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We present an approach to simulate the diffusion, advection and adsorption–desorption of 
a material quantity defined on an interface in two and three spatial dimensions. We use 
a level-set approach to capture the interface motion and a Quad/Octree data structure to 
efficiently solve the equations describing the underlying physics. Coupling with a Navier–
Stokes solver enables the study of the effect of soluble surfactants that locally modify the 
parameters of surface tension on different types of flows. The method is tested on several 
benchmarks and applied to three typical examples of flows in the presence of surfactant: 
a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau–
Levich coating problem.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in fluid dynamics exhibit a different behavior in the presence of surfactants at the interface between 
two phases or at a free surface. Surfactants are amphiphilic molecules, i.e. they possess both hydrophilic and hydrophobic 
groups, giving them properties that can affect the flow through two different mechanisms that have the same origin. First, 
surfactants at an interface lower its surface tension, thus altering the pressure jump at the interface. Second, when the 
surfactant concentration is not constant along the interface, it generates the so-called Marangoni forces, which are tangential 
stresses that can critically perturb the flow near the interface.

The computational modeling of the diffusion, the advection, the adsorption and the desorption processes of a material 
quantity on a moving interface, as well as its possible effects on a fluid flow, is a challenging task. Several computational 
studies have been undertaken since the early 1990s, involving more or less sophisticated numerical methods and more 
or less comprehensive physical models depending, for example, on whether or not the surfactant is considered soluble, 
which implies the presence of adsorption–desorption coupling between the bulk and the interface; whether the effect of 
surfactants on the surface tension are modeled by a linear or a nonlinear equation of state; or whether the full Navier–Stokes 
equations or the Stokes equations are considered.

In 1989, Stone and Leal [34] developed a boundary integral method for studying the effects of insoluble surfactant 
on drop deformation and breakup. One year later, He, Dagan and Maldarelli [14] investigated, using uniform retardation 
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perturbation schemes, the retarding effect of the Marangoni forces due to soluble surfactant on the motion of a fluid sphere 
in creeping translation inside a tube. In 1992, Borhan and Mao [3] developed a boundary element method to study the 
effects of surfactant on drop deformation. The same year, Milliken, Stone and Leal [22] developed a boundary integral 
method for studying the evolution of viscous drops under the hypothesis of Stokes flow with arbitrary viscosity ratios in 
the presence of surfactant and using a nonlinear equation of state for the interfacial tension. In 1994, Leveque and Li [17]
designed an immersed interface method for elliptic equations with discontinuous coefficients and singular source terms, 
which could be applied to the study of the effects of Marangoni forces on fluid flows. In 1998, Eggleton and Stebe [11]
investigated the effects of a soluble surfactant on the deformation of a droplet using a boundary integral method for Stokes 
flows. In 2003, Drumright-Clarke and Renardy [10] used the full Navier–Stokes equations to study the effects of insoluble 
surfactant on the motion and breakup of viscous drops in a shear flow, using a volume-of-fluid method. In 2004, James 
and Lowengrub [15] developed a finite-elements solver using a surfactant-conserving volume-of-fluid interface-capturing 
method to investigate the effects of insoluble surfactant on various interfacial flows. In 2006, Xu, Li, Lowengrub and Zhao 
[41] developed a level-set method on uniform grids for solving the surfactant equation coupled to an external Stokes flow 
solver, and applied it to investigate the effects of insoluble surfactant on single drops, on drop–drop interactions and on the 
interactions of many drops. It was the first time the level-set method was used to simulate fluid interfaces with surfactant. 
In 2007, Muradoglu and Tryggvason [27] developed a front tracking method to investigate the axisymmetric motion and 
deformation of a viscous drop with soluble surfactant moving in a circular tube. This approach introduced an adsorption 
layer in order to model the adsorption/desorption terms. In 2009, Teigen et al. [38] presented a diffuse-interface approach 
for modeling the advection, the diffusion and the adsorption–desorption of material quantities on a deformable interface, 
using finite-difference schemes on a block-structured adaptive grid.

In this paper, we present a level-set method on adaptive Quad/Octree grids to study the effects of both soluble and 
insoluble surfactant on free surface flows in two and three spatial dimensions. We use the full Navier–Stokes equations and 
a nonlinear equation of state for the surface tension. After describing the governing equations in section 2 we will describe 
the numerical approach in section 3. Section 4 is dedicated to the verification in both in two and three spatial dimensions, 
mainly using variants of the test examples proposed in [27]. In Section 5, we present three examples of application of our 
method: the deformation of a bubble in a shear flow in the presence of soluble surfactant, the well-known phenomenon 
of tears of wine, and the effect of the presence of surfactant on the flow near the meniscus in the Landau–Levich coating 
problem. Section 6 gathers a few concluding remarks on the topic of the simulation of surfactant-driven flows using our 
method.

2. Governing equations

The governing equations are those describing the evolution of the surfactant concentration, both at the interface and in 
the bulk as well as their coupling. In addition, the surfactant concentration and the fluid’s velocity field are coupled through 
the surfactant’s advection and the surface tension effects.

2.1. Evolution of a material quantity defined on an interface

A scalar quantity �, here the surface surfactant concentration, diffusing along an interface � and being advected by an 
external velocity field u is described by the following time-dependent equation [33]:

�t + ∇s · (�u) = Ds�s�, (1)

where Ds is the diffusion constant of � along �. Using the definition of the surface divergence ∇s · v = ∇ · v − n · [(∇ v) · n], 
where n is the outward normal to �, and that of the surface Laplacian �s f = � f − ∂2 f

∂n2 − κ ∂ f
∂n , where κ = ∇ · n = ∇s · n is 

the mean curvature of the interface, Equation (1) yields:

�t + u · ∇s� + �∇ · u − �n · [(∇u) · n] = Ds

(
�� − ∂2�

∂n2
− κ

∂�

∂n

)
. (2)

Splitting the velocity into its normal un and its tangential us components and using the fact that n · ∇s f = 0 for any 
scalar quantity f , Equation (1) can be further written as:

�t + us · ∇s� + �∇ · us − �n · [(∇us) · n] + �κun = Ds

(
�� − ∂2�

∂n2
− κ

∂�

∂n

)
.

Such relations and their variants, along with their rigorous demonstration, can also be found in [6] and [9].

2.2. Coupling with a quantity defined in the bulk

When considering the problem of how the surfactant concentration evolves in time on an interface immersed in a fluid 
bulk, it often occurs that the surfactants, despite its tendency to accumulate preferentially on the interface, can also dissolve 
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in the bulk �− . The surfactant concentration at the interface �(x, t) is then coupled with a surfactant concentration in the 
bulk, c(x, t), with a diffusion constant D . The exchange of material between the interface and the bulk is usually modeled 
by an adsorption–desorption source/sink term S that depends on the kinetics considered (see [7]). For the case of Langmuir 
kinetics:

S (c,�) = kac (�∞ − �) − kb�, (3)

where ka and kb are namely the adsorption and desorption coefficients, and �∞ represents the saturation level of surfactant 
on the interface. The system of governing equations for the evolution of the surfactant concentration in the entire domain 
can thereafter be written as:⎧⎪⎨

⎪⎩
�t + u · ∇s� + �∇ · u − �n · [(∇u) · n] = Ds

(
�� − ∂2�/∂n2 − κ∂�/∂n

) + S ∀x ∈ �,

ct + u · ∇c = D�c ∀x ∈ �,

D ∇c · n = −S ∀x ∈ �.

