
J Sci Comput (2013) 55:1–15
DOI 10.1007/s10915-012-9619-2

A Multigrid Method on Non-Graded Adaptive Octree
and Quadtree Cartesian Grids

Maxime Theillard · Chris H. Rycroft · Frédéric Gibou

Received: 10 January 2011 / Revised: 6 December 2011 / Accepted: 8 June 2012 /
Published online: 26 June 2012
© Springer Science+Business Media, LLC 2012

Abstract In order to develop efficient numerical methods for solving elliptic and parabolic
problems where Dirichlet boundary conditions are imposed on irregular domains, Chen et al.
(J. Sci. Comput. 31(1):19–60, 2007) presented a methodology that produces second-order
accurate solutions with second-order gradients on non-graded quadtree and octree data struc-
tures. These data structures significantly reduce the number of computational nodes while
still allowing for the resolution of small length scales. In this paper, we present a multigrid
solver for this framework and present numerical results in two and three spatial dimensions
that demonstrate that the computational time scales linearly with the number of nodes, pro-
ducing a very efficient solver for elliptic and parabolic problems with multiple length scales.

Keywords Multigrid method · Poisson’s equation · Non-graded adaptive grid · Octrees ·
Quadtrees · Second-order discretization · Complex geometry

1 Introduction

Many problems in science and engineering require the solution of elliptic and parabolic
equations on, possibly moving, irregular domains. Examples include the solution of the
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Poisson equation in the context of free surface flow, the simulation of the Stefan problem
with application to crystal growth, or the solution of the Poisson–Boltzmann equation with
application to electrostatics around large molecules in an ionic solution. More often than
not, these problems involve different length scales that must be resolved. These can originate
from the boundary conditions imposed on the irregular domain’s boundary, which in turn re-
duce the otherwise smooth nature of solutions; or the rapid variation of the solution near the
boundary, as is the case for the electric double layer surrounding particles, molecules or the
walls of nano-channels. From the computational point of view, it has long since been rec-
ognized that uniform grids are not desirable when different length scales are present, since
imposing a high resolution uniformly in the domain may lead to computationally intractable
systems.

In such cases, adaptive mesh refinement (AMR) is a more judicious choice. AMR was
pioneered by Berger and Oliger [2]. Originally developed for compressible flows, a block-
structured AMR approach discretizes the computational domain uniformly with a coarse
grid, and then refines rectangular blocks of uniform grids with finer resolutions where
needed.

Grids based on quadtree and octree data structures do not impose patches of uniform
grids but rather allow the grid cells to continuously change in size, producing meshes with
significantly fewer computational nodes than in block AMR frameworks. In some studies
graded grids have been employed [3], where the size ratio between adjacent cells is not
allowed to be greater than two, which can simplify the discretizations of different operators.
Recently, there has been a thrust in developing numerical methods for non-graded grids,
where the size ratio between adjacent cells is not constrained [1, 4–7]. Non-graded grids can
be generated efficiently and straightforwardly, are more versatile and usually generate fewer
grid points than their graded counterparts, which can save computational resources.

Multigrid methods, first introduced by Brandt [8, 9] provide a framework that is partic-
ularly efficient for solving linear systems. The multigrid method is an iterative approach
in which a hierarchy of progressively coarser grids is introduced. These grids can be em-
ployed to damp out errors over a wide spectrum of frequencies, allowing for extremely fast
convergence, with a theoretical complexity that scales linearly with number of grid points.
Because they employ grids of multiple resolution, they are particularly well-suited to adap-
tive settings, and this concept was considered in Brandt’s original work. Recently, several
studies have investigated multigrid methods on octree grids [10, 11], although these have
focused on cell-based discretizations on graded grids. In this paper, we present the results
of an implementation of a multigrid method on node-based non-graded quadtree and octree
grids. A Dirichlet boundary condition is imposed on the boundary of the irregular domain
following the work of Chen [1]. We present numerical results in two and three spatial di-
mensions.

