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1. INTRODUCTION

Our ideas of using distributions for parameters in inverse problems grew out

of work in [7] and use of Sinko-Streifer models for mosquitofish growth rates

where only aggregate data were available due to periodic sampling of differ-

ent subsets of the population. The first theoretical results in the context of

inverse problems was in [12]. There were numerous subsequent uses including

shrimp population size models in [4, 11] and carboxyfluorescein succinimidyl

ester (CFSE) labeling models [13]. In our presentation here we consider ap-

proximation methods in estimation or inverse problems but the quantity of

interest is a probability distribution. Assume we have a parameterized system

(q ∈ Ω) with state model responses x(t; q) describing the population of inter-

est. For data or observations, we are given a set of values {yl ≈ Cx(tl; q)} for

the expected values

E [yl(q)|P ] =

∫

Ω
yl(q)dP (q)

for observations yl(q) = Cx(tl, q) with respect to the unknown probability

distribution P describing the distribution of parameters q over the population.

We use data to choose from a given family of distributions P(Q) the dis-

tribution P ∗ that gives the best fit of the underlying model to data. This is

accomplished by formulating an ordinary least squares (OLS) problem; how-

ever we note that we could equally well use a weighted least squares (WLS)

or maximum likelihood estimation (MLE) framework. Specifically we seek to

minimize

J(P ) =
∑

l

|E [yl(q)|P ]− yl|
2

over P ∈ P(Ω). Even for simple dynamics for yl(q) this yields an infinite

dimensional optimization problem. Therefore one needs approximations that

lead to computationally tractable schemes. That is, it is useful to formulate

methods to yield finite dimensional sets PM (Ω) over which to minimize J(P ).

Of course, we wish to choose these methods so that “PM (Ω) → P(Ω)” in

some sense. In our case we shall use the Prohorov Metric [5, 24] of weak star

convergence of measures to assure the desired approximation convergences as

well as consistency of the estimators.

The data {yl} available (which, in general, will involve longitudinal or time



AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs 417

evolution data) determines the nature of the problem. In gerneral there are

three classes of problems:

• Type I: The most classical problem (which we shall refer to as a Type

I problem) is one in which individual longitudinal data is available for

each member in the population. In this case there is a wide statistical

literature (in the context of hierarchical modeling, mixing distributions,

mixed or random effects, mixture models, etc.) [29, 33, 34, 35, 36, 50, 49,

51, 53, 65, 64, 63] which provides theory and methodology for estimat-

ing not only individual parameters but also population level parameters

and allows one to investigate both intra-individual and inter-individual

variability in the population and data.

• Type II: In what we shall refer to as Type II problems one has only

aggregate or population level longitudinal data available. This is com-

mon in marine, insect, etc., catch and release experiments [17] where

one samples at different times from the same population but cannot be

guaranteed of observing the same subset of individuals at each sample

time under constant environmental, etc., conditions. This type of data

is also typical in experiments where the organism or population member

being studied is sacrificed in the process of making a single observation

(e.g., certain physiologically based pharmacokinetic (PBPK) modeling

[1, 21, 66, 57] and whole organism transport models [17]). In this case

one may still have dynamic (i.e., time course) models for individuals,

but no individual data are available.

• Type III: Finally, the third class of problems which we shall refer to

as Type III problems involves dynamics which depend explicitly on the

probability distribution P itself. In this case one only has dynamics

(aggregate dynamics) for the expected value

x̄(t) = E [x(t, q, P )|P ]

of the state variable. No dynamics are available for individual trajecto-

ries x(t, q) for a given q ∈ Q. Such problems arise in viscoelasticity and

electromagnetics as well as biology (the HIV cellular models of [6]) see

also [5, 15, 14, 20, 44].
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While the approximations we discuss below are applicable to all three types

of problems, our primary interest here is problems of Type II and Type III.

In particular we shall illustrate and provide theoretical underpinnings for our

earlier computational results in the context of Transdermal Alcohol Concen-

tration (TAC) and Glioblastoma Multiforme (GBM) cancer where the inverse

problems are of Type II. Finally, we note that in the problems considered here,

one can not sample directly from the probability distribution being estimated

and this again is somewhat different from the usual case treated in some of

the statistical literature, e.g., see [81, 82] and the references cited therein.

We first describe two relevant examples currently under investigation: the

first is a linear partial differential equation with unknown diffusion; the second

is a nonlinear diffusion-growth system for tumors.

2. EXAMPLE 1: ESTIMATING BLOOD/BREATH ALCOHOL

CONCENTRATION FROM TRANSDERMAL ALCOHOL

CONCENTRATION(TAC)

The measurement of the alcohol level in the human body for the purpose

of medical research, clinical therapy, and law enforcement (e.g. DUI, etc.),

typically takes the form of blood alcohol concentration (BAC). However, in

the absence of a blood sample, which is almost always the case, a surrogate,

breath alcohol concentration (BrAC) as measured by an instrument known as

a breath analyzer, is used. The underlying chemistry of the breath analyzer

(based on Henry’s Law [48]) has been shown to be reasonably robust and

consistent across individuals and ambient conditions, thus allowing for the

relatively straight forward conversion of breath alcohol concentration (BrAC)

to blood alcohol concentration (BAC). Unfortunately, however, there are two

significant drawbacks to collecting data using a breath analyzer: properly

blowing into a breath analyzer so as to obtain accurate measurements can be

challenging, and the collection of breath data that is near-continuous in time

and in a naturalistic setting is all but impossible.