(4)

2.3. Coupling with the Navier–Stokes equations

The evolution of the concentration of surfactant governed by (4) and the fluid velocity, described by the Navier–Stokes 
equations, have reciprocal influences: On the one hand, the incompressible Navier–Stokes equations give the fluid’s velocity 
u and pressure p, under which the interface is stretched and distorted, and under which the quantities c and � are advected. 
On the other hand the presence of surfactant influences the fluid velocity by modifying the surface tension along the 
interface, and therefore the boundary conditions for the Navier–Stokes solver.

A common model for describing the effect on the surface tension γ by the interface concentration � is the Szyszkowski 
equation:

γ (�) = γ0 + n R T �∞ ln

(
1 − �

�∞

)
, (5)

where R is the ideal gas constant, T is the absolute temperature, γ0 is the surface tension of a clean interface, and n is a 
constant that depends on the type of surfactant and on the presence of excess electrolytes.

It is important to note that both the equation of state and the adsorption–desorption term must be congruent. For 
instance, the equation of state (5) and the kinetic term (3) are both derived from the Langmuir isotherm, and are therefore 
congruent. Other choices for this pair are also possible (see [7] for a detailed review of different equations of state and 
kinetics). For instance, in the case of Frumkin kinetics:⎧⎪⎪⎨

⎪⎪⎩
γ (�) = γ0 + n R T �∞

[
ln

(
1 − �

�∞

)
+ A

2

(
�

�∞

)2
]

,

S (c,�) = kac (�∞ − �) − kb� exp (−A (�/�∞)) ,

(6)

where A is an interaction parameter that depends on the surfactant considered. Other alternatives (like, for example, the 
‘generalized Frumkin’ pair reported in [19] for some nonionic polyoxyethylene surfactants and alcohols) can be found in 
specialized literature. While in our implementation it is possible to consider any pair of kinetic term and equation of state, 
in what follows we will assume Langmuir kinetics (Equations (3) and (5)), unless otherwise indicated.

The presence of a varying surface tension implies the following boundary condition on the jump of the stress tensor 
σ = −p1 + μ 

(∇u + (∇u)T
)

across the interface:

[
σ

]
· n = γ κn − ∇sγ .

The last term in the above boundary condition, whose consequences are only made visible when the surface tension is 
non-constant, is at the origin of the Marangoni force [41]. The complete system of equations describing a surfactant-driven 
incompressible flow, with a soluble surfactant in the bulk, as well as the coupling between the interface and the bulk, is 
given by the following system of partial differential equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ (ut + u · ∇u) = ∇ · σ + f ∀x ∈ �−,

∇ · u = 0 ∀x ∈ �−,

�t + u · ∇s� + �∇ · u − �n · [(∇u) · n] = Ds
(
�� − ∂2�/∂n2 − κ∂�/∂n

) + S ∀x ∈ �,

ct + u · ∇c = D�c ∀x ∈ �−,

(7)

completed by the following interface conditions on �:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S = kac (�∞ − �) − kb�,

γ = γ0 + n R T �∞ ln

(
1 − �

�∞

)
,

D ∇c · n = −S,[
σ

]
· n = γ κn − ∇sγ .

(8)

3. Numerical method

3.1. General framework: the level-set approach on Quad/Octrees

3.1.1. Overview
The level-set method is a general computational method to capture efficiently an interface. It is based on the use of a 

level-set function φ that divides the computational domain � into (at most) three parts: �+ = {x ∈ � | φ(x) > 0}, �− =
{x ∈ � | φ(x) < 0} and the interface � = {x ∈ � | φ(x) = 0}. As a convention, the domain of interest for our computation 
will be �− . The main great advantage of this method is that it naturally captures the changes in the topology of the 
interface that can occur in many physical situations, such as the pinching of a droplet. The main level-set equation, which 
evolves the interface according to a velocity field u, is:

φt + u · ∇φ = 0. (9)

Although the algorithms we propose could be employed on a uniform Cartesian mesh, we employ here a Quadtree data 
structure in two spatial dimensions and an Octree data structure in three spatial dimensions for increased efficiency. The 
construction of the Quad/Octree is recursive: starting from the root cell, which represents the whole computational domain, 
children are added to the different cells: four of them in the case of a Quadtree data structure (eight for an Octree data 
structure), corresponding to the splitting of the cell in four (eight for Octrees) new smaller cells. The level of a cell is defined 
as the depth of the leaf characterizing the corresponding cell in the tree. Graded grids limit the difference of level between 
two adjacent cells in the grid to one, whereas in non-graded grids, this difference can be arbitrary. The advantage of using 
non-graded grids is that they are more straightforward to build, and for a same maximum level (corresponding to the depth 
of the tree), the number of necessary nodes is smaller. An illustration of the principle of the application of Quadtrees to the 
storage of non-graded adaptive grids in two dimensions is given in Fig. 1.

Fig. 1. An example of the partition of a square into a non-graded adaptive grid (left) and the Quadtree used for its storage.

3.1.2. Refinement criteria
Being mainly interested in refining the grid close to where the interface lies, we apply the following simple refinement 

criteria proposed in [35,25]: Split any cell C if

min
v∈vertices(C)

|φ(v)| ≤ Lip (φ) × diag-size(C),

where diag-size(C) is the length of the diagonal of the current cell C , Lip (φ) is the Lipschitz constant of φ and v refers to 
a vertex (i.e. a node) of the current cell.

3.1.3. Reinitialization of the level-set function
Any Lipschitz continuous function can be chosen for the level-set function φ; however, the numerical results are known 

to be more robust, to induce less mass loss and to provide better geometrical information when computing geometrical 
quantities when φ is taken as the so-called signed distance function. An arbitrary level-set function φ0 can be reinitialized 
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Fig. 2. General configuration of a T-junction centered on the node v0 in two (left) and three (right) spatial dimensions.

into a signed distance function that describes the same interface � by iterating a few steps in fictitious time τ (using a 
TVD RK-2 scheme) the following reinitialization equation [37]:

φτ + sgn (φ0) (|∇φ| − 1) = 0. (10)

Here τ is a fictitious time. The outward normal n to the interface � and the mean curvature κ are defined as:

n = ∇φ

|∇φ| and κ = ∇ · n.

In this work, we use the algorithms described in [25] to solve Equations (9), (10), and to compute the normal and 
curvature.

3.1.4. Computation of spatial derivatives
In order to compute such spatial derivatives using standard finite-difference formulas, we are bound to introduce ghost 

nodes where the mesh is locally non-uniform (the so called T-junctions; see Fig. 2). We use the framework of [25]. Consid-
ering a node-sampled function f : vi −→ R, its value at the ghost node v4 in two dimensions is defined by the following 
third-order interpolation (denoting by f i the value of f (vi) and by si the distance between grid nodes as given in Fig. 2):

f G
4 = f5s6 + f6s5

s5 + s6
− s5s6

s2 + s3

(
f2 − f0

s2
+ f3 − f0

s3

)
,

whereas in three spatial dimensions, the definition of the, at most two, ghost nodes are:

f G
4 = f7s8 + f8s7

s7 + s8
− s7s8

s3 + s6

(
f3 − f0

s3
+ f6 − f0

s6

)
,

and

f G
5 = s11s12 f11 + s11s9 f12 + s10s12 f9 + s10s9 f10

(s10 + s11)(s9 + s12)

− s10s11

s3 + s6

(
f3 − f0

s3
+ f6 − f0

s6

)
− s9s12

s1 + s4

(
f1 − f0

s1
+ f G

4 − f0

s4

)
.