2 Discretization on Quadtree and Octree Data Structures

2.1 Domain Description and Grid Generation

We represent the boundary of the domain by making use of a level set function φ [12–14].
Consider a computational domain Ω as the union of two subdomains Ω+ and Ω− separated
by an interface Γ , and define Ω− as the set of points x where φ(x) < 0, Ω+ as the set of
points x where φ(x) > 0 and Γ as the set of points x where φ(x) = 0. Here, we will consider
that the irregular domain is defined as Ω− ∪ Γ .
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To generate the grid, a refinement criterion must be chosen to determine when to split
a cell. Although several refinement criteria could be defined, we are principally interested
in automatically refining the mesh where the interface lies. This is particularly important
in problems where the solution near the interface varies rapidly. Based on the work of
Strain [15] and Min [16], Min and Gibou [7] proposed the following simple refinement
criteria for generating such grids: Split any cell C if

min
v∈vertices(C)

∣
∣φ(v)

∣
∣ ≤ Lip(φ) · diag-size(C), (1)

where diag-size(C) refers to the length of the diagonal of the current cell C, v refers to
a vertex (node) of the current cell, and Lip(φ) is the Lipschitz constant of φ. This pro-
cess is depicted in Fig. 1. We also note that it is straightforward to generate a grid with
a uniform band around the interface. For example, to build a uniform grid with half-band
width a�x, one can successively apply the criterion (1) to a temporary φ translated by
±�x,±2�x, . . . ,±a�x.

Quadtree and octree data structures are efficient in storing adaptive grids in two and three
spatial dimensions, respectively [17]. The root is initially associated to the entire computa-
tional domain and each cell is then split recursively into four (2D) or eight (3D) identical
cells, called the children of the cell. The level of each cell is defined as the number of split-
tings necessary to create it. A grid for which the difference of level between two adjacent
cells is less than or equal to one is referred to as graded, and non-graded otherwise. In this
work we consider the most general non-graded grids.

2.2 Discretization of Standard Operators

The main difficulty in discretizing general differential operators on non-graded grids is due
to nodes where at least one of the neighbors in the Cartesian directions is missing; these
nodes are referred to as T-junctions or hanging nodes. Figure 2 represents the most general
configuration of neighboring nodes in the case of an octree, where the T-junction node v0

has four regular neighboring nodes and two ghost nodes. Min and Gibou [7] derived a third-
order accurate interpolation of a node-sampled function f : {vi} → R at the ghost nodes v4

and v5 as

f G
4 = s7f8 + s8f7

s7 + s8
− s7s8

s3 + s6

(
f3 − f0

s3
+ f6 − f0

s6

)

, (2)

f G
5 = s11s12f11 + s11s9f12 + s10s12f9 + s10s9f10

(s10 + s11)(s9 + s12)
− s10s11

s3 + s6

(
f3 − f0

s3
+ f6 − f0

s6

)

− s9s12

s1 + s4

(
f1 − f0

s1
+ f G

4 − f0

s4

)

, (3)

where si refers to the distance between v0 and vi . The definition of the ghost nodes allows
the definition of central finite differences for fx , fy , fz, fxx , fyy and fzz at every node. By
referring to Fig. 2, the second-order derivatives can be discretized as

Dxxf (v0) =
(

f1 − f0

s1

)(
2

s1 + s4

)

−
(

f0 − f ∗
4

s4

)(
2

s4 + s1

)

, (4)

Dyyf (v0) =
(

f2 − f0

s2

)(
2

s2 + s5

)

−
(

f0 − f ∗
5

s5

)(
2

s5 + s2

)

, (5)
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Fig. 1 The refinement process for a fixed interface. Starting from a given grid (left), we recursively refine
the grid using the refinement criterion given in Eq. (1)

Fig. 2 The most general octree neighborhood configuration around a grid node v0. In this example, v1, v2,
v3, and v6 are nodes of the grid, v4 is a ghost node lying on an edge, while v5 is a ghost node lying on a face

Dzzf (v0) =
(

f3 − f0

s3

)(
2

s3 + s6

)

−
(

f0 − f6

s6

)(
2

s6 + s3

)

, (6)

where f ∗
k refers to either the actual node value or the ghost node value depending on avail-

ability. The Poisson operator can be constructed as the sum of these three terms.

2.3 Discretization Near the Interface

Consider the case depicted in Fig. 3, where the node v3 is outside the irregular domain Ω−.
By enforcing a band of uniform cells along the interface, we guarantee that v0 has a direct
neighboring node in each direction. The discretization is modified to directly include the
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Fig. 3 Schematic representing
the case where the interface
crosses between the nodes v0 and
v3 at location vI

Dirichlet condition at the interface point vI . For example, we define

fxx(v0) =
(

f1 − f0

s1
+ fI − f0

sI

)
2

sI + s1
, (7)

where the distance sI between v0 and vI is given by

sI =
{

−φx+
√

φ2
x−2φxxφ0

φxx
if |φxx | > ε (for ε small)

−φ0
φx

otherwise.