Recently, technology has been developed to allow for the measurement of

transdermal alcohol, or alcohol that diffuses from the skin’s dermal layer which

has an active blood supply, through the epidermal layer of the skin. These de-



AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs 419

vices use a variety of technologies (electro-chemical, enzymatic, optical, etc.)

to count the number of ethanol molecules evaporating from the surface of

the skin through normal perspiration. The current generation of transdermal

alcohol biosensors are reasonably compact and relatively unobtrusive, and gen-

erally resemble a digital watch, ankle bracelet, or activity tracker. Two such

devices are the WrisTASTM7 alcohol biosensor designed and manufactured by

Giner, Inc. of Waltham, MA and the Secure Continuous Alcohol Monitor-

ing System (SCRAM) device manufactured by Alcohol Monitoring Systems in

Littleton, Colorado (see Figure 1). These devices offer the possibility of pas-

Figure 1: Alcohol Biosensor Devices: The WrisTAS (left) and the

SCRAM (right).

sively collecting drinking and intoxication data both in the lab or clinic and

out in the field, that is essentially continuous in time over extended periods

such as hours, days, or even weeks. It is also conceivable that they could be

further miniaturized and included as a feature in the next generation of wear-

able health monitoring technology. At present, however, with the exception of

one company that monitors abstinence of DUI offenders under contract to the

courts, these devices are primarily only being used in the research community,

with the devices themselves (their utility, practicality, accuracy, dependability,

etc.) the central focus of the research project. This is because while it has

been known for a long time that the alcohol level in perspiration correlates well

with the alcohol concentration in the blood or breath [77, 78, 79, 80], there

are significant variations (1) from sensor to sensor and (2) in the rate at which

alcohol diffuses through the skin both across individuals and across distinct

drinking episodes within individuals under differing environmental conditions.

Consequently the meaningful quantitative interpretation of transdermal alco-

hol levels poses a significant challenge. More to the point, there is currently
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no known direct and generally accepted method for converting what these

devices measure, transdermal alcohol concentration or TAC, to the quanti-

ties that researchers, clinicians, law enforcement and the public at large are

all most familiar with and that are well understood measures of intoxication,

BAC and/or BrAC.

Some of the difficulties involved in converting TAC to BAC or BrAC are

illustrated in the following two example data sets. A WrisTASTM7 was worn

by a participant for 18 days. During each drinking episode, the participant

collected BrAC data (i.e., blew into a breath analyzer) approximately every

30 minutes. The first drinking episode was conducted in the laboratory and

BrAC was measured every 15 minutes until it returned to 0.000. The partici-

pant then wore the device for the following 17 days and consumed alcohol ad

libitum. During those days, BrAC was measured every 30 minutes starting

from the beginning of the drinking session until its value returned to 0.000.

The WrisTASTM7 measured and recorded ethanol level at the skin surface ev-

ery 5-minutes. During those 17 days, the data were collected in a naturalistic

setting. The plot in Figure 2 shows the measured BrAC and TAC over 11

Figure 2: BrAC and TAC measurements for multiple drinking episodes

by a single subject.
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drinking episodes. Note that in drinking episodes 1, 2, 4, 6, 7, 8, and 11 the

peak BrAC value was higher than the bench calibrated peak TAC value, while

in drinking episodes 3, 5, 9, and 10 the peak TAC value was higher than the

peak BrAC value.

In a second example, data were collected from multiple subjects at the

University of Illinois at Urbana-Champaign using the AMS SCRAM alcohol

biosensor. In this study 60 participants were given a gender and weight ad-

justed dose of alcohol calculated to yield a peak BrAC of approximately .08%.

The participants were then asked to provide breath analyzer readings at 30

minute intervals. The SCRAM sensor was worn and provided transdermal

readings also at a rate of one every 30 minutes. We then fit the two parame-

ters in the first principles physics based forward model to be described below

to 18 of the 60 data sets collected. While for each participant’s data, the re-

sulting models produced estimated BrAC that closely fit the observed BrAC

(obtained by inverting the forward model) and estimated TAC (obtained by

putting the estimated BrAC back through the forward model) that essentially

reproduced the measured or observed TAC, as the scatter plot below clearly

shows, there was nevertheless a wide variance in the values of the fit parame-

ters.

A number of researchers have looked at the TAC to BAC/BrAC conver-

sion problem (see, for example, [37, 38, 39]) with the goal being to produce

reliable quantitative estimates of BrAC/BAC (eBrAC/eBAC) from TAC data.

