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Motivated by experimental observations of asymmetric protein aggregates distributions in 
dividing yeast cells, we present a conservative finite volume approach for reaction-diffusion 
systems defined over deforming geometries. The key idea of our approach is to use spatio-
temporal control volumes instead of integrating the time-discretized equations in space, 
as it is common practice. Both our theoretical and computational results demonstrate 
the convergence of our method and highlight how traditional approaches can lead to 
inaccurate solutions. We employ this novel approach to investigate the partitioning of 
protein aggregates in dividing yeast cells, leveraging the flexibility of the level set method 
to construct realistic biological geometries. Using a simple reaction-diffusion model, we 
find that spatial heterogeneity in yeast cells during division can alone create asymmetries 
in the concentration of protein aggregates. Moreover, we find that obstructing intracellular 
entities, such as nuclei or insoluble protein compartments, amplify these asymmetries, 
suggesting that they may play an essential role in regulating molecular partitioning. Beyond 
these findings, our results illustrate the flexibility of our approach and its potential to 
design realistic predictive tools to explore intracellular bio-mechanisms.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cells are often considered to be the smallest unit of life because they group critical constituents within a single compart-
ment. Inside the boundary of a cell, the environment is continually changing as molecular species are constantly created, 
degraded, and interacting with one another [35]. Mathematical models have proven to be powerful tools in biology through 
their ability to provide abstract representations of the cellular environment, generate simulations under distinct hypotheses, 
provide quantitative output that can be validated through comparisons with experiments [41,42]. However, mathematical 
modeling necessarily involves making simplifying assumptions about both the cell itself and its environment.

One common assumption is that the cell environment is well-mixed and spatially homogeneous, allowing for the use of 
deterministic ordinary differential equations or stochastic simulations of the chemical master equation, which offer both an-
alytical and computational advantages over their partial differential equation counterparts [3,55,12,31]. However, even if the 
cell began as a well-mixed compartment, reaction, diffusion, and cellular reconfiguration can create spatial heterogeneities, 
which may cause unequal partitioning after cellular division [15,53]. More recently, structured population equations have 
proven useful to consider populations of cells where intracellular constituencies may be partitioned unequally [53,28]. 
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However, these models still rely on the assumption that within individual cells, the environment is well-mixed. With the 
increasing ability to experimentally observe distributions of biochemical species within individual cells, it becomes neces-
sary to favor mathematical methods which model spatial heterogeneity. For such a model to be realistic, it must reproduce 
observed cell deformations while preserving essential physical properties such as mass conservation.

Over the last decades, the level set method [47,52] has been recognized as a versatile interface representation, virtually 
applicable to any interfacial problem. The interface is defined as the zero contour of a continuous function (i.e. the level set 
function), and an advection equation models its evolution. Doing so, the costly mesh conformation, inherent to any method 
explicitly tracking the geometry, is replaced by the numerical resolution of a standard partial differential equation. The level 
set method has been employed to simulate a broad range of applications in computer, engineering, and natural sciences, 
such as the dynamic multi-phase flows [59], the electrostatic of biomolecules [40], or the response of elastic structures [57]. 
In computational biology, it has for example been used to simulate the behavior of self-healing [64], growing [4] and shear 
stress-stimulated [24,25] tissues, tumor growth [34,67,48], wound healing [29] or the protrusion of cells in micropipettes 
[69]. Even though the level set formalism seems to be the natural mathematical tool for studying the dynamics of single 
cells, to the best of our knowledge, it has not been used to study protein aggregation in three-dimensional yeast cells.

In this work, we present a framework for studying the reaction-diffusion process in deforming cells and employ it to 
simulate prions aggregation in dividing yeast cells. First, we construct a level-set based model to represent the budding cell 
cycle of yeasts; that is, our model begins with a single compartment (mother cell), which through the budding processes, 
produces a growing daughter cell that ultimately disconnects completely (see Fig. 2). Second, we construct a novel finite 
volume formulation that ensures mass conservation even on deforming geometries. Third, we validate our model using 
analytical and practical examples and finally employ it to study the impact of intracellular material and biochemistry on the 
prions transmission process. Our results both illustrate the limitations of the well-mixed assumptions and the ability of the 
reaction-diffusion mechanisms to create asymmetric distribution alone. In addition to providing insights into the segregation 
of proteins in yeast, our work demonstrates the ability of our framework to serve as a tool for modeling cell division and 
intracellular dynamics providing a powerful testbed for mathematical biologists to generate predictions on an increasingly 
relevant experimental scale.

We start in Section 2 by providing background for our biological motivations. In Section 3 we describe our mathematical 
model, both the reaction-diffusion system and the level set representation. We then introduce our conservative finite volume 
formulation in section 4 and validate it in section 5. We apply our framework to simulate prions dynamics in dividing yeast 
cell in Section 6 and conclude in Section 7.

2. Biological background

2.1. Proteins aggregation and prions diseases

Proteins are linear sequences of amino acids, which then fold into a three dimensional shape or conformation. The 
function of a protein is tightly connected to its conformation [1]. As such, cells have a developed a protein-quality control 
mechanisms, including molecular chaperones, which degrade misfolded or damaged proteins [13]. Prions are a special class 
of proteins which are capable of adopting multiple stable conformations, which not only fail to be removed by protein 
quality control mechanisms, but which themselves can induce proteins in the normal confirmation to change to the alternate 
(prion) conformation [62].

More specifically, the proteins in the prion conformation form aggregates. These aggregates then convert normally folded 
protein to the prion state by acting as a template. The newly misfolded protein monomer then is incorporated into the 
aggregate, thus increasing its size. Then, rather than be cleared by protein quality control mechanisms, these aggregates can 
be split (fragmentation), which then increases both the number of aggregates and rate of further misfolding [62].

In mammals, prions have only been associated with progressive, untreatable and fatal neurodegenerative disease [32,49]. 
Prions disease in mammals can be infectious between members of the same species (scrapie in sheep, kuru in humans), 
occur spontaneously in an individual (Creutzfeldt-Jakob disease and fatal familial insomnia, and can even jump between 
species as when humans acquire variant Creutzfeldt-Jakob disease from consuming meat from cattle with bovine spongiform 
encephalopathy (Mad Cow disease) [20]. Fortunately, in humans prion diseases are rare. There are less than 400 reported 
cases of Creutzfeldt-Jakob disease per year, but approximately 70% of those affected die within a year of exposure [44]. Fatal 
familial insomnia, though rare, is typically fatal within only 18 months of initial symptoms [7].