From these ghost nodes definitions, second order accurate discretizations of the standard differential operators can be 
derived following [25].

3.1.5. Extrapolation procedures
The algorithms described in the next sections depend on the ability to extrapolate a scalar quantity f from �− to �+ , 

which is performed by iterating a few steps in fictitious time τ (using a TVD RK-2 scheme) of the following equation:

∂ f

∂τ
+ H(φ) n · ∇ f = 0, (11)

where H is the Heaviside function defined for every node v as follows:
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H(φ(x)) =
{

1 if φ(x) ≥ 0,

0 otherwise.

Likewise, extrapolating a scalar quantity f from the interface � to the entire domain in the normal direction is per-
formed by solving in fictitious time τ the following equation:

∂ f

∂τ
+ δ(φ) n · ∇ f = 0, (12)

where δ is the indicator function of the interface, defined by:

δ(φ(x)) =
{

0 if φ(x) = 0,

1 otherwise.

We refer the interested reader to [26] for the discretization formulas of H and δ, as well as how to discretize Equations 
(11)–(12).

3.2. Evolution of the surfactant concentration

In this section, we present how we solve the time-dependent evolution of the interfacial concentration of a soluble 
material quantity, including the advection, the surface diffusion and the adsorption–desorption on the interface. Coupling 
this solver with a Navier–Stokes solver [13] enables to complete the resolution of the full flow problem described in the 
previous section.

3.2.1. Solving the equation for the concentration in the bulk
The equation for the surfactant concentration in the bulk, assuming that u is divergence free, is given by 

(
see (4)

)
:

∂c

∂t
+ u · ∇c = D�c in �−, with D ∇c · n = −S(c,�) on �. (13)

The advective part of this equation is solved by a non-conservative semi-Lagrangian method discretized using a backward 
differentiation formula, while the diffusive part is solved implicitly:

α
cn+1 − cn

d

�tn
+ β

cn
d − cn−1

d

�tn−1
= D�cn+1,

where:

α = 2�tn + �tn−1

�tn + �tn−1
,

β = − �tn

�tn + �tn−1
,

and where cn
d and cn−1

d are the values of c at time tn and tn−1, respectively, taken at the departure points xn
d and xn−1

d , 
i.e. following the characteristics back from the current node’s location xn+1 under the velocity field u during �tn and 
�tn + �tn−1. Specifically, these points are constructed as

x∗ = xn+1 − �tn

2
un(xn+1),

u∗ = 2�tn−1 + �tn

2�tn−1
un(x∗) − �tn

2�tn−1
un−1(x∗),

xn
d = xn+1 − �tnu∗,

and

x∗ = xn+1 − �tnun(xn+1),

xn−1
d = xn+1 − (�tn + �tn−1)un(x∗).

Since xn
d , xn−1

d , x∗ are not in general located on a grid point, we use quadratic interpolation procedures to interpolate 
the velocity fields at these points [25].
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Note that for the case of a constant timestep �tn = �tn−1 = �t , the above discretization reduces to:

1

�t

(
3

2
cn+1 − 2cn

d + 1

2
cn−1

d

)
= D�cn+1.

The equation for solving cn+1 implicitly is therefore:

α

�tn
cn+1 − D�cn+1 =

(
α

�tn
− β

�tn−1

)
cn

d + β

�tn−1
cn−1

d , (14)

supplemented with the boundary condition:

D ∇cn+1 · n = −S(cn,�n) ∀x ∈ �. (15)

Far away from the interface �, Equation (14) is discretized using the finite differences framework presented in sec-
tion 3.1.4. Close to the interface, where the non-homogeneous Neumann boundary condition (15) needs to be enforced, a 
finite volume approach is employed as in [32,29,31]. In two spatial dimensions, considering a cell Ci, j in �− centered at 
the node (i, j) and cut by the interface �, and using the divergence theorem on the Laplace operator of Equation (14), we 
have:

α

�tn

∫
Ci, j∩�−

cn+1 dx − D

∫
∂Ci, j∩�−

∇cn+1 · n dl =
∫

Ci, j∩�−
f i, j dx −

∫
Ci, j∩�

S(cn,�n)dl, (16)

where f i, j =
[(

α

�tn
− β

�tn−1

)
cn

d + β

�tn−1
cn−1

d

]
i, j

and where we have used the boundary condition (15). We approximate 

the integrals using the methods detailed in [24]. These approximations yield the filling of the row of the linear system 
corresponding to the node (i, j). The linear system is symmetric positive definite.

3.2.2. Solving the equation for the interface concentration
Assuming that the velocity field is divergence free, the interface concentration satisfies the following equation:

∂�

∂t
+ u · ∇� − �n · [(∇ u) · n] = Ds

(
�� − ∂2�

∂n2
− κ

∂�

∂n

)
+ S(c,�), (17)

which is discretized in time using a modified non-conservative semi-Lagrangian combined with a semi-implicit backward-
differentiation-formula scheme [40], treating diffusion implicitly as well:

α
�n+1 − �n

d

�tn
+ β

�n
d − �n−1

d

�tn−1
= Ds��n+1 + η

(
�n

d

{
n · [(∇ u) · n]

}n

d
+ S(cn

d,�n
d ) + An

d

)

+ ζ

(
�n−1

d

{
n · [(∇ u) · n]

}n−1

d
+ S(cn−1

d ,�n−1
d ) + An−1

d

)
, (18)

where A = Ds

(
−∂2�

∂n2
− κ

∂�

∂n

)
is the specific interfacial term of the surface Laplace operator, and where all the quantities 

evaluated explicitly in the right-hand side are computed at the departure points (subindex d). Also:

η = �tn + �tn−1

�tn−1
,

ζ = − �tn

�tn−1
.

Note that for the case of a constant timestep �tn = �tn−1 = �t , (18) reduces to the implicit–explicit extrapolated Gear 
scheme [1]:

1

�t

(
3

2
�n+1 − 2�n

d + 1

2
�n−1

d

)
= Ds��n+1 + 2

(
�n

d

{
n · [(∇ u) · n]

}n

d
+ S(cn

d,�n
d ) + An

d

)

−
(

�n−1
d

{
n · [(∇ u) · n]

}n−1

d
+ S(cn−1

d ,�n−1
d ) + An−1

d

)
.

Following the idea of [10], all the quantities of interest are constantly extrapolated to a tube surrounding the interface 
� (see Fig. 3, left). The new surfactant concentration �n+1 is then obtained by solving the above equation in this tube with 
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Fig. 3. Left: visualization of the geometry of the tube used to solve the equation governing the evolution of the concentration � of surfactant on the 
interface (18), in the case of a bubble in a shear flow. The tube is colored according to interface concentration (with increasing concentration from blue 
to red). Right: grid used to perform this simulation. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

homogeneous Neumann boundary conditions. Constant extrapolation is performed following the procedures presented in [2]. 
A level-set function χ describing a tube of width 2δ around the interface can easily be obtained from the level-set function 
φ describing the domain, once it has been reinitialized as described in section 3.1.3, by taking simply: χ(x) = |φ(x)| −δ. One 
of the advantages of this method is that the same grid is used to solve the concentration in the bulk and the concentration 
on the interface (see Fig. 3, right).

