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ABSTRACT
Mathematical models are frequently used to explore physical systems, but can be computationally expen-
sive to evaluate. In such settings, an emulator is usedas a surrogate. In thiswork,wepropose abasis-function
approach for computer model emulation. To combine field observations with a collection of runs from the
numerical model, we use the proposed emulator within the Kennedy-O’Hagan framework of model cali-
bration. A novel feature of the approach is the use of an over-specified set of basis functions where num-
ber of bases used and their inclusion probabilities are treated as unknown quantities. The new approach is
found to have smaller predictive uncertainty and computational efficiency than the standard Gaussian pro-
cess approach to emulation and calibration. Along with several simulation examples focusing on different
model characteristics, we also use the method to analyze a dataset on laboratory experiments related to
astrophysics.

1. Introduction

Using deterministic computer models (or simulators) to explore
physical systems is common in many scientific disciplines.
Simulators are often used in model calibration (Kennedy and
O’Hagan 2001) endeavors where realizations of the com-
puter model and field observations are combined to estimate
parameters governing the system and to build a predictive
model.

Computer models are often computationally expensive
and an emulator is used in its place. The traditional approach
for computer model emulation uses a Gaussian process (GP)
prior (Sacks, Schiller, and Welch 1989). For example, suppose
that the computer model is exercised at n input locations
(x1, x2, . . . , xn), giving outputs y1, y2, . . . , yn. At any unsam-
pled input x0, the emulator’s role is to predict the model output
y0. Sacks, Schiller, and Welch (1989) proposed viewing the
computer model as a realization of a random function, f, so that
y = f (x), and the covariance of f is related to smoothness of
the response. This is achieved by using a GP prior on f where,
for input configurations x and x′, the covariance between the
responses is specified using a stationary correlation function ρ,
scale σδ , and correlation parameter νδ such that covariance func-
tion looks like: C( f (x), f (x′)) = σ 2

δ ρ(x, x′; νδ ). Typically, the
function ρ is chosen to be the product of of univariate correla-
tion functions—one for each input. In this case,ρ has a separable
stationary form, that is, ρ(x, x′; νδ ) =

∏p
j=1 ρi(x j − x′

j; νδ(i))
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for p-dimensional inputs. The one-dimensional correlation
functions {ρi(d; νδ(i)) : i = 1, 2, ..., p, } are usually chosen of
the form exp(−νdα ), where α = 1 and α = 2 correspond to the
exponential and Gaussian correlation functions, respectively.
More flexible choice for ρ involves nonstationary models where
the correlation depends separately on x j and x j′ instead of
their distance; see Paciorek and Schervish (2004). The main
reasons for using a GP are that the estimated response surface
interpolates the observed outputs and provides a foundation
for inference in a deterministic setting, the latter point being
most relevant to our work. The uncertainty at unsampled inputs
reflects the different sample paths the GP can take—a type of
model uncertainty.

The seminal article of Kennedy andO’Hagan (2001) outlined
a hierarchical model for combining field observations and com-
puter model output to estimate the values of unknown inputs
(i.e., calibration parameters) and construct a predictive model
for the physical system. Their approach (hereafter the KOH
model) is centered on a GP emulator for the simulator and,
potentially, another for the discrepancy between the computer
model and field response surfaces. Conditional on the knowl-
edge of the response surface(s), likely values of the calibration
parameters are proposed. The hierarchical nature of the model,
along with Bayesian posterior inference, allows these steps to be
iterated sequentially so that the uncertainty in learning one part
of their model is always factored into the other.
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A related problem is that of propagating the distribution of
uncertainty in inputs across a computation model. The object
of interest is the distribution of outputs. The most common
approach is that of the use of polynomial chaos (Xiu and Karni-
adakis 2002) expansions. The so-called nonintrusive approach is
most related to the problems we consider insofar as the numer-
ical model is treated as a black box. This method relies on the
simulator output at a set inputs that can be used to determine
the expansion coefficients; see Xiu (2007).

Here, we replace the GP in the KOH model with a basis
function expansion. In the context of computer model calibra-
tion, Higdon et al. (2008) used an expansion of univariate GPs
to model the multivariate computer output. In the proposed
approach, we explicitly use prior distributions in the inputs to
select the appropriate family of functions. This can be achieved
with the generalized polynomial chaos expansions (gPC; Xiu
and Karniadakis 2002) that were originally used for variance
propagation. The form of the polynomials is chosen to create an
orthogonal family with respect to the input distribution, which
implies faster convergence to the true simulator.