In a series of papers [32, 40, 59, 68] one of the co-authors of this paper (IGR)

together with other members of his research group devised a two-step proto-

col that used individual calibration data (i.e., simultaneously-collected breath

analyzer BrAC measurements and biosensor TAC measurements) to first fit a

first principles physics/physiological-based forward model to capture the trans-

port of ethanol from the blood, through the skin, and its eventual processing

and measurement by the TAC sensor. They then used the fit forward model

together with deconvolution techniques to estimate the eBrAC/eBAC input

to the model from the TAC output for other drinking episodes not included

in the training set. Such an approach has the obvious drawback of requir-

ing that the forward model be tuned to each individual and device and the

ambient environmental conditions (e.g., temperature, humidity, etc.). Indeed,

our algorithms have been used in alcohol related consumption and behavioral
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Figure 3: Scatter plot of deterministically obtained parameter esti-

mates for BrAC and TAC measurements from a single drinking episode

from each of 18 subjects.

studies [52] in which drinking patterns in individuals with and without alco-

hol metabolizing genetic variants were investigated, and in [41] to investigate

the relationship between social familiarity and alcohol reward in naturalistic

drinking settings and compared this to alcohol reward observed in laboratory

drinking settings. The results of these studies clearly indicated that at least

a portion of the dynamics of the system are not being captured by the mod-

els. In addition, the requisite calibration procedure is a significant burden to

researchers, clinicians and participants. They may also pose a number of eth-

ical concerns (e.g., requiring the offering of alcoholic beverages to participants

known to be pregnant or suffering from alcohol use disorder).

In a more recent series of papers [69, 67, 70], this same research group has

proposed eliminating the need to calibrate the forward models, by developing

population models based on their physics based models. The parameters in
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the model are assumed to be random and instead of using their actual values

as a basis for fitting the model, the training data is used to estimate the distri-

bution of these random parameters. In those studies, however, the arguments

used to demonstrate the convergence of their method required the assumption

that the distributions were described by appropriately constrained parame-

terized families of probability density functions. The theory we describe here

demonstrates how this restrictive assumption can be eliminated.

By essentially converting all quantities in our first principles physics based

model to dimensionless variables, we are able to eliminate some non-identifiable

(i.e., dependent) parameters and obtain the initial-boundary value problem

given by

∂ϕ

∂t
(t, η) = q1

∂2ϕ

∂η2
(t, η), 0 < η < 1, t > 0, (1)

q1
∂ϕ

∂η
(t, 0) = ϕ(t, 0), t > 0, (2)

q1
∂ϕ

∂η
(t, 1) = q2u(t), t > 0, (3)

ϕ(0, η) = ϕ0, 0 < η < 1, (4)

y(t) = ϕ(t, 0), t > 0, (5)

where the partial differential equation (1) describes the one dimensional trans-

port of ethanol through the epidermal layer of the skin, and the boundary

conditions (2) and (3) describe respectively the evaporation of ethanol at the

skin surface (η = 0) and the flux of ethanol across the boundary between the

epidermal and dermal layers of the skin (η = 1; note that the dermal layer has

a blood supply whereas the epidermal layer does not). The initial conditions

are given in (4) (typically we will have ϕ0 = 0 since we will assume that at

the start of any drinking episode there is no alcohol in the body) and the

output equation, (5) says that TAC is measured by the biosensor at the skin

surface. The state of the system, ϕ(t, η) essentially denotes the concentration

of ethanol at depth η, 0 ≤ η ≤ 1 in the epidermal layer at time t ≥ 0, while

u(t) and y(t) denote, respectively, the BAC/BrAC and TAC at time t. The

parameters q1 (normalized “diffusion”) and q2 (normalized flux control input

coefficient) are assumed to lie in a compact subset, Q, of R+ × R
+ endowed

with the metric dQ.
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While our ultimate goal is to deconvolve the BAC/BrAC input u from

the biosensor measured TAC output y, our concern in this study is dealing

with the uncertainty in the model parameters. Indeed, since the parameters q

which are unknown and dependent on 1) the individual wearing the sensor, 2)

the ambient environmental conditions at the time the TAC measurements or

observations were made, and 3) the particular sensor being worn, the problem

of estimating BAC/BrAC from observations of TAC is in fact a blind decon-

volution problem involving aggregate data. Our approach involves replacing

the q-dependent model with a population model which captures and quantifies

the variability and uncertainty that exists across all the individual members of

the population (we use the term individual to mean not just different subjects,

but also unmodelled different environmental conditions and different hardware,

and for that matter any other un-modeled dynamics present in the system).

Thus we view our problem as the class of Type II described in the Introduc-

tion. The details involved in deconvolving the BAC/BrAC from the TAC once

the population model has been estimated along with associated error bars can

be found in [68].

