
Journal of Computational Physics 230 (2011) 2125–2140
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A second-order discretization of the nonlinear Poisson–Boltzmann
equation over irregular geometries using non-graded
adaptive Cartesian grids

Mohammad Mirzadeh a,⇑, Maxime Theillard a,b, Frédéric Gibou a,c

a Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA
b Ecole Polytechnique, 91120 Palaiseau, France
c Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 May 2010
Received in revised form 18 November 2010
Accepted 3 December 2010
Available online 10 December 2010

Keywords:
Nonlinear Poisson–Boltzmann equation
Non-graded adaptive grid
Octree data structure
Second-order discretization
Arbitrary geometries
Supercapacitors
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.12.008

⇑ Corresponding author.
E-mail address: m.mirzadeh@engineering.ucsb.e
In this paper we present a finite difference scheme for the discretization of the nonlinear
Poisson–Boltzmann (PB) equation over irregular domains that is second-order accurate.
The interface is represented by a zero level set of a signed distance function using Octree
data structure, allowing a natural and systematic approach to generate non-graded adap-
tive grids. Such a method guaranties computational efficiency by ensuring that the finest
level of grid is located near the interface. The nonlinear PB equation is discretized using
finite difference method and several numerical experiments are carried which indicate
the second-order accuracy of method. Finally the method is used to study the supercapac-
itor behaviour of porous electrodes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Poisson–Boltzmann (PB) equation describes the electrostatic potential distribution around charged particles (colloids,
macromolecules, membranes, etc.) in an electrolyte solution and thus it has a wide range of applications, from colloid science
and micro-fluidics [25,18,29] to biochemistry and biophysics [19,26]. Due to its nonlinear nature, however, early studies of
PB equations were mainly either concerned with the linearized limit, as in Debye–Hückel approximation, or limited to very
simple geometries, as in Gouy–Chapman solution [25,18]. However, neither case really applies to biophysical systems, for
example, where one should deal with highly charged and complicated macromolecules like DNA.

Various numerical techniques have been applied to both the linear and nonlinear PB equation during the past decades.
Gilson et al. [9], Davis and McCammon [7], Nicholls and Honig [23] and Luo et al. [16] applied finite difference techniques
to discretized the linearized PB equation in two and three spatial dimensions and discussed different choices of linear solver
for their system. Finite difference method has also been successfully applied to the full nonlinear PB equation as seen in the
works of Allison et al. [1], Jayaram et al. [13], Luty et al. [17] and Yang et al. [29]. Due to complicated geometries involved
when applying the PB equation to biological systems, finite element methods have been developed to better capture the
irregular interfaces [12,5,6,10,3]. Finite element methods have the nice property to create symmetric linear system which
are cheaper to invert than non-symmetric ones. Furthermore, relying on a posteriori error estimates, it is possible to generate
. All rights reserved.
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adaptive grids which would even further increase the computational efficiency. One major drawback, however, is that
elements need to conform to the boundaries and they must not be skewed in order to provide accurate and robust
discretizations, grid generation could prohibitively become a bottleneck for very complicated geometries. This process could
even become more complex and time consuming if one needs to explicitly track particles movement due to electrostatic
forces.

Closely related to FEM, boundary element methods have also been used to solve the PB equation [30,14,24]. Compared to
finite difference and finite element methods, the main advantage of boundary element methods lies in the fact that they
essentially reduce the dimensionality of the problem by one. Although this is a desired property, as it would greatly reduce
the size of linear system, one should note these type of methods typically tend to produce very dense linear systems which
are expensive to invert. In addition, boundary integral methods are not straightforward to implement in three spatial dimen-
sions. Finally we make a quick note regarding the application of the finite volume method as seen in the works of Holst and
Saied [11].

In this paper we describe a finite difference approach to solve the full nonlinear PB equation over irregular geometries on
Cartesian grids. To accomplish this goal, we represent the computational domain with an implicit function whose zero level
set shall represent the irregular interface. The computational domain is thus implicitly captured without the need to explic-
itly fit the boundary. Since there are naturally two different length scales associated with the PB equation (see Section 2), it is
desired to have an adaptive grid with the finest level of resolution close to the interface. We will be using Octree data struc-
ture as a natural way to generate adaptive Cartesian grid which will be used to discretize the PB equation.