Note that the specific interfacial terms of the surface Laplace operator 
(

−∂2�

∂n2
− κ

∂�

∂n

)
are here taken into account in 

an explicit way. However, by extending � from the interface to the whole domain before solving the equation, we have 
ensured that � is almost constant in the normal direction and therefore those terms are very small (here, we take them to 
be zero).

3.3. Coupling with a Navier–Stokes solver

A Navier–Stokes solver, described below, is used at each time step, alternating with the resolution of the governing equa-
tions for the interface concentration and the bulk concentration of surfactant. The velocity field given by the Navier–Stokes 
equations is used to advect c and �, whereas the value of � obtained using the procedure described in the section 3.2.2
is used to compute the value of the surface tension γ and its gradient ∇γ , which intervene at the next iteration in the 
boundary conditions for the Navier–Stokes solver.

3.3.1. The projection method
The Navier–Stokes equations{

ρ (ut + u · ∇ u) = −∇p + μ�u + f

∇ · u = 0

are solved using a projection method [8]. We first solve for an auxiliary velocity u∗ using again a semi-Lagrangian/backward-
differentiation-formula discretization of the momentum equation from which the pressure term has been removed:

ρ

(
α

u∗ − un
d

�tn
+ β

un
d − un−1

d

�tn−1

)
= μ�u∗ + f. (19)

Here the velocity components are stored at the nodes on the corners of the cells, as in [23], from which the semi-
Lagrangian updates are computed. To treat the viscosity implicitly, a linear system for u∗ is built using the finite differences 
techniques described in section 3.1.4 and solved using a BiCGSTAB solver and the multigrid method presented in [39] as a 
preconditioner. The velocity components (u, v) are then interpolated to the cells faces as in the standard MAC grid arrange-
ment. The projection is then performed on that grid, i.e. we write un+1 = u∗ − ∇� and solve the following linear system 
for the Hodge variable �:

∇ · ∇� = ∇ · u∗. (20)

Following the standard MAC grid projection method, the Hodge variable is stored at the center of the grid cells. The 
gradient operator appearing in the above equation is approximated using the second order discretizations in [20]. To ensure 
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the stability of the projection step, the divergence operator D is constructed following [13], in particular it is related to the 
discrete gradient G through

L F G = −(LC D)T ,

where L F and LC are two diagonal matrices. We refer the interested reader to [13] for more details about the stability. The 
velocity components are then interpolated back to the nodes with least-squares interpolations in order to proceed to the 
advection of the different quantities of interest [13].

Also, even though our algorithm does not require the pressure to be computed, we note that it is given by 
p = α

ρ

�tn
� − μ�� = α

ρ

�tn
� − μ∇ · u∗ .

3.3.2. Boundary conditions
Free surface boundary conditions are implemented in order to enforce the exact boundary conditions in velocity and 

pressure that are imposed by the presence of surfactant:[
σ

]
· n = γ κn − ∇sγ , (21)

where the surface tension γ is computed as a function of the interface concentration �. Even though the coupling with 
the Navier–Stokes solver admits any regime, in our computational examples we will limit ourselves to Stokes flows for 
simplicity of the boundary conditions. Indeed, in this case the treatment is considerably more straightforward, since there 
is a decoupling between the pressure and the velocity (we refer the interested reader to the original derivation in [18]). The 
jump boundary conditions read as follows [41]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[p] = −γ κ,

[∇p · n] = �s γ ,

[u] = 0,

[μ∇u · n] = ∇sγ .

(22)

Furthermore, in our computational examples we will assume that one of the phases is dynamically negligible (i.e. the 
shear stress in that phase is much smaller than the shear stress in the other phase, and its pressure is constant and taken as 
zero). This allows for the utilization of a monophase Navier–Stokes solver, and the above four boundary conditions reduce 
to two (imposing the four of them with only one phase would be overconstraining the problem). Additionally, the jump 
boundary conditions reduce to Dirichlet (for the pressure) and Neumann (for the velocity) boundary conditions:{

p = γ κ,

μ∇u · n = −∇sγ .
(23)

The boundary conditions for the velocities are enforced on u∗ during the first step of the projection algorithm (19), taking 
into account the fact that u∗ is different from un+1 by adding the gradient of the Hodge variable obtained at the previous 
iteration to the conditions enforced (assuming that ∇�n+1 is not far from ∇�n , which proves to be a good approximation).

The boundary condition for the pressure is enforced during the second step of the projection method, i.e. when solving 
for the Hodge variable (20) using the expression p = α

ρ

�tn
� − μ∇ · u∗ .

3.3.3. Time step restriction
As suggested by Brackbill et al. in [4], the simulation of free surface flows is stable if it is able to resolve the capillary 

waves along the interface. Denoting by c the velocity of those capillary waves, this induces a restriction of:

c
�t

�x
<

1

2
, (24)

where here �x refers to the smallest grid size. However, the velocities ck of those capillary waves are given as a function 
of the wave number k by:

ck =
√

γ k

ρ
. (25)

The maximum time step allowed can be estimated in Equation (24) using the maximum wave velocity. Equation (25)
shows that this maximum velocity is reached for maximum wave numbers, i.e. for minimum wave lengths. The minimum 
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Fig. 4. Solid–liquid–gas triple point and contact angle.

wave length that can be resolved is 2�x, which corresponds to a maximum wave number kmax = π
�x . Therefore, by substi-

tuting c by cmax = √
γπ/ρ�x in Equation (24), one obtains the following time-step constraint:

�t <

√
ρ(�x)3

2πγ
or �t = O

(
�x

3
2

)
.

3.3.4. Contact angle
A contact angle is implemented in the Navier–Stokes solver in order to model the dynamics of the wetting of a surface. 

The model chosen involves another velocity boundary condition: at the triple point (the point where the wall, the bulk fluid 
and the external fluid, assumed to be at rest, meet), a velocity is imposed, equal to [36]:

u = 1

β
(cos(θc) − cos(θ))t,

where β is the friction coefficient between the solid surface and the fluid (usually taken between 2 and 10), θ the angle 
formed by the fluid surface with the substrate, θc the contact angle (of about 45◦ for an interface between water and glass) 
and t is the tangent vector to the substrate (Fig. 4).

4. Verification of the method

4.1. Verification in two spatial dimensions

Three types of tests are designed in order to validate separately the diffusive part of the governing equation for the 
interfacial concentration, the advective part of this same equation, and the diffusive part of the governing equation for the 
bulk concentration as well as the coupling terms between the bulk and the interface. Those tests are for the most part 
inspired by those of Muradoglu and Tryggvason in [27], some slightly modified in order to fully validate every term of the 
governing equations.

4.1.1. Verification of the surfactant diffusion
In order to validate the time-dependent evolution equation for �:

∂�

∂t
= Ds�s�,

Muradoglu and Tryggvason [27] considered the diffusion of a surfactant around a circular bubble of radius one, on 
which an initial surfactant distribution has been imposed. The initial concentration is written in cylindrical coordinates 
as: �(θ, t = 0) = 1

2 (1 + sin(θ)). Writing the surface Laplace operator on a circle of radius r in cylindrical coordinates, 
�s = 1

r2
∂2

∂θ2 , one can solve analytically the surface diffusion equation for � as:

�(θ, t) = 1

2

(
1 + e−Dst/r2

sin(θ)
)

.

