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a b s t r a c t

We present a numerical method for solving the equations of linear elasticity on irregular
domains in two and three spatial dimensions. We combine a finite volume and a finite dif-
ference approaches to derive discretizations that produce second-order accurate solutions
in the L1-norm. Our discretization is ‘sharp’ in the sense that the physical boundary condi-
tions (mixed Dirichlet/Neumann-type) are imposed at the interface and the solution is com-
puted inside the irregular domain only, without the need of smearing the solution across the
interface. The irregular domain is represented implicitly using a level-set function so that
this approach is applicable to free moving boundary problems; we provide a simple exam-
ple of shape optimization to illustrate this capability. In addition, we provide an extension of
our method to the case of adaptive meshes in both two and three spatial dimensions: we use
non-graded quadtree (2D) and octree (3D) data structures to represent the grid that is auto-
matically refined near the irregular domain’s boundary. This extension to quadtree/octree
grids produces second-order accurate solutions albeit non-symmetric linear systems, due
to the node-based sampling nature of the approach. However, the linear system can be
solved with simple linear solvers; in this work we use the BICGSTAB algorithm.

Published by Elsevier Inc.
1. Introduction

The equations of linear elasticity are used extensively in structural analysis and engineering design to understand and
simulate how solid objects deform and respond to internal stress under prescribed loading conditions. Finite element meth-
ods are one of the most widely used techniques to solve the equations of linear elasticity (see e.g. [8]). One of the strong
features of the FEM approach is that it provides a theoretical framework that allows the definition of a priori error estimates
that can be used to design automatic refinement criteria. In addition, the theoretical framework allows to perform conver-
gence analysis using the norm induced by the solution space. However, a computational difficulty with this approach is that
the mesh needs to conform to the irregular domain’s boundary and meshing procedures that guarantee the quality of the
mesh can be computationally expensive. The case where the domain’s boundary evolves in time, as it is the case in shape
optimization problems for example, exacerbates this difficulty as the domain needs to be frequently remeshed. The extended
finite element approach (XFEM) avoids the difficulty associated with frequent remeshing since the mesh need not conform to
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the domain’s boundaries. Remarkable numerical results are achieved even though the theoretical framework of XFEM is still
under development [6,4].

Numerical methods that implicitly describe the irregular domain’s boundary originated from the pioneering work of Pe-
skin (the immersed boundary method [IBM]) to model blood flows in the heart [30,31]. Since then, implicit representations
have been the focus of modern numerical methods and the main quest has been on how to impose the different boundary
conditions at the irregular domain’s boundary. In the IBM framework, boundary conditions are modeled as a source term
that is localized on the interface through the use of a discretized d-function. This method therefore smears out the solution
across the interface. The immersed interface method (IIM), introduced by Li and LeVeque modifies the discretization of dif-
ferential operators near the irregular boundary using Taylor-type expansions to impose boundary conditions in a sharp (as
opposed to smeared out) fashion [17]. In this case the overall discretization is second-order accurate in the L1-norm. The IIM
framework is therefore accurate but can be difficult to generalize to three spatial dimensions, especially when cross-deriv-
ative terms are present.

The level-set method, originally developed to study curvature driven flows [28] is another implicit method that has been
very successful in simulating free moving boundary problems [27,35]. Allaire et al. [11] used the level-set method in the case
of shape optimization, generalizing the two previous level-set-based works of Wiegmann and Sethian [16] and that of San-
tosa and Osher [36]. This method considers ‘ersatz materials’, where the solution inside the irregular domain is padded with
a ghost material with small characteristic parameters. An advantage of this approach is its simplicity; a potential drawback is
that the extension by a weak material alters the original elasticity problem in the sense that the boundary conditions are not
imposed in a ‘sharp’ manner, which in turn may affect the accuracy.

Imposing boundary conditions in a ‘sharp’ fashion in the level-set framework is often performed using the ghost-fluid
method. Originally developed for compressible flows where jump conditions must be imposed in order to avoid the Oð1Þ
numerical errors near shocks and contact discontinuities [10], the ghost-fluid method has been applied to a wide range of
problems: for example, Liu et al. derived a first-order ghost-fluid approach for the Poisson equation on irregular domains
where jump conditions on the solution and its gradient are to be imposed [18]. Nguyen et al. applied this method to the sim-
ulation of flame propagation [26]. Gibou et al. developed second-order [12] and fourth-order [13] accurate ghost-fluid meth-
ods for the Poisson and the heat equation where Dirichlet boundary conditions are imposed. Enright et al. used this approach
in the context of free surface flows [9], Gibou et al. used it into simulate the Stefan problem [14] and Mirzadeh et al. applied
it to the case of the nonlinear Poisson–Boltzmann equations [24].

Although very successful for the problems mentioned above, the ghost-fluid method is a less natural approach for impos-
ing boundary conditions involving fluxes, i.e. Neumann or Robin type boundary conditions. Finite volume methods or var-
iational approaches are in those cases better suited because the use of the divergence theorem naturally reveals explicitly the
normal derivative of the solution (i.e. fluxes). Almgren et al. introduced a cut-cell variational approach [2]. Papac et al.
developed a second-order accurate symmetric discretization of the Poisson and the heat equations with Robin boundary con-
ditions, as well as to the Stefan problem [29]. Helgadottir proposed a numerical method for the nonlinear Poisson–
Boltzmann equations [15]. A second-order accurate finite volume approach for incompressible flows in arbitrary geometries
has been developed and analyzed in Purvis and Burkhalter [32] and Ng et al. [25]. In this case, the standard projection meth-
od [7] requires the solution of a Poisson equation with Neumann boundary conditions imposed on irregular domains.

In this paper, we propose a simple sharp numerical approach for the elasticity problem that avoids the need of the ersatz
material. We consider the case where the domain’s boundary is subject to a combination of Neumann-type and Dirichlet
boundary conditions. Dirichlet boundary conditions are imposed on the interface using an approach similar to the work
of Gibou [12] and Chen et al. [5]. We then derive a finite volume approach that easily handles the Neumann-type boundary
condition at the domain’s boundary, which is difficult to discretize on arbitrary domains with standard finite differences. The
linear system is symmetric and the solution is second-order accurate in the L1-norm.