2. Poisson–Boltzmann equation

Consider a particle or a surface that has a fixed surface electrostatic potential due to surface charges. When such a body is
immersed inside an electrolyte, the electric field, due to the electrostatic potential, attracts the counter-ions and repels the
co-ions in the solution to form a cloud of oppositely charged ions near the interface. The charged cloud, known as electric
double layer (EDL), is known to consist of two layers, the Stern layer and thediffuse layer. While the Stern layer is believed
to have the thickness of roughly one ionic diameter, the ion density in the diffuse layer, under equilibrium conditions, obeys
the Boltzmann distribution [25,18], i.e.
ni ¼ n0 exp
�zie
kBT

w

� �
;

where w is the potential field in the charged cloud. Considering a symmetric z:z electrolyte, the charge density inside the EDL
may be found as:
qe ¼ zeðnþ � n�Þ ¼ �2zen0 sinh
ze

kBT
w

� �
:

Finally the Poisson–Boltzmann equation may be obtained using this expression for the charge density in the Poisson equa-
tion for electrostatic potential field,
r2w ¼ �qe

�
¼ 2zen0

�
sinh

ze
kBT

w

� �
:

The EDL thickness is typically measured in terms of the Debye length kD defined as:
kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kBT

2n0z2e2

s
;

which is typically of the order of nanometers. Based on this, the PB equation may be non-dimensionalized by introducing the
following variables:
xi ¼ L~xi r ¼ L�1 ~r w ¼ kBT
ze

~w j ¼ L
kD
;

where L is some characteristic length scale. The non-dimensional PB equation, ignoring the tildes, then becomes:
r2w ¼ j2 sinhðwÞ: ð2:1Þ
It is easy to see that for high surface potentials, Eq. (2.1) becomes highly nonlinear and thus poses numerical difficulties near
the interface, whereas far from interface the potential dies off exponentially. This, in part, demonstrates the need for an
adaptive grid with a fine resolution near the interface. Holst and Saied [12], did a comprehensive study of treating the non-
linear term and concluded that damped inexact Newton’s method is an efficient way to linearize the PB equation. In this
paper, however, we will be using a slightly modified strategy where the solution at the previous step is used to expand
the nonlinear term about, i.e. we write:
r2wnþ1 ¼ j2ðsinhðwnÞ þ ðwnþ1 � wnÞ coshðwnÞÞ þ Oððwnþ1 � wnÞ2Þ: ð2:2Þ
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3. Numerical method

3.1. Grid generation

Consider the computational domain X along with its exterior boundary oX that is divided into two disjoint subdomains
X+ and X� by a two-dimensional interface C. A level set function / is used to represent different regions such that it is a
signed distance function to the interface, i.e.,
/ > 0 in Xþ;

/ ¼ 0 on C;

/ < 0 in X�

8><
>:
with jr/j = 1. We note, however, that even though a signed distance function is desired for robustness, it is only needed to
avoid functions with very steep or flat gradients.

The domain is discretized into cubes that are represented on an Octree data structure. Fig. 3.1 (left) illustrates a two-
dimensional version of a computational domain along with its corresponding Quadtree (right). The grid generation starts
by appointing the tree root, i.e. level zero, to the whole domain and recursively splitting every cell (level j) into four smaller
cells (level j + 1). This process is continued until either a certain resolution criterion is met or the tree has reached its max-
imum level. Following Min et al. [22] and Strain [28], one such criterion may be chosen as to divide a cell, with vertices in the
set V, if the following inequality holds true:
min
v2V
j/ðvÞj < LD

2
: ð3:1Þ
Note that L is the Lipschitz constant of level set function / and D is the diagonal size of the current cell.
By definition the tree will be graded if the level difference between any two adjacent cells is at most one and non-graded

if there is no such restriction. In this paper we consider non-graded Cartesian grids where the solution is sampled at the
nodes of each cell. A node in the grid is said to be uniform if it is directly connected to other nodes in each of six directions.
Alternatively a node is said to have a T-junction if it does not have a direct neighbor in at least one of the six possible direc-
tions. Note that a node can have at most one three-dimensional and one two-dimensional T-junctions (see Fig. 3.2).