We define the population model to be the system (1)-(5) with the parame-

ters q ∈ Q defined to be a random vector together with the distribution for the

parameters in the form of a probability measure P0 or joint distribution func-

tion F0. We assume (1) that ν data sets (ũi, ỹi)
ν
i=1 =

(
{ũi,j}

νi−1
j=0 , {ỹi,j}

νi
j=0

)ν
i=1

have been collected, and (2) the statistical model given by

Ỹi,j = E[Yj(q, ui)|P0] + Ei,j, j = 0, ..., νi, i = 1, ..., ν, (6)

where in (6), Yj(q, ui) is the random variable corresponding to (1)-(5) and

Ei,j, j = 0, ..., νi, i = 1, ..., ν, represent measurement noise and are assumed

to be independent and identically distributed with mean 0 and common vari-

ance σ2. Then for P a probability measure defined on the σ-algebra of events

in the probability space associated with the random vector q, and F its corre-

sponding cumulative distribution function, define for an observation operator

Ĉ(q) the the mean behavior at time j, j = 0, ..., νi,

vi(j;P ) = E[yj(q, ui)|P ] =

∫

Q

Ĉ(q)xj(q, ui)dF (q), (7)

where q ∼ F and yj is a realization for Yj .
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The estimation problem is then to estimate the measure P0, using a least

squares approach

P̂0 = argmin
P

J(P ; (ũi, ỹi)
ν
i=1) = argmin

P

ν∑

i=1

νi∑

j=0

(ỹi,j − vi(j;P ))2. (8)

where the vi(j;P ) are as given in (7).

3. EXAMPLE 2: GLIOBLASTOMA MULTIFORME (GBM)

Glioblastoma Multiforme (GBM) is a deadly primary brain tumor. Due to

it’s highly infiltrative nature, GBM remains difficult to treat: although resec-

tion surgery may remove the primary tumor, many tumor cells can remain

throughout the brain, resulting in nearly all tumors recurring [83]. It has been

shown that tumors that exhibit nodular growth patterns (i.e., low diffusivity)

result in better patient prognosis [2]. Thus, it is increasingly important to be

able to accurately ascertain the growth and diffusion phenotypes present in

individual tumors.

GBM is often modeled in vivo using partial differential equations. The

simplest models of GBM growth only consider the reaction-diffusion equation

[55, 75, 61], given by:

∂c(t, x)

∂t
= D

∂2c(t, x)

∂x2
+ ρc(t, x)(1 − c(t, x)) (9)

where c(t, x) represents the cell density at time t and spatial location x, D is

the diffusion coefficient, and ρ is the intrinsic growth rate. However, this sim-

plistic model assumes diffusion is isotropic, which does not accurately describe

resulting in vivo tumor shapes.

There are multiple methods to incorporate anisotropic diffusion in order to

make glioma models more physiologically accurate. These methods introduce

heterogeneity into the diffusion coefficients. For example, one can incorporate

a spatially-dependent piece-wise diffusion coefficient to explain diffusion of cells

in grey matter versus white matter [76]. In a similar vein, diffusion weighted

imaging (DWI), which contains information about water diffusion, has been

used to infer cellular diffusion through the brain [30, 31, 46, 47, 56]. Other
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approaches to incorporating cellular heterogeneity include density-dependent

diffusion functions [73].

A landmark study discovered that, even in vitro, a reaction-diffusion equa-

tion was insufficient to describe the cellular dynamics [71]. In the work, the au-

thors performed cell line experiments on most common mutation of Epidermal

Growth Factor Receptor gene (U87∆EGFR) and wild-type EGFR (U87WT).

This showed there are distinct behavioral differences between ‘migrating’ cells

and ‘proliferating cells’ and thus concluded that migrating and proliferating

cells should be modeled separately. This observation resulted in the modeling

of cellular heterogeneity as a collection of two phenotypic subpopulations, one

of which mainly migrated and one that mainly proliferated. This “go or grow”

hypothesis [45] remains widely used in mathematical models of glioma growth

today [72, 43]. For a recent review on the status of mathematical modeling in

GBM see [54].

We proposed in [60] to perform an inverse problem to estimate the diffu-

sion D, and growth rate ρ in the reaction-diffusion equation as distributions

of a random differential equation rather than as point estimates for a deter-

ministic differential equation. In this case any spatiotemporal data involves

a growing/decreasing population of different individual cells and even if one

has frequent measurements of the changing populations, one expects (because

of a continuum of growth/death of the individual cells) this to represent (as

in the case of many biological cell data counts [13]) aggregates of different

populations at different times of data collections.

In [60], we proposed a model of GBM growth with the option of phenotypic

heterogeneity by using parameter distributions for the parameters ρ and D.

The random differential equation for GBM growth and diffusion is given by:

∂c(t, x;DDD,ρρρ)

∂t
= ∇ · (DDD∇c(t, x;DDD,ρρρ)) + ρρρc(t, x;DDD,ρρρ)(1− c(t, x;DDD,ρρρ)) (10)

where DDD and ρρρ are random variables defined on a compact set Ω = ΩDDD × Ωρρρ.

