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Spline-Based Emulators for Radiative Shock
Experiments With Measurement Error
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Radiation hydrodynamics and radiative shocks are of fundamental interest in the high-energy-density physics research due to their importance
in understanding astrophysical phenomena such as supernovae. In the laboratory, experiments can produce shocks with fundamentally similar
physics on reduced scales. However, the cost and time constraints of the experiment necessitate use of a computer algorithm to generate a
reasonable number of outputs for making valid inference. We focus on modeling emulators that can efficiently assimilate these two sources of
information accounting for their intrinsic differences. The goal is to learn how to predict the breakout time of the shock given the information
on associated parameters such as pressure and energy. Under the framework of the Kennedy–O’Hagan model, we introduce an emulator
based on adaptive splines. Depending on the preference of having an interpolator for the computer code output or a computationally fast
model, a couple of different variants are proposed. Those choices are shown to perform better than the conventional Gaussian-process-based
emulator and a few other choices of nonstationary models. For the shock experiment dataset, a number of features related to computer
model validation such as using interpolator, necessity of discrepancy function, or accounting for experimental heterogeneity are discussed,
implemented, and validated for the current dataset. In addition to the typical Gaussian measurement error for real data, we consider alternative
specifications suitable to incorporate noninformativeness in error distributions, more in agreement with the current experiment. Comparative
diagnostics, to highlight the effect of measurement error model on predictive uncertainty, are also presented. Supplementary materials for
this article are available online.

KEY WORDS: Adaptive spline; Computer model validation; Emulator; Measurement error model; Non-Gaussian error; Reversible jump
Markov chain Monte Carlo.

1. INTRODUCTION

High-energy density physics (HEDP) studies the behavior of
systems with a pressure at or above 1 million times atmospheric
pressure (Drake 2006). Such high-energy-density systems oc-
cur in astrophysical phenomena [e.g., supernovae explosions
(Chevalier 1997)]. Given advances in laser technology, the high-
energy-density regime is now routinely accessible in laboratory
experiments where a laser focused on a target accelerates ma-
terial to create shock waves of about 10 kilometers per second.
Shock waves traveling at these extreme speeds radiate light in the
X-ray spectrum (as a result of black-body radiation emission)
that fundamentally alters the propagation of the shock when
compared with traditional shocks such as the shock wave cre-
ated by supersonic aircraft. These shocks are said to be radiative
shocks and described by the radiation-hydrodynamics physics
model comprised of traditional hydrodynamics augmented with
equations that govern the transport of radiation.
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Using the Omega Laser Facility at Rochester University
(Boehly et al. 1995), several experimental campaigns have been
conducting HEDP experiments concerned with understanding
radiative shocks. In these experiments, a disk of beryllium
(atomic symbol Be) is placed at the end of a plastic tube of
xenon (atomic symbol Xe). Then the laser is discharged onto
the Be disk; the energy deposition of the laser causes a layer
of Be to ablate thereby accelerating a shock into the Be. This
shock travels through the Be and “breaks out” of the disk into
the Xe gas where radiography is able to capture images of the
shock structure. These experiments require the dedication of
large amounts of resources in terms of laser time, fabrication
costs, and experimentalist time and, as a result, only tens of
such experiments are performed per year. Hence, to deal with
the scarcity of experimental data, it is natural to turn to computer
simulation to understand the behavior of the radiating shocks in
the experiment and to predict the results of new experiments.
The fidelity of the simulation must, nevertheless, be validated
with experimental data, and therefore, our interest lies in assim-
ilating the information obtained from these simulator runs and
field experiments. In the present literature, we often have similar
situations where computer algorithms or numerical procedures
are designed to describe or closely approximate a real-life ex-
periment or physical process. Examples arise in diverse areas of
science including cosmic mass distribution (Habib et al. 2007),
heat transfer (Higdon et al. 2008b), volcano analysis (Bayarri
et al. 2009), atmospheric sciences (Kennedy et al. 2008),
and hydrodynamics (Williams et al. 2006). Accuracy of the
experimental data can be quantified in some of these cases (as
ours, see Section 2), but all inputs to the experimental system
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cannot be controlled or even measured. Thus, the main chal-
lenge in this regime is to account for the uncertainty due to the
unknown state of the natural parameters that influence outcome
of the experiment. However, for the simulator, all the factors
that are believed to be influential in determining the response
are provided as controlled input to the code. Also the mathemat-
ical model used for the simulation may only partially represent
the true physical process, leading to discrepancy between ex-
perimental and simulator outputs. These simulators themselves
often represent complex mathematical models and can be ex-
pensive to run in terms of cost and time. An emulator is a
stochastic surrogate for the simulator; it is fast to implement
and enables the user to predict a large number of code outputs
as desired input configurations. The main task of the emulator is
to learn the relationship between inputs and response from the
code results and then to use it for calibration of the unknown
parameters of the real-world process by matching it with corre-
sponding responses. This enables both (i) running the simulator
with input configuration that resembles the real-world param-
eters better and (ii) predicting the outcome of a real-life event
with knowledge of only a subset of the inputs.

The basic statistical framework for validating computer mod-
els was developed in the recent literature. Sacks, Schiller,
and Welch (1989) used the Gaussian process (GP) as the
model deterministic computer codes to obtain uncertainty es-
timates at untried input configurations. Later, Kennedy and
O’Hagan (2001) built a joint model (referred to henceforth as
the Kennedy–O’Hagan model) for the experimental data and
the code output. Their model uses a GP prior for the emula-
tor and, in a hierarchical structure, efficiently assimilates the
two sources of information accounting for their intrinsic differ-
ences. In a similar setup, Higdon et al. (2004) discussed un-
certainty quantification and potential discrepancy between the
physical model and the real-world system. Of late, extension
of the Kennedy–O’Hagan model to multivariate (and possibly
high dimensional) outputs has been developed in Higdon et al.
(2008a). For other works in this field, covering a wide range
of applications and extensions, see, for example, Bayarri et al.
(2007), Liu and West (2009), Fricker, Oakley, and Urban (2010),
Bastos and OHagan (2009), and references therein. While ma-
jority of the literature uses GP emulators, here we propose two
alternative specifications based on splines. Splines are common
in regression problems (Smith and Kohn 1998; Denison et al.
2002). In Section 3.2, we argue about their advantages over GP,
and in Section 5, we provide diagnostic results from the data
analysis in favor of them.

Another area of focus in this article is to construct an appropri-
ate model for measurement error associated with the experimen-
tal output. The measurement error is universal to almost every
data collection procedure. Early work with the measurement
error in a generalized linear model can be found in Stefanski
and Carroll (1987). Mallick and Gelfand (1995) developed a
Bayesian approach for this problem relating the data, parame-
ters, and unmeasured variables through a hierarchical structure.
A Gaussian distribution is the usual choice for noise modeling.
However, it may not be robust in every situation, specifically, in
the examples where the error is known to have a skewed or flat-
shaped structure. Non-Gaussian or skewed error specifications
were used by Chen, Gott, and Ratra (2003), Arellano-Valle et al.

(2005), and Rodrigues and Bolfarine (2007). In Section 4, we
discuss two alternative ways to combine multiple sources of er-
ror, accounting for potential noninformativeness. Comparative
performance analysis against the Gaussian error specification,
based on experimental data, is provided in Section 5.

The article is organized as follows. Section 2 describes the
experiment and the associated simulator in detail. In Section 3,
within the generic formulation of the full hierarchical model,
multiple alternative specifications are suggested, discussed and
compared against each other. Section 4 extends this model with
non-Gaussian error proposals for field experiments. In Section
5, we present an in-depth analysis of the shock experiment
dataset. Finally, in Section 6, along with a summary of our
work, additional possibilities for improvement, in the context of
the current problem as well as the general modeling in this area,
are outlined as topics of future research.

2. DETAILS OF SHOCK EXPERIMENT

Let us start with the motivation for studying shock features
in physics. Subsequently we discuss the details of the labora-
tory experiment as well as the associated simulator, developed
by the Center for Radiating Shock Hydrodynamics (CRASH;
http://aoss-research.engin.umich.edu/crash/ ), funded by the
Department of Energy Predictive Science Academic Alliance
Program (PSAAP).

2.1 Scientific Relevance

Radiative shocks are of significant interest to researchers due
to their connection to astrophysical shocks. In any shock wave,
heating at the shock transition leads to heating and compression
of the matter entering the shock. If the shock wave is strong
enough, the heating becomes so large that radiation from the
heated matter carries a significant amount of energy upstream
(because light travels faster than the shock wave) and, as a result,
alters the unshocked material and, therefore, the structure of the
shock. Such shocks are called radiative shocks, and in these
shocks, the transport of radiative energy plays an essential role
in the dynamics. In astrophysics, systems with large velocities
or very hot interiors are common, so radiative shocks are ubiq-
uitous. Moreover, the shock waves emerging from supernovae
and the shock waves that can be produced in laboratory exper-
iments have specific similarities such as the optical depth (the
ratio of the average distance the radiation travels before being
absorbed to the length of the system) and the shock strength,
which relates the shock speed to the thermodynamic properties
of the material.