3.2. Finite difference scheme

Let us rewrite Eq. (2.2) in the following form and assume a Dirichlet boundary condition at the interface C,
ðr2 � j2 coshðwnÞÞwnþ1 ¼ j2ðsinhðwnÞ � wn coshðwnÞÞ in X�;

w ¼ gð~xÞ on C:

(
ð3:2Þ
To obtain a finite difference approximation to the Laplacian operator on the Octree mesh, we follow the works of Min et al.
[22] and Chen et al. [4]. Fig. 3.2 depicts the most general configuration that may occur in the grid with at most one
three-dimensional and one two-dimensional T-junction in negative y and negative x directions, respectively. To treat the
T-junctions a linear interpolation is used to obtain the ghost values at the v4 and v5 nodes:
wg
4 ¼

s7w8 þ s8w7

s7 þ s8
ð3:3Þ
Fig. 3.1. Non-graded adaptive discretization of a two-dimensional domain (left) and its corresponding Quadtree (right).



Fig. 3.2. A general configuration for a three-dimensional mesh. Node v0 has a three-dimensional T-junction in negative y direction (called v5) and a two-
dimensional T-junction in negative x direction (called v4).
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and
wg
5 ¼

s11s12w11 þ s11s9w12 þ s10s12w9 þ s10s9w10

ðs9 þ s12Þðs10 þ s11Þ
: ð3:4Þ
A simple Taylor analysis shows that
w4 ¼ wg
4 � s7s8wzzjv0

þO h3
1

� �

and
w5 ¼ wg
5 � s9s12wxxjv0

� s10s11wzzjv0
þO h3

2

� �
:

where h1 = max{s4,s7,s8} and h2 = max{s5,s9,s10,s11,s12}. Note that to get second-order accuracy, it is first needed to eliminate
the spurious wzzjv0

and wxxjv0
errors that are due to interpolation. Min et al. [22] showed that it is always possible to eliminate

the spurious error terms by appropriate weighting of Laplacian operator as:
r2w0 ¼
w1 � w0

s1
� w0 � wg

4

s4

� �
2a

s4 þ s1
þ w2 � w0

s2
� w0 � wg

5

s5

� �
2

s5 þ s2
þ w3 � w0

s3
� w0 � w6

s6

� �
2b

s6 þ s3
þOðhÞ ð3:5Þ
where h ¼maxfsig;wg
4 and wg

5 are obtained through Eqs. (3.3) and (3.4), respectively, and a and b are given by:
a ¼ 1� s10s11

s2ðs2 þ s5Þ
;

b ¼ 1� s9s12

s5ðs2 þ s5Þ
� a

s7s8

s4ðs1 þ s4Þ
:

Furthermore, they show that the finite difference matrix produced by Eq. (3.5) is an M-matrix provided that the anisotropic
ratio of Octree is smaller than or equal to

ffiffiffi
2
p

. The matrix is then non-singular if a Dirichlet boundary condition is imposed on
at least one node.

3.3. Treatment of the boundary condition

Eq. (3.5) is used to discretize the PB equation in the X� domain if all the corresponding neighboring and ghost nodes also
reside in the same domain. If one of the nodes is located in the X+ domain, however, this equation should be modified to take
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into account the effect of the Dirichlet boundary conditions. In this paper we will only address the Dirichlet boundary con-
dition on the interface C. The process is more easily understood in one spatial dimension and may easily be extended to
three-dimensional domains using a dimension by dimension approach.

Consider a one-dimensional domain as in Fig. 3.3 where the computational domain is to the left of the interface C. Note
that condition (3.1) always ensures a uniform grid across the interface and thus v0 will always remain a regular node in two-
dimensional and three-dimensional domains. wxx in this case, may simply be approximated as
wxx ¼
wI � w0

sI
� w0 � w1

s1

� �
2

sI þ s1
þOðhÞ; ð3:6Þ
where sI is the distance to the interface and may be found via Taylor expansion of the level set function around v0:
/ðv IÞ ¼ /ðv0Þ þ sI/xðv0Þ þ
s2

I

2
/xxðv0Þ; ð3:7Þ
where /x and /xx are simply given by:
/xðv0Þ ¼
s1

/4�/0
s4
þ s4

/0�/1
s1

s1 þ s4
;

/xxðv0Þ ¼
/4 � /0

s4
� /0 � /1

s1

� �
2

s1 þ s4
:

Finally, by definition we know that /(vI) = 0 so that Eq. (3.7) may be solved for sI as:
sI ¼
�/xðv0Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x ðv0Þ�2/xxðv0Þ/ðv0Þ
p

/xxðv0Þ
/xxðv0Þ > �;

� /ðv0Þ
/xðv0Þ

/xxðv0Þj j 6 �;

8<
: ð3:8Þ
where � is a small parameter to prevent division by zero.