In order to obtain the aggregate observable, we take the expectation over all

subpopulations:

v(t, x) = E [c(t, x; ·, ·), P ] =

∫

Ω
c(t, x;DDD,ρρρ)dP (DDD,ρρρ) (11)

The given random differential equation has the option of phenotypic hetero-

geneity because we can easily recover the basic reaction-diffusion equation
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(Eq. 9) whenDDD and ρρρ are point distributions. Moreover, we are able to model

a “go or grow” system by considering bigaussian distributions of the parame-

ters. Most importantly, we are able to model these distributions (and more)

without making any assumptions on the underlying distributions.

Several different methods for approximating the probability measures P (DDD,ρρρ)

include using either discrete approximations based on delta functions or contin-

uous approximations based on spline basis functions. Although using higher

order spline functions are known [3, 9, 10, 20] to yield more accurate con-

vergence in the case of smooth probability density functions (PDF) and cu-

mulative distribution functions (CDF), delta functions are able to better ap-

proximate CDFs that have discontinuous derivatives. Therefore, in [60] we

discussed the use of both approximations since we did not wish to make any

assumptions about, or restrictions on, the CDF.

Suppose that the aggregate spatiotemporal data we want to model is given

by vji, representing the data at time j and spatial location i, where j = 1, .., Nt

and i = 1, ..., Nx. Then, we estimate using N = Nt ×Nx data points

P̂N = argmin
P(Ω)

Nt,Nx∑

j,i=1

(vji − v(tj , xi;P ))2.

(This, of course, is an idealized version of available data sets but we will

use this notation when discussing consistency. We assume in our subsequent

discussions involving N → ∞ statements it is understood both Nt, Nx → ∞.)

This becomes

P̂N = argmin
P(Ω)

∑

j,i

(
vji −

∫

Ω
c(tj , xi;DDD,ρρρ)dP (DDD,ρρρ)

)2

(12)

where c is the solution of the random differential equation (10).

4. PROHOROV ESTIMATES AND THEIR APPROXIMATIONS

Convergence in the Prohorov metric is equivalent to the weak* convergence

of measures when the space of probability measures P(Ω) is imbedded in the

dual C∗(Ω) of the space of bounded continuous functions on Ω. We discuss

briefly existence, convergence, and consistency theory, assuming here we are
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only estimating DDD of the GBM example above as a distribution. We note the

theory readily extends to two parameters (diffusion and growth rates) for the

GBM example and to the vector parameters in the case of the TAC example

discussed above.

In the following discussions we adopt the following notation : N = (Nt, Nx) =

Nt×Nx are the number of data points or observations; vÑ (t, x;ω) are the state

approximations to v(t, x;ω), so Ñ is the index for state approximations; M

will be the parameter approximation index

We assume a family P(Ω) of permissible probability functions for our diffu-

sion rates. We attempt to perform the estimation in a least-squares framework

P̂N = argmin
P∈P(Ω)

JN (~v, P ) = argmin
P∈P(Ω)

N∑

j,i

(vji − v(tj , xi;P ))2 (13)

where N observations are used to obtain a best fit for a nominal or “true” pa-

rameter P0. In order to approximate this minimizer, we replace the infinite di-

mensional optimization problem by a sequence of finite-dimensional optimiza-

tion problems with, for example, Dirac or spline-based distributions. Thus, if

we use the Dirac approximating families, we set DDDM = {∆Dk
, k = 1, ..,M},

where M represents the number of nodes, or elements, used in the approxi-

mation. Our family of approximating probability functions becomes

PM (Ω) =
{
PM =

M∑

k=1

wk∆Dk
|wk ≥ 0 and

M∑

k=1

wk = 1
}
,

where ∆Dk
represents the Dirac delta function at the point Dk and wk are the

weights and/or probabilities. It has been previously proven [23, 28] that there

exists a minimizer for the discrete approximation problem

P̂M
N = argmin

P∈PM (Ω)

Nt,Nx∑

j,i=1

(vji − v(tj , xi;P ))2. (14)

A further approximation arises when we appproximate the state variable v by

numerical approximation vÑ , e.g., by finite elements for example, and seek to

solve

P̂ Ñ
N,M = argmin

P∈PM(Ω)

Nt,Nx∑

j,i=1

(vji − vÑ (tj, xi;P ))2. (15)
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There are a number of questions that arise immediately in the class of

problems we have defined. Perhaps the most obvious are questions of con-

vergence (what happens as M → ∞ in the Dirac or spline approximations?)

and consistency (what happens as N = (Nt, Nx) → ∞?) These questions have

been successfully investigated both theoretically ([28, 20, 22] and the references

therein) and computationally ([10, 9] and the references therein) for certain

classes of problems. A further issue involves the partial differential equation

approximations cÑ (e.g., finite element approximations of the realizations of

the the random PDE (10)) to the solution c. Again, elements of the neces-

sary convergence issues have been addressed in [28, 17]. In summary we wish

to establish for the problems discussed here that the approximations P̂ Ñ
N,M

converge to a “true” distribution P0 as the number of elements used in the

approximations increases (i.e., M,N, Ñ → ∞).