While prion diseases are rare, the biochemical processes of prion disease are closely related to other protein misfolding 
diseases such as Alzheimer’s and Parkinson’s diseases. All these diseases are related by the common amyloid structure of 
their corresponding protein aggregates. As such, much of the research within the prion disease aims to characterize the 
dynamics of the amyloid protein aggregates which will provide insights into classes of much more common disease [20,26]. 
Much of the research within the field aims to characterize the dynamics of protein aggregates that cause prion and amyloid 
diseases [20,26]

One powerful biological tool for studying prion and protein aggregation processes is the single-celled yeast Saccharomyces 
cerevisiae (see Fig. 1). However, because yeast cells are quite different from mammalian cells, mathematical models of protein 
aggregation in yeast need to include different processes from those models designed for mammals.
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Fig. 1. Asymmetric yeast cell division. A Saccharomyces cerevisiae yeast cells under Differential Interference Contrast (DIC) microscopy showing two yeast 
cells (at the bottom) budding [14]. B Illustration of a yeast cell budding, as depicted by Amoussouvi et al. [5]. C Half space rendering of our three-
dimensional simulation of single yeast cell budding.

Fig. 2. Top row: full three-dimensional simulation of a yeast cell (larger sphere φm) with its nucleus (the middle sphere φmn) at its center. As time 
progresses, the daughter cell, φd , and its nucleus, φdn starts budding off. Bottom row: half space rendering of the yeast cell budding.

2.2. Yeast cells and asymmetric division

The single-celled yeast Saccharomyces cerevisiae has emerged as a model eukaryote in biological research and, as such, is 
the subject of our study. Yeast biologists have a host of experimental manipulations at their disposal, making yeast an ideal 
system to study a host of biological processes including protein misfolding and aging [10,62,50].

Yeast are an attractive system for studying protein misfolding because, unlike for mammals, protein misfolding in yeast 
is not fatal or harmful. Moreover in yeast, also unlike mammals protein misfolding processes can be turned on and off 
[21,51,16]. That is, protein misfolding can be reliably induced in healthy cells [17] and, for certain protein mutants, protein 
misfolding phenotypes can be destabilized (i.e., all of the misfolded protein will return to normal.) There are even studies 
which indicate misfolded protein aggregates may have benefits for yeast [43]. However, yeast are useful tools for biological 
questions in other areas.

The cell-division process in yeast makes them a valuable tool for studying aging. Unlike bacteria, which divide into two 
identical (or nearly identical) cells, yeast divide asymmetrically through budding into a mother cell and a daughter cell (see 
Fig. 2). In budding cell division, a new (daughter) cell is grown as an outgrowth of the old (mother) cell. At the time of 
separation, the mother cell is larger than the daughter cell. Finally, the daughter does not inherit the replicative age of 
the mother [27]. Although intracellular constituencies, including the nucleus, are transmitted from mother to daughter cell 
through a narrow bud neck connecting them, not all constituents transmit with equal efficiencies. Mother cells have been 
shown to preferentially retain a variety of “damaged” protein species, and this bias in retention can not be explained by 
differences in volume [68].

Intriguingly, prion aggregates are one such cellular constituency that has been shown to not transmit efficiently between 
mother and daughter cells [21]. A variety of theories have emerged to explain this bias: (1) Misfolded proteins are larger 
and therefore less mobile, especially in a crowded environment such as the intracellular matrix, and therefore have a harder 
progressing toward the daughter cell; (2) “Chaperones” proteins are present in the cell and forcibly restrict the damaged 
proteins to particular compartments, preventing them from reaching the daughter cell. These two assumptions can be 
3
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Fig. 3. Level set representation of a dividing yeast cell in two-dimensions: the beige plane depicts the zero level set, and the three-dimensional surface 
illustrates the level set functions of mother and daughter cells (that are in two-dimensions), denoted by φm and φd respectively. The union of the two 
biological cells is reproduced by taking the minimum of their level set function.

respectively seen as passive and active cellular. The mathematical modeling framework we propose offers the capability to 
investigate these causes. However, for the present scope, we will focus on the passive assumptions alone.

3. Biological modeling

Our mathematical model is built as a two-species reaction-diffusion system defined over a deforming geometry, itself 
represented by a level set function. To study the influence of intracellular compartments, we will consider a succession of 
geometries with increasing complexity and discuss their construction.

3.1. Governing equations

We consider two protein species, A and B , living inside a deforming cell �(t) (see Fig. 2), and track their respective 
concentrations ψA and ψB . We assume that A is a monomer, and that it can aggregate with itself to form the dimer B , 
which itself can degrade into two monomers. We define the dimerization and degradation rate as γAB and γB A respectively. 
Additionally, both species are diffusing with the corresponding diffusivities D A and D B . The concentrations ψA and ψB are 
therefore solutions of the reaction-diffusion equations

∂ψA

∂t
− D A�ψA = 2γB AψB − γABψ2

A ∀x ∈ �(t), (1)

∂ψB

∂t
− D B�ψB = 1

2
γABψ2

A − γB AψB ∀x ∈ �(t). (2)

We assume the cell membrane to be hermetic, and therefore enforce a no-flux boundary condition on the contour of the 
cell ∂�(t)

∇ψA · n = 0 ∀x ∈ ∂�(t), (3)

∇ψB · n = 0 ∀x ∈ ∂�(t), (4)

where n denotes the normal vector to ∂�(t).

3.2. Level set representation

For the biological motivation, we construct �(t), the inside of the dividing yeast cell, by decomposing it into multiple 
subdomains (see Fig. 2). To each subdomain, we associate a level set function. Then, as illustrated in Fig. 3, we assemble the 
complete geometry by taking unions and intersections of these subdomains, which is equivalent to taking min and max of 
the corresponding level set functions.