3.4. Solution gradient

Here we make a quick note on the solution gradient in the field. Since the PB equation is only solved in the computational
domain, i.e. in X�, there is an ambiguity on the best way to compute the solution gradient, which here corresponds to the
electric field ~E ¼ �r/, near the interface. Aslam [2] first proposed a PDE approach to extrapolate the solution outside the
computational domain and Min and Gibou [21] extended his work on quadtree/octree grids, which we will mention briefly
here.

Suppose we are interested to extrapolate w from the computational domain X� to X+. One first needs to compute the
quantity wnn ¼ ~n � rð~n � rwÞ in X� and extrapolate it across the interface by solving:
@wnn

@s
þ Hð/;wnnÞð~n � rwnnÞ ¼ 0;
where H(/,wnn) is the Heaviside function defined below and s is a fictitious time. Note that this is essentially equivalent to
constant extrapolation of function wnn across the interface. Next we define the quantity wn in X+ region such that its normal
derivative is given by wnn. This is accomplished by solving the PDE:
@wn

@s
þ Hð/;wnÞ ~n � rwn � wnnð Þ ¼ 0:
Finally the solution, w, in the X+ is found by enforcing its normal derivative to be equal to wn through solving:
@w
@s
þ Hð/;wÞð~n � rw� wnÞ ¼ 0:
The Heaviside function Hð/;VÞjv i
is numerically set to zero if all the nodes involved in the computation of quantity V are in

the computational domain, i.e. X�. Therefore the Heaviside functions are defined as:
Fig. 3.3. The interface intersects the domain between nodes v0 and v4 at C = vI.



Fig. 3.4. Extrapolation procedure: The blue and red surfaces depict the solution before and after the extrapolation procedure, respectively. Note the smooth
extension of the solution in X+ on the red surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Hð/;wÞjv i
¼

0; if /ðv iÞ < 0;
1; otherwise;

�

Hð/;wnÞjv i
¼

0; if Hð/;wÞjv i
¼ 0 for all v i 2 ngbdðv iÞ;

1; otherwise;

(

Hð/;wnnÞjv i
¼

0; if Hð/;wnÞjv i
¼ 0 for all v i 2 ngbdðv iÞ;

1; otherwise;

(

where ngbd(vi) denotes the set of direct neighboring nodes of the node vi. One should refer to Min and Gibou [21] for more
information on the discretization schemes used to solve the three PDEs. We conclude this section by providing an example of
such extrapolation procedure as seen in Fig. 3.4. Note the smooth extension of the original solution (blue) in the X+ region as
shown by the red surface.

4. Examples in two spatial dimensions

In this section we will be considering examples in two spatial dimensions and show that our discretization scheme pro-
duces second-order accurate results in the L1 and the L1 norms.

4.1. Example 1: circle

As for the first example, consider the computational domain X = [�1,1]2 that embeds a lower dimensional interface C
represented by the zero level set of /ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5. Also assume that the exact solution for this example is given

by w0(x,y) = e�xy. Thus we are interested in solving:
r2w ¼ sinhðwÞ þ f0;

f0 ¼ r2w0 � sinhðw0Þ;

(
ð4:1Þ
subject to a Dirichlet boundary condition given by the exact solution. Fig. 4.1 illustrates the interface along with the adaptive
grid.

Table 4.1 reports the results obtained for this example and clearly shows the second-order accuracy of the method. Note
that resmin and resmax represent the minimum and maximum grid resolution in each direction and ‘‘Grid points’’ is the total
number of grid points in the domain.

4.2. Example 2: a two-dimensional spiky interface

As the second example, let us consider a two-dimensional spiky interface given by:
/ ¼minf/1;/2g;
/1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj þ 2jyj

p
� 0:9;

/2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jxj þ jyj

p
� 0:9;
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Fig. 4.1. A circular interface along with the adaptive grid.