2.4 Properties of the Discretized Poisson Operator

The discretizations introduced above can be shown to lead to weakly diagonally dominant
linear systems for the Poisson operator, which will be useful in the subsequent convergence
analysis. A matrix A with entries Aij is said to be weakly diagonally dominant if for all i,

|Aii | ≥
∑

i 	=j

|Aij | (8)

with the equality being strict for at least one value of i.
To establish weak diagonal dominance, consider a given grid point and the correspond-

ing row in the matrix of the Poisson operator, which is the sum of the three second-order
derivative operators shown in Eqs. (4) to (6). Consider first the case when no ghost val-
ues are needed. Each of the three equations has two negative contributions to the diagonal
term associated with f0. In addition, each equation gives two positive terms for off-diagonal
terms associated with values of fk for k 	= 0, whose sum will be equal and opposite the
corresponding diagonal term. Hence equality will be achieved in Eq. (8).

Showing that the weak diagonal dominance property holds for nodes where ghost val-
ues are needed can be carried out by examining how the terms in Eqs. (2) and (3) alter the
balance of Eq. (8). Both of the interpolation formulae at the ghost nodes involve construct-
ing a ghost value as a linear interpolation of nearby values, plus several terms of the form
(fk − f0) for some k 	= 0; these add a positive contribution to the diagonal entry plus an
equal and opposite negative contribution to the off-diagonal terms. The expression for f G

4
has terms which will that will modify the terms associated with Dzz, while the expression
for f G

5 has terms associated with Dxx and Dzz. In order for weak diagonal dominance to
hold, it is necessary that these ghost value contributions are smaller in magnitude than the
regular contributions, so that the each off-diagonal matrix entry remains positive. If any off-
diagonal entry becomes negative, then there will be a corresponding positive contribution to
the diagonal entry, and Eq. (8) will be violated.

First, consider the case when node v4 is missing but v5 is present. Eq. (2) can be rewritten
as

f G
4 = s7s8

s3s6
f0 + s7

s7 + s8
f8 + s8

s7 + s8
f7 − s7s8

(s3 + s6)s3
f3 − s7s8

(s3 + s6)s6
f6.
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The terms involving f7 and f8 sum to one, and thus they will contribute the same amount to
∑

i 	=j |Aij | as if f4 was present. The contribution from the remaining terms to the Poisson
operator will be

2s7s8

(s1 + s4)s4

(
1

s3s6
f0 − 1

(s3 + s6)s3
f3 − 1

(s3 + s6)s6
f6

)

(9)

and it can be seen that the coefficient of f0 is equal and opposite the sum of the coefficients
of f3 and f6. The terms from Eq. (6) can be written as

− 2f0

s3s6
+ 2

(s3 + s6)s3
f3 + 2

(s3 + s6)s6
f6. (10)

From Fig. (2) it can be seen that s4 > s7 and s4 > s8. Hence it follows that when the con-
tributions from Eqs. (9) and (10) are added to the Poisson operator, the terms for f3 and f6

will remain positive while the terms for f0 will remain negative. Thus the modifications to
this row of the linear system will still satisfy the weak diagonal dominance condition.

If v5 is missing but v4 is present, the same argument can be applied. The terms involving
f9, f10, f11, and f12 in Eq. (3) sum to one, and have the same contribution as f5 would
if it were present. The remaining two bracketed terms will modify the size of terms in the
discretizations of Dxx and Dzz but since s5 is larger than s9, s10, s11, s12 the same argument
can be applied to deduce that the modifications will not be large enough to switch the sign
of the contributions.

The most complex case occurs when ghost values are needed for both v4 and v5. To
begin, consider the contribution from f G

5 . The second bracketed term has the form

2s9s12

(s2 + s5)s5

(
1

s1s4
f0 − 1

(s1 + s4)s1
f1 − 1

(s1 + s4)s4
f G

4

)

.

Overall, this bracketed term will modify the discretization of Dxx , but in the same manner
as considered above, this is small enough as to not switch the signs of the matrix terms.
Coupled with the f G

4 term in the discretization of Dxx , this leads to a total contribution of
f G

4 as

2

(s1 + s4)s4

(

1 − s9s12

(s2 + s5)s5

)

.

