� |) ,

where max
(|κV� |) the maximum value of the product of the interface’s curvature times the

normal velocity. This condition allows the scheme to capture features of the order of 1/κ ,
the smallest length scale resolved by the grid. The time step we take is therefore:

�t = min

(

α
�x

Vmax
,

1

max
(|κV� |)

)

The parameter α is typically set to be.5.
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5.5 Computational Efficiency

The use of quadtree adaptive grids significantly reduces the number of degrees of freedoms,
which contributes to efficient computation. In addition, the linear system is solved by the
multigrid method on quadtree grids of Theillard et al. [103]. This method, like it is standard
with multigrid methods [104], scales linearly with the number of nodes [103]. Since the
other procedures used in this algorithm exhibit the same scalability, the overall method
scales linearly with the number of nodes. We have parallelized the implementation on a
shared memory architecture using the openMP library.

Remark The level-set function is reinitialized using the algorithm presented in [51], where the
fictitious time step is proportional to the size of the local cell. Typically, we use only five iter-
ations to produce an accurate distance function close to the interface. In addition, we note that
increasing the number of iterations does not have any influence on the accuracy of the method.

6 Numerical Experiments: Solidification of an Ni–Cu Alloy

In this section we apply the method previously described to the solidification of a Ni–Cu
alloy in two spatial dimensions. This system is selected since it has been well-characterized
experimentally. The computational domain is a square box of size l and solidification is
triggered by imposing a negative heat gradient G from top to bottom and a cooling rate V ,
as illustrated in Fig. 7. Figure 8 illustrates a typical result of the simulation of a binary alloy.
Figure 8(a) presents the dendrite shape, the temperature distribution (red–blue scale) and
the solute concentration (gray scale). This simulation corresponds to the regime of dendritic
growth where primary and secondary arms are present. Figure 8(b) depicts the quadtree
grid for which the highest resolution is automatically enforced in a small band around the
interface, while leaving regions with a slow varying solution at a much coarser resolution.
The width of the band is defined as to capture the solute’s boundary layer. The concentration
profile is also seen in Fig. 8c to be sharp, i.e. the concentration jumps across the solidification
front, faithfully approximating the physical model. The important process of solute rejection
is clearly captured by the simulation. We note that the diffusion coefficient in the solid phase
is several orders of magnitude smaller than that in the liquid phase. Therefore, similar results
are obtained whether or not the solution of the concentration field is computed in the solid
phase. In what follows, we have simply ignored the concentration’s diffusion in the solid
phase, noting that the method presented allows for the concentration in both the solid and
liquid phases to be computed.

We start by providing numerical evidence on the convergence of our method by studying
the interface velocity and the global energy. We then show that our approach is able to simulate
a number of known physical properties, such as the release of latent heat as well as the primary
and secondary arm spacing. In the case of unstable growth, no forced numerical perturbations
are introduced; rather the observed instability and subsequent dendrites are triggered by the
numerical truncation errors only. A typical computation in a domain containing between 10
and 20 dendrites on a level 10 quadtree takes a few hours on an iMac 3.4 GHz with eight
processors. Increasing the resolution by one level increases the computational time by four,
i.e. slightly less than a day.

The parameters of the problems are the melting temperature Tm = 1, 728 K, the liquidus
slope mL = 357 K/at. frac., the partition coefficient kp = 0.86, the initial concentration
C0 = 0.40831 at. frac., the latent heat L = 2350 J/cm3, the curvature undercooling coef-

123



J Sci Comput (2015) 63:330–354 343

Fig. 7 Problem setup: the initial
planar interface (represented in
dark grey) is progressively cooled
down by imposing a heat gradient
G and a cooling rate V , which
are implicitly enforced through
the top and bottom wall boundary
conditions. In the case where the
interface is unstable, small
perturbations first appear (grey
interface) and grow into larger
dendritic structures (light grey).
The right and left walls are
considered fully insulated, i.e. the
normal gradient of the solute
concentration on all the wall is
considered to be zero (Neumann
boundary condition). In this
schematics, V� refers to the
velocity at the dendrites’ tips

VΓ

λG + LV

λG

ficient εc = 2.7207 × 10−5 cm K, the kinetic undercooling εV = 2.27 × 10−2 s cm−1 K,
the anisotropy coefficient ε = 0.05, the heat diffusivity λ = 1.486 × 10−1 cm2/s, the den-
sity ρ = 8.88 × 10−3 kg/cm3, the specific heat c = 4.6 × 102 J/kg K, the heat diffusivity
k = 6.07 × 10−1 W/cm K and the solute diffusion constant Dl = 10−5 cm2/s [50].