The model we propose in Section 2 specifies a stochas-
tic model for the response surface and employs Markov chain
Monte Carlo (MCMC) to explore the posterior predictive dis-
tribution of the calibration parameters. Bayesian inference with
gPC has been discussed in the context of collocation (Marzouk
andXiu 2009). However, the approach therein evaluates the pos-
terior distribution of the unknown input in the field data after
approximating the basis coefficients with a set of plug-in esti-
mates. This results in only a partial uncertainty quantification
and underestimates uncertainty in determining the coefficients
and sparsity of the expansion. Additionally, previous work on
gPC-based uncertainty quantification was mostly based on use
of a fixed-dimensional, truncated version of the series but, in
Section 3, we present a reversible jump Markov chain Monte
Carlo (RJMCMC;Richardson andGreen 1997) sampler to adap-
tively select the constituent polynomials. This eliminates the
need for subjective truncation, allowing the data to control spar-
sity and order of the expansion. Altogether, the proposed hierar-
chicalmodel, coupledwith the adaptive estimation scheme from
Section 3, allows for a comprehensive uncertainty quantifica-
tion. Finally, we incorporate a noise term in our model as well.
This results in a noninterpolating emulator capturing the main,
important features of the simulation function. In Section 2.2, we
discuss foundational reasons for adding the noise specific to the
context of this problem.

Comparing the traditional GP prior in KOHmodel, the pro-
posed approach adds to the flexibility of the computer model
framework in multiple ways: it can be used to model non-
Gaussian output processes, can accommodate continuous and
discrete inputs, and uses the information on the nature of ran-
domness of the input to construct the functional form of the
emulator. From a computational point of view, basis function-
based emulators have a natural advantage over a GP because the
former uses a linear mean structure to capture the input–output
relationship in the data whereas the latter uses its covariance
matrix—much more difficult to handle with large sample sizes
(Kaufman et al. 2011). Furthermore, for computer model emu-
lation, the GP acts as a prior on the function space for the sim-
ulator response surface. The proposed approach can be viewed

in the same way. By proposing an oversized set of basis func-
tions, we can control the complexity of the emulator by using a
stochastic selection algorithm that can include or exclude a par-
ticular basis function based on the its contribution to the likeli-
hood of the observed data. The uncertainty in our model arises
from the possible set of basis functions that represent the simu-
lator, conditional on the observed data. We have found the pro-
posed approach particularly efficient, compared to GPs, when a
significant number of runs from the simulator are available so
that there is abundant information to identify the best subset of
functions with high precision.

The article is outlined as follows. In Section 2, we propose
a fixed-dimensional basis function representation of the emu-
lator and discuss the appropriateness of gPCs. In Section 3,
the benefit of a variable dimension emulator is explained along
with a description of the MCMC scheme. We demonstrate the
performance of the proposed method on simulated examples
(Section 4) and on a real-world application (Section 5). We con-
clude the article with comments and future directions in Section
6. All runtimes mentioned in this article are based on an R
(http://cran.r-project.org/) implementation on a single processor
machine.

2. Emulating and Calibrating Computer Models Using
Basis Functions

In this section, new methodology for emulating and calibrating
simulators is proposed.We use a set of over-specified basis func-
tions to emulate the computer model. The approach focuses on
only a subset of the basis functions and predictions are made
by averaging over the posterior distribution of the collections
of basis functions and associated model parameters. Adaptive
selection of the basis functions is discussed in Section 3.

The aim ofmodel calibration is to combine field observations
and simulator trials to estimate parameters that impact the phys-
ical process and also to build a predictive model for the system.
There are two types of inputs to the simulator in a calibration
experiment: (i) calibration parameters that are unknown in the
field, but where a value must be specified to run the computa-
tionalmodel; and (ii) design variables that are adjustable ormea-
surable in the physical system. For example, in the real-world
application in Section 5, gas pressure and laser energy repre-
sent the design variables because they are both measurable in
the field. On the other hand, there are three calibration param-
eters (electron flux limiter, Be gamma, and wall opacity) corre-
sponding to intrinsic material properties in the system whose
values must be specified to run the simulator, but their values in
the field are unknown and have to be estimated (i.e., a type of
inverse problem).