The method is also extended to the case of nonuniform grids, where the finest cells are automatically located near the
interface. Given the Elliptic nature of the equations of linear elasticity, the solutions are expected to be smooth except near
the interface, where kinks may occur. It follows that an adaptive scheme that imposes the finest cells near the interface will
be able to accurately resolve the solution while significantly reducing the overall computational complexity. We make use of
the framework introduced by Min et al. [22] for solving partial differential equations on quadtree/octree data structures. This
approach allows the design of second-order finite difference schemes on non-graded adaptive grids, i.e. on grids for which
the ratio between adjacent cells is not bounded. This, in turn, gives a straightforward and efficient mesh generation proce-
dure. This framework has been applied to the Navier–Stokes equations, the Poisson and the heat equations, Stefan-type
problems and the Poisson–Boltzmann equation [20,15,5], but has never been developed for the linear elasticity equations.
In the case of non-graded grids, the linear system produced from discretizing the elasticity equations is non-symmetric
(see [23]), but it is still represented by an M-matrix guaranteeing convergence of iterative solvers.

2. Governing equations

Let X be a computational domain and X� and Xþ two complementary subsets of X separated by an interface C. We use a
level-set function / to define the irregular domain X� ¼ fx : /ðxÞ 6 0g and C ¼ fx : /ðxÞ ¼ 0g. At equilibrium the governing
equation of linear elasticity is:
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�r � r ¼ f on X�; ð1Þ
where the stress tensor r is related to the displacement field through Hooke’s law:
r ¼ 2leðuÞ þ kTrðeðuÞÞId; ð2Þ
where
eðuÞ ¼ 1
2
ruþru>
� �

:

Id is the identity matrix, Tr refers to the trace operator, k and l are the Lamé coefficients of the material and f is the given
body forces. The displacement u is the unknown of the problem. We assume that C is split into two different parts CD and CN

where Dirichlet and Neumann-type (traction) boundary conditions, respectively, are imposed:
u ¼ uD on CD; ð3Þ
r � n ¼ g on CN ; ð4Þ
where uD and g are given.
3. Numerical method

In this section, we present our method for solving the equations of linear elasticity in two and three spatial dimensions.
The approach is presented in the case of uniform grids in Section 3.1 before being extended to the case of quadtree/octree
adaptive grids in Section 3.2.

3.1. Discretizations on uniform grids

The computational domain is geometrically discretized by a uniform mesh. The solution is stored at the vertices ði; jÞ of a
uniform grid in two spatial dimensions (respectively ði; j; kÞ in three spatial dimensions). In two spatial dimensions, for each
node ði; jÞ we consider the cell Cij ¼ i� 1

2 ; iþ 1
2

� �
� j� 1

2 ; jþ 1
2

� �
, so that the given node is located at the center of the cell, as

depicted in 1. Likewise in three spatial dimensions, the node ði; j; kÞ is surrounded by the cubic cell Cijk ¼ i� 1
2 ; iþ 1

2

� �
�

j� 1
2 ; jþ 1

2

� �
� k� 1

2 ; kþ 1
2

� �
. We describe the discretization in the case where the boundary is subject to a Neumann-type

boundary condition. Dirichlet boundary conditions are handled using an approach similar to the work of Gibou et al. [12]
and Chen et al. [5].

Integrating the equilibrium Eq. (1) over C�ijk , Cijk \X� and applying the divergence theorem leads to:
Z
@C�ijk

�r � nds ¼
Z

C�ijk

f dx:
Since the boundary @C�ijk has two components, the faces of grid cell @C�ijknC and the portion of the interface crossing the cell
C�ijk \ C, we consider separately the contribution of the two components. Applying the traction boundary condition (4), we
have:
 Z

@C�ijknC
�r � nds ¼

Z
C�ijk\C

gdsþ
Z

C�ijk

f dx: ð5Þ
The approximation of the right-hand-sides requires the integration of a known quantity over the sets @C�ijknC and C�ijk. In
this work, we use the geometric integration procedures introduced in [21]: this approach is based on a decomposition of the
grid into simplices, i.e. in triangles in two spatial dimensions and tetrahedra in three spatial dimensions. Then line, surface or
volume integrals are readily obtained using standard second-order accurate quadrature rules. This approach has been shown
to be robust to the perturbation of the location of an irregular domain with respect the grid. In Sections 3.1.1 and 3.1.2, we
focus on the approximation of the left-hand-side of Eq. (5).

3.1.1. Finite volume approach in two spatial dimensions
Eq. (5) leads to two equations:
�
Z
@C�ij nC

ðkþ 2lÞ @u
@x
þ k

@v
@y

� �
N1 þ l @u

@y
þ @v
@x

� �
N2

� 	
ds ¼

Z
C�ij

f1dxþ
Z

C�ij
T

C
g1 ð6Þ
and
�
Z
@C�ij nC

l @u
@y
þ @v
@x

� �
N1 þ ðkþ 2lÞ @v

@y
þ k

@u
@x

� �
N2

� 	
ds ¼

Z
C�ij

f2dxþ
Z

C�ij
T

C
g2: ð7Þ
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As depicted in 1, consider the vertical right face F1 represented by the portion of the segment iþ 1
2

� �
� j� 1

2 ; jþ 1
2

� �
covered by

the irregular domain. For this segment, the normal is given by N1 ¼ 1 and N2 ¼ 0. The integral
R

F1

@u
@x ds is approximated using

the standard central differencing formulas:
Z
F1

@u
@x

ds ¼ L1
uiþ1;j � ui;j

Dx
þ OðDx3Þ; ð8Þ
where Dx is the step size in the x-direction and L1 is the length of F1 (see Fig. 1). The discretization of the integral
R

F1

@u
@y ds

needs to ensure that it only makes use of well-defined nodes (meaning that their surrounding cell Cij intersects the inside
domain X�). This is achieved by using the following first-order discretization:
Z
F1