Fig. 5 depicts the initial and final distribution for � as well as a typical adaptive grid. The results of the simulation with 
a mesh refinement of min/max-level equal to 0/8 are given in Fig. 6.

We can also focus on the convergence of the algorithm, by starting with a simulation with a min/max-level of 0/6 and 
doing this simulation again after having split every cell (to obtain a min/max-level of 1/7). After having iterated this process 
up to a min/max-level of 3/9, we can compare the results, which are presented in Fig. 7. We also computed the L∞ error as a 
function of time for every min/max-level chosen. The result is represented in Fig. 8. We observe that the L∞ error increases 
fast during the first time steps, which is normal since the first time steps of our second-order-in-time discretization need to 
be initialized, and thus the first time steps are only of order one in time. We also observe that the error tends to decrease 
after some time, which can be explained by the fact that for every resolution chosen, the method converges asymptotically 
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Fig. 5. Representation of the geometry chosen for the interfacial diffusion test. From left to right: (a) the computational tube at initial time, colored by 
interfacial concentration; (b) the mesh used for the computation with minimum level/maximum level 0/8; and (c) the computational tube at final time, 
with the same coloration.

Fig. 6. Representation of the interfacial concentration as a function of the angle θ for θ ∈
[

π
2 ; 3π

2

]
at different times. The blue dotted line represents the 

numerical results for a min/max-level of 0/8, whereas the black line represents the theoretical solution. A zoom of these curves is given in the right part 
of this figure. The time from the more stretched curves to the flatter ones are .25, .5, .75, 1 and 1.25. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

to a uniform distribution of surfactant around the bubble, with �(θ, t = +∞) = 1
2 . Table 1 indicates that the method is 

first-order accurate in the L∞-norm.

4.1.2. Verification of the surfactant advection
The test proposed by Muradoglu and Tryggvason in [27] consists of a spherical bubble with initial radius 1 that is laden 

with a uniform distribution of surfactant. This bubble is expanding under a radial unit velocity flow. Note that this velocity 
field is not divergence free, but has a divergence equal to: ∇ · u = 1

r in cylindrical coordinates; the advection equation that 
needs to be solved is therefore:

∂�

∂t
+ u · ∇� + �∇ · u − � n · [(∇ u) · n] = 0 . (26)

However, since we have chosen u confounded with the outward normal n (u = x
|x| = n), the relation ||n|| = ||u|| = 1

implies that (∇ u) · n = (∇ n) · n = 0. Therefore, the last term on the left member of Equation (26) is always equal to zero. 
This test therefore does not fully test the interface advection and we modify it with a more complex geometry while keeping 
the radial velocity field u = x

|x| . Specifically, we consider a star-like shape, with an equation in cylindrical coordinates given 
by:

r(θ) = 0.75 (1 − 0.2 sin(7θ)) .

Fig. 9 represents the geometry chosen for those advection tests. In particular, it is obvious that the radial velocity field 
is now not confounded anymore with the normal so the term −�n · [(∇ u) · n] in Equation (26) now has a value that 
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Fig. 7. Representation of the interfacial concentration as a function of the angle θ for θ ∈ [
π
2 ;π]

at the same time for different min/max-level chosen for 
the simulation. A detail of these curves is given in the right part of this figure.

Fig. 8. L∞ error for Example 4.1.1 as a function of time for different min/max-level.

Table 1
Order of accuracy for Example 4.1.1.

Grid level (min/max) L∞ error Order

0/6 1.32 × 10−2

1/7 6.97 × 10−3 .921
2/8 3.60 × 10−3 .953
3/9 1.83 × 10−3 .976

depends on the location on the star-shaped bubble. Finally, taking the initial surfactant concentration to be �(θ, t = 0) = 1
2

and invoking the conservation principle of the interfacial surfactant, we get the following analytical description of the 
time-dependent evolution of the surfactant concentration on the star:

�(θ, t) = 1

2

√
r2(θ) + (r′)2 (θ)√

(t + r(θ))2 + (r′)2 (θ)

.

The interfacial concentration as a function of the angle θ is given in Fig. 10. The numerical results are in agreement with 
the analytical solution. As we could have expected the error is greater in the hollows between two branches of the star 
(which corresponds to where the concentration reaches its maximum), because it is where the interface is less resolved.
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Fig. 9. Representation of the geometry chosen for the interfacial advection test: (a) the star at initial time, colored according to the interfacial concentration; 
(b) the concentration distribution at final time, with the same color map; and (c) the mesh used for the computation with a min/max-level of 0/9. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 10. Representation of the interfacial concentration as a function of the angle θ for θ ∈
[

π
2 ; 8π

7

]
at different times for a min/max-level of 0/9. The blue 

dotted lines correspond to the numerical results whereas the black lines represent the analytical solution. A detail of these curves is given on the right part 
of this figure. Times from top curve to bottom curve are .025, .125, .25, .375 and .5. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

A more challenging test that we consider is the advection of a circular bubble in a vortex. In a computational domain 
with dimensions [0, 1] × [0, 1], we place a circular bubble of radius 0.15 and centered at (0.5, 0.75). The bubble is initially 
laden with a uniform surfactant concentration �(x, y, t = 0) = 1

2 , and is advected by the following divergence-free velocity 
field u = (u, v):

u(x, y) = sin2(πx) sin(2π y),

v(x, y) = − sin2(π y) sin(2πx), (27)

for t ∈ [0, 12 ]. At t = 1
2 the velocity field is reverted so that at t = 1 the system should return to its initial configuration.

Fig. 11 represents the global configuration for this test, at initial time and final time. It gives an idea of how challenging 
this test is, since the surface of the bubble is very stretched during this advection, and it develops a very sharp extremity 
that tends to be under-resolved for low grid resolutions. This test is therefore an indication of the typical accuracy that one 
may expect in the case where an interface undergoes large deformations, especially when fine features develop (here the 
thin tail of the interface). It also illustrates the advantage of an adaptive grid.

In Fig. 12 we have represented the repartition of the concentration as a function of θ around the circle for different 
spatial resolutions ranging from 0/8 to 4/12 after having performed an advection with the velocity field u given by Equation 
(27) during a time 0.5 and having advected it back to its initial position with the velocity field −u during the same time 
interval 0.5.
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Fig. 11. Representation of the geometry chosen for the vortex advection test. From left to right: (a) the grid (with min/max-level 0/9) at initial time; (b) 
the same grid at time t = 0.5; and (c) the interface at time t = 0.5, colored by interfacial concentration. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

Fig. 12. Representation of the interfacial concentration as a function of the angle θ for θ ∈ [0;π ] at the final time (t = 1) for different min/max-level chosen 
for the simulation. The red dotted line corresponds to a min/max-level of 0/8, the green one to 1/9, the blue one to 2/10, the cyan one to 3/11 and the 
magenta one to 4/12. The black line represents the theoretical solution. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

We can also observe the time-evolution of the surfactant loss on the bubble by integrating the surface concentration 
around the interface, and observing how this amount evolves with time. The integration along the interface is performed 
using the integration method described in [24]. The results are given in Fig. 13.