6.1 Stable Planar Interface

In this section we consider the simplest solidification regime, i.e. that of a stable planar
solidification front. The relative simplicity of this case allows us to compare our numerical
results to theoretical predictions and illustrate the convergence of our method.

6.1.1 Convergence Analysis

We set the thermal gradient G = 2.15 × 104 K/cm, the length computational domain
l = .05 mm and we select a cooling velocity V such that the initial planar interface remains
planar along the solidification process. According to the Mullins–Sekerka analysis [105], a
sufficient condition for this regime to be reached is for the interfacial velocity V� to be outside
of the range [10−2, 10−3 cm/s]. The interfacial velocity cannot be directly imposed but can be
controlled through the cooling velocity V . In the general case of dendritic growth, no explicit
expression relates those two quantities, and we can only show that in cases where a planar
interface is stable, the relation V� < V holds. Therefore by selecting V = 0.01 cm/s, we
ensure that the interface velocity will remains stable. The resulting simulated planar solidi-
fication front is depicted on Fig. 9 at t = .1. Note that the value we took for the interface’s
velocity is close to the boundary of the Mullins–Sekerka’s loop. The fact that the simulation
produces a stable interface growth illustrates part of the robustness of the approach.

We start our analysis by looking at the evolution of the interface’s velocity as the mesh
resolution increases. Figure 10a clearly illustrates the convergence of the method as the grid is
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Fig. 8 Typical simulation of a binary alloy growth using our sharp interface simulation engine (Color figure
online)

refined: initially the solute is equal to a constant C0, therefore the interface’s velocity, defined
through the solute rejection equation (5), is initially zero before progressively increasing
until it reaches its asymptotic value. We also note that, as expected, the interface’s velocity
is always smaller than the cooling velocity, i.e. V� < V . In the asymptotic regime, under the
assumption that kG >> LV (in this example (kG)/(LV ) = 5.553 × 102), a simple power
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Fig. 9 Temperature field inside the solid phase (blue–red color scheme) and solute concentration field (grey
scheme) in the case of a planar interface (Color figure online)
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Fig. 10 Convergence (a) and accuracy (b) under grid refinement of our numerical method in the case of stable
planar interface

balance of the entire system gives us:

LV = LV� + ρcl

L
G.

The left-hand-side term accounts for the heat flux pumped out of the computational domain,
while the right hand side terms account for the release of latent heat and the energy loss due
to the conductivity, respectively. From this equation we get that

V� = V

1 + ρclG
L

. (15)

Applying the above formula for the current parameters we find that V� = 8.425×10−3 cm/s,
which is extremely close to the numerical asymptotical value V� = 8.385 × 10−3 cm/s.
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Fig. 11 Interface velocity profile (solid lines) for different values of the latent heat. The theoretical asymptotic
values are represented by the dash lines

Fig. 12 Planar-Cellular-Dendritic transition. In this example the cooling velocity V is set to 0.01 cm/s. Starting
from the stable configuration (a) we progressively increase the imposed heat gradient G and successively
observe the planar-cellular (b) and cellular-dendritic transition (c, d). For G=2 × 103 K/cm (c), both the
cellular and dendritic formations are observed
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Fig. 13 Resulting crystalline configuration for different values of the cooling parameters. The blue dots
represent the result for which the obtained geometry is depicted, while the grey dots represent numerical
scenarios that had been numerically observed but that are not represented. Both are indexed according to the
measured interface velocity and thermal gradient in the solid phase. The diagram represented in the center,
and to which our result are compared, was originally presented in [106] (Color figure online)

We now consider the total energy of the system, E(t), which is given by:

E(t) = L
∫

�l
ds + ρc

∫

�

T (x, y, t)ds, (16)

to study the accuracy of the method. This can be expressed in the present case as (cf. Appendix
B):

E(t) = LV ht + E(0). (17)

Using Eqs. (16) and (17) we can numerically compute the total energy and compare it to its
theoretical value. The resulting relative error as a function of time and grid refinement level
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Fig. 14 a Numerical solutal boundary layer as a function of the tip velocity. The solid line represents the
theoretical value. b Primary spacing as a function of the tip velocity and the temperature gradient in the solid
phase. The slope of the best fit line was found to be .0307

is given in Fig. 10b. This example shows the strong connection between the level of the grid
and the decrease in the relative error.