Significantly, the Prohorov Metric Framework is computationally construc-

tive. That is, in practice, one does not construct a sequence of estimates for

increasing values of M and Ñ ; rather, one fixes the values of M and Ñ to

be sufficiently large to attain a desired level of accuracy. To do this we need

only to have some enumeration of the elements of PM (Ω) in order to compute

an approximate estimate P̂ Ñ
N,M . Practically, this is accomplished by selecting

M nodes in Ω, {ωk}
M
k=1. The optimization problem (15) is then reduced to a

standard constrained estimation problem over EuclideanM -space in which one

determines the values of the weights pMk corresponding to each node. Thus,

P̂ Ñ
N,M = arg min

PM (Ω)

∑

j,i

(
vji − vÑ (tj, xi;P )

)2
(16)

= arg min
PM (Ω)

∑

j,i

(
vji −

∫

Ω
cÑ (tj , xi;ω)dP (ω)

)2

(17)

= argmin
R̃M

∑

j,i

(
vji −

(
M∑

k=1

cÑ (tj , xi;ωk)p
M
k

))2

, (18)

where in the final line we seek the weights p̄M = (pM1 , . . . , pMM )T ∈ R̃M =

{p̄M |pMk ∈ R
+,
∑M

k=1 p
M
k = 1}. These are sufficient to characterize the ap-

proximating discrete estimate P̂ Ñ
N,M since the Ñ nodes are assumed to be
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fixed in advance. Moreover, define

Hkl = 2
∑

j,i

(
cÑ (tj , xi;ωk)

) (
cÑ (tj, xi;ωl)

)

fk = −2
∑

j,i

vji
(
cÑ (tj , xi;ωk)

)

d =
∑

j,i

(vji)
2 .

Then one can equivalently compute [10]

P̂ Ñ
N,M = argmin

˜
RM

(
1

2

(
p̄M
)T

Hp̄M + fT p̄M + d

)
. (19)

From this reformulation, it is clear that the approximate problem (16) has a

unique solution if H is positive definite and the minimum occurs in the interior

of the space. If the individual mathematical model is independent of P (See

[23, Sec. 14.1.2] for a complete discussion) then the matrices H and f can be

precomputed in advance. Then one can rapidly (and exactly) compute the

gradient and Hessian of the objective function in a numerical optimization

routine. As M grows large, the quadratic optimization problem (19) becomes

poorly conditioned [10, 9] and there exists a trade-off: M must be chosen

sufficiently large so that the computational approximation is accurate, but

not so large that ill-conditioning leads to large numerical errors. The efficient

choice of M as well as the choice of the nodes {ωk}
M
k=1 are open research

problem-dependent questions.

It should be acknowledged that the uniqueness of the computational prob-

lem (i.e., when H is positive definite) is not sufficient to ensure the uniqueness

of the limiting estimate P̂ ∗
N in Theorem 5.4 below (as there could be multiple

convergent subsequences). However, if JN (~v;P ) of (13) is uniquely minimized,

then every subsequence of P̂ Ñ
N,M which converges must converge to that unique

minimizer. Moreover, under assumptions (A1)–(A7) detailed below, it can be

shown that 1
N
JN (~v, P ) → J0(P ) (as N grows large) with probability one, and

the function J0(P ) is assumed to be uniquely minimized by P0.

To illustrate the ideas, we continue our discussions with Ω = ΩDDD taken as

the continuum of values in [0,Dmax]. Hence the family of probability functions

P(Ω) is a compact metric space in the Prohorov metric. The minimizer func-

tion is continuous in P ; and there exists a (not necessarily unique) minimizer

P̂ .
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5. RESULTS FOR RANDOM PDE MODELS

We first note that the results of [22] are given in terms of estimators PN and

estimates P̂N for nonlinear random ordinary differential equations

dy

dt
= g(t, y(t);qqq) (20)

y(t0) = y0. (21)

We claim that the results of [22] hold immediately if we replace the random

DEs with the random partial differential equations (10) or (1)-(5). This can be

readily established by a careful reading of all the details of [22]. We summarize

and discuss the resulting RDE details.

5.1. Existence of the Estimator

For RDE models one can then prove the existence [22, Thm 3.1] of PN and

P̂N as measurable functions mapping a subset of RN (that is, the data ~v ∈ R
N

where N = (Nt, Nx) in the case of our GBM example) into the space of

probability measures on Ω. We remark that the statement of the existence

theorem concerns the estimate P̂N obtained from the data realizations ~v ∈ R
N

of the random vector ~V . This is sufficient to establish the existence of the

estimator PN as a measurable function as well, since the random vector ~V

is by definition a measurable function from a probability triple into R
N , and

the composition of measurable functions is measurable. We note that the

nonlinearities such as those in the GBM example discussed above or the vector

nature of the parameters in the TAC example above play no role in the proofs

given in [22]. We therefore restate the existence results here without proof,

referring the reader to [22] for further details.