2.2 Experimental Details

In the laboratory experiment, first a laser pulse irradiates a
thin disk of Be metal at the end of a tube of Xe, as in Figure 1.
The energy of the laser causes the surface of the Be to ablate.
To balance the momentum of the ablating material, a shock
wave is driven into the Be at about 50 km/s. When this shock
wave breaks out of the Be into the Xe, it is propagating at a
speed of roughly 200 km/s and heats the Xe to temperatures
above 5 × 105 K. At these high temperatures, the Xe becomes a
plasma and emits a great deal of energy in the form of soft X-ray
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Figure 1. The Be disk is irradiated with several laser beams to drive
a radiative shock in the tube of Xe gas. The main diagnostic for the
radiative shock experiment is X-ray radiography. This technique is
executed by additional laser beams irradiating a metal foil to create
X-ray photons that pass through the target to an X-ray detector. The
online version of this figure is in color.

radiation. This radiation travels ahead of the shock, heating the
unshocked Xe and providing feedback to the shock dynamics.

In October 2008, a set of radiative shock experiments were
conducted at the Omega laser. There were a number of con-
trolling factors such as Be drive disk thickness, laser energy,
Xe pressure, and observation time, which were varied from one
experiment to another. Outcomes of interest were the shock fea-
tures such as its position down the tube, time of breakout from
the Be disk, and its speed. Measurement of these outcomes in-
volved multiple sources of error. Specifically the shock breakout
time, the feature of interest in this article, was measured using
three different instruments of varying accuracy ranging from 10
to 30 picoseconds (ps). Two of them were velocity interferom-

Figure 2. Shock breakout was measured using a VISAR to probe
the rear surface of the Be disk. An SOP was also used. The online
version of this figure is in color.

eter system for any reflector (VISAR; Barker and Hollenbach
1972) instruments that use a laser of 532 nanometer wavelength
to probe a surface (see Figure 2) and detect the rate of change in
the derivative of the optical path to a surface. These instruments
are often used to measure the amount of time it takes for a shock
to pass or break out of a material and are referred to as active
shock breakout (ASBO) systems. They vary in sweep speed (3
and 5 nanoseconds, referred to as ASBO1 and ASBO2 respec-
tively), which results in a different resolution on the images.

The third diagnostic used to measure the shock breakout time
was a streaked optical pyrometer (SOP; Miller et al. 2007). An
SOP is a passive detector that records thermal emission on a
streak camera that results in a two-dimensional image showing
the emission in space and time. Overall, they provide three inde-
pendent measurements of the same experimental output. Though
the VISAR and SOP diagnostics have their own uncertainties,
the dominant uncertainty of ±50 ps was due to the systematic
timing error for the laser firing mechanism, which was common
to all the measurements. This uncertainty is derived from the
time interval between the main laser and a diagnostic fiducial
laser, which is used to calibrate the VISAR and SOP instruments.

These experiments are costly, and therefore, this project will
only perform 1 or 2 experimental campaigns, each producing
about a dozen experiments per year. Planning for these experi-
ments begins about 6 months prior to the experimental day and
involves multiple scientists, engineers, and technicians. There-
fore, it is cost effective to perform a large number of simulations
to complement the experimental dataset. One of the missions
of CRASH is to design efficient computer algorithm for that
purpose, as discussed in the following.

2.3 Simulation Algorithm and Design

Computer simulations are used to predict the several features
of the shock, such as its position down the tube as a function
of time and its speed. The main simulator uses the CRASH
code, an adaptive mesh refinement Eulerian radiation hydro-
dynamics code that computes the shock behavior in the Xe.
Because the CRASH code lacks a package to model laser depo-
sition within the Be, it is not able to model the first nanosecond
of the CRASH experiments, that is, the portion of the exper-
iment where the laser is irradiating the target. This modeling
is provided by a preprocessor, a Lagrangian radiation hydrody-
namics code (HYADES; http://www.casinc.com/hyades.html),
that computes the laser energy deposition and system evolution
for the first 1.3 ns (the laser pulse width is 1 nanosecond at full-
width half-maximum). Initial calculations from HYADES code
provides matter and radiation fields to initialize the CRASH
radiation hydrodynamics code.

In this article, we focus on building emulators for the valida-
tion of HYADES code. The original one-dimensional algorithm
was extended to a two-dimensional version, known as H2D. The
physics assumptions used in H2D are similar to those of one-
dimensional HYADES, the major difference being the numeri-
cal implementation of these physics models. The fundamental
quantity of interest is the time required for the ablation-induced
shock to travel through a disk of Be (shock breakout time).
We consider one set of H2D output for applying our model. In a
previous analysis with one-dimensional output, McClarren et al.

http://www.casinc.com/hyades.html
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(2011) found only five of the inputs to have significant effect
on the response: Be disk thickness, laser energy, electron flux
limiter (related to heat transport by the electrons), Be gamma
constant (related to the compressibility of Be), and the compu-
tational mesh resolution in the Be. Later, the mesh resolution
was fixed keeping in mind code stability and convergence and
was used for all subsequent runs of HYADES. Along with the
previous four parameters, an additional source of uncertainty
specifically for the two-dimensional solution was the wall opac-
ity of the plastic tube, which controls how strongly radiation is
absorbed.

To construct a fast running preprocessor, a set of 104 runs
was conducted to cover this five-dimensional input space. The
choice of these input settings (i.e., the experimental design) was
a combination of a smaller space filling Latin hypercube design,
with additional points added according to a space-filling crite-
rion. More specifically, the first 64 design points, or runs, were
chosen using an orthogonal array-based Latin hypercube design
(LHD) Tang (1993). The base orthogonal array was a repli-
cated 25 factorial design, and these points converted to a Latin
hypercube. The orthogonal array-based design guarantees that
the cells (or strata) defined by the factorial design contain the
same number of points and the space filling criterion aims to fill
the input space as uniformly as possible. Since the construction
of such designs involves random permutations, there are many
possible designs that can be constructed in this manner. So, to
identify a very good one, many designs were generated and the
one that optimized the so-called maximin space filling criterion
[maximizing the minimum distance between design points, see
Johnson, Moore, and Ylvisaker (1990)] was chosen. Next, a
batch of 10 new design points was added to the existing 64 run
design. The points were allocated so that the maximin criterion
was again optimized, conditional on the first set of the points.
The procedure of adding 10 points at a time was repeated until a
total of 104 design points were identified. The design was con-
structed in this way since it was not clear from the start whether
it would be possible to complete 104 runs with the available
financial resources. Therefore, if this limit got exceeded in any
intermediate step between 64 and 104 trials, the resulting design
would still have very good space filling properties. The analysis
of this dataset is presented in Section 5.

3. HIERARCHICAL MODEL

We start with a description of the basic framework for a
computer code validation problem, based on the specification
in Kennedy and O’Hagan (2001). Under this setup, we build
a multistage model for joint analysis of the experimental and
simulation outputs. A variety of competing model choices are
proposed for the emulator. We discuss their properties, limi-
tations, and mutual differences. Finally, we provide details of
estimation procedure.

3.1 Generic Hierarchical Specification

Suppose we have obtained data from n runs of the simula-
tor and m trials of the experiment. Denote by y

(r)
i , y

(c)
i the ith

response from the experiment and the simulator, respectively;
x

(r)
i , x

(c)
i denote corresponding p-dimensional inputs known un-

der both scenarios; θ (r) denotes the q-dimensional vector of

unobserved natural parameters that is believed to have an influ-
ence on the response. The simulator is run at n different known
combinations θ

(c)
1 , θ

(c)
2 , . . . , θ (c)

n of these parameters. Usually,
the combinations are chosen using a prior knowledge about
range and likely values of the features.

We introduce the multistage model in an incremental manner.
Whenever possible, we omit the subscripts indexing the data
points. In the first stage, we specify a stochastic model MC for
the simulator as

MC : y(c) = f (x(c), θ (c)) + ηc(x(c), θ (c)). (1)

Next, MC is hierarchically related to the model for the experi-
ments MR as

MR : y(r) = f (x(r), θ (r)) + δr (x(r)). (2)

In the above equation, f is the link function between the code
and the experiment, which captures the major patterns common
to both of them; ηc and δr represent their individual residual
patterns. In practice, the experiment and the simulation have
their own biases and uncertainties. Physical models often in-
volve complex optimizations or set of equations that do not
admit closed-form solutions, but require use of numerical al-
gorithms. Irrespective of how the observations are simulated,
any such code output is likely to have an associated uncertainty
from multiple perspectives such as sensitivity to the choice of
initial value, simplifying assumptions, prespecified criterion for
convergence, etc. Similarly, the input–output relationship in an
actual event can deviate from the theoretical prediction due to
many reasons such as input uncertainty, lack of knowledge about
possible factors (other than θ ) influencing the experimental out-
come, and, more importantly, partial accuracy of the mathemat-
ical model. Hence, we account for them with the inclusion of ηc

and δr in MC and MR , respectively. The focus of this article
is to propose and compare different model specifications for f .
We defer that entirely to Section 3.2.