This setup allows us to construct a succession of four geometrical representations of increasing complexity to evaluate the 
impact of each geometrical feature on the prion aggregation problem. From the initial representation containing the mother 
φm and daughter φd cells only (Fig. 4-A), we successively introduce the mother nucleus φmn (Fig. 4-B), the daughter nucleus 
φdn (Fig. 4-C), and finally two compartments found in yeast cells, the JUNQ (juxtanuclear quality control compartment) and 
IPOD (Insoluble Protein Deposit) [30] (Fig. 4-D). We will use the convention that the level set function is negative inside the 
domain of interest.

A No Nuclei
In this first case, we represent the dividing mother cell as the stationary domain �m and its detaching daughter cell 
�d(t) as two spheres represented by the following level set functions

φm(x, t) = |x − xm| − rm, (5)

φd(x, t) = |x − xd(t)| − rd(t), (6)
4
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Fig. 4. Succession of geometric representations: we start by modeling the cell budding of the mother cell without any nucleus A. Then, we introduce a 
moving nucleus as shown in B, allow the nucleus to split Cm and finally consider additional moving compartments in the mother cell D. We describe the 
specifics of the geometry for our problem in Section 3.2.

where xm and xd(t) are the center of the mother and daughter cell and rm and rd(t) are the respective radii. The entire 
dividing cell is defined as the union of these two domains and is represented by the level set function φ = min(φm, φd), 
as Fig. 3 illustrates.

B Moving Nucleus
Similarly we define the center xmn(t) of the nucleus of the mother cell, its radius rmn(t) and corresponding level set 
function

φmn(x, t) = |x − xmn(t)| − rmn(t). (7)

The upgraded domain �(t) over which the governing equations are valid is now the intersection of previous domain 
with the outside of the mother nucleus

�(t) = (�m ∪ �d(t)) ∩ �c
mn(t), (8)

or equivalently in terms of the level set functions

φ = max(min(φm, φd),−φmn). (9)

C Splitting Nucleus
Following case (i), we define a new level set function for the daughter’s nucleus, which we model detaching from the 
mother cell’s nucleus, as it is observed in nature. The corresponding level set function is

φdn(x, t) = |x − xdn(t)| − rmn(t) − rdn(t), (10)

leading to

�(t) = (�m ∪ �d(t)) ∩ (�mn(t) ∪ �dn(t))c ⇐⇒ max(min(φm, φd),−min(φmn, φdn)) (11)

D Additional Cellular Compartments (IPOD and JUNQ)
Finally for our most comprehensive model we include two cellular compartments representing Insoluble Protein Deposit 
(IPOD) and Juxta Nuclear Quality (JUNQ); we describe the rolls of IPOD and JUNQ in prion aggregation later. We model 
these compartments as moving and rotating ellipsoids of centers xI (t), x J (t) and parameters pI (t), p J (t)

φI (x, t) =
((

(x−xI (t))
px

I (t)

)2 +
(

(y−yI (t))
p y

I (t)

)2

+
(

(z−zI (t))
pz

I (t)

)2
) 1

2

− 1, (12)

φ J (x, t) =
((

(x−x J (t))
px

J (t)

)2

+
(

(y−y J (t))

p y
J (t)

)2

+
(

(z−z J (t))
pz

J (t)

)2
) 1

2

− 1. (13)

The final geometry and level set function are

�(t) = (�m ∪ �d) ∩ (�mn ∪ �dn)c ∩ �c
I ∩ �c

J ∀x ∈R3,∀t ≥ 0, (14)

φ = max
(
min(φm, φd),−min(φmn, φdn),−φI ,−φ J

)
(15)
5
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In our implementation we use the above formulas to initialize at each iteration the level set function, which we then 
reinitialize by reaching the steady state of the following equation

∂φ

∂τ
+ sign(φ0) (|∇φ| − 1) = 0, (16)

defined in fictitious time τ and over the entire computational domain. This is achieved using the second-order Total Varia-
tion Diminishing algorithm detailed in [39].

4. Numerical methods

This section presents our novel finite volume method and compares it to the traditional finite volume method, focusing, 
in particular, on mass conservation. While we will limit our analysis to the reaction-diffusion system describe in the above 
section, we should point out that it can easily be extended to other systems of partial differential equations. The last part 
of this section focus on the use and construction of adaptive non-graded octree grids.

4.1. Finite volume approach

The numerical solution of the system (1)-(2)-(3)-(4) is constructed using a semi-implicit finite volume method [36], 
which final form is given by Eqs. (35) and (36). The diffusive effects are treated implicitly for stability, while the non-linear 
reactive terms are treated explicitly. All diffusive fluxes are approximated using the second-order antisymmetric discretiza-
tion proposed by Lossaso et al. [33] and used in our previous studies [23,61,9,59,56].

4.1.1. Notations, approximations, and remarks
All quantitites are stored at the centers of the octree grids. The control volumes V n

i are defined as the intersection of 
the ith computational cell Ci with the biological complex �n at time step tn (see Fig. 5)

V n
i = Ci ∩ �n+1. (17)

The integrals over these volumes for any cell-based quantity q are approximated using the approximations∫
V n

i

f = f i |V n
i | +O(�x3). (18)

The contour integrals of the normal fluxes ∇q · n over ∂V n
i are decomposed as∫

∂V n
i

∇q · n =
∑

f ∈faces(Ci)

∫
f ∩�n

∇q · n +
∫

∂�n∩Ci

∇q · n, (19)

and since the boundary conditions (3)-(4) are homogeneous, all interfacial fluxes are null and we approximate the above as∫
∂V n

i

∇q · n =
∑

f ∈faces(Ci)

∇q · n
∣∣

f | f ∩ �n| +O(�x3). (20)

The volumes |V n
i | as well as the faces fractions | f ∩�n| are calculated using the second-order quadrature rules presented in 

[38]. The resulting linear systems are solved using a Multigrid [60] preconditioned Bi-Conjugate Gradient Stabilized solver. 
For the model presented in section 3, the total mass of protein at any given time t is

MT (t) = M A(t) + 2MB(t) =
∫

�(t)

ψA + 2
∫

�(t)

ψB =
M∑

i=1

∫
V n

i

ψn
A + 2

M∑
i=1

∫
V n

i

ψn
B , (21)

where M A(t) and MB(t) are the total mass of species A and B respectively. The factor 2 in front of the second integral 
accounts for species B being the dimer composed of two monomers, and therefore being twice as heavy. While this conser-
vation property is easily achieved on fixed geometry, additional care is required to ensure it holds in the deforming case as 
we will see next.