@u
@y

ds ¼ LT

2
ui;jþ1 � ui;j

Dy
þ uiþ1;jþ1 � uiþ1;j

Dy

� �
þ LB

2
ui;j � ui;j�1

Dy
þ uiþ1;j � uiþ1;j�1

Dy

� �
þ OðDy2Þ; ð9Þ
where the coefficients LT and LB are defined as:
LT ¼ Dy /T
/T�/B

LB ¼ 0 if /T < 0 and /B P 0;

LB ¼ Dy /B
/T�/B

LT ¼ 0 if /B < 0 and /T P 0;

LT ¼ LB ¼ Dy
2 if /T < 0 and /B < 0;

LB ¼ LT ¼ 0 if /B P 0 and /T P 0;

8>>>><
>>>>:
where /T ¼ /iþ1
2;jþ

1
2

and /B ¼ /iþ1
2;j�

1
2
. The same integral approximations hold for the displacement component v. In the case

scenario represented in Fig. 1, LT ¼ 0 and LB ¼ L1. It bears emphasis that these coefficients, which represent length portions
covered by the irregular domain, have been chosen to ensure that Eq. (9) only involves well-defined nodes. For example, the
left hand side of Eq. (6), on the face F1, gives:
�
Z

F1

kþ 2lð Þ @u
@x
þ k

@v
@y

� �
ds ¼ �ðkþ 2lÞðLB þ LTÞ

uiþ1;j � ui;j

Dx
� kLB

v i;j � v i;j�1

2Dy
þ v iþ1;j � v iþ1;j�1

2Dy

� �

� kŁT
v i;jþ1 � v i;j

2Dy
þ v iþ1;jþ1 � v iþ1;j

2Dy

� �
: ð10Þ
The same methodology is applied to the other faces. This finite volume approach is performed for the cells of all the nodes
in the computational box X which intersect with the domain X�. This includes then nodes outside of the region X� for which
the corresponding cells still intersect X�. The final discretizations for (6) and (7) are obtained by summing up all the con-
tributions on the four faces, which form two different rows in the resulting linear system. If N is the number of grid points
involved in the schemes, the resulting linear system has 2N rows.
Fig. 1. Discretization near the interface in the two dimensional case.
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3.1.2. Finite volume approach in three spatial dimensions
The three dimensional case is the extension of the idea presented above in two spatial dimensions. Eq. (5) is written com-

ponent-wise as:
Fig. 2.
Cijk . The
interpr
�
Z
@Cijk\X�

ðkþ 2lÞ @u
@x
þ k

@v
@y
þ k

@w
@z

� �
N1 þ l @u

@y
þ @v
@x

� �
N2 þ l @u

@z
þ @w
@x

� �
N3

� 	
ds ¼

Z
Cijk\X�

f1 dxþ
Z

Cijk\@X�
g1;

�
Z
@Cijk\X�

l @u
@y
þ @v
@x

� �
N1 þ ðkþ 2lÞ @v

@y
þ k

@u
@x
þ k

@w
@z

� �
N2 þ l @v

@z
þ @w
@y

� �
N3

� 	
ds ¼

Z
Cijk\X�

f2 dxþ
Z

Cijk\@X�
g2
and
�
Z
@Cijk\X�

l @u
@z
þ @w
@x

� �
N1 þ l @v

@z
þ @w
@y

� �
N2 þ ðkþ 2lÞ @w

@z
þ k

@u
@x
þ k

@v
@y

� �
N3

� 	
ds ¼

Z
Cijk\X�

f3 dxþ
Z

Cijk\@X�
g3:
Referring to Fig. 2, F1 is the face at iþ 1
2 (corresponding to N1 ¼ 1;N2 ¼ 0 and N3 ¼ 0). The boundary integrals on that face is

computed using the following approximations:
Z
F1

@u
@x

ds ¼ S
uiþ1;j;k � ui;j;k

h


 �
;

Z
F1

@u
@y

ds ¼ SR

4
ui;jþ1;k � ui;j;k

h
þ uiþ1;jþ1;k � uiþ1;j;k

h


 �
þ SL

4
ui;j;k � ui;j�1;k

h
þ uiþ1;j;k � uiþ1;j�1;k

h


 �
and
 Z
F1

@u
@z

ds ¼ ST

4
ui;j;kþ1 � ui;j;k

h
þ uiþ1;j;k � uiþ1;j;kþ1

h


 �
þ SB

4
ui;j;k � ui;j;k�1

h
þ uiþ1;j;k � uiþ1;j;k�1

h


 �
;

where S is the area of F1 inside X. The areas SR; SL; ST and SB are defined in Fig. 2. In the case where either LL or LR is equal to
zero then SR and SL are defined by:
SL ¼ S SR ¼ 0 if LR ¼ 0;
SR ¼ S SL ¼ 0 if LL ¼ 0:

�

Likewise, if either LT or LB is equal to zero then ST ; SB are defined by:
ST ¼ S SB ¼ 0 if LB ¼ 0;
SB ¼ S ST ¼ 0 if LT ¼ 0:

�

Similarly to the two dimensional case, the final discretizations are obtained by summing the contributions on all the faces.
Remarks:

� Given the finite volume approximation, the resulting linear system is symmetric.
� The discretizations of the cross-derivatives terms lead to some potential positive extra-diagonal elements, and therefore

the linear system cannot be proved to be positive definite.
Left: grid configuration near the interface for a cell Cijk . The outside domain Xþ corresponding to / > 0 is depicted in green. Right: right face of cell
lengths use in the discretizations are denoted by LT ; LR; LB; LL and the areas denoted by SR; SL; ST ; SB . The length of the cell face is denoted by h. (For

etation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� The discretizations do not rely on the ersatz material assumption and thus qualifies as a ‘sharp’ method.