The above interpretation relies on the specification of f and
δr . From the modeling perspective, (1) and (2) represent two re-
gression problems. A priori, we believe that the solution of the
mathematical model is a good approximation of the experimen-
tal outcome, that is, the two response functions are expected to
match. Accordingly, f can be seen as the shared mean surface
and δr and ηc as zero-mean residual processes for the experiment
and the simulator, respectively. As usual for any regression prob-
lem, the properties of the residuals depend on the specification
of mean, for example, using a linear mean for a quadratic re-
sponse function can produce heteroscedastic residuals, whereas
choosing a second-order mean may lead to homoscedastic pat-
tern. Hence, if f is constrained to have a fixed functional form or
is chosen from a fixed family of functions, interpretation of the
estimates of the residuals (ηc and δr ) is subject to that selection.
However, for the purpose of this problem, learning of the indi-
vidual functions is not the primary goal of inference; the objec-
tive is to improve predictions from these models. The functions
f, ηc, and δr serve as tools for that. Using the stochastic model,
we want to predict the outcome, with reasonable accuracy, at an
untried input configuration without the need to perform com-
plex simulations (and even more expensive experiments) in the
long run. Hence, we want f and δr to be flexible enough so
that, through MC and MR , we can efficiently approximate the
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Figure 3. Graphical model for the experimental system: the con-
trolled inputs x(r) and natural parameters θ (r) influence the emulator
f . Generation of the actual outcome y(r) also involves additional bias
through input-dependent bias δ(·) and pure error τ (r). Three devices,
all sharing a common bias ϵ0 but different device-specific biases ϵj ,
are used to produce measurements y

(o)
j , j = 1, 2, 3, separately, of the

same experimental outcome.

response functions of the simulator and the experimental sys-
tem, respectively. Reasonable and well-defined specifications
for f are subject to user judgment and practical considerations.
As a simple example, we may decide to include polynomials
only upto a certain order in the emulator specification. When
ηc ≡ 0, we get back the usual Kennedy–O’Hagan specification
with f as an interpolator for the computer output and δr as dis-
crepancy capturing the potential inadequacy of the mathematical
model to explain the dynamics of an actual experiment.

We return to the model. For modeling the residual process δr

in MR , we decompose it into a zero-mean covariate-dependent
random effect plus a nugget, similar to a spatial regression model
(Banerjee, Carlin, and Gelfand 2004):

δr

(
x(r)) = δ

(
x(r))+ τ (r).

In the literature, δ(·) is modeled using a GP on x(r) (Higdon
et al. 2004); τ (r) accounts for variation in repeated experiments
with identical x(r) due to the factors that were unobserved and
unaccounted for in the model.

Although y(r) is the actual outcome of the real-world experi-
ment, usually it is measured with some error. Specifically, for the
current dataset, three different procedures were used to measure
the output of each experiment with different degrees of accuracy
(known a priori). There was also a common measurement error
ϵ0 of known scale, see Section 2.2. Hence, we augment a third
stage to the hierarchy: the measurement error model ME for
the observed output y(o) conditional on y(r) as follows:

ME : y
(o)
j = y(r) + ϵj + ϵ0 ; j = 1, 2, 3, (3)

where ϵj is the error specific to measurement procedure j. MR

and ME can be simultaneously represented through Figure 3.

3.2 Choice of Functions With Interpretation

In scientific experiments, it is often desirable to use a spec-
ification for MC , that is, an interpolator. For code outputs of
deterministic nature (i.e., different simulator runs with same in-
put combination produce the exact same output), one expects
the stochastic model to exactly fit the observed responses at
the corresponding input levels. GP is an interpolator, but using
any other residual distribution inside MC (such as white noise

(WN) or heteroscedastic but independent residuals) violates that
condition.

By definition, an emulator is a stochastic substitute of the
simulator and should be easy to run than the latter. Thus, it should
be computationally robust with respect to the size of simulation
dataset. For the shock experiment dataset, the H2D simulator is
less expensive to run than the corresponding field experiment,
hence over time it is possible to conduct more and more trials. In
general, regression with independent errors are computationally
convenient than GP regression where the inversion of covariance
matrix gets increasingly complicated as n increases.

Next, we mention some possible choices for f and compare
them on the basis of above criteria:

• GP emulator: The original Kennedy–O’Hagan specifica-
tion Kennedy and O’Hagan (2001) used a GP prior for the
emulator f . GP is by now common in nonparametric Bayes
literature as prior for regression functions (Neal 1999; Shi
and Choi 2011) and in geostatistics to model the response
correlated over space (Banerjee, Carlin, and Gelfand 2004).
The model is specified as

f (·) ∼ GP(µ(·), C(·, ·)), ηc(·) = 0. (4)

The mean function µ(·) can be chosen as a polynomial in
(x, θ) and the covariance function C(·, ·) is often speci-
fied to have a stationary correlation structure along with a
constant scale, that is, if a = (x1, θ1), b = (x2, θ2) are two
inputs to the simulator, then

Ca,b(σ 2, ν) = σ 2
p+q∏

s=1

κ(|as − bs |, νs),

where κ is a valid correlation function on R and νs is the pa-
rameter specific to sth input. Together, forms of κ and {νs}
control the correlation (hence smoothness) in the emulator
surface over the input space. Choice for κ is welldiscussed
in literature, the most popular being the Matérn family
of functions Matérn (1960), for example, exponential and
Gaussian correlation functions.

The specification in (4) makes f as well as MC inter-
polators for the simulator outputs. The computation for
the parameters of f are fairly standard, but with a large
number of sample points, inversion of the sample covari-
ance matrix gets difficult. Several approximation methods
are available in that case including process convolution
(Higdon 2002), approximate likelihood (Stein, Chi, and
Welty 2004), fixed rank kriging (Cressie and Johannes-
son 2008), covariance tapering (Kaufman, Schervish, and
Nychka 2008), predictive process (Banerjee et al. 2008),
and compactly supported correlation functions (Kaufman
et al. 2011).

• A spline-based alternative: As discussed earlier, we want f
to be robust to the possibility of overfitting the simulation
dataset. The emulator f should have a strong predictive
property for experiments with new sets of inputs. In that
regard, using a model that fits exactly the code samples
may not be desirable. The complexity of the physics as
well as numerical approximation to solve the computer
model makes it unlikely to develop codes that can fully
simulate the experiments. Also computational efficiency
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in estimating parameters of f is desirable. Specifying f as
sum of local interactions of varying order using a complete
class of basis functions serves these needs and provides
greater flexibility to model relationships among variables.
A number of options are available, including multivari-
ate adaptive regression splines (MARS; Friedman 1991;
Denison, Mallick, and Smith 1998) as

f (x) =
k∑

h=1

βhφh(x), ηc(x) ind noise,

φ1(x) = 1; φh(x) =
nh∏

l=1

[
uhl

(
xvhl

− thl

)]
+ ; h > 1, (5)

where (·)+ = max(·, 0) and nh is the degree of the interac-
tion of basis function φh. The sign indicators {uhl} are ±1,
vhl gives the index of the predictor variable that is being
split at the knot point thl within its range. The set {φh(·)}h
defines an adaptive partitioning of the multidimensional
predictor space; {βh} represents the vector of weights as-
sociated with the functions. The response is modeled to
have a mean f and a WN term ηc, which averages out any
additional pattern present in the data that is not accounted
for by the components of f . For the rest of this article, we
refer to this model as MARS+WN.

It is evident from the above specification that how well
f can capture the local patterns present in the response de-
pends on two factors: (i) the number and positions of the
knots and (ii) class of polynomials associated with each
knot. The larger number of knots implies a finer partition
of the predictor space so that we have greater flexibility in
f at the expense of reduced smoothness. Also, if we allow
polynomials and interactions of all possible order, that con-
stitutes a complete class of functions. Consequently, the
likelihood of observed data increases as more and more
of this type of local polynomials enter the model. That
reduces the estimation bias but increases predictive un-
certainty. Hence, to preserve the flexibility of the model
allowing for adaptive selection of its parameters, we need
restrictions that discourage such overfitting.

For choosing the number of knots in a penalized spline
regression, a generalized cross-validation technique is pre-
sented in Ruppert (2002). The recent work of Kauermann
and Opsomer (2011) uses a maximum-likelihood-based al-
gorithm for this. In both of them, penalty is introduced in
the form of a smoothing parameter attached to the weights.
In our hierarchical approach, this is equivalent to using
a precision parameter in the prior for {βh}. Additionally,
instead of determining the number of knots from an op-
timization algorithm, we adopt a fully model-based ap-
proach. Total number of knots in f is given by

∑k
h=2 nh.

First, we restrict the class of polynomials that can ap-
pear in φh, that is, we may set nh = 1 to include only
piecewise linear terms and no interaction among variables
at all; nh ≤ 2 ensures that interactions (of only first order
in each participating variable) are allowed. Higher the al-
lowed threshold for nh is, smoother are the basis functions
{φh}. One may like to use a prior on the class of functions,
so that functions of higher order (large nh) are less likely to

be chosen. Also important is to penalize large values of the
number of basis functions k, which, in combination with
{nh}, discourages presence of too many knots inside f . We
use a Poisson prior distribution for k to assign low proba-
bilities to its high values. A more stringent form of penalty
is enforced by letting the prior to be truncated at right at
some prespecified value k0, which essentially serves as the
maximum number of basis functions that can be present in-
side f at a time. Friedman (1991) described an alternative
approach for limiting the number of knots by constraining
them to be apart by at least a certain distance (in terms
of number of data points between them). For computer
model-based validation problems, sometimes we can only
have a limited number of simulator runs available, that is,
n is small. There, it may be appropriate to opt for a sparse
structure in f —using a simpler class of polynomials as well
as a smaller k0 to truncate the number of parameters en-
tering the model. Treating the knots as parameters allows
the model to locally adjust the smoothness of the fitted
function as required, further encouraging sparsity without
compromising the fit.

The above specification has an advantage over the tradi-
tional GP emulator in (4) in several aspects. First, the em-
ulator is modeled as a sum of localized interactions allow-
ing for nonstationarity. Kennedy and O’Hagan (2001) also
mentioned the need to consider such local structures in the
specification of emulator, which cannot be achieved with
a stationary GP. One can attempt to use kernel-weighted
mixture of stationary GPs, but computational efficiency of
those type of models is still arguable. The flexibility of
MARS lies in the fact that the interaction functions can
be constructed adaptively, that is, the order of interaction,
knot locations, signs, and even the number of such terms
is decided by the pattern of the data during model-fitting,
eliminating the need for any prior ad hoc or empirical judg-
ment. In spite of having a flexible mean structure, MARS
is easy to fit. For GP, even when stationarity holds, the
covariance specification makes it computationally incon-
venient for handling large number of simulator runs. The
computation gets more complicated if one tries to introduce
nonstationarity within covariance structure. However, un-
like GP, MARS with independent noise does not have the
interpolating property. If that is a constraint, we suggest
modifying (5) as follows.