In practice, the dynamic mesh refinement imposes to interpolate the solution between consecutive grids. To preserve 
the overall accuracy, we use a third-order Least Square interpolation which is unfortunately non-conservative. This interpo-
lating step can generate local spurious converging mass variations. However, as our results illustrate, these variations are 
converging and, in practice, reasonably small.

Another key feature of our proposed finite volume formulation is that it does not require extending the solution across 
the interface as it is often required with interfacial problems (see [23,59]). Instead, our formulation only involves the solution 
where it is formally defined (i.e. inside �(t)).
6
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Fig. 5. Comparison between the traditional and conservative finite volume formulations: (A) With the traditional approach, the equation is first discretized 
in time and then spatially integrated over each control volume V n+1

i = Ci ∩ �n+1 (depicted in blue) at the future time tn+1. In the spatio-temporal 
domain, this is an integral over the orange hyper volume. (B) With our proposed formulation, the partial differential equation is directly integrated over the 
hypervolume Hn

i = V i(t) ×[tn, tn+1], leading to mass conservation. (C) The local mass loss with the traditional method are directly related to the difference 
between the two hypervolumes (in red). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1.2. Traditional formulation
Here, we consider a common way of applying the finite volume method to time-dependent problem, which we will refer 

to as the traditional formulation. In this formulation we start by discretizing the conservation equations (1) and (2) in time 
using the semi-implicit scheme

ψn+1
A − ψn

A

�t
− D A�ψn+1

A = 2γB Aψn
B − γAB

(
ψn

A

)2
, (22)

ψn+1
B − ψn

B

�t
− D B�ψn+1

B = 1

2
γAB(ψn

A)2 − γB Aψn
B , (23)

where the upper-scripts n and n + 1 indicate the semi-discrete quantities being evaluated at (x, tn) and (x, tn+1) respec-
tively. We construct the finite volume formulation by integrating the above Eqs. over the control volumes V n

i = Ci ∩ �n+1

(see Fig. 5). For each cell Ci=1,··· ,M , we obtain∫
V n+1

i

ψn+1
A − D A�t

∫
V n+1

i

�ψn+1
A =

∫
V n+1

i

(
ψn

A + �t
(

2γB Aψn
B − γABψn

A
2
))

, (24)

∫
V n+1

i

ψn+1
B − D B�t

∫
V n+1

i

�ψn+1
B =

∫
V n+1

i

(
ψn

B + �t

(
1

2
γABψn

A
2 − γB Aψn

B

))
, (25)

which, using Gauss’s theorem, we rewrite as∫
V n+1

i

ψn+1
A − D A�t

∫
∂V n+1

i

∇ψn+1
A · n =

∫
V n+1

i

(
ψn

A + �t
(

2γB Aψn
B − γABψn

A
2
))

, (26)

∫
V n+1

i

ψn+1
B − D B�t

∫
∂V n+1

i

∇ψn+1
B · n =

∫
V n+1

i

(
ψn

B + �t

(
1

2
γABψn

A
2 − γB Aψn

B

))
. (27)

To quantify the total mass (shown in (21)) we start by summing Eq. (26) over all grid cells,

M∑
i=1

⎛
⎜⎜⎝

∫
V n+1

i

ψn+1
A − D A�t

∫
∂V n+1

i

∇ψn+1
A · n

⎞
⎟⎟⎠ =

M∑
i=1

∫
V n+1

i

(
ψn

A + �t
(

2γB Aψn
B − γABψn

A
2
))

(28)

Because the diffusive fluxes are anti-symmetric and the boundary condition (3) is homogeneous, the contour integrals 
vanish, leaving us with

M∑
i=1

∫
V n+1

i

ψn+1
A =

M∑
i=1

∫
V n+1

i

(
ψn

A + �t
(

2γB Aψn
B − γABψn

A
2
))

, (29)

which in terms of the total mass M A of the monomer A reads
7
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Mn+1
A =

M∑
i=1

∫
V n+1

i

ψn
A + �t

M∑
i=1

∫
V n+1

i

(
2γB Aψn

B − γABψn
A

2
)

. (30)

Similarly we obtain for the second specie

Mn+1
B =

M∑
i=1

∫
V n+1

i

ψn
B + �t

M∑
i=1

∫
V n+1

i

(
1

2
γABψn

A − γB Aψn
B

2
)

. (31)

Multiplying Eq. (31) by two and adding the result to Eq. (30), the reactive terms cancel and it results

Mn+1
T = Mn+1

A + 2Mn+1
B =

M∑
i=1

∫
V n+1

i

(
ψn

A + 2ψn
B

)
. (32)

Because the volumes over which the integrals are performed are evaluated at time step tn+1 while the integrands are 
evaluated at tn , the right-hand side is not the total mass at tn and therefore, with this semi-discrete formulation, Mn+1

T �=
Mn

T . Another issue resulting from this asynchronicity is that the quantities ψn
A , ψn

B may not be formally defined over the 
control volumes V n+1

i , and therefore they may have to be extended over the interface ∂�n before being integrated in 
Eqs (26) and (27). Such extensions are often expensive as they involve costly geometric reconstruction [54,23] or solving 
non-linear propagation equations [6,58], and may not preserve the stability of the method.