Fig. 13 indicates that the sudden change of the velocity field from u to −u at time 0.5 has no significant influence on 
the evolution of the total amount of surfactant. The surfactant loss at final time is about 6% for the lowest spatial resolution, 
which is a good result since the interface tends to be under-resolved around time 0.5 when the bubble is most distorted.
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Fig. 13. Representation of the total amount of surfactant as a function of time for different min/max-level chosen for the simulation. The red dotted line 
corresponds to a min/max-level of 0/8, the green one to 1/9, the blue one to 2/10, the cyan one to 3/11 and the magenta one to 4/12. The black line 
represents the theoretical solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

4.1.3. Verification of the bulk concentration diffusion and of the coupling between the bulk and the interface
The first test is that proposed in [27]: a circular bubble of radius 1, initially clean, is placed in an infinite bulk charged 

with an initial constant concentration c∞ of surfactant. The surfactant concentration c in the bulk diffuses with a diffusion 
constant D but is not advected, i.e. we take u = 0 in Equation (13). A simplified coupling term S is chosen as S = kac. In 
this setting, [27] give an analytical solution, with the restriction that it is valid for short times only. Indeed, in an infinite 
domain and with a source term of the form given above, the concentration on the bubble will tend to +∞, whereas for 
a finite computational domain the conservation of the total amount of surfactant (having implemented homogeneous Neu-
mann boundary conditions for c at the boundary of the domain) prevents the concentration of surfactant in the bulk from 
diverging. In addition, it appears that even in an infinite domain this analytical solution remains an approximation, valid for 
short times only [28]. For these two reasons (the facts that we work with a finite domain, and that the analytical solution 
to which we compare our results is only an approximation, valid for short times only), we will restrict our investigations of 
the results of this test to short times after the beginning of the diffusion and coupling between the bulk and the interface.

Fig. 14 provides the results for the time-dependent evolution of the total amount of surfactant on the interface, with 
min/max-level ranging from 6/8 to 10/12. We can observe that the numerical results obtained are consistent for short times 
with the analytical solution proposed in [27]. However, the time scale observed is so small compared to the characteristic 
time scale of diffusion that the analytical solution reduces to a line, which means that we only observe the dominant order 
of the source term, which is: S = kac∞ +O(t).

For our second test, we consider a clean infinite wall that is placed in front of a semi-infinite bulk domain with initial 
concentration c∞ that diffuses with a diffusion coefficient D . A simplified coupling term S = kac ensures the surfactant 
transfer between the bulk and the interface. The analytical solution for the time-dependent evolution of the concentration 
c as a function of the time t and of the distance x to the interface is given by:

c(x, t) = c∞
[

erf

(
x√

)
+ ekax+k2

a Dterfc

(
x√ + ka

√
Dt

)]
, (28)
2 Dt 2 Dt
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Fig. 14. Representation of the total amount of surfactant on the bubble as a function of time for short times. The magenta line corresponds to a min/max-
level of 6/8, the cyan one to 7/9, the red one to 8/10, the yellow one to 9/11 and the green one to 10/12. The black line represents the analytical solution 
proposed by [27]. A detail of these curves is given in the right part of this figure. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 15. Bulk concentration c as a function of the distance x to the interface. The blue dotted line corresponds to a min/max-level of 6/8, the green one to 
7/9 and the magenta one to 8/10. The black line represents the analytical solution. A detail of these curves is given in the right part of this figure. The time 
elapsed, from top to bottom curves, is .04, .12, .2, .28 and .36. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

where

erf(x) = 2√
π

x∫
0

e−t2
dt ,

and

erfc(x) = 1 − erf(x) = 2√
π

+∞∫
x

e−t2
dt .

The results presented in Fig. 15 give the surfactant concentration c as a function of the distance to the wall for different 
times, and with different min/max-level ranging from 6/8 to 8/10. Fig. 15 shows that even for long times, the diffusion 
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Fig. 16. Setup for Example 4.2.1: (a) the mesh used for this computation with a min/max-level of 0/6; (b) a visualization of the tube and the solution 
at initial time with a min/max-level of 0/7 (c) solid visualization of the computational tube and the solution at final time with min-level/max/level 0/7, 
colored by the interface concentration; (d) another visualization of the tube, with the same min/max-level.

of the bulk concentration c as well as the surfactant transfer between the bulk and the interface occur as predicted by 
the analytical solution. As expected, though, the accuracy of the results tends to be deteriorate for long times. This can be 
attributed to the fact that the analytical solution was computed for an infinite domain, whereas the simulations were only 
performed on a finite computational domain. This explanation is consistent with the observation that the concentration in 
the bulk for long times tends to be lower than predicted by the analytical solution in infinite domain.

4.2. Verification in three spatial dimensions

4.2.1. Verification of the surfactant diffusion
We consider the diffusion of surfactant around a spherical bubble of radius 1, on which an initial distribution of the 

surfactant has been imposed. The initial concentration chosen, in spherical coordinates, is �(θ, t = 0) = 1
2 (1 + sin(θ)). The 

surface Laplace operator on a sphere of radius r can be written in spherical coordinates, yielding �s = 1
r2 sin(θ)

∂
∂θ

(
sin(θ) ∂

∂θ

)
. 

The solution of the time-dependent evolution equation for �,

∂�

∂t
= Ds�s�,

is therefore

�(θ, t) = 1

2

(
1 + e

− 2t Ds
r2 sin(θ)

)
.

Fig. 16 proposes different visualizations for the geometry of this problem. The results of the simulations with a mesh 
refinement of min/max-level of 0/7 are given in Fig. 17. Fig. 18 provides the results of the simulation under mesh refinement.

4.2.2. Verification of the surfactant advection
For the verification of the interface advection, we use the same idea as in the two-dimensional case, performing the 

expansion of a shape laden with surfactant under a radial velocity field. For the same reasons as in section 4.1.2, the shape 
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Fig. 17. Representation of the interfacial concentration as a function of the angle θ for θ ∈
[

π
2 ; 3π

2

]
at different times. The blue dotted line with square 

markers represents the numerical results for a min/max-level of 0/7, whereas the black line represents the theoretical solution. A detail of these curves 
is given in the right part of this figure. The times from the top to bottom curves are .04, .16, .28, .4, .52, .64, .76, .88 and 1. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Representation of the interfacial concentration as a function of the angle θ for θ ∈ [
π
2 ;π]

at two different times (from top to bottom, .02 and .14) 
for various min/max-level. The red dotted lines correspond to a min/max-level of 0/5, the green lines correspond to a min/max-level of to 1/6 and the blue 
lines correspond to a min/max-level of to 2/7. The black lines represent the theoretical solution. A detail of these curves is given in the right part of this 
figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

should not be a sphere if the test is to be relevant. We thus consider a star-like shape given by the equation, in spherical 
coordinates,

r(θ,φ) = 0.75 + 0.2 (1 − 0.6 cos(6φ)) (1 − cos(6θ)) .

Taking the initial surfactant concentration to be �(θ, t = 0) = 1
2 , the conservation of the interfacial surfactant leads to 

the following analytical description of the time-dependent evolution of the surfactant concentration on the star:

�(θ,φ, t) = 1

2

√
r2(θ,φ) + (

∂r
∂θ

)2
(θ,φ)

√
r2(θ,φ) +

(
∂r
∂φ

)2
(θ,φ)√

(t + r(θ,φ))2 + (
∂r
∂θ

)2
(θ,φ)

√
(t + r(θ,φ))2 +

(
∂r
∂φ

)2
(θ,φ)

.
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Fig. 19. Representation of the geometry chosen for the interfacial advection test in 3D. From left to right: the star at initial time and the same star with 
the mesh used for the computation with a min/max-level of 0/7.