• A combined approach: If we want to retain the flexibility
of f from (5) while enforcing the interpolating property on
MC , we can combine the earlier specifications as

f (·) =
∑

h

βhφh(·) + GP(0, C(·, ·)), ηc(·) = 0, (6)

where φh(·) is from (5). In the subsequent discussion and
data analysis, we refer to the above model as MARS+GP.
Essentially, we are modeling the simulator output as a sum
of two parts—a combination of local patterns of up to a
certain order plus a residual pattern with a global station-
ary correlation structure. This makes MC an interpolator.
Choosing µ(·) =

∑
i βiφi(·) makes (4) and (6) identical.

Hence, with an increase in simulator runs, (6) gets compu-
tationally as difficult to fit as (4) due to the problem with
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associated GP, discussed earlier. In Section 5.1, we outline
a possible modification in the form of correlation function
C to handle those situations more efficiently.

3.3 Estimation and Inference From the Joint Model

Now, we discuss how to make inference from the hierar-
chical model specified in Section 3.1. For the most exhaustive
sampling scheme, below we choose MARS+GP as the specifi-
cation for MC . With either of GP or MARS+WN as the choice,
the corresponding steps can be reworked following this.

The model-fitting procedure used here is a Markov chain
Monte Carlo (MCMC) scheme. The available data are
(y(c)

l , x
(c)
l , θ

(c)
l ), l = 1, 2, . . . , n and (y(r)

ij , x
(r)
ij ), j = 1, 2, 3, i =

1, 2, . . . , m. The set of parameters consists of the ones appear-
ing in the distributions for f, ηc, δ, and τ (r) as well as θ (r). We
provide the full model specification below.

y
(o)
ij = y

(r)
i + ϵi0 + ϵij ; j = 1, 2, 3,

y
(r)
i = f

(
x

(r)
i , θ (r))+ δ

(
x

(r)
i

)
+ τ

(r)
i ; i = 1, 2, . . . , m,

y
(c)
l = f

(
x

(c)
l , θ

(c)
l

)
+ ηc

(
x

(c)
l , θ

(c)
l

)
, l = 1, 2, . . . , n,

f (x, θ) =
k∑

h=1

βhφh(x, θ) + GP(0, C(σ 2, ν))

δ
(
x

(r)
1:m

)
∼ MVNm

(
0m,C

(
σ 2

δ , νδ

))
, τ

(r)
i

ind∼ N(0, τ 2),

ϵi0
ind∼ N

(
0, σ 2

0

)
; ϵij

ind∼ N
(
0, σ 2

j

)
,

π (β, k) ∝ MVNk

(
0, σ 2

βIk

)
× Pois(k − 1|λ)I (k ≤ k0). (7)

In the above equation, we use the customary additive Gaus-
sian structure to combine both sources of measurement error.
Alternative choices of noise distributions are discussed in Sec-
tion 4. We note that, unless informative prior distributions are
chosen for the scales of ϵj , ϵ0, scale of τ (r) is not identifiable
(evident if we marginalize out y(r)). Since, for the shock exper-
iment data, the scale of accuracy of all the measuring devices
are known beforehand, {σ 2

j : j = 0, . . . , 3} are fixed a priori
in (7). In more general applications, one must use informative
priors for each of them. Such priors can be constructed from
the knowledge of the procedure as well as other studies where
they have been used. As far as choice of priors is concerned,
for spatial correlation in ηc and δ, we used exponential correla-
tion functions. Corresponding spatial decay parameters (ν, νδ)
are chosen uniformly from the interval that corresponds to a
reasonable spatial range in the input space. Following the dis-
cussion on controlling the possibility of overfitting in MARS,
(k − 1) is given a Poisson (λ) prior truncated below k0, depend-
ing on the maximum number of nonconstant basis functions
we want to allow in the emulator specification. Finally, for the
calibration parameter θ (r), scientists often have a priori knowl-
edge about the range of values it might have. Such knowledge
may be derived from physical understanding of the parameter
or any previous study involving θ (r) or any small-scale survey
conducted with the purpose of eliciting any prior information on
its likely values. In fact, while running the simulator, the input
configurations θ

(c)
l , l = 1, 2, . . . , n are determined so as to imi-

tate that learning as close as possible. For the shock experiment
data, scientists used informative guess only about the range of

each of the parameter and within that range equi-spaced values
were used as input for the H2D simulator. We find it sensible
to quantify that information with a uniform prior distribution
for each component of θ (r), restricted to the range of attempted
configurations.

The model in (7) consists of latent vectors y(r), δ, and ηc.
Marginalizing over any one or more of them produces dif-
ferent sets of conditional posterior distributions. In the fol-
lowing, we present a specific sampling scheme from model
(7). We define ȳ

(o)
i = 1

3

∑3
j=1 y

(o)
ij and ϵ̄i = ϵi0 + 1

3

∑3
j=1 ϵij .

Also reparametrize σ 2
β = σ 2σ 2

β and τ 2 = σ 2τ 2 for computa-
tional convenience to be utilized in the sampling. We use in-
dependent inverse gamma priors for σ 2, τ 2, σ 2

β , and σ 2
δ . Now,

let

yf =
[

ȳ
(o)
1:m

y
(c)
1:n

]

, xf =
[

x
(r)
1:m θ (r)T ⊗ 1m

x
(c)
1:n θ

(c)
1:n

]

,

D = Cm+n(1, ν) +
[

τ 2Im 0
0 0

]

,

Dδ =
[
σ 2

0 + 1
9

3∑

j=1

σ 2
j

]
Im + Cm

(
σ 2

δ , νδ

)
,

and

P = [φ1[xf ], φ2[xf ], . . . , φk[xf ]],

where, for a matrix A, φh[A] denotes the vector obtained by ap-
plying φh on each row of A. Cd (a, b) stands for a d-dimensional
stationary GP covariance matrix with variance a and correlation
parameter(s) b. Using these, the model from (7) is rewritten as

yf = Pβ +
[

z1:m

0n

]
+ MVNm+n(0, σ 2D),

z ∼ MVNm(0,Dδ). (8)

During the MCMC, the vector of parameters to be updated
can be classified into broad categories as (i) MARS weights
{βh} and parameters of the spline: k, {nh, uh, vh, th} as in (5);
(ii) calibration parameters θ (r); (iii) the m-dimensional latent
vector z; (iv) other parameters σ 2, ν, σ 2

δ , νδ, τ
2, σ 2

β , and λ. We
outline the sampling steps below.

At any particular iteration of MCMC, the updating distribu-
tions are as follows:

(a) MARS parameters: With k basis functions, let αk =
{(nh, uh, vh, th) : h = 1, 2, . . . k} be the corresponding
set of spline parameters; nh and vh control the type of
basis function, whereas uh and th determines the signs
and knot points, respectively. We update (k,αk) jointly
using a reversible jump MCMC (RJMCMC; Richardson
and Green 1997) scheme. First, we marginalize out β

and σ 2 from the distribution of yf as in Appendix A.
Now, using a suitable proposal distribution q, propose a
dimension changing move (k,αk) → (k′,αk′ ). We con-
sider three types of possible moves (i) birth: addition of
a basis function, (ii) death: deletion of an existing basis
function, and (iii) change: modification of an existing ba-
sis function. Thus k′ ∈ {k − 1, k, k + 1}. The acceptance
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ratio for such a move is given by

pk→k′ = min

{

1,
p(yf |k′,αk′ , . . .)
p(yf |k,αk, . . .)

p(αk′ |k′)p(k′)
p(αk|k)p(k)

× q((k′,αk′) → (k,αk))
q((k,αk) → (k′,αk′ ))

}

.

The details of the priors and proposal distributions for the
three different types of move are described in Appendix
B. Set k = k′,αk = αk′ if the move is accepted, leave
unchanged otherwise. Subsequently, β can be updated
using the k-variate t distribution with degrees of freedom
d = n + m + 2aσ , mean µk , and dispersion c0k.k

d
. (These

quantities are defined in Appendix A.)
(b) z: Marginalize β in the first line of (8) and subsequently

condition the experimental responses on the code output
to get

ȳ
(o)
1:m|y(c)

1:n = z1:m + D̃m,nD̃
−1
n,ny

(c)
1:n + MVNm(0, σ 2D̃m|n),

where D̃ = D + σ 2
βPP T is partitioned into blocks as

D̃ =
[

D̃m,m D̃m,n

D̃n,m D̃n,n

]

and D̃m|n = D̃m,m − D̃m,nD̃
−1
n,nD̃n,m. It follows that the

posterior of z is MVNm(µz,.z), where .−1
z = 1

σ 2 D̃
−1
m|n +

D−1
δ and .−1

z µz = 1
σ 2 D̃

−1
m|n{ȳ

(o)
1:m − D̃m,nD̃

−1
n,ny

(c)
1:n}.

When the measurement error distributions are non-
Gaussian, z do not have a standard posterior any more
and one needs to use Metropolis–Hastings (MH) meth-
ods. In Section 4, we discuss a modified sampling scheme
for z specific to the non-Gaussian measurement error dis-
tributions proposed there.