3.2. Extension to quadtree/octree adaptive grids

The differential form of the equations in three spatial dimensions is given by:
� ð2lþ kÞ @
2u
@x2 � l @

2u
@y2 � l @

2u
@z2 � ðkþ lÞ @2v

@x@y
þ @2w
@x@z

" #
¼ f1; ð11Þ

� ð2lþ kÞ @
2v
@y2 � l @

2v
@x2 � l @

2v
@z2 � ðkþ lÞ @2u

@x@y
þ @2w
@y@z

" #
¼ f2 ð12Þ
and
�ð2lþ kÞ @
2w
@z2 � l @

2w
@x2 � l @

2w
@y2 � ðkþ lÞ @2u

@x@z
þ @2v
@y@z

" #
¼ f3: ð13Þ
These equations can be solved by using standard finite difference schemes on quadtree/octree data structures using the dis-
cretization operators introduced in [22,5]. The major drawback is that typical finite differences schemes are intricate in han-
dling Neumann-type boundary conditions on irregular domains, especially in the case of non-uniform grids. However, the
meshing strategy of an elliptic problem suggests that the smallest cells should be placed on (and near) the interface. In turn,
we can easily apply the finite volume approach near the interface since the cells are locally uniform and resort to the finite
difference approximations elsewhere. This hybrid approach combines the effectiveness in solving the elasticity equations on
quadtree/octree grids and the natural framework offered by finite volume discretization to impose Neumann-type boundary
conditions. The solution strategy developed to solve the equations of linear elasticity on adaptive grids is presented as
follows:

1. Generate an adaptive mesh that is refined with a desired band of uniform cells around the interface. In the case of an
adaptive mesh, it is trivial to impose a small band of uniform cells around the interface, and we found that for our sim-
ulations it is enough to impose a band of four cells around the interface.

2. In the uniform mesh region, i.e. near the interface, use the finite volume approach as described in Section 3.1.
3. For the points that are inside the domain but far from the interface, use the standard finite difference approximations in

quadtree/octree. We make use of the framework introduced by Min and Gibou [22,5] to discretize the system of equa-
tions. This framework and the discretizations are recalled in the following section.

We note that the resulting linear system is not symmetric in the case of quadtree/octree discretizations because of the
approximation of the different operators.

3.2.1. Quadtree and octree grid structures
Quadtree and octree data structures, see e.g. [33,34], are efficient in storing adaptive grids in two and three spatial dimen-

sions, respectively. Their construction starts from the root cell that represents the computational domain. Then recursively,
the tree is constructed by adding children of the cell, corresponding to a split of the parent cell in equal parts (see Fig. 3). In
the case of quadtree, four children are added, whereas in three spatial dimensions, eight children are added. The level of each
cell is defined as the depth of the tree characterizing that cell. In the case of non-graded grids, the difference of level between
two adjacent cells can be arbitrary, whereas graded grids limit the difference of levels between adjacent cell to one. Consid-
ering non-graded grids leads to versatile grid generation procedures, is applicable to more general refinement criteria and
reduces the total number of nodes.

3.2.2. Domain description and grid generation
Although several refinement criteria could be defined, we are principally interested in automatically refining the mesh

where the interface lies. Based on the work of Strain [37] and Min [19], Min and Gibou [22] proposed the following simple
refinement criteria for generating such grids: starting from a root cell split any cell C if:
min
v2verticesðCÞ

j/ðvÞj 6 Lipð/Þ � diag-sizeðCÞ; ð14Þ
where diag-size (C) refers to the length of the diagonal of the current cell C and v refers to a vertex (node) of the current cell.
Typical results are depicted in Fig. 4. We also note that it is straightforward to generate a grid with a uniform band around
the interface.

3.2.3. Discretization of standard operators
The main difficulty in discretizing general differential operators on non-graded grids is due to the so-called T-junctions,

i.e. nodes for which at least one of its neighbors in the Cartesian directions is missing. In this case, one must appropriately



Fig. 3. Non-graded adaptive discretization of a two-dimensional domain (left) and its corresponding quadtree (right).

Fig. 4. Example of non-graded grids generated by using (14). The maximum level of refinement is increased from left to right.
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define a ghost node that will be used in the discretizations. Min and Gibou [22] observed that for node-based quadtree/octree
grids, it is always possible to define a third-order accurate ghost node in arbitrary Cartesian grid configuration. This defini-
tion then allows to literally port standard discretizations as if the grid was uniform. We also note that these definitions only
uses the node values of the cells adjacent to the node at which one seeks to write the discretizations, which is an advantage
of this approach. In what follows, we summarize the formulas from [22]:
Fig. 5. General octree neighborhood configuration around a grid node v0.
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Referring to Fig. 5, which represents the general configuration of neighboring nodes in the case of an octree, a T-junction
node v0 has four regular neighboring nodes v1; v2;v3 and v6 and two ghost nodes v4 and v5. The third-order accurate inter-
polations of a node-sampled function / : fv ig ! R at the ghost nodes v4 and v5 are defined as:
/G
4 ¼

s7/8 þ s8/7

s7 þ s8
� s7s8

s3 þ s6

/3 � /0

s3
þ /6 � /0

s6

� �
and
/G
5 ¼

s11s12/11 þ s11s9/12 þ s10s12/9 þ s10s9/10

ðs10 þ s11Þðs9 þ s12Þ
� s10s11

s3 þ s6

/3 � /0

s3
þ /6 � /0

s6

� �
� s9s12

s1 þ s4

/1 � /0

s1
þ /G

4 � /0

s4

 !
; ð15Þ
where si refers to the distance between v0 and v i.
The definition of the ghost nodes allows to define finite differences for /x;/y;/z;/xx;/yy and /zz at every nodes using stan-

dard finite difference formulas in a dimension by dimension framework. For example, referring to Fig. 5, the following for-
mulas define the standard discretization for the first and second-order derivatives:
D0
x/0 ¼

/1 � /0

s1
� s4

s1 þ s4
þ /0 � /G

4

s4
� s1

s1 þ s4
;

D0
y/0 ¼

/2 � /0

s2
� 2
s2 þ s5

þ /0 � /G
5

s5
� s2

s5 þ s2
; ð16Þ

D0
z /0 ¼

/6 � /0

s6
� 2
s6 þ s3

þ /0 � /3

s3
� s6

s6 þ s3
;

D0
xx/0 ¼

/1 � /0

s1
� 2
s1 þ s4

� /0 � /G
4

s4
� 2
s1 þ s4

;

D0
yy/0 ¼

/2 � /0

s2
� 2
s2 þ s5

� /0 � /G
5

s5
� 2
s5 þ s2

;

D0
zz/0 ¼

/6 � /0

s6
� 2
s6 þ s3

� /0 � /3

s3
� 2
s6 þ s3

:

Cross derivatives can be obtained using these formulas. For example to calculate D0
xy/0, we first compute w ¼ D0

y/ at every
node surrounding node v0 using Eq. (16) before using once again Eq. (16) to compute D0

xw0 ¼ D0
xy/0.