4.1.3. Conservative formulation
Inspired by the work of Gaburro et al. [22], we construct the conservative formulation by integrating Eqs. (1) and (2)

over the space-time hyper volume Hn
i = V i(t) × [tn, tn+1] (see Fig. 5). Focusing on the monomer A we obtain∫

Hn
i

(
∂ψA

∂t
− D A�ψA

)
=

∫
Hn

i

(
2γB Aψn

B − γAB
(
ψn

A

)2
)

, (33)

which in virtue of Gauss’s theorem can be rewritten as

∫
V n+1

i

ψn+1
A −

∫
V n

i

ψn
A − D A

tn+1∫
tn

∫
∂V i(t)

∇ψA · n =
∫
Hn

i

(
2γB AψB − γAB (ψA)2

)
. (34)

Integrating the diffusive terms implicitly and the reactive ones explicitly, the semi-discrete formulation becomes∫
V n+1

i

ψn+1
A −

∫
V n

i

ψn
A − D A�t

∫
∂V i(t)

∇ψA · n = �t

∫
V n

i

(
2γB AψB − γAB (ψA)2

)
, (35)

and similarly∫
V n+1

i

ψn+1
B −

∫
V n

i

ψn
B − D B�t

∫
∂V i(t)

∇ψB · n = �t

∫
V n

i

(
1

2
γABψn

A − γB Aψn
B

2
)

. (36)

To prove that this formulation is conservative, we again sum the formulation over all computational cells, use the anti-
symmetry of the fluxes and the homogeneity of the boundary condition (3) to conclude that

Mn+1
A =

M∑
i=1

∫
V n

i

ψn
A + �t

M∑
i=1

∫
V n

i

(
2γB Aψn

B − γABψn
A

2
)

. (37)

The only difference between the above equation and (30) is that the first integral in the right-hand side is now evaluated 
on the geometry at tn . It implies that the sum is indeed the total mass of A at tn

Mn+1
A = Mn

A + �t
M∑

i=1

∫
V n

i

(
2γB Aψn

B − γABψn
A

2
)

, (38)

and similarly
8
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Mn+1
B = Mn

B + �t
M∑

i=1

∫
V n+1

i

(
1

2
γABψn

A − γB Aψn
B

2
)

, (39)

leading to the total conservation

Mn+1
A + 2Mn+1

B = Mn
A + 2Mn

B ⇐⇒ Mn+1
T = Mn

T . (40)

We conclude that this formulation is mass-conservative.

4.1.4. Convergence limitations of the traditional formulation
As we exposed, the traditional finite volume method fails to preserve mass. We find here an upper bound for its accuracy. 

From this result, we demonstrate that the total mass loss, and by extension the concentration, is not guaranteed to converge. 
We conduct this analysis on a uniform grid for readability and denotes by �x the spatial resolution.

To quantify the total mass variation �n
M between two consecutive time steps

�n
M = Mn+1

T − Mn
T =

M∑
i=1

⎛
⎜⎜⎝

∫
V n+1

i

ψn
A + 2ψn

B −
∫

V n
i

ψn
A + 2ψn

B

⎞
⎟⎟⎠ , (41)

we start by reformulating Eq. (32) as

Mn+1
T −

M∑
i=1

∫
V n+1

i

(
ψn

A + 2ψn
B

) = 0, (42)

and decomposing each integrals over the domains V n
i and V n+1

i \ V i
n = 	n

i (visualized in Fig. 5-(C) as the red shaded 
region).

Mn+1
T −

M∑
i=1

∫
V n

i

(
ψn

A + 2ψn
B

) =
M∑

i=1

∫
	n

i

(
ψn

A + 2ψn
B

)
. (43)

The left-hand side term is exactly �n
M , and so after taking the absolute value we obtain

|�n
M | ≤

M∑
i=1

∫
	n

i

|ψn
A + 2ψn

B |, (44)

Because only for the computational cells that are crossed by the interface during the interval [tn, tn+1] the integral over 	n
i

is non-zero, we can further simplify the above inequality and write that

|�n
M | ≤ Mn


 max
i

|	n
i | ||ψn

A + 2ψn
B ||∞, (45)

where Mn

 is the total number of cells crossed by the interface during [tn, tn+1]. Provided that the time step is small enough, 

this total number scales as 1
�xd−1 , d being the spatial dimension. The size of the volume variation |	n

i | is order of the local 
interface displacement multiplied by the area of the surface contained in V n

i , therefore |	n+1
i | = O(�xd−1�t). Assuming 

that the concentration field remains bounded, we obtain the following approximation for the local mass loss

�n
M = O(�t), (46)

telling us that the global mass loss is O(1). This proves that the mass loss are non-diverging, but we cannot conclude 
whether they are converging or not. However, we can construct a simple example1 where the upper bound in Eq. (44) is 
reached, proving that in general the total mass is not converging and therefore that concentration is also not converging in 
L∞-norm.
9
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Fig. 6. Adaptive grid generation and representation. The level of a computational cell is defined as the number of successive subdivisions to create it. In this 
example the maximum level is 7 (red cells) and the minimum level is 2 (blue cells). The automatic refinement is done according to criterion (47)-(48).

4.2. Adaptive mesh refinement

The computational domain is represented as a non-graded octree grid [8]. At each iteration, the mesh generation starts 
with the root cell representing the entire domain (corresponding to level the 0) and, which we subdivide into eight identical 
cells of level 1 (see Fig. 6). We then recursively divide each newly created cell C if either

min
v∈nodes(C)

|φ(v)| ≤ Lip(φ) · D(C) and level(C) < maxlevel, (47)

or

level(C) < minlevel, (48)

where Lip(φ) is an estimation of the minimal Lipschitz constant for the level set function φ(x), set to 1.2 in practice, D(C)

is the length of the diagonal C , minlevel and maxlevel are the prescribed minimum and maximum tree level. As it was done 
in our previous study [61], we store the concentrations at the cell centers and the level set values at the nodes. Because 
the interface is evolving between iterations, the grid is too and the solution must be interpolated between grids. This is 
achieved using third-order Least Square regression as it was done in our previous studies [23,61,59].

5. Numerical validations

In this section, we compare our conservative formulation to the traditional one, in both two and three spatial dimen-
sions. We first consider a simpler test problem for which we construct an analytic solution allowing us to investigate the 
convergence of the solution. We then return to our motivating application and focus on total mass conservation. In both 
cases, we find that our method converges with second-order accuracy in space while the traditional approach rapidly stalls.