(c) θ (r): Construct a prior π̃ for the components of θ (r) based
on their ranges, likely values, and mutual dependence.
Knowledge of these quantities can be obtained from phys-
ical reasoning as well as prior studies, if available. The
posterior distribution of θ (r) is q-dimensional and non-
standard, necessitating an MH step. We use conditional
distributions one at a time, that is, update θ

(r)
i given cur-

rent states of θ
(r)
−i . If π̃i denotes the ith full conditional

corresponding to π̃ , then the corresponding posterior den-
sity at θ

(r)
i = θ0,i is given by

θ0,i

∣∣θ (r)
−i ∼ π̃i

(
θ0,i

∣∣θ (r)
−i

)
c
− d

2
0k |.k|1/2,

where we replace θ
(r)
i with θ0,i inside xf . Subsequently,

θ
(r)
i can be sampled using a random walk MH step. As a

special case, when π̃i is discrete, the above conditional
posterior distribution essentially becomes multinomial
and is easy to sample from.

(d) Other parameters: With ν ∼ πν and σ 2 ∼ inverse
gamma(aσ , bσ ) a priori, it follows that π (ν| . . .) ∝
πν(ν)|D|−1/2 c

− d
2

0k |.k|1/2 and

π (σ 2|ν,β, . . .) = inverse gamma
(

n + m + k

2
+ aσ ,

ST D−1S + βT β/σ 2
β

2
+ bσ

)
,

where

S = yf −
k∑

h

βhφh[xf ] −
[

z1:m

0n

]
.

However, if the number of code output is much more than
the number of experimental observations (i.e., n ≫ m),
we recommend expediting the MCMC computation by
using an estimate of ν based on MC alone. Kennedy and
O’Hagan (2001, sec. 4.5) argues that this approximation
is reasonable, since it only neglects the “second-order”
uncertainty about the hyper parameters. The posterior
distributions of τ 2 and σ 2

β are also inverse gamma. The
Poisson parameter λ is provided with a gamma prior. An
MH sampler is used to draw from its posterior that has a
gamma form multiplied with the normalizing constant of
the truncated Poisson distribution of (k − 1). Parameters
present in the prior distribution of z are σ 2

δ , νδ , and, if
the measurement uncertainties are not exactly known, σ 2

0
and {σ 2

j : j = 1, 2, 3}. They can be updated in an MH
step using the multivariate normal density of z although,
to ensure identifiability as discussed before, informative
priors need to be used.

4. NON-GAUSSIAN MEASUREMENT ERROR
MODELS

The measurement error model ME in (3) combines multiple
sources of error with an additive Gaussian structure. Although
this is computationally convenient, there may be instances where
one or more of the error patterns lacks Gaussianity (or, more
generally, exponential decay pattern). As described in Section
3.1, the particular experiment analyzed in this article has two
types of measurement error, the common first stage error ϵ0 and
then the group-specific error ϵj , 1 ≤ j ≤ 3. Practical knowledge
of the measurement procedure suggests that the group-specific
errors indeed have exponentially decaying patterns but ϵ0 has a
noninformative structure. More explicitly, one can only detect
the response up to ±α accuracy and any further assumption on
where exactly the true value should be within that 2α range lacks
justification. The overall measurement error is a combination of
these two types. Here we suggest two different approaches of
constructing the model under this scenario.

First, we maintain the additive structure of (3) and intro-
duce non-Gaussian distributions. From the discussion above, it
only seems reasonable to suggest ϵ0 ∼ U[−α,α], where U is the
uniform distribution. For ϵj , we prefer replacing the Gaussian
distribution with a Laplace (double-exponential) density of rate
ρj . Although both have exponentially decaying tail behavior, (i)
the later produces simpler closed-form analytic expression for
the distribution of the total error ϵj + ϵ0 than the former and,
more importantly, (ii) this choice enables us to relate the current
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approach to the next one, described below. Thus for the jth type
of measurement procedure, we have

f
(
y

(o)
j

∣∣y(r); ρj ,α
)

∝

⎧
⎨

⎩
2 − e

−ρj

(
y

(o)
j −y(r)+α

)

− e
−ρj

(
y(r)−y

(o)
j +α

) ∣∣y(o)
j − y(r)

∣∣ < α,

e−ρj

∣∣y(o)
j −y(r)

∣∣ ∣∣y(o)
j − y(r)

∣∣ > α.

(9)

From a different perspective, we want to build the measure-
ment error model starting with a loss function that is intuitively
appropriate for the above situation. The usual Gaussian error
follows from the squared error loss. Here, we try to motivate
the following approach. It is evident from above that when the
true and the observed responses are within a distance α of each
other, there is no further information on the error, thus we should
have uniform loss everywhere on [−α,α]. Once they differ by
more than α, we use the absolute error loss accounting for the
information from the second type of measurement error, which
has a decaying pattern. The resulting loss function, introduced
by Vapnik (1995) has the form

Lα

(
y

(o)
j , y(r))

=
{

c
∣∣y(o)

j − y(r)
∣∣ < α,

c +
(∣∣y(o)

j − y(r)
∣∣− α

) ∣∣y(o)
j − y(r)

∣∣ > α
(10)

for some nonnegative c. We model [y(o)
j |y(r)] on the basis of this

loss function so that the likelihood of observing y
(o)
j increases

if Lα(y(o)
j , y(r)) decreases. One way of preserving this duality

between likelihood and loss is to view the loss as the negative
of the log-likelihood as follows:

f
(
y

(o)
j

∣∣y(r)) ∝ exp
(
−ρjLα

(
y

(o)
j , y(r))). (11)

This transformation of loss into likelihood is referred to in the
Bayesian literature as the “logarithmic scoring rule” Bernardo
(1979). Clearly, f is independent of choice for c, and one can as-
sume c = 0 in the sense that any value of the observed response
within α of the truth is equally “good.” This error distribution
can be rewritten as

f
(
y

(o)
j

∣∣y(r); ρj ,α
)

= pj Laplace
(
ρj , y

(r),α
)

+ (1 − pj )Unif
(
y(r) − α, y(r) + α

)
, (12)

where Laplace(ρj , y
(r),α) represents the Laplace distribution

with decay rate ρj and location parameter y(r) truncated within
[−α,α]C . For derivation of this form as well as expression for
pj , see Appendix C. Use of this loss function effectively diffuses
the information from errors of small magnitude. Equations (9)
and (12) show both methods combine the same pair of distri-
butions in two different ways. Depending on the knowledge of
a particular problem, one may be more appropriate to use than
the other.

Choice of either of these error distributions leads to small
change in the sampling scheme described in Section 3.3, for
z1:m only. To describe the simulation of z under a general error
distribution fe(·; ρ,α) as above, let us start with a model with
no discrepancy term δ(x(r)). Observe that, when we derived
(8) starting from (7), only considering the mean of procedure-
specific measurements ȳ

(o)
1:m for each experiment was sufficient to

write the likelihood. Instead, if we retain the procedure-specific
measurements y

(o)
ij , then we can similarly derive

y
(o)
ij = li + z̃ij ,

[
l1:m

y
(c)
1:n

]

= Pβ + MVNm+n(0, σ 2D),

z̃ij ∼ fe(z̃ij ; ρj ,α). (13)

It follows that the zi introduced in (8) is actually
∑3

j=1 z̃ij /3.
If fe is Gaussian as usual, then the prior for zi is also Gaussian
so it is sufficient to work with the average measurements ȳ

(o)
1:m

and z1:m. But, with general choices of fe, one needs to obtain
samples of zi only through samples of z̃ij .

To draw samples of z̃ij , use the fact that although fe, the
prior for z̃ij , is non-Gaussian, the data-dependent part in the
posterior is still Gaussian. When fe is chosen as in (9) or (12), it
has closed-form analytic expression and is easy to evaluate at a
point. So one can perform an independent Metropolis sampler:
draw l0 ∼ l1:m|y(c)

1:n and set a proposal for z̃ij as z
(p)
ij = y

(o)
ij − l0

i ,
simultaneously for all j and i. Then the accept–reject step can
be carried out comparing the ratio of prior probabilities under
fe. When m is not small, a single Metropolis step for the entire
family of z̃ij may lead to a poor acceptance rate. Instead, one can
update only the set of z̃ij for a fixed i conditional on {zi ′ : i ′ ̸= i}
(similar to the posterior sampling of θ (r)) at a time, recalculate
zi and repeat the step for all i = 1, 2, . . . , m. The rest of the
sampling steps can be carried out exactly as described in Section
3.3. When, a covariate-specific discrepancy function δ(x(r)

i ) is
added, we need to modify only the last distribution in (13)
as z̃ij = δ(x(r)

i ) + wij with wij ∼ fe(wij ; ρj ,α) and a similar
Metropolis scheme can be used for wij .

We conclude this section with an illustrative diagram for dif-
ferent choices of error distribution in ME . As above, let there
be two types of noises, one with a support [−α,α] and another
with a decay rate ρ. Assume ρ = 2,α = 0.75. Apart from the
distributions in (9) and (12), we also considered the usual ad-
ditive Gaussian framework as in Section 3. For that, we first
replaced each of the above noise distributions with an equiva-
lent Gaussian distribution. This can be done by first considering
an interval (symmetric around zero) with probability 0.99 un-
der the original distribution and then setting the variance of the
zero mean Gaussian noise so that the probability of that interval
remains unchanged under Gaussianity. Figure 4 shows the de-
caying pattern of error density around zero (in the same interval
[−6,6]) for each of those models.

From the diagram, it is evident that the Gaussian error specifi-
cation allows for larger values than the remaining two. The sum
of Laplace and uniform shrinks the distribution toward errors of
smaller magnitude, whereas the Laplace–uniform mixture pro-
vides a flat-top structure within [−α,α] and decays beyond that.