Begin by considering the case where the input is only a vector
of calibration parameters ζ = (ζ1, ζ2, . . . , ζq)

T (i.e., no design
variables). Denote the physical system mean response by GR(ζ)

and the computer model response as G(ζ). Assume for the
moment that the numerical model exactly describes the system
dynamics and thusGR ≡ G (this assumptionwill be relaxed later
in this section). In principle, if the value of ζ were known in the
physical system, the computer model could be run at this input
value to acquire the process mean.

http://cran.r-project.org/
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Suppose the simulator is evaluated at inputs ζ(c)
i , i = 1, . . . , n

(e.g., chosen by a Latin hypercube design (McKay, Beckman, and
Conover 1979)). To estimate the response at unsampled inputs,
we propose to write G in terms of a collection of basis functions
over the support of ζ. The dependence between the simulator
inputs and output is specified as

y(c)
i = β0 +

∑

j

β j( j

(
ζ(c)
i

)
.

This specification implies that the true process GR belongs
to the span of the chosen collection of functions {( j(ζ)}, with
certain regularity assumptions (i.e., we can write GR as a linear
combination of ( j ’s). In principle, infinitely many of the ( j ’s
could be specified to model the response process; however, in
practice this is not possible. Instead, we use only a finite number,
k, of such functions. For example, if a response surface is exactly
linear in its inputs, choosing( j as a first-order polynomial in ζ
would suffice. In more complicated settings, using a larger set of
basis functions is necessary to satisfactorily approximate the true
response. We use white-noise ϵ to represent any high-frequency
variation that could be actually present in the response, but is
unlikely to be detected by the model and is not accounted for by
the k basis functions (more on this in Section 2.2). The proposed
emulation model is

y(c)
i = βk0 +

k∑

j=1

βk j( j

(
ζ(c)
i

)
+ ϵ(c)

i , ϵ(c)
i ∼ N

(
0, σ 2

c
)
,

i = 1, 2, . . . , n, (1)

where βk = (βk0,βk1, . . . ,βkk)
T is the vector of (k+1) regres-

sion coefficients. In particular, βk j , for j ≤ k, stands for the coef-
ficient of jth basis function when k basis functions are used in
the model. The variability of the unaccounted for dependence is
represented by σ 2

c .
Formodel calibration, we also have a vector of physical obser-

vations y(r), and the real-world value of ζ needs to be estimated.
Once we define prior distributions for ζ,βk, and σ 2

c (more on
this later), this can be done through the posterior distribution
of ζ given by

π
(
ζ|y(r), y(c)

1:n, k
)

∝ π
(
y(r)|ζ, y(c)

1:n, k
)
π (ζ)

∝
[∫

βk,σ 2
c

π (y(r)|ζ,βk, σ
2
c , k)π (βk, σ

2
c |y(c)

1:n, k) dβkdσ 2
c

]

×π (ζ), (2)

where π (y(r)|ζ,βk, σ
2
c , k) denotes the likelihood of y(r) given

the parameters and π (βk, σ
2
c |y(c)

1:n, k) denotes the posterior dis-
tribution of (βk, σ

2
c ) conditional on the simulator runs.

We now relax the assumptions in the beginning of this
section. First, the computer model is often not a perfect repre-
sentation of reality and thus the discrepancy between the exper-
iment and the simulator should be taken into account. This can
be done by embedding the proposed model within the well-
established KOH framework. Second, we also consider themore
common scenario where there are both design and calibration
inputs.

Let x be the p-dimensional design variables with input region
X . IfF j denotes the range of ζ j, 1 ≤ j ≤ q, andF = ⊗F j, then
X × F denotes the support for the inputs (x, ζ). We use x(r)

i
and x(c)

i to denote values of x at ith experiment and simulation,
respectively. Ifm field observations are available, the jointmodel
for y(c) and y(r) is specified as

y(c)
i = f

(
x(c)
i , ζ(c)

i

)
+ ϵ(c)

i , ϵ(c)
i ∼ N(0, σ 2

c ), i = 1, 2, . . . , n,

y(r)
i = f

(
x(r)
i , ζ

)
+ δ(x(r)

i ) + ϵ(r)
i , ϵ(r)

i ∼ N(0, σ 2
r ), i = 1, 2, . . . ,m.