Both the bracketed term in the definition of f G
4 and the first bracketed term in the defini-

tion of f G
5 will introduce terms modifying the discretization of Dzz. The sum of these two

modifications is

2

(
s7s8

(s1 + s4)s4
− s9s12s7s8

(s1 + s4)s4(s2 + s5)s5
+ s10s11

s2(s2 + s5)

)

×
(

1

s3s6
f0 − 1

(s3 + s6)s3
f3 − 1

(s3 + s6)s6
f6

)

.

It must be shown that the coefficient is less than one. To do this, note that by neglecting the
negative term and the s1 and s2 terms, the coefficient is smaller than

s7s8

s2
4

+ s10s11

s2
5

.
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Since s8 = s4 − s7, the first term can be written as s7(s4 − s7)/s
2
4 which achieves a maximum

value of 1/4 when s7 = s4/2. Similarly the second term can be shown to be less than 1/4.
Hence the total coefficient is less than 1/2. It follows that the modifications to the Dzz terms
are not enough to switch the overall sign of the matrix entries, and hence the linear system
corresponding to the Poisson operator satisfies Eq. (8) for all rows. By considering Eq. (7)
it can be seen that the inequality will be strict for any row where a Dirichlet condition is
applied, since off-diagonal terms will be missing.

In addition to weak diagonal dominance, the discretized Poisson operator will in general
satisfy the irreducibility condition [18]. Irreducibility can be defined by considering a di-
rected graph where each node corresponds to a grid point, and for all i, j , if Aij 	= 0 then
there is an edge from node i to node j ; the matrix is then said to be irreducible if for all i, j

there is a path from node i to node j . Since the Poisson operator connects each node with
all available orthogonal neighbors, it is reasonable to assume irreducibility will hold for any
simply connected domain.

3 Multigrid Method on Non-Graded Cartesian Grids

3.1 General Multigrid Methods

Consider the problem
{

Av = f in Ω,

v = v0 on ∂Ω,

where A is a given linear operator. Let Gn be a grid on which the discretization of the
previous problem can be written as

Anvn = fn.

The multigrid method is an iterative approach that makes use of the simple Gauss–Seidel
method as a component. Given an approximate solution un, several iterations of the Gauss–
Seidel smoothing operator Sn(un, fn) will return an improved solution u′

n. The Gauss–Seidel
method considers the local neighborhood of each grid point individually, and is efficient at
damping high frequency errors. However, overall, the method is slow since it takes many
iterations to remove low frequency errors, as information propagates slowly across the grid.
The central idea behind the multigrid method is to upgrade u′

n by adding a suitable correction
dn, so that

An

(

u′
n + dn

) = fn, or Andn = rn, where rn = fn − Anu
′
n is the residual

and to solve for the correction on a coarser grid Gn−1. On this grid, low frequency errors
are more efficiently damped, and since the grid contains fewer points, it can be carried out
rapidly.

To do this, a restriction operator Rn−1
n is needed to project the residual from Gn to Gn−1,

after which a coarsened Gauss–Seidel operator Sn−1 can be applied. On this grid, we make
use of the zero solution as a starting guess, and solve for the coarsened residual rn−1 =
Rn−1

n (rn) as a source term, so that

dn−1 = Sn−1(0n−1, rn−1).
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We then make use of an interpolation operator I n
n−1 to compute dn = I n

n−1(dn−1) on Gn,
after which the solution on Gn can be updated according to u′

n → u′
n + dn. Following this, a

number of additional Gauss–Seidel updates can be carried out on Gn.
This procedure is applied recursively, so that a hierarchy of grids {Gn,Gn−1, . . . ,G0} is

introduced and residuals are recursively solved on coarser and coarser grids. The algorithm
starts on Gn, and recursively solves residuals until reaching the coarsest grid G0, after which
the corrections are progressively applied up to Gn. Since this procedure goes down and up
the hierarchy, it is referred to as a V -cycle. Multiple V-cycles can be applied until the desired
level of accuracy is achieved.

To apply the Gauss–Seidel sweeps on the coarser grids, it is necessary to construct coars-
ened versions of the linear system An, and several approaches can be employed. In some
situations, the discretization procedure used to construct An can also be used to construct
the coarse problem. Alternatively, the coarse linear systems can be computed recursively by
conjugating with the restriction and interpolation operators according to

An−1 = Rn−1
n AnI

n
n−1. (11)

3.2 A Multigrid Method on Quadtree and Octree Grids

To implement the multigrid method on quadtree and octree grids, we must define a hierarchy
of grids {Gn,Gn−1, . . . ,G0}. An obvious choice of successive grids is simply the sequence
of grids defined by the levels in the quadtree/octree itself. This choice may not be optimal,
but has the advantage of being readily available [3]. We describe next the interpolation I n

n−1
and restriction Rn−1

n operators.