For nodes where the finite difference approximations are used, each row of the linear system is filled using the coeffi-
cients of the approximations of the different operators in Eqs. (11)–(13).

4. Numerical examples

In this section, we provide numerical examples in two and three spatial dimensions that indicate that our approach is
second-order accurate in both the L1 and L1 norms. In order to compute the order of accuracy of the method, we first con-
sider a non-graded adaptive quadtree grid, on which we calculate the numerical solution and its error to the analytical solu-
tion. Then we recursively split every cell of the grid, increasing each time resmin and resmax by a factor of two, and computing
the new solution. The parameters resmin and resmax refer to the minimum and maximum resolutions (minimum and maxi-
mum number of nodes in one direction), respectively. We use a BiCGSTAB solver (with an error tolerance of 10�12) to invert
the linear system.

4.1. Numerical examples in two spatial dimensions

4.1.1. Mixed boundary conditions on a star geometry
We considered X� to be defined by the zero contour of the level-set function Uðr; hÞ ¼ maxðr � 0:75ð1� 0:2 sin

ð9hÞÞ;�r þ 0:25ð1� 0:1 sinð13hÞÞÞ, where r and h are the polar coordinates. This domain is represented in Fig. 6. Neu-
mann-type boundary conditions are assumed on the outer contour, while Dirichlet boundary conditions are assumed on
the inner contour so that the problem is numerically well-posed. We take the exact solution u ¼ cosð2pxÞ cosð2pyÞ;v ¼
sinð2pxÞ sinð2pyÞ, and the Lamé parameters to be k ¼ l ¼ 1. The convergence results are shown in Table 1. The numerical
error on the finest grid is depicted in Fig. 6: as expected the error is maximum at the interface where Neumann-type bound-
ary conditions are imposed, while it is minimum on the Dirichlet boundary.

4.1.2. Influence of the Lamé parameters
Here we consider a domain X� to be an ellipse given by the equation 4x2 þ y2 ¼ 0:72 with an elliptic hole given par the

equation x2 þ 4y2 ¼ 0:22. We take for the exact solution uðx; yÞ ¼ e�xy and vðx; yÞ ¼ e�2xy. We impose a Dirichlet boundary
condition on the half domain x > 0 and Neumann-type on the other half. In order to study the influence of the Lamé coef-
ficients on the convergence of our method, we consider two different cases where the ratio between those two parameters is



Fig. 6. Left: domain considered in Example 4.1.1. The depicted quadtree grid is the coarsest grid used in the convergence analysis. Right: numerical error on
the finest grid.
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large: k ¼ 100; l ¼ 1 and k ¼ 1; l ¼ 100. Convergence results are provided in Tables 2 and 3. Note that the numerical error
is smaller in the second case but that both set of parameters lead to second-order accurate results.

4.1.3. Punctured infinite plate
This is a classical two dimensional Lamé problem that has many applications in fracture mechanics. In linear elasticity,

plane problems are those in which one dimension is either very small or very large compared to the other two dimensions. If
the thickness is very small, the two dimensional problem corresponds to a plane stress problem, i.e. a problem where there is
no stress along the third direction in the stress tensor; if the thickness is very large, it is a plane strain problem. The example
Table 1
Convergence analysis for Example 4.1.1.

resmin=resmax Grid points L1Error Order L1 Error Order

8/64 1942 8:776� 10�2 - 1:303� 100 -

16/128 7239 2:173� 10�2 2.014 2:682� 10�1 2.281

32/256 27,901 6:154� 10�3 1.820 7:465� 10�2 1.845

64/512 109,497 1:627� 10�3 1.919 1:949� 10�2 1.937

128/1024 433,777 4:179� 10�4 1.961 4:975� 10�3 1.970

Table 2
Accuracy for Example 4.1.2 with k ¼ 100 and l ¼ 1.

resmin=resmax Grid points L1 Error Order L1 Error Order

8/64 945 1:060� 10�1 - 1:533� 100 -

16/128 3505 1:397� 10�3 6.245 1:513� 10�2 6.663

32/256 13,473 3:509� 10�4 1.993 4:366� 10�3 1.793

64/512 52,801 9:828� 10�5 1.836 1:148� 10�3 1.927

128/1024 209,025 2:567� 10�5 1.937 2:936� 10�4 1.967

Table 3
Accuracy for Example 4.1.2 with k ¼ 1 and l ¼ 100.

resmin=resmax Grid points L1Error Order L1 Error Order

8/64 945 3:901� 10�4 - 6:277� 10�3 -

16/128 3505 4:701� 10�5 3.053 8:134� 10�4 2.948

32/256 13,473 1:234� 10�5 1.929 2:379� 10�4 1.774

64/512 52,801 3:298� 10�6 1.903 6:228� 10�5 1.933

128/1024 209,025 7:641� 10�7 2.109 1:564� 10�5 1.993
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considered in this section is a plate containing a circular hole in its center. The dimensions of the plate are supposed to be
considerably larger than the radius of the hole, so that the plate can be assumed infinite. The thickness is taken very small in
order to satisfy the plane stress assumption. The plate is subjected to a uniform traction and the stress distribution around
the hole is investigated. This situation describes a typical mode I crack initiation and the hoop stress distribution at the hole
allows to determine the stress intensity factor of the crack, which reflects the fracture toughness of a given material.