Table 4.1
Accuracy analysis for example 1.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(8,64) 861 1.054 � 10�5 – 7.257 � 10�5 –
(16,128) 1881 7.836 � 10�6 0.428 7.055 � 10�5 0.040
(32,256) 4345 1.881 � 10�6 2.058 1.698 � 10�5 2.095
(64,512) 10737 3.239 � 10�7 2.537 2.844 � 10�6 2.577
(128,1024) 29,689 4.924 � 10�8 2.718 4.588 � 10�7 2.632
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Fig. 4.2. A two-dimensional spiky interface along with the adaptive grid.

Table 4.2
Accuracy analysis for example 2.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(8,64) 1753 5.521 � 10�6 – 5.565 � 10�5 –
(16,128) 3865 4.013 � 10�6 0.460 5.414 � 10�5 0.031
(32,256) 8509 1.251 � 10�6 1.682 1.429 � 10�5 1.516
(64,512) 18,897 2.190 � 10�7 2.514 2.585 � 10�6 2.352
(128,1024) 46,581 3.511 � 10�8 2.641 3.985 � 10�7 2.064
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Fig. 4.3. An irregular interface along with the adaptive grid.

Table 4.3
Accuracy analysis for example 3.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(8,64) 1753 3.499 � 10�6 – 4.078 � 10�5 –
(16,128) 3865 2.688 � 10�6 0.380 3.988 � 10�5 0.031
(32,256) 8509 1.132 � 10�6 1.247 1.426 � 10�5 1.516
(64,512) 18,897 2.241 � 10�7 2.336 2.792 � 10�6 2.352
(128,1024) 46,581 3.488 � 10�8 2.684 6.675 � 10�7 2.064
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with the same exact solution as in example 4.1. Fig. 4.2 depicts the interface along with the computational grid. As seen in
Table 4.2, even when the interface is not smooth, our finite difference scheme produces results that are second-order
accurate.

4.3. Example 3: an irregular interface

Finally consider an irregular interface as demonstrated in Fig. 4.3 with same exact solution as given in example 4.1. Table
4.3 illustrates the accuracy analysis of this example.
5. Examples in three spatial dimensions

5.1. Example 1: single particles

As for the first example let us consider the case where X = [�1,1]3 where the exact solution is given by w0(x,y,z) = sin (2
px) sin (2py) sin (2pz). We are thus seeking a numerical approximation to the solution of Eq. (4.1) in three spatial dimensions
subject to the Dirichlet boundary condition given by the exact solution. Two different types of interfaces are considered.
Fig. 5.1 illustrates a sphere and a spiky three-dimensional surface where the level-set functions are given by:
/a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 0:5
and
/b ¼minf/1;/2;/3g;
/1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj þ 2jyj þ 2jzj

p
� 0:9;

/2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jxj þ 2jyj þ jzj

p
� 0:9;

/3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jxj þ jyj þ 2jzj

p
� 0:9;
respectively.
Tables 5.1 and 5.2 report the simulation results and provide an overall estimate for the order of accuracy of the method. It

is easy to see that the numerical discretization is second-order accurate both in the L1 and the L1 norms. Note that resmin and
resmax are the minimum and the maximum resolution of the grid in one direction.



Fig. 5.1. Interfaces used in the first example.

Table 5.1
Accuracy analysis for the sphere.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(2,16) 2585 9.866 � 10�2 – 9.612 � 10�1 –
(4,32) 17,889 1.500 � 10�3 6.039 6.502 � 10�3 7.207
(8,64) 132,545 4.314 � 10�4 1.798 1.751 � 10�3 1.893
(16,128) 1,019,265 1.161 � 10�4 1.894 4.605 � 10�4 1.927

Table 5.2
Accuracy analysis for the rough three-dimensional surface.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(2,16) 3793 1.012 � 10�2 – 2.911 � 10�1 –
(4, 32) 26,257 2.408 � 10�4 5.393 1.339 � 10�3 7.764
(8, 64) 194,593 6.285 � 10�5 1.938 3.272 � 10�4 2.033
(16, 128) 1,496,641 1.608 � 10�5 1.966 8.071 � 10�5 2.019
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5.2. Example 2: electrostatic interactions between particles

As a second example, a domain consisting of multiple irregular particles is considered. Following the previous example,
we consider the domain to be X = [�1,1]3 and the exact solution to be given by w0(x,y,z) = sin (2px) sin (2py) sin (2pz).
Fig. 5.2 illustrates the interface cross-section and its corresponding adaptive grid. In accordance with our previous results,
Table 5.3 shows the convergence analysis that confirms second-order accuracy both in the L1 and the L1 norms.