(3)

In (3), f is the emulator mean, δ(·) is the discrepancy function
accounting for the systematic difference between the emulator
and field observation response surfaces, and ϵ(r) is observation
error. KOH defined δ only over the space of design variables
(i.e., to attempt to separately identify δ and its input ζ). This
implies,GR(x, ζ) − G(x, ζ) can only be a function of x and does
not explicitly depend on ζ. The joint signal shared by the field
observations and simulator outputs, f, is modeled with a basis
expansion

f = β0 +
k∑

j=1

β j( j, (4)

where β0 is a constant and {( j} is a family of basis functions in
x and ζ. An important feature of our approach is the selection of
the {( j}’s, and is described in the next subsection.

We assign conjugate prior distributions—Gaussian and
Inverse-Gamma (not independent), respectively—to the loca-
tion (βk) and scale (σ 2

c , σ 2
r ) parameters, respectively. The prior

distribution for ζ is chosen based on the scientific knowledge
(and previous studies, if available). A priori {ζi} are assumed to
be independent variables, so the prior for ζ, defined over the
F , is of the form π (ζ) =

∏
πi(ζi). A zero-mean GP prior is

used for δm = δ(x(r)
1:m) with covariance function C(σ 2

δ , νδ ) as in
Section 1.

2.1 Construction of anOptimal Collection of Basis
Functions

Consider, for themoment, a systemwith only a single calibration
input ζ and output y. Letπ (·) be the prior distribution for ζ over
its supportF . If π has finite moments, there exists a sequence of
orthonormal polynomials {ψi}∞i=0 such that ψi ∈ L2(F ,π ) and∫
F ψi(ζ )ψi′ (ζ )π (ζ ) dζ = 1 if i = i′, 0 otherwise (Kubo, Kuo,
and Namli 2007).

The computermodel response can be written as a function of
the random input: y = G(ζ ). If G is assumed to have finite vari-
ance with respect to π (·), then it follows (Ernst et al. 2012) that
G can be approximated in the L2 sense as a linear combination
of polynomial functionals {ψi(ζ )}, that is, there exists β0 = {β0

i }
so that for Gk(ζ ) =

∑k
i=0 β

0
i ψi(ζ ),

∫

F
|G(ζ ) − Gk(ζ )|2π (ζ ) dζ → 0 as k → ∞.

Gk is the kth degree gPC expansion of G, and β0 is the sequence
of polynomial coefficients in the expansion. Using the orthonor-
mality of ψi’s we have β0

i =
∫
G(ζ )Gi(ζ )π (ζ ) dζ .
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Orthonormality of polynomials with respect to the input
measure implies (Marzouk and Xiu 2009) that the approxima-
tion converges at a rate depending on the smoothness α of G so
that for some constant C, we have

∫

F
|G(ζ ) − Gk(ζ )|2π (ζ ) dζ < Ck−α. (5)

For α > 1, we have established almost sure convergence of Gk
toward G (see Appendix A of the online supplementary mate-
rials). In other words, when convergence in second moment
occurs at a sufficient fast rate, almost sure convergence also
holds. For some commonly used continuous and discrete dis-
tributions of random inputs, optimal choices for orthonormal
sequence of polynomials are mentioned in table 4.1 in Xiu and
Karniadakis (2002).

For a q-dimensional input ζ, a tensor product of uni-
variate polynomials—(i(ζ) =

∏q
j=1 ψi j (ζ j), i = 0, 1, 2, ...—is

used, where {ψi j } represents the sequence of orthonormal poly-
nomials with respect to the prior distribution π j(·) of ζ j. When
components of ζ are assumed to be independent, orthonormal-
ity of {ψi j } with respect to π j(ζ j) implies orthonormality for
{(i} with respect to the product measure π . Eldred, Webster,
and Constantine (2008) argued that this assumption can be jus-
tified if one thinks of ζ as a transformation of the original input
such that each coordinate of ζ represents a distinct source of ran-
domness. The assumption of priori independence among com-
ponents of ζ is also used in this article.