We consider a domain X ¼ ½�1;1�2 and a subdomain X� which defines a square with side L with a center hole of radius R.
The geometry and the notations are depicted in Fig. 7. We apply a uniform stress on a part of the boundary CN ¼ C1 [ C2 and
a stress free condition on the other parts of the boundary, i.e. C ¼ C3 [ C4 [ C5 is stress free. We assume that L� R so that
we can consider that the plate is infinite. Then the boundary conditions are as follows:
rrr ¼ rrh ¼ 0 at r ¼ R; ð17Þ

rrr ¼
r0

2
1þ cosð2hÞð Þ; rhh ¼

r0

2
1� cosð2hÞð Þ; and rrh ¼ �

r0

2
sinð2hÞ at r ¼ 1: ð18Þ
The geometry and the loading condition being axisymmetric, this case depicts a perfect Lamé problem for which the solution
is obtained via the Airy Stress potential approach. It is well known that the appropriate Airy stress function has the following
form in polar coordinates:
/ðr; hÞ ¼ Ar2 þ Br4 þ C
r2 þ D

� �
cosð2hÞ:
The stress components are given by:
rrr ¼
1
r2

@2/

@h2 þ
1
r
@/
@r
; rhh ¼

@2/
@r2 ; rrh ¼ �

@

@r
1
r
@/
@h

� �
;

which combined with the boundary conditions (17 and 18) allow the constants A; B;C and D to be identified. The stress field
solution is given by:
rrr ¼
r0

2
1� R2

r2

 !
þ r0

2
1þ 3

R4

r4 � 4
R2

r2

 !
cosð2hÞ;

rhh ¼
r0

2
1þ R2

r2

 !
� r0

2
1þ 3

R4

r4

 !
cosð2hÞ; ð19Þ

rrh ¼ �
r0

2
1� 3

R4

r4 þ 2
R2

r2

 !
sinð2hÞ:
Note that when r ¼ R; rrr ¼ rrh ¼ 0 and rhh ¼ r0ð1� 2 cosð2hÞÞ. Then the stress is maximum at h ¼ p
2 and is equal to

rhh ¼ 3r0. The minimum is achieved at h ¼ 0, corresponding to a value rhh ¼ �r0. As r!1, i.e. far from the hole, the stress
field is an uniaxial tension where in Cartesian coordinates, rxx ¼ r0; rxy ¼ ryy ¼ 0.
Fig. 7. Geometry of the problem considered in Example 4.1.3.



Fig. 8. Numerical stress tensor. rxx (left), ryy (center) and rxy (right).
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Since only Neumann-type boundary conditions are imposed, there is no uniqueness of solution for the displacement
u ¼ ðu;vÞ. In order to obtain well-posedness, the symmetry of the loading and the geometry is taken into account, which
translates into a symmetry of the response. In particular, it is assumed that nodes close to the interface that are on the center
vertical line can only be subjected to a vertical motion, i.e. uðx ¼ 0; yÞ ¼ 0. Similarly, the nodes close to the interface that are
on the center horizontal line are assumed to move only horizontally, i.e. we set vðx; y ¼ 0Þ ¼ 0.

The study of the stress field inside the plate is performed in three steps: first, the solution u is obtained by solving the
linear elasticity equations using the quadtree framework described above in this paper. The resulting solution is valid inside
the domain but in order to compute the stress the solution gradient is needed, including near the interface. Since the use of
finite differences to calculate the gradient requires a proper extrapolation of the solution outside the domain, we use the
extrapolation procedure of [3], extended to the case of quadtree/octree in [22]. Once the solution is extended accurately,
the gradient can be calculated, from which the stress tensor is found using Hooke’s law. We set the different parameters
as: R ¼ 0:03125; L ¼ 0:8; r0 ¼ 5; k ¼ 5; l ¼ 10 and use the quadtree grid depicted in Fig. 9. Our approach is validated by
comparing the numerical results to the analytical solution.

It is clear that given the finiteness of the domain, the exact solution is altered from the ideal case. Therefore, it is impor-
tant to note that in this example, we are interested in validating the model of infinite plate from an engineering point of
view, rather that performing a convergence analysis of the numerical schemes. In what follows, we show that our approach
allows to recover the fundamental results related to an infinite plate with a hole in the case where the ratio R=L is sufficiently
small. We start by seeking numerically a hole radius for which the infinite plate approximation is valid. Once such a value
had been identified, we begin our analysis by examining the components of the stress tensor in Cartesian coordinates to
illustrate the uniaxial stress behavior far from the hole. Then we analyze the behavior of the hoop stress on the hole and look
for the maximum and minimum values along with their directions, in order to get the stress intensity factor. We then con-
sider two specific directions, h ¼ 0 and h ¼ p=2, and compare the evolution of the stress components rrr and rhh as function
of the distance r to the analytical solution.
Fig. 9. Level 9 quadtree grid used in Example 4.1.3.
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As the ration R=L decreases, it is important to verify that we approach the infinite plate model. To do so, we study the error
between the maximum and minimum hoop stresses at the hole. As these errors decrease, the stress intensity factor gets clo-
ser to 3, which validates the model: starting with a plate having a hole of radius R ¼ 0:125, on a level 7 quadtree grid
(resmax ¼ 128), we recursively reproduce the calculations for a hole twice as small. In order to keep the resolution of the grid
consistent with the size of the hole we also double the maximum resolution of the grid. For each radius, the maximum and
minimum values of the hoop stress at the hole are computed and so are the errors. The results obtained are illustrated in
Fig. 11. It clearly appears that as the radius diminishes, these errors are considerably damped as expected, up to a certain
radius of typically R ¼ 1=64 from which they stay constant. From this stage on, the infinite approximation is valid and refin-
ing the grid is the only way to damp the numerical error. In what follows the radius of the hole is set to 1=32.

In Fig. 8, the components of the stress tensor in Cartesian coordinates are represented. As expected all the components of
the stress tensor are homogeneous far from the hole, but only rxx is not zero, corresponding to a state of uniaxial traction in
the x-direction. The numerical value of the ‘infinite’ stress is set to r0 by the Dirichlet boundary condition.