Since the level set function is used for grid generation and interface representation, it is an easy task to consider a domain
consisting of several particles. This is very interesting and useful from a practical point of view as it allows for direct com-
putation of electrostatic interactions between charged particles. As such, consider a domain X = [�1,1]3 where four of these
particles are held fixed at specified locations. For such a system, we wish to solve the PB equation along with the following
set of boundary conditions:
wð~xÞ ¼ 1 on C;

wð~xÞ ¼ 0 on @X:

�
ð5:1Þ
Once the solution to the electric potential is known one may simply compute the electric field as~E ¼ �rw. By knowing the
electric, it is possible to get the electrostatic forces acting on particles by integrating the electric stress tensor around the
objects [25,18], i.e.
Fi ¼
Z Z

S
rijnjdA; ð5:2Þ



Fig. 5.2. Adaptive grid generation as resmax is increased.

Table 5.3
Accuracy analysis for example 2.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(2,16) 3013 1.02 � 10�1 – 1.14 � 10�0 –
(4,32) 21,169 1.25 � 10�3 6.36 6.51 � 10�3 7.45
(8,64) 158,209 3.60 � 10�4 1.79 1.75 � 10�3 1.86
(16,128) 1,222,273 9.71 � 10�5 1.89 4.60 � 10�4 1.92
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where rij is given by:
rij ¼ �Pdij þ � EiEj �
1
2
j Ej2dij

� �
; ð5:3Þ
where P is the osmotic pressure and � is the dielectric constant of the electrolyte. Solution results are shown in Figs. 5.3 and
5.4. As indicated in Section 3.4, the electric field has been computed after extending the solution X+ region, which in this case
corresponds to the inside of particles. One may refer to Min and Gibou [20] for a reference on performing the surface integral
in Eq. (5.2).

5.3. Example 3: surface roughness

As the last problem, let us consider the interface to be a rough boundary, for which X = [0,1]3 and the level set function is
given by:
/ ¼ dð1þ sinð2pxÞ sinð2pyÞÞ � z;
where we consider d = 0.15. This might be used to model the effects of surface roughness on the slip velocity produced in an
electro-osmotic flow. Fig. 5.5 illustrates three different cross-sections of the interface along with the adaptive grid. Before



Fig. 5.3. Isosurfaces of electrostatic potential w.

Fig. 5.4. Electric fields. Each set of colored field line originates from a different face. Background faces are colored in term of the electric field magnitude.
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considering the real boundary condition, and to analyze the accuracy of the method, let us assume that the exact solution is
given by w0 = sin(2px) sin(2py)e�z. Table 5.4 reports the results obtained in this case. It is easy to see that our method pro-
duces second-order accurate results. Next, let us consider the solution to the PB equation under the following set of bound-
ary conditions,
wðx; y; zÞ ¼ f0 on the surface;
wðx;0; zÞ ¼ wðx;1; zÞ i:e periodic in x direction;
wð0; y; zÞ ¼ wð1; y; zÞ i:e periodic in y direction;
wðx; y; zÞ � ae�jz z!1;

8>>><
>>>:

ð5:4Þ
where f0 is the surface f-potential. Note that the ‘‘physical’’ boundary condition when z ?1 is simply w = 0. However, since
w(x,y,z ?1)� 1, it is possible to get the asymptotic behavior of the potential for large values of z as given in Eq. (5.4). When
applying this type of boundary condition numerically, the coefficient a is found by a simple iterative procedure.

In general there is no analytical solution for the PB equation for an arbitrary surface amplitude, unless d = 0, where the
exact solution is given by Eq. (5.5) and may be used to check the accuracy of our method. Table 5.5 also confirms our pre-
vious results in that our discretization is second-order accurate.
w ¼ 4tanh�1 tanh
f0

4

� �
e�z

� �
: ð5:5Þ



Fig. 5.5. Three-dimensional adaptive grid and its cross-sections around the surface roughness.