6.1.2 Impact of the Latent Heat

In this section we study the impact of the latent heat on the interface’s velocity given by the
approximation (15). To do so we reproduce the calculations performed in the previous section
on a larger computational domain (l=.4 mm) and progressively vary the latent heat from its
original value (2,350 J/cm3) by decrements of 235 J/cm3. The calculations are performed for
a maximum resolution of 4, 096 and a minimal resolution of 32. We note that by decreasing
the value of the latent heat, the condition kG >> LV is still satisfied and therefore the
approximation (15) still holds. As illustrated in Fig. 11, for all the values of the latent heat,
the numerical and theoretical asymptotic values agree well. In fact the highest relative error
is 1.366 × 10−2 and occurred in the case where the latent heat is 2,115 J/cm3. This confirms
that the latent heat is properly released.

6.2 Planar-Cellular-Dendritic Transitions

Starting from the previous stable configuration ( G = 2.15×104 K/cm and V = 0.01 cm/s) we
progressively decrease the imposed thermal gradient. We respectively take for the minimum
and maximum resolution 32 and 2,048. By doing so we observe the planar to cellular and
cellular to dendritic transitions depicted in Fig. 12. Figure 13 represents the resulting crystal
structures for a wider spectrum of the cooling parameters G and V . These results match
extremely well with the predictions (based on experimental observations) of [106]. To our
knowledge, our results show for the first time that it is possible to generate these maps with
a fully computational approach.

6.2.1 Solutal Boundary Layer

For each simulation depicted in Fig. 13 the tip’s velocity and the solutal boundary layer
are measured and reported on Fig. 14a. The solutal boundary was defined as the distance

123



J Sci Comput (2015) 63:330–354 349

Fig. 15 Development of the secondary arms. Top entire simulation. Bottom zoom on the tip of a dendrites a
different time step

(in the normal direction to the interface direction) between the tip and the point where the
concentration drops to 5 % away from its asymptotic value C0. The boundary layers obtained
from the simulations are close to the theoretical values δS = 2Dl/V� .

6.2.2 Primary and Secondary Arms Spacing

The most common formula used for the primary arm spacing Z1 as a function of the heat
gradient and the tip velocity, is of the form:

Z1 = AG−n
S V −m

�
, (18)
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Fig. 16 Secondary arms spacing
as a function of the tip velocity
and the temperature gradient in
the solid phase in a log–log scale
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where n = 1/2 and m = 1/4. Here we only focus on the results that exhibit primary arms
and measure the average primary spacing along with the tip velocity and the heat gradient
in the solid phase. The results presented on Fig. 14b show that our numerical results match
well the predictions of Eq. (18). The coefficient A is found to be ∼0.0307 cm3/4s−1/4K1/2.
We also perform a linear regression of log(Z1) as a function of log(G−1/2

S V −1/4
�

) and find
that the slope of the best fit line is 1.0453, which is close to the expected value of 1. The
constant coefficient in the linear regression, which is expected to be equal to 0, is found to
be ∼ 1.087 × 10−6.

We now focus on the development and spacing of secondary arms. Their formation is
illustrated in Fig. 15. The calculations were performed with the following parameters: V =
0.01 cm/s, G = 1 K/cm and a computational domain of 0.3 cm. The minimum and maximum
resolutions are respectively 32 and 4,096.

As for the primary spacing Z1, no exact formula for the secondary spacing Z2 as a function
of GS and V� is universally accepted. However the most commonly used one states that Z2

is a linear function of
(
GS V�

)−1/3:

Z2 = B
(
GS V�

)−1/3
, (19)

where B is a constant coefficient that is specific to the alloy. As for the primary spacing
analysis, the average secondary spacing was measured for the numerical cases that present
secondary arms and then plotted in Fig. 16 as a function of

(
GS V�

)−1/3 and compared to the
analytical expression (19). The numerical results agree well with the predictions. In particular
a linear regression of log(Z2) as a function of

(
GS V�

)
has a slope of ∼ −0.334, which is

close to the expected value of −1/3.

7 Conclusion

We have developed a new numerical method for the modeling of the dendritic growth where
the interface conditions are imposed in a sharp manner, ensuring that the physical properties
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are properly captured. By using adaptive quadtree grids we were able to handle the inherent
highly multiscale nature of this phenomena. This approach allowed us to produce numerical
results that exhibit an excellent agreement with theoretical results. In addition, we have shown
that this method can reproduce a wide range of growth, from planar to cellular to dendritic.
In addition, we have shown that solidification mechanism maps predicting growth regimes
as a function of thermal gradients and front velocities can be obtained with this approach.
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