Of particular interest is the hoop stress distribution at the surface of the hole, depicted in Fig. 10. The maximum and min-
imum hoop stresses are obtained at h ¼ p

2 and h ¼ 0, respectively, and the corresponding numerical values are 14.86 and
�4.92. These agree well with the theoretical values of 15 and �5, respectively. The stress concentration factor is given by
K ¼maxðrhhðr ¼ RÞÞ=r0, and is found to be K = 2.972, with a relative error of 9.33 � 10�3. Again, this value is close to the
theoretical one under the ‘infinite’ plate assumption.

The stress tensor components rrr and rrh in the directions h ¼ 0 and h ¼ p=2 are compared to the analytical ones in
Fig. 12. The numerical solution is close to the analytical one and, as expected, the error is bigger close to the hole.
Fig. 10. The rhh-component of the stress tensor of the numerical solution (left). Zoom on the area near the hole (right).
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Fig. 11. Relative difference between the numerical maximum (red) and minimum (blue) values in rhh and the maximum/minimum values predicted by the
infinite plate model versus the size of the hole. To obtain those result we start with a plate of length L ¼ 0:8 and a initial hole of radius R ¼ 1=8. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Stress tensor components in polar coordinates (from left to right rhh and rrr , in the x-(blue) and y-directions (red). The solid lines represent the
numerical solution while the dash line represent the exact solution for an infinite plate. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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4.1.4. Shape optimization
One advantage in considering an embedded boundary approach for solving the linear elasticity equations is that the

meshing procedure is straightforward and robust. In fact, meshing the domain for a given geometry is typically about 200
times faster than a linear system solve. To exemplify this capability, we apply our algorithm to the case of shape optimiza-
tion. In particular, we follow the approach of Allaire et al. to shape optimization [1,11] except that we use our framework to
solve the elasticity equation instead of considering the erzatz materials and the finite element method. Here we first briefly
introduce the shape optimization framework and we refer the interested reader to [1,11] for more details. This method is
then illustrated with a numerical example.

Given the governing equations of Section 2, the aim of the shape optimization in elasticity is to minimize the compliance,
defined as the work done by external forces on X� under a fixed volume constraint. Mathematically, given a fixed volume we
seek to maximize the stiffness/rigidity of the object under consideration:
JðX�Þ ¼
Z

X�
r : eðuÞ ¼

Z
CN

g � udxþ
Z

X
f � u:
The shape derivative of this functional is given by:
J0ðX�ÞðhÞ ¼ �
Z

C
h � n 2l eðuÞ

 2 þ k Tr eðuÞ

 �2

� �
dx;
while the volume constraint is expressed as:
V 0ðX�ÞðhÞ ¼
Z

C
h � nds:
The optimality condition for the domain X� is that there exists a Lagrange multiplier l 2 R such that:
J0ðX�ÞðhÞ þ lV 0ðX�ÞðhÞ ¼ 0;
hence the equation:
Z
C

h � n l� 2ljeðuÞj2 � k TrðeðuÞÞ

 �2

� �
ds ¼ 0:
To choose a convenient descent direction we use a gradient algorithm with projection [1,11]. Then we take the following
expression for h:
h ¼ 2ljeðuÞj2 þ k TrðeðuÞÞ

 �2

� l
� �

n: ð20Þ
In addition, since we need to impose that the volume be constant, the condition V 0ðX�ÞðhÞ ¼ 0 must be satisfied, and
therefore:
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Z
C

2ljeðuÞj2 þ k TrðeðuÞÞ

 �2

� �
ds ¼

Z
C

lds ¼ ljCj0;
thus:
l ¼

R
C 2ljeðuÞj2 þ k TrðeðuÞÞ


 �2
� �

ds

jCj :
The descent direction h corresponds to the normal velocity according to which the domain X� must be advected so that
the compliance decreases and the volume remains constant. Since the domain X� is represented by a level-set function /,
evolving X� according to the descent direction velocity is equivalent to solving the following Hamilton–Jacobi equation for
/:
@/
@t
þ hjr/j ¼ 0: ð21Þ
Even though the Lagrange multiplier is chosen such that the volume remains constant, numerical artifacts can generate
small variations in the volume. In order to ensure that the volume is conserved through the optimization process, we com-
pare for each iteration the volume of the updated shape to the volume of the initial shape. If this difference is larger than a
given tolerance we evolve the current contour in the normal direction with the following velocity:
h0Dt ¼ V current � V initial

jCj ; ð22Þ
where V initial is the volume of the initial shape, and Vcurrent is the volume of the evolving shape. This process is repeated until
the difference between the two volumes is less than the given tolerance (in this work the tolerance is set to be 10�8). The
iterative algorithm we use is structured as follows:

1. Initialization of all the quantities: X0;u0;l and k.
2. Iterate until convergence:

(a) Compute uk the solution of the elasticity problem on Xk,
(b) Compute hk from uk,
(c) Evolve /k to /kþ1 according to the velocity hk using (21),
(d) Ensure that the volume is conserved using (22),
(e) Reinitialize /kþ1,
(f) Adapt the grid to the new zero level-set /kþ1.

Note: The level-set function is evolved and reinitialized using the technology presented in [22].
The numerical example we present here is that first proposed in [1]. The initial geometric configuration X� is represented

in Fig. 13. Its boundary @X� is split into three different parts:
@X� ¼ C [ CD [ CN; ð23Þ
where CD ¼ C4 [ C5; CN ¼ C6 and C ¼ C1 [ C3 (cf Fig. 13). C – £ is the part of the boundary that we want to optimize, and
thus that will be modified through the optimization process, while CD and CN are fixed. On CD we apply Dirichlet boundary
conditions by setting the displacement field to be null, and on CN we apply a stress g ¼ �pey, where ey is the unit vector in
the y-direction. The boundary C is stress-free. We take the following parameters: a ¼ 0:45; b ¼ 0:40; c ¼ 0:10; d ¼
0:20; l ¼ 5:56; k ¼ 12:96 and p ¼ 1. We take for the time step:
Dt ¼ 0:4
Dx

hmax
;

where hmax is the maximum interface’s velocity.
The results are presented in Figs. 14 and 15. The compliance and the volume of the geometry through the shape optimi-

zation process are represented in Fig. 14. Clearly the compliance decreases with the number of iterations. The volume does
not remain constant, but its variations are relatively small compared to its initial value. In Fig. 15, we illustrate the evolution
of the shape at different iterations. Our results agree with the results of previous works [1,11].