Table 5.4
Accuracy analysis for the roughness problem.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(8,16) 3906 3.36 � 10�3 – 1.01 � 10�2 –
(16, 32) 27,107 7.37 � 10�4 2.19 2.66 � 10�3 1.92
(32,64) 200,805 1.76 � 10�4 2.07 7.06 � 10�4 1.91
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Finally it is interesting to investigate the effects of the surface potential, f0, and the EDL thickness, j�1, for a non-flat surface
i.e. d – 0. Figs. 5.6(a) and (b) show the effect of these parameters on the potential drop across the EDL. The simulation was
done on an adaptive grid with (resmin,resmax) = (16,64).

5.4. Remarks on the iteration scheme

The Poisson–Boltzmann equation is nonlinear and in this paper we have used the Newton’s iteration method to handle
the nonlinearity in an efficient fashion. It is thus interesting to study the dependence of various physical parameters, such as



Table 5.5
Accuracy analysis for the roughness problem.

(resmin,resmax) Grid points L1 Error Order L1 Error Order

(8,16) 3394 1.57 � 10�4 – 4.00 � 10�4 –
(16,32) 22,819 3.91 � 10�5 2.00 1.24 � 10�4 1.69
(32,64) 165,733 9.82 � 10�6 1.99 3.28 � 10�5 1.92

Fig. 5.6. Effects of surface potential and EDL thickness on the solution. Plots generated for x = y = 0.25 and d = 0.15.
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the surface potential and the Debye layer thickness, as well as the grid resolution on the convergence of this iteration
scheme. We note that physical parameters in general may have an effect on the ‘strength’ of the nonlinearity, whereas grid
resolution is a typical numerical parameter that can influence the convergence of numerical methods. The stopping criterion
we use for convergence is to consider that the difference between two consecutive iterate is less than a given tolerance, ta-
ken here to be 10�6:
Table 5
Numbe

Surfa

Coar
Fine
Coar
Fine

Table 5
Numbe

Surfa

Coar
Fine
Coar
Fine
max
x2X�

kwmþ1 � wmk < 10�6:
Two examples are considered: the sphere described in Section 5.1 and the irregular surface described in Section 5.2. In both
cases, a range of surface potential from f = 1 to f = 5 was considered for the Dirichlet boundary condition at the interface. For
each of those cases, the problem was solved in the thick (j = 1) and thin (j = 5) double layer limit. In each of those cases, we
considered a coarse, i.e. (resmin,resmax) = (32,128), and a fine, i.e. (resmin,resmax) = (32,512), computational grid. Tables 5.6 and
5.7 illustrate the variations in the number of iterations needed for convergence for the sphere and irregular surface,
respectively.
.6
r of iterations needed for convergence for the sphere example (cf. Section 5.1) as a function of different physical and numerical parameters.

ce potential (f) 1.0 2.0 3.0 4.0 5.0

se grid-Thick double layer 4 4 5 5 6
grid-Thick double layer 4 4 5 5 6
se grid-Thin double layer 3 4 4 4 5
grid-Thin double layer 3 4 4 4 5

.7
r of iterations needed for convergence for the irregular surface example (cf. Section 5.2) as a function of different physical and numerical parameters.

ce potential (f) 1.0 2.0 3.0 4.0 5.0

se grid-Thick double layer 4 4 5 5 6
grid-Thick double layer 4 4 5 5 6
se grid-Thin double layer 4 4 4 5 5
grid-Thin double layer 4 4 4 5 5
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Both results suggest that the scheme is efficient. The iteration scheme depends mainly on the surface potential used as
the interface’s boundary condition. This is expected since, as the surface potential increases in magnitude, the nonlinearity of
the problem increases as well due to the sinh (w) term. The other physical parameters as well as the grid resolution, how-
ever, do not have a strong effect on the iteration number as they are not involved in the linearization approximation of the
Poisson–Boltzmann equation. Needless to say, these parameters do play a role in the computational resources needed for
each iteration.