3.2.1 Trilinear Interpolation

Consider a vector u defined on Gk to be interpolated on the finer grid Gk+1. We use trilinear
interpolation, defined for the unit cell C = [0,1]3 as

u(x, y, z) = (1 − x)(1 − y)
(

(1 − z)u0,0,0 + zu0,0,1

) + (1 − x)y
(

(1 − z)u0,1,0 + zu0,1,1

)

+ x(1 − y)
(

(1 − z)u1,0,0 + zu1,0,1
) + xy

(

(1 − z)u1,1,0 + zu1,1,1
)

.

Note that the interpolation procedure is used to interpolate the errors and one can simply
define the errors outside the domain to be zero in order to treat all the points in Ω in the
same fashion. This equation can now be used to define the interpolation operator I k+1

k from
Gk to Gk+1. One can easily verify that this operator is full-weighting since all its rows sum
to one.

3.2.2 Full-weighting Restriction

To build the restriction operator Rk
k+1 from Gk+1 to Gk , we first define a possible restriction

operator R̃k
k+1 = c(I k+1

k )T where c is a scaling factor (1/4 in 2D, 1/8 in 3D). For uniform
grids, this operator is full-weighting as illustrated in Fig. 4(a). In the case of adaptive grids
on the other hand, this property no longer holds because some grid points, and thus some
coefficients in the restriction operator, are missing. Defining a non-full-weighting operator
can have a drastic consequence on the convergence.

Therefore to ensure that our restriction is full-weighting we adjust the diagonal coeffi-
cients of R̃k

k+1 such that all rows sum to one, and call Rk
k+1 the resulting operator (see an

illustration in Fig. 4(b)).
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Fig. 4 Full-weighting restriction operators. The values of the restricted function at every node of the coarser
grid are defined using weighting coefficients depicted in (a) and (b)

3.2.3 Computation of the Matrices

In our computations, all of the operators Ak , Rk
k+1, and I k+1

k are represented as sparse ma-
trices with the compressed row format. The code begins by explicitly constructing An on
the finest grid. Each grid point is considered sequentially, allowing the matrix to be assem-
bled directly without the need for any reordering. The sequences of interpolations I n

n−1, . . . ,
I 1

0 and restrictions Rn−1
n , . . . , R0

1 are also directly constructed as described in Sects. 3.2.1
and 3.2.2, after which the coarsened linear systems An, . . . ,A0 can be constructed using
sparse matrix multiplication with Eq. (11). The time to carry out these operations scales
linearly with the number of grid points, and is typically small compared to the time to carry
out the V-cycles. We note that, unlike what is standard practice with multigrid methods,
we do not maintain disjoint sets of interior versus boundary equations at each level of the
hierarchy.

4 Numerical Results in Two Spatial Dimensions

In the work of [4], the above discretization has been shown to be second-order accurate in
both the L1 and L∞ norms, thus we concentrate here on examining the computation time of
our algorithm and how it scales with the number of grid points. Consider the problem

�v = (

x2 + y2
)

e−xy on Ω−,

v = e−xy on Γ.

We consider for Ω− two different domains represented by the level set functions φ1(x, y) =
√

x2 + y2 − 0.7 and φ2(r, θ) = r − 0.4 + 0.1 cos(6θ) as depicted in Figs. 5(a) and (b). Fig-
ures 6(a) and (b) give the time to convergence using a classical V-cycle method, defined as
a succession of V-cycle iterations until the L∞-norm of the normalized residual is smaller
than a given tolerance ε. The normalized residual is obtained by dividing each coefficient
of the residual by the corresponding diagonal coefficient in the discretization matrix and we
use ε = 10−12 throughout this study. One Gauss–Seidel iteration is performed on the each
level on the way down of the V-cycle, while five iterations are performed on the way up.
The slopes of the best fit lines are 1.100 and 1.106 respectively for the two examples. This
is close to the theoretical complexity of O(N) and the small amount above unity is likely to
be due to lower cache efficiency for the larger grids with more memory allocation.
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Fig. 5 Contours of the irregular domains (red) considered in Sect. 4. The grids (black) correspond to a level
7 Quadtree