5.1. Test problem: expanding sphere

To study the spatio-temporal convergence of the two formulations, we consider a one-species diffusion system with an 
exact solution on an expanding and translating sphere. We define this spherical domain by the level set function

φexact(t) = |x − x0(t)| − r(t), (49)

where r(t) = 0.25t is the expanding radius and x0(t) = (0, t, 0) is the translating center. In this domain we consider the 
following test problem for a single concentration field ψ(x, t)

∂ψ

∂t
− �ψ = f (x, t), ∀x ∈ �(t), (50)

∇ψ · n = g(x, t), ∀x ∈ ∂�(t). (51)

We use for the exact solution ψexact(x, t), forcing term f (x, t) and boundary flux g(x, t) the functions

2D ψExact(x, t) = ex+y+t, f (x, t) = −ex+y+t, g(x, t) = ex+y+t, (52)

3D ψExact(x, t) = ex+y+z+t, f (x, t) = −2ex+y+z+t, g(x, t) = ex+y+z+t, (53)

1 Consider, for example, a flat interface moving at a constant speed V , with uniform concentration and fields, and a fixed time step �t = �x
V . In this 

example, there are exactly 1
�x many 	n+1

i , which are all identical and of size �x2, and thus the upper bound in Eq. (44) is reached.
10
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Fig. 7. Expanding sphere - Convergence of our conservative (left column) and the traditional (right Column) formulations for the expanding sphere test 5.1, 
in two (A-B), and three spatial dimensions (C-D).

Table 1
Convergence of the global L∞−error with the proposed and traditional formulations, in two and three spatial dimensions. 
Results are indexed by the minimum and maximum grid levels.

2D

Conservative FV Traditional FV

levels error order error order

1:5 9.76 × 10−4 - 1.12 × 10−3 -
2:6 2.15 × 10−4 2.18 4.36 × 10−4 1.37
3:7 3.74 × 10−5 2.52 2.03 × 10−4 1.09
4:8 1.02 × 10−5 1.87 1.14 × 10−4 0.83
5:9 2.46 × 10−6 2.06 9.74 × 10−5 0.23
6:10 6.52 × 10−7 1.92 6.86 × 10−5 0.51
7:11 1.71 × 10−7 1.93 4.78 × 10−5 0.52
8:12 4.41 × 10−8 1.96 3.21 × 10−5 0.57

3D

Conservative FV Traditional FV

levels error order error order

1:5 6.83 × 10−3 - 6.83 × 10−3 -
2:6 1.69 × 10−3 2.01 1.69 ×10−3 2.01
3:7 2.56 × 10−4 1.96 2.72×10−4 2.64
4:8 6.86 × 10−5 2.07 6.85 × 10−5 1.99
5:9 1.64 × 10−5 2.06 2.43 × 10−5 1.50
6:10 4.24 × 10−6 1.95 1.07 × 10−5 1.18

and run the simulation for t ∈ [0, 5]. Because we expect our new formulation to be first-order in time and second-order 
in space - i.e. O(�t + �x2) -, we let �t = 1000�x2, so that the measured numerical error is O(�x2). To decrease the 
resolution, we increase both the minimum and maximum levels of the grid. Doing so, we ensure that the spatial resolution 
diminishes everywhere. Increasing only the maximum level would only refine the grid close to the interface.

Fig. 7 depicts the time evolution of the L∞-error for increasing grid resolutions. In two dimensions, our method is con-
verging at an apparent constant rate, while the traditional finite volume formulation appears to stall after two refinements 
(maxlevel = 7). It results in a solution orders of magnitude more accurate with our conservative formulation. The same ob-
servations apply to the three-dimensional results, even though the differences between the two methods are less striking 
as the analysis is limited to a maxlevel = 10.

The corresponding orders of convergence for the global L∞-errors are reported in Table 1. The conservative formulation 
is second-order accurate in space and at least first order in time in two and three dimensions. With the non-conservative 
method, the order of convergence decreases as the resolution increases. This accuracy drop is flagrant in two dimensions, 
where the order rapidly falls around 0.5. In comparison, the three-dimensional order only drops to 1.18.
11
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Fig. 8. Semi-log plot of relative mass loss for the conservative (A) and traditional FV (B). Again the curves are labelled by their minimum and maximum 
grid level. We observe that the traditional method rapidly stalls while the conservative one provide converging mass loss over the considered range of grid 
resolution.

Table 2
Mass loss for the biological application, using either our 
methods. Results are indexed by the minimum and maxi-
mum grid levels.

3D

Conservative FV Traditional FV

Levels mass loss order mass loss order

1:5 2.56 × 10−3 - 6.06 × 10−2 -
2:6 8.74 × 10−4 1.55 9.66 × 10−3 2.65
3:7 2.13 × 10−4 2.03 3.02 × 10−3 1.68
4:8 5.68 × 10−5 1.91 2.31 × 10−3 0.38
5:9 1.46 × 10−5 1.95 1.98 × 10−3 0.22
6:10 3.86 × 10−6 1.92 1.64 × 10−3 0.28

5.2. Practical mass conservation

To quantify the mass conservation of both methods, we go back to the original biological motivation described by the 
system (1)-(2), and consider the three-dimensional Splitting Nucleus geometry with the geometric parameters listed in 
3. Simulations are carried until the final time T = 90 min at which point the daughter cell has fully detached from the 
mother cell. We set the diffusion coefficients to be D A = 103 μm2 · min−1 and D B = 1 μm2 · min−1. The reaction rates are 
γAB = 10−2 μm3 · min−1 and γB A = 10−3 min−1. We define the relative total mass variations at any given discrete time tn

in terms of the initial and current total mass

eM(tn) =
∣∣∣∣ Mn

T − M0
T

M0
T

∣∣∣∣, (54)

where the current total mass is calculated as

Mn
T =

∫
�n

ψn+1
A + 2ψn+1

B . (55)

The mass loss as a function of time and for increasing grid resolution, using either method is depicted in Fig. 8, and the 
estimated orders of convergence are reported in Table 2. As for the previous error analysis, our formulation converges at 
an apparent second-order rate, while the traditional method stalls after a couple of refinement. Again the error differences 
between the two methods are striking: they reach three orders of magnitudes on the finest grid (maxlevel = 10). The mass 
loss with our method on the coarsest grid is comparable to the one obtained with the traditional on the finest grid.

For the rest of our biological study, we will set the minimum and maximum grid levels to 5 and 8, respectively. In light 
of the measurement reported in Fig. 8 we are confident that the typical mass loss will be well below 0.1%.
12
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Table 3
Simulation parameters for the dividing yeast cell (section 6.1).