2.2 Further Discussion of theModel

The GP is used as an emulator largely because of its ability to
interpolate and because it provides a foundation for statistical
inference for deterministic computer models. The interpolation
property can be relaxed by adding a pure error to the model,
referred to as the nugget. The addition of a nugget term allows
for smoothing that is useful when the data exhibit deviation
from standard GP assumptions (Gramacy and Lee 2012) and
also accounts for numerical jitter seen in many simulators. In
our method, ϵ(c) plays a similar role. We also argue that we do
not necessarily need the model to interpolate since we already
know the computer model response for the n computer model
trials. Instead, our priority is to ensure that the emulator does a
good job of prediction at unsampled inputs.

The case of statistical inference is more crucial. For the GP,
prediction uncertainty at new inputs comes from the possible
sample paths the random function can follow. The proposed
emulator also provides a foundation for uncertainty quantifi-
cation. Here, the sources of predictive uncertainty, conditional
on the training data, arise from (i) selecting an appropriate set
of k polynomials; (ii) estimating the coefficients of the polyno-
mials; and (iii) high-frequency variation that we are unlikely to
observe due to the sparseness of the sampling of the input space.
Note that we can also view the Gaussian process model as an
infinite dimensional basis-function expansion. For example, if
we take the Karhunen-Loéve expansion (Loéve 1978) of a GP
f with input x then, with known covariance parameters, it can
be written as f (x) =

∑∞
k=1 wkek(x), where the the basis func-

tions ek(x) are orthogonal and the coefficients {wk} are indepen-
dent, mean-zero normal random variables with variance of wk

equal to the kth largest eigenvalue λk (assume they are arranged
in decreasing order). Here, the variability in the emulator comes
from the uncertainty in the coefficients after conditioning on the
data. That is, the source of variability at unsampled inputs comes
frommodel uncertainty. It is a similar argument—for (i) and (ii)
above—that we use to provide a foundation for inference from
the proposed methodology. Moreover, if the Karhunen-Loéve
expansion is truncated to exclude the high-frequency terms,
then the sum of the excluded terms will be normally distributed
(the errors will not be independent and identically distributed).
In our case, the nugget in (iii) is analogous to the high-frequency
variation that is excluded from the Karhunen-Loéve expansion
via truncation.

On another note, the proposed gPC emulator is different
from a GP with polynomial mean function since, for the for-
mer, the form of the polynomial is chosen depending on the
type of stochasticity in the input to achieve optimality, whereas
in the latter it is user-driven. Also, if wemarginalize out {β j}, this
results in a nonstationary input-dependent covariancemodel for
y(c) as follows:

cov(y(c)
i , y(c)

i′ ) = σ 2
c 1i=i′ + σ 2

β

k∑

j=1

( j(x(c)
i , ζ(c)

i )( j(x(c)
i′ , ζ(c)

i′ ).

This type of nonstationarity is different from other nonstation-
ary approaches such as specifying correlation models (Paciorek
and Schervish 2004) or partitioning the input space (Gramacy
and Lee 2008). Finally, we can make it more flexible if we let
the data choose the component polynomials ( j in an adaptive
way that allows for differential treatment for different inputs
based on their influence on the response. We do exactly that in
Section 3.

3. Adaptive Selection of Chaos Terms

The proposed model lets the number of polynomial terms, k,
be a parameter to be estimated. To do so, an adaptive scheme
is proposed that has two objectives: (i) reducing the need to
use a truncated model; (ii) allowing the model to include/delete
terms similar to a variable selection method, encouraging spar-
sity whenever possible. To achieve this, the RJMCMC sampler
of Richardson and Green (1997) is used to switch between dif-
ferent sets of polynomials. It follows from (ii) that, instead of
selecting a truncation bound and considering all polynomials
within that bound, it is more efficient to let the model choose
the most important terms from a much larger pool of terms. A
priori, one needs to make two choices: which subset of polyno-
mials to choose from and how many of them to be allowed to
enter the emulator expansion at a time.

3.1 Prior Support for the Hierarchical Model

There is an immediate theoretical advantage of treating k as a
parameter. When we define a hierarchical model, we specify
a probability distribution for the observations using parame-
ters and/or processes and also assign prior distributions to the
parameters. However, the true system need not resemble the
structure of the model. So, it is desirable that the true system
response surface lies within the prior support for the model, that
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is, there exists a set of realizations of these parameters and pro-
cesses such that the probability distribution of the observations
under the hierarchical model at those values is “close” to the
probability distribution under the true data-generating mech-
anism.