In summary, the choice of the error distribution and its param-
eters depends solely on the prior knowledge of measurement
procedure. Any noise distribution, known to have a decaying
pattern (i.e., small values are more likely than large values),
should be assigned a Gaussian or Laplace prior. On the other
hand, if no such information is available, a uniform prior is the
suitable choice for representing the flat-shaped noise. If there
are multiple sources of uncertainty in the system, it is also up to
the user to decide how to combine them. Additive models are the
most common choice although, as Figures 4(a) and 4(b) show,
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Figure 4. Probability density function of error for (a) sum of Gaussians, (b) sum of Laplace and uniform, and (c) mixture of Laplace and
uniform.

eventually it leads to a distribution for [y(o)|y(r)] that decays
around zero. Hence, if one wants to retain the noninformative-
ness in the immediate vicinity of the true value, Figure 4(c)
shows a nice formulation to achieve that using uniform and
Laplace priors. In Section 5, we compare the sensitivity of the
inference to these three choices of measurement error distribu-
tions.

5. DATA ANALYSIS

We proceed to the application of the model, developed in
the preceding two sections, in the analysis of the shock exper-
iment dataset. In Section 5.1, we start with the outputs from
the H2D simulator. We explore different modeling options for
this dataset. In Section 5.2, we present a combined analysis of
the data pooled from the simulator and the actual shock experi-
ments.

5.1 Analysis of H2D Dataset

In the H2D simulation dataset, the response (y) is the shock
breakout time. The fixed inputs (x) are the Be disk thickness and
laser energy. Three other inputs are included as the uncertain
parameters (θ ): Be gas gamma constant, a flux limiter, and tube-
wall opacity. We have a total of 104 simulator runs generated
from an LHD sampling of these five inputs.

We first want to evaluate different choices for the emula-
tor MC . As we discussed in Section 3.2, one of the main
advantages of using a MARS emulator is to allow for local
patterns and nonstationarity in the response surface. Hence, it
is of interest to know how this method performs relative to
other possible choices of nonstationary models. We specifi-
cally chose two of the alternatives: Bayesian additive regres-
sion tree (BART; Chipman, George, and McCulloch 2010)
and Bayesian treed GP (BTGP; Gramacy and Lee 2008).
These two methods have been implemented using “BayesTree”
and “tGP” packages inside R (http://cran.r-project.org). For
software on MCMC-based methods for MARS, we refer to
http://www.stats.ox.ac.uk/∼cholmes/BookCode/. As far as our
models are concerned, for (5) and (6), we only allow interactions
of up to the second order. For the GP emulator from (4), we use
µ(·) to be a quadratic trend surface with global parameters. The

covariance function is chosen to be stationary but anisotropic
with a separable Matérn form across each input dimension. We
fix the smoothness parameter of the Matérn function at 2.5 to
ensure mean-square differentiability of the output process.

The inference proceeds as follows: we leave out about 10% of
the data, fit the model with the remaining points as training data,
and then construct point estimate and 90% predictive interval
for each point in the test sample. This completes one trial.
Randomizing selection of the test samples, we performed 50
such trials, sufficient to cover all the simulator runs. Under each
model, we provide boxplots of average absolute bias and average
predictive uncertainty (estimated as width of predictive interval)
over all trials in Figure 5.

Although the models performed comparably for prediction
bias, the average predictive uncertainty varied to a larger ex-
tent from one model to another. BART generated very large
predictive intervals for the test samples. BTGP performed rela-
tively better with respect to predictive uncertainty. Although the
traditional GP emulator of Kennedy and O’Hagan (2001) with
global quadratic trend produced comparable bias estimates, us-
ing a MARS mean contributed to significantly smaller uncer-
tainty estimates for both (5) and (6). We specifically note that
(6) fits the training dataset exactly as (4) but was still able to
produce much tighter credible intervals for the test samples. In
Table 1, we summarize the bias and uncertainty results along
with the empirical coverage rate of 90% posterior credible set
constructed for each point in the test dataset.

All the models have provided satisfactory coverage rates. It
shows that the tighter credible sets generated by MARS-based
emulators are not subject to overconfidence inaccuracy. BART
produced the highest coverage rate but this is expected given the
increased uncertainty associated with its predictions. Based on
this statistics, we continue to work with MARS-based emulators
in subsequent analysis.

Next, we want to analyze the sensitivity of predictive perfor-
mance to the choice of k0, the maximum allowed number of
basis functions in MARS. We have mentioned this as a method
of strictly penalizing overfitting. For the H2D output, we carry
out the estimation with six different values of k0 ranging from
11 to 81 (including the constant function). The inverse gamma
prior for σ 2

β is chosen to be proper yet diffused. The histogram

http://cran.r-project.org
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Figure 5. Model performance on (left) absolute error and (right) width of 95% interval width for the prediction of the test samples over 50
trials with the H2D output.

of the posterior samples of k in each of the trials are pre-
sented in Figure 6. We observe that, with k0 = 11 (the constant
term + up to 10 nonconstant polynomials), the model puts max-
imum of its weight at k0, indicating that even larger values are
also likely. With k0 = 21, the decaying right tail-behavior of the
posterior distribution towards k0 indicates that this range is po-
tentially sufficient to capture most of the variability. We decided
to increase k0 further to see if it goes on adding more and more
functions. However, even with k0 as large as 81, its behavior
is essentially unchanged from k0 = 21, that is, it continues to
stay mostly within the region [8, 18]. This shows that the model
can, on its own, control overfitting based on the prior for regres-
sion coefficients {βh} and number of basis functions k (as we
discussed in Section 3.2) and we do not need to emphasize too
much about choosing a strict bound like k0.

Looking at the results of Table 1, it is relevant to question
the usefulness of a MARS+GP model given the fact that a
MARS+WN model, much simpler and faster to run, can show
comparable prediction performance. We like to mention a couple
of arguments in favor of that. First, as we have noted in Section
3.2, in scientific experiments, it is often preferred to have an em-
ulator that can replicate the code output at previously tried input
configurations. For that, we need an interpolator inMC and only
MARS+GP satisfies that requirement. The other reason comes
from the perspective of sparsity in model fitting. In Section 3.2,
we have mentioned that we can control the overfitting in MARS
by restricting the total number of functions as well as order of
each function. Now, if the true function is complex enough and

we do not allow sufficient number of functions or restrict our
choice only to the lower-order functions, the MARS component
may not alone be sufficient in modeling the response. Having
an additional GP component can be useful in this situation. To
illustrate this argument, we take the H2D code output and carry
out a validation study for different choices of k0 with the first-
order interactions only. Table 2 presents the comparison of the
two procedures under different choices of k0.

Table 2 highlights the potential usefulness of a MARS+GP
specification. In the analysis presented in Table 1, we have used
interactions of up to the second order. Figure 6 shows that the
reasonable choice for k0 should be between 15 and 20 for a
second-order model. Hence, when we consider a MARS spec-
ification with k0 = 5 or 10 and restrict ourselves to the first-
order interactions only, that is likely too sparse to capture the
important patterns of the response surface. This explains why
in Table 2, the bias and uncertainty of prediction has gone up
significantly for the MARS+WN type emulator in comparison
to Table 1. However, MARS+GP has performed much better,
and if we again compare to Table 1, the decrease in the predic-
tion accuracy is much smaller even with k0 as small as 5. This
shows that the GP component can successfully compensate for
the insufficient number of local functions. With very complex
computer models, this advantage can be significant.

We also like to mention one computational aspect of the
problem. As we have indicated in the end of Section 3.2, the
MARS+GP model for emulator involves a GP covariance struc-
ture that gets computationally extensive with large number of

Table 1. Predictive performance for different emulator choices

Criterion BART BTGP GP w/quadratic trend MARS+GP MARS+WN

Absolute bias 4.7577 5.4499 3.9960 3.6562 3.4462
Predictive uncertainty 37.5173 22.4752 17.9758 13.9765 14.3267
Empirical coverage rate of 90% credible set 0.9517 0.8883 0.8867 0.9017 0.9100
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Table 2. Comparison of MARS+WN and MARS+GP methods with linear interactions

Method MARS+WN MARS+GP

k0 5 10 15 5 10 15

Absolute bias 3.6501 3.6098 3.4775 2.8795 2.7536 2.7512
Predictive uncertainty 21.9697 21.1067 21.2541 16.4132 16.9865 17.0799
Empirical coverage rate of 90% credible set 0.9250 0.9233 0.9283 0.9017 0.9033 0.8950

observations. Currently, we have only 104 outputs from the H2D
code, but we expect to collect more and more of them over time.
Thus it is relevant to discuss possible modifications we may
have to implement in that scenario. Approximate computation
methods, as indicated in Section 3.2, can be used there. However,
unlike usual GP regression for two- or three-dimensional spatial
datasets, this problem involves relatively higher-dimensional in-
put space (five-dimensional input for the current experiment).
We like to illustrate one specific choice that may be more conve-
nient to use in this type of situations. The approach, presented in
Kaufman et al. (2011) in the context of a simulator related to cos-
mological applications, is based on using compactly supported
correlation functions to ensure sparsity of GP covariance ma-
trix. The range of the sparsity is controlled hierarchically and
can vary across different inputs. Since the size of the current
dataset is not large enough to efficiently represent the computa-

tional gains from this method, we decide to perform a simulation
study. A brief description of this idea along with an evaluation
of its performance with respect to predictive performance as
well as time efficiency is included in the online supplementary
materials.