Parameter Symbol Value References

Geometry

Budding time T 90 min [11]
Mother radius rm 2.07 μm [63]
Daughter final radius rd 1.81 μm [63]
Nucleus radius rn 0.89 μm [37,66]
Estimated IPOD and JUNQ length - 0.28 μm [30,45]

Biochemistry

Characteristic concentration ψ0 713 μm−3 [19]
Typical diffusivity - 24-120 μm2min−1 [37]
Typical fragmentation rate γB A 1.35 × 10−3 min−1 [65]
Typical aggregation rate γAB 2.57 × 10−4 μm3 · min−1 [65]

Computational

Domain length - 7.5 μm
Grid levels - 5:8
Grid resolution - 29 nm - 234 nm
Time step �t 12 s

6. Simulated prions dynamics in dividing yeast cells

6.1. Simulation parameters

We provide all parameter values in Table 3 and summarize here how they were obtained. Bryne et al. [11] found the 
cell reproduction time to be 1.46 hours on average (for the strains YJW512 [PSI +]); based on this we took the cell division 
time (i.e. the final time) to be T = 90 min. Next, we chose 37 μm3 as the volume of the mother cell at the initial time 
according to Tyson et al. [63]; from the same reference, we have that the volume of the daughter cell must be two-thirds 
of the volume of the mother cell when budding is complete. For the nucleus size, we use the estimation provided in 
[37], which is in reasonable agreement with the experimental observations of Wang et al. [66]. We model the additional 
compartments in the mother cell to resemble the IPOD and JUNQ compartments found in yeast cells, which are known to 
affect protein aggregation. Although the size and shape of these compartments are known to vary, we chose to represent 
these compartments as ellipsoids for simplicity. We selected their characteristic lengths to be smaller than the nucleus, 
based on microscopic observations found in [45].

We estimate the characteristic prion concentration ψ0 from the value reported on the Saccharomyces Genome Database 
[19]. For the typical rates of fragmentation and aggregation, γB A and γAB respectively, we chose values in agreement with 
our previous study [65]. We note that these findings were obtained in a different context, and so the typical rates (reported 
in Table 3) will only be used as guiding information during our computational exploration. In all of our simulations, we 
use constant initial concentration fields with random spatial noise. These initial profiles are re-scaled so that the initial 
total mass is identical across all examples. For the rest of this manuscript, we will use the minute and micrometer as our 
characteristic time and length scales and non-dimensionalize all concentrations by the characteristic concentration ψ0 . From 
now on, all quantities will be reported in dimensionless form.

In this last section, we return to the original biological motivation, the simulation of prion dynamics in dividing yeast 
cells, and characterize the impact of the biochemical properties and geometric features on the proteins distributions. We 
conduct this analysis in two steps, focusing first on a purely diffusive system and exposing the limitations of the well-mixed 
assumption as the system representation complexifies. We then turn our attention to the full reaction-diffusion system and 
quantify the asymmetries in the species repartition.

6.2. Diffusive system - limitations of the well-mixed assumption

To quantify the impact of the diffusion alone we first simulate a purely diffusive system (i.e. γAB = γB A = 0). Because 
the two protein species are now decoupled, we will focus on species A only and assume that ψB = 0. For each geometrical 
representation, we vary the diffusion rate from 10−7 to 105, scanning in particular through the biologically relevant range 
(≈ 101 − 102, shown in Table 3), and measure the amount of transmitted material in two ways. First, we compute F A(t) the 
fraction of total mass transferred to the daughter cell

F A(t) =
∫
�D (t) ψA∫

�D (t)∪�M (t) ψA
=

∫
�D (t) ψA

M0
T

(56)

where �M(t) ad �D(t) denote the inside of the mother and daughter cells at time t , and M0
T is the initial total mass. 

Second, we compute FC , the final ratio of average concentrations between the mother and daughter cells

FC =
∫
�D (T )

ψA∫
ψA

|�M(T )|
|�D(T )| , (57)
�M (T )

13
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Fig. 9. Prions diffusion in dividing yeast cells for geometries of increasing complexity and D A = 10−3. The concentration profile is represented in char-
acteristic concentration units (ψ0 = 713 μm−3). A No nucleus, B Moving nucleus, C Splitting nucleus, and D Splitting nucleus with additional moving 
compartments.

For a symmetric transfer from the mother to the daughter cell, we expect the average concentration in both final cells to 
be identical, and so the concentration ratio FC to be 1, and the final mass ratio F M(T ) to only depend on the cells volume 
and be |�D (T )|

|�D (T )|+|�M (T )| , which for the chosen radii (see Table 3), and in the absence of nuclei or compartments, is 0.4.
The diffusion process for all four geometries is depicted in Fig. 9. The fraction of final mass for all geometries and 

all considered diffusion coefficients is represented in Fig. 10. Unsurprisingly the fraction of mass remains under 0.4 (the 
ideal value for a perfectly symmetric transfer) even for the fastest diffusion and the least obstructed geometry (for case A, 
D A = 103, we measure F M(T ) = 0.38). The final separation between the two cells happens around t = 80. After this time, 
the daughter mass cannot change, despite the daughter cell still moving and growing. Indeed, we observe the daughter’s 
mass to be constant after this point in all cases. We interpret this as another illustration of the conservation property of our 
finite volume formulation.

The addition of the nucleus seems to have the most dramatic impact on the transfer process, as it reduces the daughter’s 
mass by around 50%. Furthermore, including the split of the nucleus or additional cellular compartments reduces each time 
14



A.A. Heydari, S.S. Sindi and M. Theillard Journal of Computational Physics 448 (2022) 110755
Fig. 10. Fraction of total mass in the daughter cell as a function of time for various diffusion rates. In A, where there is no nucleus, about 40% of the mass is 
transferred to the daughter cell for fast diffusion rates. The addition of obstacles drastically reduces the amount of transmitter material. B Moving Nucleus.
C Splitting Nucleus. D Additional compartments in the cell.