Fig. 6 Computation times in a log-log scale for the multigrid algorithm, using different levels of refinement
for the two examples considered in Sect. 4. (a) Corresponds to the irregular domain depicted in Fig. 5(a)
while (b) corresponds to the irregular domain depicted in Fig. 5(b)

4.1 Convergence Rates

The convergence properties of the method for the two test problems are shown in Figs. 7(a)
and (b). The calculations are performed on level 10 quadtree grids containing 15 537 and
17 689 grid points respectively. For the comparison, the convergence of the classical Bi-
CGSTAB and for the Gauss–Seidel methods are represented. The plots show the conver-
gence of the multigrid algorithm with the full-weighting restriction, and also show the con-
vergence of the multigrid algorithm when the restriction is taken to be the transpose of the in-
terpolation operator. It is clear that the multigrid algorithm using the non-full-weighting rule
requires significantly more iterations to converge than the approach using the full-weighting
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Fig. 7 Normalized residual versus the number of iterations for the examples considered in Sect. 4. (a) Cor-
responds to the irregular domain depicted in Fig. 5(a) while (b) corresponds to the irregular domain depicted
in Fig. 5(b). The purple line that is labeled “MG” corresponds to the non-full-weighting multigrid algorithm

Fig. 8 Reduction factor for the examples considered in Sect. 4. (a) Corresponds to the irregular domain
depicted in Fig. 5(a) while (b) corresponds to the irregular domain depicted in Fig. 5(b). The purple line that
is labeled “MG” corresponds to the non-full-weighting multigrid algorithm

rule. The resulting reduction factor, defined as the ratio between the residual at two consec-
utive iterations, is depicted in Figs. 8(a) and (b). It can be seen that the non-full-weighting
restriction has reduction factors that are roughly twice as large.

It should be noted that both Bi-CGSTAB and Gauss–Seidel also perform well on the test
problems considered. This should be expected, since on the adaptive grids, the bulk of the
grid points are close to the boundary where the Dirichlet boundary condition is applied, and
the solution at these points is somewhat easier for any linear solver to find. The test problems
considered feature a minimal amount of refinement concentrated on the boundary where the
Dirichlet condition is applied, which is almost the best case for these methods. Thus, while



12 J Sci Comput (2013) 55:1–15

the multigrid algorithm is faster, the improvement over the other methods is not as dramatic
as on uniform grids. It is reasonable to expect that for more complex problems, with more
refinement in regions away from where Dirichlet conditions are imposed, the advantages of
multigrid will become more apparent. Indeed, it is worth noting that a uniform grid can be
represented within a quadtree data structure, and for this case the algorithm is equivalent
to a standard uniform multigrid computation, and will therefore have the same convergence
properties.

4.2 Impact of the Boundary Condition Strength Coefficient

When assembling the matrix An on the finest level, we impose the arbitrary value of u = 0
for all the nodes in Ω+. This is achieved by setting the diagonal element to BCstrength, the
extra-diagonal elements to be zero and the right-hand-side to be 0. In the case where the
interface is less than a small tolerance εD away from a grid node, we simply impose the
boundary condition at that node, by setting the diagonal element to BCstrength, the extra-
diagonal elements to be zero and the right-hand-side to be BCstrength × γ , where γ is the
interface boundary condition. Throughout this study, we make use of εD = �x2. In the
calculations presented thus far, BCstrength was set to 1.

For a simple Gauss–Seidel method on the finest grid, the value of BCstrength plays no role,
since it only serves to enforce solution values at certain grid points. However, in the multi-
grid method BCstrength has an effect, since the rows in coarse matrices Ai are constructed
as averages of rows in the fine matrix. Close to the interface, a coarse matrix row will be
assembled as a linear combination of rows where the values are imposed, and rows where
the operator discretization is used. The value of BCstrength therefore controls how strongly
the boundary conditions are felt on the coarser levels. We have found that this parameter
can have a strong effect on the rate of convergence, and in this section we present results
for a range of BCstrength. To aid in comparisons between grids with differing resolution, we
impose that all matrix rows where boundary conditions are not imposed are rescaled so that
the diagonal entry is one.

Figures 9(a) and (b) show the decrease in the normalized residual for different values
of BCstrength. While we have observed that the method converges over a very large range of
BCstrength, the choice of this parameter can alter the convergence rate by a factor of two or
more. Numerical tests indicate that the optimal value of BCstrength is approximately 0.125,
since for both bigger and smaller values more iterations are needed to converge to the same
residual.