5.2 Validation With Laboratory Experiments

Now that we have evaluated different options for modeling the
code output, the next step is to validate it using outcomes from
actual laboratory experiments. In each of the eight experiments
we have results from, the shock breakout time was measured
by three different diagnostics (ASBO1, ASBO2, and SOP). For
one of those experiments, SOP measurement was not available.
The ranges of measurement inaccuracy for ASBO1 (±10 ps),
ASBO2 (±20 ps), and SOP (±30 ps) are converted to standard

7 8 9 10 11 8 10 12 14 16 18 20 10 15 20 25

k0 = 11 k0 = 21 k0 = 31

10 15 20 25 10 15 20 25 30 10 15 20 25 30

k0 = 41 k0 = 61 k0 = 81

Figure 6. Variation in the posterior distribution of number of local functions k under different choices of the threshold k0. The online version
of this figure is in color.
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Table 3. Mean absolute error and predictive uncertainty for different
emulator choices

Prediction criteria

Absolue bias Uncertainty
Device
type MARS+GP MARS+WN MARS+GP MARS+WN

ASBO1 17.6760 17.3552 72.2343 71.7667
ASBO2 19.3281 18.3467 75.3237 73.4993
SOP 16.2600 16.3400 81.7914 80.2587

deviations for Gaussian error distribution with the 99% proba-
bility criterion used for Figure 4. Finally, in all measurements,
there is a systematic timing error of ±50 ps for the laser firing
mechanism. This is represented by ϵ0 in the model (3).

We employ the full hierarchical model in (7) using the sam-
pling scheme described in Section 3.3. Here, we follow the
leave-one-out validation procedure, that is, at one run, we re-
move all measurements that belong to a particular experiment.
Models are fitted to remaining data (simulator and experimental
outcomes together), and similar to the above, point and interval
estimates for left-out data points are obtained from posterior
draws, which are converted to estimates of bias and uncertainty
as before. Table 3 provides the posterior mean absolute bias and
predictive uncertainty for the three models, for each of three
different measurement procedures.

As expected, the uncertainty estimates for ASBO1, ASBO2,
and SOP measurements follow the same (increasing) order as
their individual precisions. Both of the emulators have produced
comparable bias estimates. However, using MARS+WN results
in a slight reduction in the uncertainty estimates across all types
of measurements. We can attribute this to the additional uncer-
tainty due to estimation of GP covariance parameters.

We also want to analyze, whether using an input-dependent
bias function δ(x(r)) improves the prediction in MARS-based
models. In Table 4, we compare the average absolute error and
prediction uncertainty obtained by carrying out estimation with
and without the δ(·) function.

It can be seen that for neither of the emulators, adding a bias
term does not significantly alter the magnitude of prediction
error. On the other hand, the predictive uncertainty has slightly
gone up in most of the cases due to the additional uncertainty
in the parameters of δ(x(r)). So, we can conclude that the H2D
algorithm provides a satisfactory approximation of the dynamics

Table 4. Impact of bias function on prediction error and uncertainty
(in parentheses)

MARS+GP MARS+WN

Device type Without δ(·) With δ(·) Without δ(·) With δ(·)

ASBO1 17.6760 17.2680 17.3552 18.2971
(72.2343) (72.9123) (71.7667) (71.9894)

ASBO2 19.3281 19.1712 18.3467 19.4010
(75.3237) (77.6631) (73.4993) (75.0506)

SOP 16.2600 16.6120 16.3400 16.0868
(81.7914) (82.1937) (80.2587) (79.3420)

Table 5. Posterior summary for calibration parameters under
MARS+WN model

Calibration parameter Be gamma Wall opacity Flux limiter

Median 1.435 1.005 0.0595
90% credible interval (1.402,1.483) (0.719, 1.275) (0.0504, 0.0722)

of the actual shock experiments. In the following, all subsequent
analysis are carried out without the discrepancy term δ(x(r)) in
MR .

Another quantity of inferential interest is the vector of calibra-
tion parameters θ (r). While designing the input configurations
for the code, the scientists chose regularly spaced values for each
component of θ (c) within a prespecified range of likely values.
For each component of θ (r), we use independent uniform priors
over the set of those input configurations. Post model-fitting,
we found the corresponding posterior distributions not much
sensitive to the choice of emulator model. Hence, it suffices to
present the summary statistics only for the MARS+WN model
in Table 5. Visual representation through posterior histograms
and pairwise bivariate kernel density estimates are shown in
Figures 7 and 8, respectively.

The extent of nonuniformity (and peakedness) in the posterior
of each calibration parameter reflects whether the data have
strong enough evidence to identify its “correct” value in the
experiments. The posterior distribution of Be gamma, which
is seen (in Figures 7 and 8) to be concentrated only within a
subregion of its prior support, looks to be the most informative
of all three quantities. However, the flux limiter has shown
slightly more nonuniformity than the wall opacity. With respect
to prediction, this implies that the model for shock breakout
time is more sensitive to the uncertainty in learning Be gamma
than flux limiter and wall opacity.

Finally, we move to the diagnostics related to the specifi-
cation of measurement error. Each of the three measurement
procedures (ASBO1, ASBO2, and SOP) is known to have a
decaying error pattern (with different rates of decay), but the
timing error for the laser firing mechanism is more noninforma-
tive. The laboratory does not have any further information on
the actual shock breakout time within ±50 ps of the reported
value. We take α = 50. For j = 1, 2, 3, ρj was determined (as
above) so that the Laplace distribution with rate ρj has 99% of
its mass inside the desired range of accuracy. Now we fit (5)
and (6) with each of (9) and (12) as the choice for the measure-
ment error model. All the error distributions in Figure 4 have
zero mean, but quite different patterns. The range of uniformity
(2α = 100 ps) is significantly large compared with the magni-
tude of the response (410–504 ps). Diagnostic outputs such as
mean absolute predictive bias and uncertainty are provided in
Table 6 across measurement types as well as choice of error
distributions.

Notably, with both the emulators, the mean predictive abso-
lute bias for all types of measurements does not vary signifi-
cantly with the choice of the measurement error model. But the
predictive uncertainty is significantly affected due to the non-
informativeness of the latter two specifications. The use of the
Laplace–uniform mixture has resulted in the largest uncertainty
estimates, which is expected due to the flat-top nature of the
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Figure 7. Posterior density estimates for the calibration parameters in the H2D dataset. The plots correspond to the model with MARS+WN
specification. The online version of this figure is in color.

error within a ±50 ps interval around the true outcome. Both
of the emulators have shown comparable performance with re-
spect to prediction bias. However, it is important to observe that,
unlike the Gaussian-error-based model, MARS+GP has pro-
duced slightly lower uncertainty estimates than MARS+WN
with non-Gaussian measurement error distributions across all
types of measuring devices. Since these error distributions have
more uncertainty than an equivalent Gaussian model (as seen in
Figure 4) and Table 4 shows that the simulator is a good approx-
imate of the actual experiment, we can conclude that borrowing
more information from the set of simulation outputs has ac-

tually helped in marginally reducing the uncertainty without
compromising on the bias.

Based on the analysis in this section, MARS-based emula-
tor turns out to be a flexible and efficient option for reducing
the bias and uncertainty of prediction of the shock breakout
time. It is also satisfactory to learn that the dynamics of the ac-
tual experimental system can be efficiently approximated by the
numerical algorithm without the need for any discrepancy func-
tion. All of the performance diagnostics presented above indi-
cate that MARS+WN and MARS+GP are comparable choices
as the emulator for the H2D code. Although the former is
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Table 6. Comparison of different choices of the measurement error models

Measurement error model

Gaussian Laplace+uniform Laplace–uniform mixture

Criterion Device type MARS+WN MARS+GP MARS+WN MARS+GP MARS+WN MARS+GP

ASBO1 17.3552 17.6760 16.5824 15.6187 17.0972 15.9965
Bias ASBO2 18.3467 19.3281 18.7290 18.5009 18.3944 14.6391

SOP 16.3400 16.2600 15.8779 17.8895 15.4721 19.1734
ASBO1 71.7667 72.2343 96.8129 95.6592 104.3146 103.1104

Uncertainty ASBO2 73.4993 75.3237 98.9259 97.3865 108.0810 107.1081
SOP 80.2587 81.7914 102.7600 100.3264 112.2484 111.4389

computationally much more efficient, the latter is particularly
useful with more complex systems that would otherwise require
a large number of basis functions (as seen in Table 2). If the ob-
jective of modeling is to have an emulator which is a statistical
interpolator, that is, (i) it matches the code output at previously

used input combinations and (ii) provides an uncertainty esti-
mate at a new point, MARS+GP is the only choice. It uses
the flexibility of MARS to provide uncertainty estimates for
prediction at new points and, at the same time, satisfies the cri-
terion of interpolation due to the GP component. Consequently,

Figure 8. Pairwise bivariate kernel density estimates for the calibration parameters in the H2D dataset. The plots correspond to the model
with MARS+WN specification. The online version of this figure is in color.
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this leads to a more flexible approach to modeling nonstation-
arity within a full Kennedy–O’Hagan framework relative to the
current literature.

6. DISCUSSION

In this article, we focused on validating the HYADES code for
the radiative shock experiments. First, we presented two differ-
ent types of emulators based on adaptive splines for predicting
the shock breakout time. Their properties and relative advantage
over the conventional GP emulator were discussed in Section 3,
and a thorough performance analysis with the H2D output was
done in Section 5. The data analysis shows the predictive power
of the MARS regression compared with the GP alternatives in
different circumstances. While (5) provides a computationally
fast algorithm, the combined approach in (6) simultaneously
uses this advantage of spline-based emulator and maintains the
interpolating behavior of MC . Another concern for using the
GP emulators rises from model-fitting perspective. For the ex-
perimental data, θ (r) is unknown and needs to be estimated from
the MCMC. Although for spline-based emulators, it is involved
in the mean only, for the GP, it appears both in mean and co-
variance matrix. Learning θ (r) from the not-so-well-behaved
posterior distribution can be problematic. However, for specific
applications, different emulators can be preferred depending on
the practical considerations as well as the desired features of the
emulator.