6. Applications in modeling supercapacitors

In this section we will consider an important physical application of solving the nonlinear Poisson–Boltzmann equation in
modeling the so-called supercapacitor behavior of porous materials: An electric double layer essentially behaves like a
capacitor, where the charge is stored in the electric double layer. Unlike standard capacitors where the separation distance
between plates is often of the order of micrometer or millimeter, the distance in the case of the electric double layers is of the
order of nanometer. As a result, electric double layers tend to have very high capacitance per unit area (�10 lF/cm2). The
supercapacitor concept then refers to the use of highly porous materials as electrodes that can provide large relative surface
areas. For example, electrodes made out of active carbon have been reported with surface areas up to 3000 m2 per gram,
resulting in total capacitance of �300 Farads per gram [8]. Due to their high capacitance for storing electrical charge and
power, these types of capacitors hold a promise for many applications, such as in Hybrid Electric Vehicles (HEV). We do
not elaborate this in more detail here and refer the interested reader to Kötz [15] and Simon and Gogotsi [27] for a review
on supercapacitors and their applications.

To model such capacitors, we have considered a porous electrode made out of removing spherical sites from a periodic
cubic cell. The spherical sites reside on a hexagonal lattice known as the Hexagonal Closed Packing (HCP) model, as illus-
trated schematically in Fig. 6.1. In this figure the black and red circles represent the location of spherical sites for two dif-
ferent lattice layers in the z direction (perpendicular to the page) and the green line represents the boundary of the
computational domain. The lattice spacing, d0, and site radius, r, are chosen in a way that the resulting object is porous
and connected in all three spacial directions. It is easy to show that these criteria are met if the following condition is
satisfied:
1 <
2r
d0
<

ffiffiffi
3
2

r
:

Using this condition, it is then possible to describe the entire geometry via a single parameter 0 < a < 1 defined such that:
2r
d0
¼ 1þ a

ffiffiffi
3
2

r
� 1

 !
:

Figs. 6.2(a) and (b) illustrate the geometry obtained for a = 0.4 and the iso-surfaces of the electric potential for f = 5,
respectively.

To compute the capacitance of the electrode, one first needs to compute the surface charge according to
q ¼
Z

C
�rw � n̂dA:
Fig. 6.1. Schematic of a Hexagonal Closed Packing (HCP) model of a porous electrode.



Fig. 6.2. Generated porous electrode (left) and the potential iso-surfaces (right) of Section 6.

Fig. 6.3. Dependence of the electrode capacitance on the porosity.
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Note that to accurately compute the surface charge, one first needs to compute the electric field as explained in Section 3.4.
Next, the capacitance is obtained by solving the problem for a range of surface f potential and computing the following
derivative:
C ¼ @q
@f
:

Through this procedure, it is possible to study the effect of the electrode porosity on the capacitance. This is illustrated in
Fig. 6.3 for range of surface potential from f = 1 to f = 3 and the double layer thickness j = 4.5. In this figure the vertical axis
represents the porous electrode capacitance normalized by the capacitance of a planar electrode having the same frontal
area ðAxyÞ. The horizontal axis represents the porosity of the material, defined as the void volume fraction to the total cell
volume. From this figure, it is easy to recognize the important role of the porosity in increasing the electrode capacitance.
As expected, this effect is magnified as the surface potential is increased due to the nonlinear crowding of ions in the electric
double layer. Finally we note that as the porosity of the material is increased, the capacitance is decreased. This phenomenon
is only dependent on the behavior of the model used to describe the porous electrode and, in our case, may be attributed to
the fast decrease of the surface area as the porosity is increased.

7. Concluding remarks

In this paper we have presented an efficient finite difference discretization for the Poisson–Boltzmann equation on irreg-
ular domains. The nonlinear equation is first approximated using the Newton’s method and then discretized on a non-graded
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adaptive Cartesian grids. Level set functions were used to represent the irregular domain, which notably facilitate the task of
grid generation as well as handling multiple particles and objects. We have considered several different test cases that dem-
onstrate that our method is second-order accurate in the L1 and the L1 norms. Furthermore, the use of adaptive Cartesian
grids with no constraint on the ratio between adjacent cells, produces a method that is efficient and versatile, allowing
the robust discretization of virtually any irregular interfaces. Finally, we have considered an application of our method to
the study of modeling porous electrode supercapacitors, considering a model based on the Hexagonal Closed Packing
(HCP) crystal for the porous geometry. Our preliminary results clearly support the fact that the electrode capacitance is in-
creased for porous materials.
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