Fig. 20. Visualization of the motion and surface concentration evolution on a star advected under a radial velocity field. The time elapsed is, from top left 
to bottom right: .125, .25, .375 and .5. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 19 represents the geometry, while Fig. 20 depicts the solution at different times. Similarly to the two-dimensional 
case, we can study the interfacial concentration as a function of the angle θ at different times. We do that in two different 
ways: by clipping the star by a plane that crosses the apexes of the star, or by clipping it by a plane that passes through the 
hollow regions (see Fig. 21). The numerical results for a clipping plane that passes through the hollow regions of the star are 
given in Fig. 22 whereas the results for a clipping plane crossing the apexes of the star are given in Fig. 23. The numerical 



290 C. Cleret de Langavant et al. / Journal of Computational Physics 348 (2017) 271–297
Fig. 21. Representation of two different ways to clip the star with a plane containing the z axis: by a plane that crosses the apexes of the star (left) or by a 
plane that passes through the hollow regions (right). Both figures show the star at t = 0.5, with � represented in the tube in which the interface transport 
is solved. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 22. Representation of the interfacial concentration as a function of the angle θ for θ ∈ [0;π ] at different times (from top to bottom .1, .2, .3 and .4), 
clipping the star by a plane that passes through the hollow regions between the apexes. The color of the lines with square markers indicates the resolution 
of the simulation. The black lines represent the exact solution. A detail of these curves is given in the right part of this figure. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

results obtained are in good agreement with the analytical solution, and are convergent. As we could have expected, the 
errors are greater when clipping the interface by a plane that passes through the hollows between two branches of the star 
since the interface is less resolved in those regions. For the same reason, the results are less accurate for angles θ close to 
0 or π .

5. Computational examples

In this section, we consider a few physically relevant problems that can be studied with our computational method.

5.1. Bubble in a shear flow

The problem of the deformation of bubbles or drops in a shear flow or a uniaxial extensional flow and in the presence 
of surfactant, has already been widely studied in the literature (see e.g. [34] and the references therein). The results of 
all those studies tend to prove that the presence of surfactant promotes the cleavage of drops and bubbles, which can 
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Fig. 23. Representation of the interfacial concentration as a function of the angle θ for θ ∈ [0;π ] at different times (from top to bottom .1, .2, .3 and .4), 
clipping the star by a plane that passes through the apexes of the star. The color of the lines with square markers indicates the resolution of the simulation. 
The black lines represent the exact solution. A detail of these curves is given in the right part of this figure. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

be expected since the presence of surfactant lowers the surface tension. Moreover, when the coupling term between the 
interfacial concentration and the bulk concentration is small, or when the surfactant is supposed to be insoluble, the flow 
tends to advect the surfactant towards the ends of the drop, where it accumulates, causing the drop to develop pointed ends 
as the surface tension becomes very small at its extremities. As expected, these effects become less visible as the surface 
Péclet number Pes = LU

Ds
increases. The surface Péclet number, which measures the ratio between the advective effects and 

the diffusive effects of the interfacial surfactant, considers length and velocity scales L and U , respectively.
In this section, we focus on the case when the surfactant is soluble and when the interfacial and the bulk concentrations 

are not initially balanced, with the interfacial concentration being significantly lower than the bulk’s. Fig. 24 shows the time 
evolution of a bubble placed in such conditions. For this simulation, we modeled the effect of the surfactant on the surface 
tension through Frumkin kinetics (see Equations (6)), using the parameters of the 1-nonanol (C9H19OH) given by Lin et al.:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = 1 ,

A = 3.410 ,

�∞ = 5.915 · 10−6 (mol/m2),

kb/ka = 0.3137 (mol/m3),

Ds = 6.3 · 10−10 (m2/s) ,

T = 295.85 (K),

and noting that the surface tension for a clean interface is in this case the value for a water–air interface γ0 = 0.072 (N/m).
Fig. 24 reveals that the motion of the advected fluid around the bubble tends to enhance the adsorption of surfactant 

on the bubble’s interface near the location of breakup, thus creating propitious conditions for the future breakup of the 
bubble. Moreover, as the surfactant accumulates near the future breakup point, driven by the flow, its presence not only 
weakens the surface tension around it, but also creates a gradient of surface tension from the regions of high surfactant 
concentration to the regions of low surfactant concentration thus generating Marangoni forces that drive the flow close to 
the interface from the equatorial plane of the bubble to its edges, which is another mechanism that can be held responsible 
for the breakup of the bubble.

After the breakup occurs, we can observe that the ends of the two daughter bubbles near the breakup point present 
a sharp pointed shape. This can be attributed to the fact that the high surfactant concentration near those two edges has 
weakened the surface tension thus allowing such shapes to exist. This is perfectly consistent with all the observations 
reported in the literature inventoried above, such sharp-ended shapes having already been reported in the case of bubbles 
in shear flows or extensional flows in the presence of surfactant.
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Fig. 24. Drop breakup and evolution of the normalized concentrations in the bulk and on the interface for a bubble with a low initial concentration of 
surfactant placed in a contaminated bulk and under a shear flow. The time elapsed, from top left to bottom right, is 0, .25, .5 and .75. (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 25. Illustration of the phenomenon of tears of wine along the wall of a glass containing ordinary table wine.

5.2. Tears of wine

We consider the phenomenon of tears of wine (see Fig. 25), which is an emblematic manifestation of the Marangoni 
forces. The reason for the formation of the so called tears of wine is that the evaporation of ethanol at the air–fluid interface 
of the thin layer of wine deposited on the wall of a glass causes a huge decrease of the alcohol concentration in the film; 
whereas on the surface of the rest of the wine inside the glass, evaporation is compensated by diffusion inside the glass, 
and the concentration of ethanol near the interface remains almost constant. As the ethanol surface tension is much lower 
than the one of water, this creates a gradient of surface tension in the fluid film from the bottom to the top of the glass. 
This gradient of surface tension causes the emergence of Marangoni forces directed upwards. As the width of the film layer 
is very small, the fluid is not sheared very much by the gravity (this is why it tends to be static), and the Marangoni forces 
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are strong enough to counterbalance those gravitational forces. This causes the fluid to climb along the wall of the glass, 
hence the formation of droplets that fall under their own weight once they have reached a critical size, evoking the shape 
of tears. This phenomenon has been reported for centuries but was first correctly explained by physicist James Thomson, 
the elder brother of Lord Kelvin, in 1855.1

As ethanol is not a surfactant, it is of no use to define an interfacial concentration since the only variable of interest 
in order to compute the surface tension is the bulk concentration near the interface. However, the evaporation rate of 
alcohol can be modeled by a desorption term on the interface. We can use our computational framework to simulate the 
evaporation of ethanol. The value of kb is set to zero, since we neglect the contribution of the vapors of alcohol to the 
concentration of ethanol in the wine; and the source term is taken equal to S(c) = kac, the value of the evaporation rate 
ka being given by O’Hare et al. (fitting the data reported in [30] reveals that ka = 5.919 · 10−4 (m/s)). Of course, since 
the interfacial surfactant concentration has no physical meaning (despite the fact that it allows one to keep track of the 
evaporated ethanol and check that the total amount of ethanol remains constant in time, even though it decreases in the 
bulk), the surface diffusion coefficient is set to zero. The surface tension of the fluid is taken to be equal to a function of 
the molar fraction of ethanol, following the law that has been identified by Ghahremani et al. [12], namely:

γ (xm) =
[

11.53 (log (xm))3 + 26.54 (log (xm))2 − 10.08 log (xm) + 22.48
]
· 10−3 (N/m),

where xm is the molar fraction of bulk ethanol at the interface. Note also that the molar fraction can be obtained from c as 
follows:

xm (c) = c

c + ρw

MWw

(
1 − MWe · c

ρe

) ,

where:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρw = 1000 (kg/m3),

ρe = 789 (kg/m3),

MWw = 0.018 (kg/mol),

MWe = 0.046 (kg/mol)

are the densities and molecular weights of water and ethanol, respectively.
Fig. 26 depicts the motion of the wine in a thin layer deposited on the wall of a glass and connected to the rest of 

the wine in the glass. We can clearly see that as the mechanisms of evaporation and ethanol diffusion in water lower the 
ethanol concentration specifically in the thin layer, the gradient of surface tension thus created causes the wine to climb 
the side of the glass. The contact angle combined with the effects of gravity prevent the drop from climbing higher than a 
certain height. The wine thus accumulates at the upper extremity of the film, forming a droplet that eventually falls back 
under its own weight. Even though it seems difficult to define precise numerical parameters that could be measured in 
order to confirm the relevance of this simulation, the general behavior of the flow, the shape of the droplet that forms, and 
the mechanism responsible for its formation tend to show that this simulation is in good qualitative agreement with the 
phenomenon of tears of wine.

5.3. Coating

Dip coating, which consists in the deposition of a liquid on a solid substrate by simply withdrawing the substrate from 
a bath, is the simplest form of coating. Despite its numerous and important industrial applications, some of the phenomena 
involved are not fully understood. One of these phenomena is the film thickening due to the presence of surfactant. Landau 
and Levich were the first to determine the theoretical thickness h∞ of the film deposited by the withdrawal of a flat wall 
of a fluid bath (with no surfactant). Under the hypothesis of low Reynolds number, this thickness is proportional to the 
capillary length lc and depends on the capillary number Ca through:

h∞ = 0.945 lc Ca
2
3 , (29)

where lc = √
γ /ρg and Ca = μU/γ .

However in the presence of surfactant, the thickness of the film given by Equation (29) proves too small. Despite numer-
ous reports of this phenomenon of film thickening, it is only rather recently that the first experimental study of the flow 
field close to the coated substrate has been undertaken by Mayer and Krechetnikov in [21]. Their study features outstand-
ing visualizations of the flow near the interface. This experimental work did not completely settle the controversy about 

1 Contrary to common beliefs, the number, width and thickness of the tears (or legs) and how slow they fall does not predict the quality of wine. Rather 
they are indicative of the degree of alcohol and quantity of glycerol (that increases the viscosity and thus makes the tears slower to fall).
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Fig. 26. Visualization of the motion and evolution of the normalized bulk concentration of ethanol in a thin layer of wine deposited on the wall of a glass 
and connected to a reservoir (the content of the glass itself). Time elapses from top left to bottom right. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

Fig. 27. Visualization of the streamlines occurring during dip coating without surfactant. (a) Numerical simulations with Ca = 5 ×10−2. (b) Flow visualization 
established by Mayer and Krechetnikov in [21] at Ca = 1.8 × 10−3. Both visualizations clearly reveal the presence of an interfacial stagnation point. The 
values of velocity displayed are normalized. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

the reasons of this film thickening, but it revealed that the flow field thus identified allows Marangoni stresses to be the 
mechanism responsible for the film thickening.

Few numerical studies of this phenomenon have been undertaken. In [16] Krechetnikov and Homsy have conducted a 
study of the effects of surfactant on the film thickness in the Landau–Levich problem as well as the Bretherton problem, 
with a numerical algorithm based on a boundary-integral formulation. However, their simulations led to a film thinning 
instead of the thickening observed experimentally. More recently, in [5], Campana, Ubal, Giavedoni and Saita have solved 
the full hydrodynamic problem using the finite elements method on a domain tessellated into quadrangular elements and 
have found values of film thickening in good agreement with the experiments reported by Krechetnikov and Homsy.
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Fig. 28. Effect of increasing the capillary number on the shape of the streamlines in the context of dip coating. The first column presents the results of 
our simulations for different capillary numbers: (a) Ca = 2.5 × 10−2, (c) Ca = 5 × 10−2 and (e) Ca = 10−1. The second column presents the visualizations 
obtained by Mayer and Krechetnikov in [21]: (b) Ca = 5.9 × 10−4, (d) Ca = 1.2 × 10−3 and (f) Ca = 1.8 × 10−3. The values of interface concentration and 
velocity displayed are normalized. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

It appears that two different phenomena could account for the film thickening observed experimentally in the Landau–
Levich problem in the presence of surfactant. Equation (29) combined with the expression given above for lc and Ca shows 
that the thickness of the film is proportional to γ − 1

6 . By weakening the surface tension, the presence of surfactant have 
therefore the immediate effect of thickening the film. But another effect that must be taken into account is the Marangoni 



296 C. Cleret de Langavant et al. / Journal of Computational Physics 348 (2017) 271–297
effect. As the surface of the fluid is stretched by the withdrawal of the wall at constant velocity, the surfactant concentra-
tion on the film becomes smaller. Therefore the surface tension gets bigger on the film portion of the interface than on 
the rest of the horizontal interface. In turn, this generates Marangoni forces that tend to advect the fluid near the interface 
from the reservoir to the film, creating very characteristic flow patterns, depending on the parameters of the problem. The 
experimental study undertaken in [21] reveals these patterns.

We have used our computational framework to simulate dip coating (using the same parameters for the surfactant as 
in Section 5.1) and we find that similar patterns occur. We also studied the qualitative evolution as a function of the 
parameters of the problem. In particular, while solving the Landau–Levich problem without any surfactant leads to a flow 
with an interfacial stagnation point (see Fig. 27), the presence of surfactant leads to more complex flow patterns, with the 
notable presence of an interior stagnation point. Fig. 28 presents the flow topologies for the Landau–Levich problem in the 
presence of surfactant for increasing capillary numbers, and compares them with the experimental visualization of [21]. We 
note that we do not consider the same Ca as in [21], as such computations would take about half a year on our workstation 
and we leave this exercise for when we develop a parallel approach. Nevertheless, we can observe that the fluid near the 
interface is advected upwards by Marangoni forces, and that both the fluid advected by the wall and the fluid advected by 
Marangoni forces near the interface are flowing back to the reservoir inside the meniscus; a phenomenon named in [21] the 
Separating Streamline (SSL). Our numerical results are consistent with the experimental visualizations of [21]. In particular 
we can observe in both numerical and experimental visualizations that as the capillary number increases, the SSL clearly 
approaches the shape of the interface and the upper recirculation region gets thinner and thinner, which could perhaps 
indicate a decrease of the significance of surface tension gradients for high capillary numbers.

6. Conclusion

We have introduced a numerical method for solving the governing equations of surfactant-driven flows in the case of 
both soluble and insoluble surfactant. Numerical examples in two and three spatial dimensions indicate that this approach 
can faithfully simulate the surface and bulk diffusion processes for the surfactant concentration. We then coupled these 
equations to a Navier–Stokes solver and showed that the method can enable the study of the effects of both soluble and 
insoluble surfactant on free surface flows. This methodology may be used to study the numerous interesting scientific 
questions, motivated by important industrial applications, that still have to be explored.
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