Another approach, similar to the MARS, is to specify f us-
ing radial basis functions (Holmes and Mallick 1998). There,
instead of using the tensor product of univariate local basis func-
tions, weighted multivariate kernels are used around the knots. It
should be remembered that these basis function approaches are
closely related to GP (Gibbs and Mackay 1997). Any combina-
tion of such functions corresponds to the eigen decomposition
of some (nonstationary) covariance kernel. Introducing a WN
in the model amounts to adding a nugget with the equivalent GP
prior that destroys its interpolating property.

The work in this article fits into the larger goal of the CRASH
center to develop the predictive capability for radiating shock
experiments. In particular, the center seeks to build a framework
that incorporates data from shocks traveling down cylindrical
tubes and then use the simulation tools to predict experiments
using tubes of elliptical cross-sections. HYADES is a preproces-
sor in the entire CRASH code in the sense that the output of the
former is the input to the latter. Thus, a hierarchical extension
of the existing model, which emulates the entire CRASH code,
enables us to faithfully learn about particular aspects of the full
experiment. Specifically, we must justify that

• our physics models are adequate,
• our codes are behaving as expected, and
• we understand the impact of uncertainties on code output

and prediction.

In this case, we have looked at the shock breakout time and
determined that our physics models are capable of reproducing
experimental data after calibration; other experiment/simulation
campaigns have considered different features such as the shock
position and the total amount of shocked Xe and studied dis-
crepancy between the physical model and the measurement
(Holloway et al. 2011).

In the general context of the computer model validation, fur-
ther improvement is possible. Any model, which combines a
computer code with a real-life experiment, consists of three ma-
jor components: an emulator function for the code output, a
measurement error process for the experimental noise, and, if
necessary, a residual function that accounts for the inadequacy
of the physical model in predicting the input–output relation-
ship in the real world. In this article, we have focussed on
the first two components, suggesting specifications to enhance
their applicability in different examples. However, for the resid-
ual function, we preferred to retain the zero-mean GP prior
of Kennedy–O’Hagan’s (2001) setup. Small number of exper-
imental outputs as well as lack of substantial prior knowledge
do not make the current dataset ideal for exploring a richer class
of models for δ(·) function. However, there are examples (e.g.,
experiments related to climate models) where a large number of
real-world observations are available in addition to a complex
simulator. There, it may be of significant interest to use models
beyond GP, whcih allows for nonstationary patterns in the func-
tion surface and incorporates any prior knowledge on the form
and contributing factors of such discrepancy. Another extension
of the current model is to incorporate multivariate response (e.g.,
different features of the shock such as location, speed, etc.) Si-
multaneous or conditional modeling of the response can reveal
the extent of association between those factors and possibly can
improve the uncertainty of the prediction by borrowing of infor-
mation through the prior as well as the calibration parameters.
Finally, in the goal of incorporating all possible sources of bias
inside the hierarchy, a direction of future work is to consider
uncertainty in measurements of x; x is treated as the fixed input
throughout this article and thus any inference of the distribution
of y is conditional on x. However, even the known inputs can
have measurement error in them. For example, laser energy is
known to exhibit a quasi-Gaussian pattern, whereas a quasi-
uniform distribution is likely for Be thickness. If a stochastic
model for x is assumed, marginal predictive uncertainty for y
can be subsequently obtained.

APPENDIX A. MARGINALIZING β AND σ2

Denote by . . . all parameters except β, σ 2. Let

Sy = yf −
[

z1:m

0n

]
, S = Sy − Pβ.

We have,

p(yf | . . .) =
∫

β

∫

σ 2
p(yf |β, σ 2, . . .)p(β|σ 2)p(σ 2) dσ 2dβ,

∝
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2πσ 2

β

)−k/2
∫

β

∫

σ 2
(σ 2)−
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2 −aσ −1
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)
]
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∫
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/
σ 2
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2 −aσ

dβ.

Now write ST D−1S + βT β/σ 2
β = βT Aβ − 2βT B + C, where

A = P T D−1P + Ik
σ 2
β

, B = P T D−1Sy , and C = ST
y D−1Sy . Then

we have, ST D−1S + βT β/σ 2
β + 2bσ = (β − µk)T .−1

k (β − µk) +
c0k , where µk = A−1B, .k = A−1, and c0k = C − BT A−1B + 2bσ .
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Denote d = n + m + 2aσ . Hence,

p(yf | . . .) ∝

(
πσ 2

β

)−k/2
c

− d+k
2

0k

∫

β

[
1
d

(β−µk)T
( c0k.k

d

)−1
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]− d+k
2

dβ.

The integrand is the pdf (upto constant) for the k-variate t distribution
with mean µk , dispersion c0k.k

d
, and degrees of freedom d. Hence, we

obtain the closed-form expression:

p(yf | . . .) ∝
(
σ 2

β

)−k/2
c

− d
2

0k |.k|1/2.

APPENDIX B. RJMCMC MOVES

We first mention the prior for (k, αk) in the form of p(αk|k)p(k).
As specified in (7), (k − 1) has a Poisson(λ) prior truncated at some
upper bound k0. As specified, for fixed k, αk = {(nh, uh, vh, th) : h =
1, 2, . . . , k}. The first term being the intercept, 2 ≤ h ≤ k correspond
to the (k − 1) nonconstant functions present in the model. We require
that these members are distinct, that is, if h ̸= h′, then the quadruples
(nh, uh, vh, th) and (nh′ , uh′ , vh′ , th′ ) are different. If p is the total num-
ber of covariates and we allow interactions up to the second order (nh =
1 or 2), then number of possible choices for a nonconstant basis func-
tion is N = p + p +

(
p

2

)
= p2+3p

2 . Allowing a particular function to be
chosen repeatedly, the number of ordered choices of (k − 1) members
is Nk−1. For each of those functions, the required knots (nh many of
them for hth basis function) can be chosen uniformly from the avail-
able data points (since a change in pattern can only be detected at data
points) and its sign can be selected in two ways—either positive or
negative with equal probability. Thus, in all, there are Nk−1(2n)

∑k
h=2 nh

ordered ways of constructing αk . Now, αk is a set, so that order of the
quadruples does not matter, and we are looking at only those choices
with distinct members, so the same αk can be generated by selecting
those (k − 1) terms in any of the (k − 1)! possible permutations. Thus,
prior probability of any candidate αk can be written as

p(αk|k) ∝ (k − 1)!
Nk−1

(1/2n)
∑k

h=2 nh .

The expression for p(αk|k) does not put zero probability on any
configuration whose members are not all distinct (as defined above).
However, with moderately large values of N and n, the probability
of any such duplication becomes very small. We also assume that all
covariates have n distinct values to locate a knot at; modification can
be made easily when this is not the case.

Next we specify the proposal distribution q(·, ·) for each of the three
moves as follows:

(i) First decide on the type of move to be proposed with probabil-
ities bk (birth), dk (death), and ck (change), bk + dk + ck = 1.
We put dk = 0, ck = 0 if k = 1, bk = 0 if k = k0.

(ii) For a birth move, choose a new basis function randomly from
the N-set. Calculate its order nh. If this selected function does
not agree with the existing (k − 1) nonconstant basis func-
tions, then choose its knots and signs as before with probability
( 1

2n
)nh . Otherwise, to avoid repetition of the same polynomial

form, choose the knots and signs in (2n)nh − 1 possible ways.
(iii) The death move is performed by randomly removing one of the

(k − 1) existing basis functions (excluding the constant basis
function).

(iv) A change move consists of altering the sign and knot variables
of a randomly chosen nonconstant basis function.

From above, we have

q((k, αk) → (k′, αk′ )) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
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1
N

1
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k′ = k + 1,
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1
k − 1

k′ = k − 1

ck

1
k − 1

1
(2n)nh − 1

k′ = k.

In above, rk = 1 if there exists an integer h ∈ [2, k] such that nh =
nk+1 and vh = vk+1, 0 otherwise. For the “change” step, h denotes the
index of basis function that has been randomly chosen for change. The
acceptance ratios for different types of move can be derived from this.

APPENDIX C. DERIVATION OF THE MIXTURE FORM
FOR VAPNIK’S LOSS FUNCTION

We have the error density

f
(
y

(o)
j

)
∝

⎧
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1
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For the first case above, the integral is cu = 2α. For the latter case,
the integral
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∫
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)
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= 2
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Thus we have f (y(o)
j ) = 1

cl+cu
[g1(y(o)

j ) + g2(y(o)
j )], where g1, g2 are

unnormalized Laplace(ρj , y
(r), α) and Unif(y(r) − α, y(r) + α) den-

sity, respectively. After appropriate rescaling by cl and cu, we have
f (y(o)

j ) = cl

cl+cu
f1(y(o)

j ) + cu

cl+cu
f2(y(o)

j ), where fi is the normalized ver-
sion of gi , i = 1, 2. Hence, the mixture weight of first component
pj = cl

cl+cu
= 1

1+ρj α
.

SUPPLEMENTARY MATERIALS

The supplementary materials discuss the use of compactly sup-
ported covariance function approach of Kaufman et al. (2011) inside
the MARS+GP framework; it can be useful for working with very
large number of computer simulations.

[Received July 2011. Revised December 2012.]
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