Note: We have not optimized the gradient descent algorithm and have focused on only giving an illustrative example of
the applicability of our linear elasticity solver.

4.2. Numerical examples in three spatial dimensions

4.2.1. Mixed boundary conditions
In this example we consider the domain X� to be contained between two spheres of radii R ¼ 0:7 and R ¼ 0:2, as depicted

in Fig. 16. The level-set function associated to this geometry is /ðr; h;/Þ ¼maxðr � 0:7;0:2� rÞ, where r is the first polar



Fig. 13. Initial optimization geometry for the shape optimization Example 4.1.4.
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Fig. 14. Shape optimization: compliance (left) and relative variations of the volume (right) versus the number of iterations.
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coordinate. The whole domain is X ¼ ½�1;1�3. We take for the exact solution uðx; y; zÞ ¼ vðx; y; zÞ ¼ wðx; y; zÞ ¼ cosðxÞ
cosðyÞ cosðzÞ. Dirichlet boundary conditions are imposed on the inner sphere while Neumann-type boundary conditions
are imposed on the outer sphere and the Lamé parameters are chosen to be k ¼ 2 and l ¼ 7. Convergence results are given
in Table 4 and suggest that the methods is second-order accurate in both L1 and L1 norms.

4.2.2. Cylinder tank under pressure
This example is of practical importance in engineering, as it has applications in the design of pipes. We consider a cylinder

tank subject to an internal pressure P, while its external, top and bottom faces are stress free. We recall Ri and Re the internal
and external radii, and H the height of the cylinder. We neglect body forces so that the stress tensor is solution of the equi-
librium equation r � r ¼ 0, and the boundary conditions are:
r � er ¼ �Per at r ¼ Ri;

r � er ¼ 0 at r ¼ Re;

r � ez ¼ 0 at z ¼ �H:
The geometry of the problem is given by Fig. 17. Seeking a solution with a cylindrical symmetry, the analytical expression for
the stress tensor is given in cylindrical coordinates:
rðr; h; zÞ ¼ A� B
r2

� �
er 	 er þ Aþ B

r2

� �
eh 	 eh;



Fig. 15. Shape evolution for Example 4.1.4.

Fig. 16. Exact solution considered in Example 4.2.1. A slice of the coarsest octree used in the convergence analysis is also displayed. Neumann-type
boundary conditions are imposed on the outer sphere while Dirichlet boundary conditions are imposed on the inner one.
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where the coefficients A and B are defined by:
A ¼ PR2
i

R2
e � R2

i

; B ¼ PR2
i R2

e

R2
e � R2

i

:



Table 4
Accuracy for Example 4.2.1.

resmin=resmax Grid points L1 Error Order L1 Error Order

16/64 62,203 2:175� 10�3 - 4:011� 10�3 -

32/128 454,189 6:769� 10�4 1.684 1:182� 10�3 1.760

64/256 3,460,153 1:918� 10�4 1.819 3:485� 10�4 1.766

128/512 26,988,529 3:643� 10�5 2.396 8:708� 10�5 2.002

Fig. 17. Problem considered in 4.2.2.
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Integrating the strain tensor obtained from the constitutive law, the displacement field is purely radial:
uðr; h; zÞ ¼ A
kþ l

r þ B
2lr

� �
er :
This problem is numerically ill-posed, in the sense there is no uniqueness for the displacement field u ¼ ðu;v ;wÞ. As for
Example 4.1.3, the well posedness is obtained by taking into account the symmetry of the problem: in particular it is as-
sumed that at nodes close to the interface uðx ¼ 0; y; zÞ ¼ 0;vðx; y ¼ 0; zÞ ¼ 0; wðx; y; z ¼ 0Þ ¼ 0. In our simulations we con-
sider that the cylinder is made out of steal (k ¼ 115 GPa; l ¼ 77 GPa) and we take for the internal pressure P ¼ 100 GPa. For
geometric parameters we use the following values:
Re ¼ 0:9 Ri ¼ 0:3 H ¼ 3:9:
The calculations are performed on level 8 octree (resmax ¼ 256). Fig. 18 shows the radial displacement and the components
rhh and rrr of the stress tensor. The effect of the grid refinement procedure on the relative error for the stress tensor is de-
picted in Fig. 19. As we can see the error is efficiently damped as the grid is refined close to the interface.
Fig. 18. Numerical results: radial displacement (left), rrr (center) and rhh (right).



Fig. 19. Evolution of the L1 relative error on the stress tensor as the grid is refined. The error on the coarsest grid (level 5 octree, resmax ¼ 32 is represented
on the left, the one on the finest grid (level 8, resmax ¼ 256 is represented on the right
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5. Concluding remarks

We have presented a novel second-order accurate model for solving the equations of linear elasticity in two and three
spatial dimensions. Our method has been implemented on non-graded adaptive grids, i.e. grids for which the ratio between
adjacent cells is not constrained. This allows to use a simple algorithm to generate a mesh with the finest resolution at the
interface. The method makes use of a hybrid discretization near the interface and a finite difference scheme on quadtree/oc-
tree grids that lead to a straightforward approach. The linear systems are symmetric positive definite in the case of uniform
grids and non-symmetric, but still diagonally dominant, in the case of non-graded grids. The model has been tested for both
two and three spatial dimensional complex geometries and the second-order accuracy have been found for the L1 and L1

norms. This work has been motivated by the desire to solve for the elasticity equations in complex domains that can undergo
changes of geometries, as it occurs in shape optimization problems.
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