Theorem 5.1. Define the function JN : R
N × P(Ω) → R according to

Equation (13). Assume (Ω, d) is separable and compact and take the space

of probability measures P(Ω) with the Prohorov metric ρ. Assume further

that JN (·, P ) is a measurable function from R
N → R for each P ∈ P(Ω), and

that JN (~v, ·) : P(Ω) → R is continuous for each ~v ∈ R
N . Then there exists a
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measurable function P̂N : RN → P(Ω) such that

J(~v, P̂N (~v)) = inf
P∈P(Ω)

J(~v, P ).

5.2. Consistency of the Estimator

We can next establish consistency for estimators in the case of random partial

differential equation problems. The assumptions are essentially the same as

those in the case of ordinary differential equation estimators.

(A1) For any fixed N = Nt×Nx, the error random variables {Ej}
N
j=1 are inde-

pendent and identically distributed, defined on some probability triple

(Θ,ΣΘ, PΘ).

(A2) For ~E = (E1, . . . , EN ), E[~E ] = 0 and Cov[~E ] = σ2IN , where IN is the

N ×N identity matrix.

(A3) (Ω, d) is a separable, compact metric space; the space P(Ω) is taken with

the Prohorov metric ρ.

(A4) For all j, 1 ≤ j ≤ Nt, i, 1 ≤ i ≤ Nx, (tj, xi) ∈ T̃ for some compact space

T̃ .

(A5) The model function v ∈ C(P(Ω), C(T̃ )).

(A6) There exists a measure µ on T̃ such that for all g ∈ C(T̃ )

1

N

∑

j,i=1

g(tj , xi) ≡

∫

T̃

g(t, x)dµN (t, x) →

∫

T̃

g(t, x)dµ(t, x)

(A7) The functional J0(P ) =
∫
T̃
(v(t, x;P0)− v(t, x;P ))2 dµ(t, x) is uniquely

minimized at P0 ∈ P(Ω).

Under the assumptions one can prove consistency.

Theorem 5.2. Under assumptions (A1)-(A7), there exists a set A ∈ ΣΘ

with PΘ(A) = 1 such that for all θ ∈ A,

1

N
JN (~V ;P )(θ) → J0(P )

as N → ∞ and for each P ∈ P(Ω). Moreover, the convergence is uniform on

P(Ω).
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Theorem 5.3. Under assumptions (A1)-(A7), the estimators PN
w∗

−−→ P0 as

N → ∞ with probability 1. That is,

PΘ

({
θ
∣∣∣PN (~V )(θ) → P0

})
= 1.

Complete proofs of these two theorems are given in [22].

Theorem 5.3 establishes the consistency of the estimator (12). Given a set

of data ~v, it follows that the estimate P̂N corresponding to the estimator PN

will converge to the true distribution P0 under the stated assumptions. We

remark that these assumptions are not overly restrictive (compare [12, 28, 42])

though some of the assumptions may be difficult to verify in practice. Assump-

tions (A3)–(A5) are mathematical in nature and may be verified directly for

each specific problem. Assumptions (A1) and (A2) describe the error process

which is assumed to generate the collected data. While it may be possible

to ascertain a priori that the error process satisfies these assumptions (see

[8]), one may also use posterior analysis such as residual plots [27, Ch. 3] to

investigate the appropriateness of the assumptions of the statistical model. As-

sumption (A6) reflects the manner in which data is sampled and, together with

Assumption (A7), constitutes an identifiability condition for the model. The

limiting sampling distribution function µ may be known if the experimenter

has complete control over the values tj, xi of the independent variables (e.g.,

if the tj, xi are measurement times and locations) but this may not always be

the case.

The novel results in [22] establishes the desirable property of consistency

of the estimator PN as a measurable function mapping the data observation

process to the space of probability measures. However, it is generally not pos-

sible to directly solve the optimization problems (13) for P̂N as a function of ~v.

As a result, approximate (generally numerical) methods must be used in order

to solve (15) and obtain an approximate estimate P̂ Ñ
N,M . We must ascertain,

then, how the approximate estimate P̂ Ñ
N,M relates to the exact estimate P̂N

(for any fixed value of N .)

The following result establishes the computational convergence of the Pro-

horov Metric framework for fixed N . These results establish a comprehensive

body of theory for the least squares estimation of the measure P0 that is

assumed to have generated the observed data. It is given in [22, Theorem 5.1]:
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Theorem 5.4. (Convergence) Let (Ω, d) be a compact, separable metric

space and consider the space (P(Ω), ρ) of probability measures on Ω with the

Prohorov metric, as before. Let PM (Ω) be as defined as above (e.g., using

Dirac or spline approximates for elements of Ω). Assume

1. The map P 7→ J Ñ
N (~v, P ) is continuous for all Ñ ,N ;

2. For any sequence of probability measures Pk → P in P(Ω), vÑ (t, x;Pk) →

v(t.x;P ) as Ñ , k → ∞;

3. The function v(t, x;P ) is uniformly bounded for all t, x, P .

Then there exists minimizers P̂ Ñ
N,M satisfying (15). Moreover, for fixed N ,

there exists a subsequence (as M, Ñ → ∞) of the approximate estimates

P̂ Ñ
N,M which converges to some P̂ ∗

N which satisfies (13).