4.3 Convergence Analysis

Figures 7(a) and (b) show that the algorithm converges rapidly for the test problems, but
we now consider the convergence properties of the algorithm in general. While multigrid
convergence for symmetric problems has been extensively studied [19], there are fewer an-
alytic results for non-symmetric systems like the ones that we consider. We therefore do not
present a complete proof of convergence for all cases, but instead analyze individual com-
ponents of the algorithm to provide confidence that the method would work across a wide
range of problems.

As noted in Sect. 2.4, the linear system on the finest level is weakly diagonally dominant,
and it is also reasonable to assume that it is irreducible, in which case it is known that the
Gauss–Seidel method will converge for any ordering of grid points [18].
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Fig. 9 Influence of the boundary condition coefficient on the convergence of the multigrid method. (a)
Corresponds to the irregular domain depicted in Fig. 5(a) while (b) corresponds to the irregular domain
depicted in Fig. 5(b)

Fig. 10 Spectral radii of the Gauss–Seidel operators on each level for the examples presented in Sect. 4.
(a) Corresponds to the irregular domain depicted in Fig. 5(a) while (b) corresponds to the irregular domain
depicted in Fig. 5(b)

On the coarser levels, where the linear systems are computed according to Eq. (11),
establishing weak diagonal dominance cannot be carried out easily. However, for the two test
problems, we have explicitly checked that the coarse systems are diagonally dominant. In
addition, Figs. 10(b) and (a) show explicit computations of the spectral radii for the Gauss–
Seidel operators on each level for a variety of values of BCstrength, showing that they are
all below one, and become particularly small on the coarsest grids. The differences due to
BCstrength are more pronounced on the coarser grids, and the trends appear to be roughly
consistent with the convergence properties seen in Figs. 9(a) and (b).
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Knowing that all the spectral radii of the Gauss–Seidel operators are smaller than one
still does not guarantee convergence, since it is possible for errors to be multiplied in the
restriction and interpolation steps. As a final check, for the two example problems with a
level 8 quadtree grid, we explicitly computed the spectral radii of the V-cycle operators
and found them to be 0.1015 and 0.1319 respectively. As would be expected, these values
are close to the reduction factors seen in Figs. 8(a) and (b). However, since the spectral
radius computation involves finding the maximum eigenvalue of the V-cycle operator, it
allows us to make a stronger statement that convergence will be guaranteed for any initial
guess.

5 Numerical Results in Three Spatial Dimensions

We consider the problem

�v = (

x2z2 + y2z2 + x2y2
)

e−xyz on Ω−,

v = e−xyz on Γ,

where Ω− is a sphere defined on Ω = [−1,1]3, centered at the origin with radius r = 0.7.
The boundary condition and the right hand side are chosen such that the exact solution is
v = e−xyz. Figure 11(a) depicts the contour obtained using a level 6 octree grid. The time
needed to converge for various levels of refinement is depicted in Fig. 11(b), comparing the
multigrid method to Bi-CGSTAB. The slope of the best fit line for the multigrid is 1.137,
giving again a scaling close to the theoretical computation. The slope of the best fit line
for the Bi-CGSTAB is 1.199, which outperforms the usual O(N5/4) convergence for the
same reasons as those discussed in the two-dimensional case of Sect. 4.1. Even though the
two slopes are similar, the computation time is approximately four times smaller for the
multigrid, making this method more efficient.

Fig. 11 (a) Contour the corresponding grid for the example considered in Sect. 5. Only a two-dimensional
cross section of the grid is plotted. (b) Corresponding computation times in a log-log scale for the multigrid
algorithm, using different levels of refinement. A comparison to the classical Bi-CGSTAB method is shown.
For each plot, solid lines represent best linear fits
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6 Conclusion

We have presented the results of a multigrid solver for the Poisson equation on irregular
domains on non-graded adaptive quadtree and octree grids. Dirichlet boundary conditions
are imposed at the irregular domain’s boundary. The use of non-graded adaptive quadtree
and octree data structures significantly reduces the number of computational nodes and al-
lows for the resolution of small length scales. The development of a multigrid method on
such grids further accelerates the convergence process, producing an efficient approach that
is particularly suitable for multiscale problems. We have presented numerical results that
illustrate the efficiency of such an approach.
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