Fig. 11. Ratio of the final average concentration in the daughter and mother cells (FC ) for varying diffusion coefficient (D). As expected, almost no mass is 
transferred between the mother and daughter cells for very slow diffusion rates. At the other extreme, the system is well-mixed, and the concentrations are 
identical (ratio of 1). For biologically relevant diffusion rates, we find that the system is far from an ideal well-mixed environment. The system’s complexity 
amplifies this discrepancy.

the transmission by another 10% to 15%. Ultimately, for the most realistic representations (B, C, D), the transmission is largely 
asymmetric, suggesting that the diffusive process alone can generate asymmetries and that the well-mixed assumption is 
irrelevant.

To further investigate these asymmetries and the validity of the well-mixed assumption, we turn our attention to Fig. 11
where the final concentration ratios are reported. Again, an ideal well-mixed system would lead to an ideal transfer and a 
ratio of 1. A ratio of 0 indicates that no transfer occurred. For the most realistic geometries (B, C, D), the ideal transmission 
limit is only approached for the largest diffusion coefficients, which are likely order of magnitude larger than the biological 
ones. The well-mixed assumption for such a system is therefore largely inaccurate. Most interestingly, the transition from 
a non-transferring system (FC = 0) to an ideal well-mixed system (FC = 1) appears to be centered around the biologically 
15



relevant diffusion values. This observation suggests that the biological system may lie where the diffusion coefficient vari-
ations have their largest impact. In other words, this hints that the biological system may be hypersensitive to the prions 
diffusivity.

6.3. Full system - asymmetric distributions

For this final study, we consider the full systems and quantify the impacts of the reaction rates on the asymmetry of 
the transfer for each protein species. We set the diffusion coefficients (D A = 103, D B = 1) so that they are close to the 
biologically relevant range. We chose D B to be less than D A because species B is bigger, and therefore expected to be less 
mobile. We will consider the splitting nucleus geometry only and quantify the transfer process by computing the final mass 
fraction of each specie

F A(T ) =
∫
�D (T )

ψA

M0
T

and F B(T ) = 2
∫
�D (T )

ψB

M0
T

. (58)

For a single species, the final mass fraction in the daughter cell does not exceed 0.2 (see Fig. 10 C). Because all our initial 
conditions are re-scaled to have the same total mass, the final mass fraction of either species cannot exceed 0.2. If either 
one of them reaches this value, it indicates that the other species has been depleted. In the current context, we will define 
a perfectly symmetric transfer as one where the above final ratios are identical.

The reaction-diffusion process is illustrated on Fig. 12. Both concentrations appear to be quasi-uniform in each cell and 
sharply varying over the bud neck. These localized spatial heterogeneities seem to be the main explanations for the large 
concentration asymmetries we observed at the final stage. This suggests that the area of the bud neck over which the 
cellular material is transferred is crucial in the transmission process.

In the same Figure, we display the final fraction of each species for varying reaction rates. As expected, when one of 
the reaction rates becomes extremely large (top left and bottom right corners of the diagrams), one of the species will be 
almost depleted while the mass ratio of the other one will approach the maximum ratio (0.2). Furthermore, in the vicinity 
of the biologically relevant rates, we observe that the fraction of species A is about two times larger than this of species B, 
indicating a clear asymmetry in the transmission process. We expect this unbalanced transfer will occur each time a new 
cell is created, and therefore that the ratio asymmetries between the youngest cells and the oldest will magnify with the 
generational gap’s length. We note that these observations are consistent with previous experimental and computational 
studies of the yeast [P S I+] prion system [21].

7. Discussion & conclusions

Motivated to understand asymmetric transfers in dividing yeast cells, we proposed a novel numerical framework for 
reaction-diffusion systems in a three-dimensional deforming domains. Using finite volume discretizations, level set func-
tions, and adaptive octree grids, our framework can produce accurate simulations at an enhanced computational cost while 
offering extreme modeling flexibility. The cornerstone of our approach is our novel finite volume formulation, where the par-
tial differential equations are integrated over spatio-temporal control volumes. As we demonstrated, this procedure ensures 
mass conservation and produces a converging solution, which a traditional finite volume discretization may not achieve.

Using this new computational tool, we demonstrated how spatial heterogeneity can cause asymmetric protein transfer 
in dividing yeast cells and studied the effect of the yeast geometry, the mobility of the prions, and the reaction rates. We 
found that diffusion alone can create asymmetries, and even more so for realistic parameters and geometries. This leads us 
to conclude that the well-mixed assumption is not pertinent for such systems. Looking at the full reaction-diffusion model, 
we were able to quantify the transfer of each protein species from the mother to the daughter cell for a wide range of 
reaction rates. We found that our system produces large asymmetries reminiscent of these observed in experimental setups 
for plausible estimations of these rates.

Our reaction-diffusion model is probably too simple to produce a comprehensive simulation of the entire transmission 
process, yet it succeeds at reproducing experimentally observed features and provide valuable insights for future modeling 
strategy. Our exploration revealed sharp spatial variations across the bud neck, intuiting that the geometry of neck may be 
crucial for the transmission process. This suggests that either the model or the computational grid may need to be refined 
in that area, or that perhaps a reduced two-dimensional model of the bud neck can capture the essence of this problem.

The flexibility of our framework makes it a method of choice for studying complex intracellular biophysical processes 
and virtually any reaction-diffusion system on a deforming domain. The reaction-diffusion system can easily be modified 
to include more protein species, different initial populations, production and destruction rates, or other biological processes 
while preserving mass conservation. In addition, the cell shape can be refined to better match experimental observations, 
and other cellular entities can be integrated to better reflect how complex of an environment a cell is.

As microscopic imaging technologies advance, high-fidelity modeling strategies for studying sub-cellular protein dynam-
ics aggregation models and simulations are required to match and support experimental data. This work lays the foundation 
of a new class of continuum modeling techniques for efficient and accurate simulation of intracellular processes, which we 
believe can help the scientific community shine the light on some essential biophysical mechanisms, a necessary first step 
to understand diseases and develop new treatments.
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Fig. 12. Asymmetric mass transfer in dividing yeast cell - A Concentration profiles for γB A = 10−3, γAB = 1, D A = 103 and D B = 1. B Final mass fractions 
in the daughter cell (F A(T ), F B (T )).
17
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