This theorem provides a set of conditions under which a sequence of ap-

proximate estimates P̂ Ñ
N,M converges to the estimate P̂N of interest. This

estimate is itself a realization (for a particular data set) of the estimator PN

which has been shown to exist and to be consistent, so that PN → P0 with

probability one. Thus we are assured that a computed measure P̂ Ñ
N,M is an

accurate estimate of the true distribution P0. The assumptions of Theorem

5.4 are not restrictive. In typical problems (and, indeed, in the assumptions of

other theorems appearing in this document) it is assumed that the parameter

space Ω as well as the independent variable space T ×X are compact. In such

a case, Assumptions 1 and 3 above are satisfied if the individual model solu-

tions c(t, x;DDD,ρρρ) are continuous on T ×X × Ω. Assumption 2 is then simply

a condition on the convergence of the numerical procedures used in obtaining

model solutions which we turn to discuss now! This result is, in essence, a

verification of an analogue for our problems of hypothesis (iv) of Theorem 3.1

of [12].
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6. ESTIMATION AND APPROXIMATION ARGUMENTS

Recall that we are interested in minimizing for fixed N the least squares cost

functional (22):

JN (P ) =

N∑

j,i

|vji − v(tj , xi;P )|2 . (22)

We first argue the following:

Theorem 6.1. Suppose vÑ (t, x;ω) → v(t, x;ω) for each t, x, uniformly in ω

in Ω, and that, for each t, x, the mapping ω → v(t, x;ω) is continuous on Ω.

Suppose Pk → P in P(Ω). Then for each t, x as Ñ , k → ∞ we have

vÑ (t, x;Pk) =

∫

Ω
vÑ (t, x;ω)dPk(ω) → v(t, x;P ) =

∫

Ω
v(t, x;ω)dP (ω).

Proof. For each fixed t, x we have

∣∣∣∣
∫

Ω
vÑ (t, x;ω)dPk(ω)−

∫

Ω
v(t, x;ω)dP (ω)

∣∣∣∣

≤

∣∣∣∣
∫

Ω

(
vÑ (t, x;ω) − v(t, x;ω)

)
dPk(ω)

∣∣∣∣

+

∣∣∣∣
∫

Ω
v(t, x;ω)dPk(ω)−

∫

Ω
v(t, x;ω)dP (ω)

∣∣∣∣

≡I + II.

(23)

For the first term, we find

I ≤

∫

Ω
|vÑ (t, x;ω)− v(t, x;ω)|dPk(ω).

Suppose ǫ > 0. Choose N0 so that Ñ ≥ N0 implies

∣∣∣vÑ (t, x;ω) − v(t, x;ω)
∣∣∣ < ǫ for all ω ∈ Ω.

Then for every k we have

∫

Ω

∣∣∣vÑ (t, x;ω)− v(t, x;ω)
∣∣∣ dPk(ω) < ǫ.

Thus I → 0 as Ñ → ∞ uniformly in k.
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Considering the second term, we have

II =

[∫

Ω
v(t, x;ω)dPk(ω)−

∫

Ω
v(t, x;ω)dP (ω)

]

But for each t, x, v(t, x; ·) is in C(Ω) and by definition of the Prohorov

metric (actually, one of it’s equivalent characterizations!), we have immediately

that II → 0 and the theorem is proved.

It remains to verify that “vÑ (t, x;ω) → v(t, x;ω) for each t, x, uniformly in

ω in Ω”. But this is simply a finite element type approximation for the systems

(1)-(5) or (9) [62, 74, 58]. These arguments have been given for Sinko-Streifer

types hyperbolic systems [26] as well the nonlinear parabolic models of in-

terest here [25, 17, 18, 3]. Indeed, combining the nonlinear approximation

arguments of [19, p. 585; take qn ≡ q throughout] with the linear system

arguments for uÑ (t, x;ω) − πÑu(t, x;ω) in [18, 3] yields the desired approxi-

mation results. (Here πÑu(t, x;ω) is the orthogonal projection on to the finite

element approximation subspaces.)

7. CONCLUDING REMARKS

Inter-individual or intra-individual heterogeneity is often ignored in mathe-

matical models. In the above discussions we model heterogeneity using ran-

dom differential equation models. That is, we formulate (partial) differential

equations in which some parameters are random variables. In particular, we

are concerned with the ability to recover the parameter distributions without

making any assumptions about the probability distributions.

We have illustrated and validated the computational results in the con-

text of Transdermal Alcohol Concentration (TAC) models and Glioblastoma

Multiforme (GBM) cancer where the inverse problems are of the aggregate

data/individual model type. We have established existence of estimators in

classes of probability distributions, convergence of approximations and consis-

tency of the estimators.
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