Let (G0, σ
2
c0) and (ζ,GR0, σ

2
r0) be the true processes

and parameters for the simulation and experiment,
respectively, such that y(c) ∼ N(G0(x(c), ζ(c)), σ 2

c0) and
y(r) ∼ N(GR0(x(r), ζ), σ 2

r0). Then, the full set of outputs,
denoted by Y ( f ) = [ y

(r)
1:m
y(c)
1:n
], has a multivariate distribution that is

actually determined by -0 = (G0, σ
2
c0, ζ,GR0, σ

2
r0). Under the

proposed model in (3), . = (σ 2
c , σ 2

r , δ, k, ζ,βk) governs the
distribution of Y ( f ); so it is important to investigate whether
for any specific realization of -0, there exists a subset in the
domain of . such that [Y ( f )|-0] and [Y ( f )|.] are sufficiently
close. Theorem 1 asserts that they are indeed close under some
assumptions on the true functions (the proof is included in
Appendix B of the online supplementary materials).

Theorem 1 (Prior Support). Assume that

(A1) G0 has finite variance and is of smoothness α > 1.
(A2)X is a bounded subset ofRp, F0(x) = GR0(x, ζ) − G0(x, ζ)

is a continuous function of x only and free of ζ.
(A3) The correlation function of discrepancy process is cho-

sen as ρ(x1, x2; νδ ) =
∏p

i=1 ρi(x1i − x2i; νδ(i)), where ρi is a
nowhere zero continuous, symmetric density function on R.

Then, given ϵ > 0, ∃ a set D such that . ∈ D ⇒
KL([Y ( f )|-0] || [Y ( f )|.]) < ϵ, whereKLdenotes theKullback-
Leibler distance metric between two probability distributions.

3.2 Parameter Estimation

Let us introduce somenotations for specifying the sampling pro-
cedure from the posterior distributions. Let x f = [ x

(r)
1:m ζT ⊗ 1m
x(c)
1:n ζ(c)

1:n
].

We reparameterize σ 2
β = σ 2

c σ
2
β and σ 2

r = σ 2
c σ

2
r for convenience

in computing the integrals. Also define D = [ σ
2
r Im 0

0 In ], Dδ =
C(σ 2

δ , νδ ). It follows that the joint distribution of Y ( f ), condi-
tional on βk and δm, is (m+n)-dimensional multivariate normal
(MVN) with parameters

E[Y ( f )] =
k∑

h

βh(h[x f ] +
[

δm
0n

]
, D[Y ( f )] = σ 2

c D, (6)

where δm ∼ MVN(0,Dδ ) and (h[A] represent the vector
obtained by applying the polynomial (h on each row of the
matrix A.

Marginalizing out βk and σ 2
c , the probability distribution,

p(Y ( f )|k,αk, . . .), can be written in closed form (see Appendix
C in the online supplementary materials). This has two advan-
tages. First, the form of marginal likelihood is computationally
convenient as it does not involve n × nmatrix inversion like the
GP. Instead, as Appendix C shows, it only involves computation
of determinant and inverse of a k × kmatrix formed by the poly-
nomial functions with a O(k3) computational complexity. Sec-
ond, as we can integrate out βk from p[Y ( f )| . . .], this enables
RJMCMC tomove across different values of kwithout involving
the k-dimensional coefficients. Being able to easily compare the

marginal likelihood of the data for two choices of basis functions
considerably increases the applicability of this method.

One key step in parameter estimation is defining a subset of
candidate functions for constructing the gPC emulator. We pro-
pose to create a pool of functionsVr,s,t as follows:

Vr,s,t = {{hi j}
p+q
j=1 : 0 ≤ hi j ≤ r,

∑

j

hi j ≤ t, at most smany hi j ̸= 0}. (7)

The idea behind specifyingVr,s,t is to make the space of avail-
able functions simpler and to prevent overfitting. Here, r is the
maximum order of any ψi coming from a single input, s con-
trols the number of factors in an interaction, and t puts a bound
on the combined order of any (i. Hence, r ≤ t and s ≤ p+ q.
When we have a single input ζ , r = t . As an example, a choice
of r = 4, s = 3, and t = 8 implies: (i) main effects have degree 4
or less, (ii) there cannot be any interaction term that is a tensor
product of polynomials of more than three inputs, and (iii) any
interaction term cannot have a combined degree larger than 8.

OnceVr,s,t is selected, a prior distribution on itsmembers and
a proposal distribution to move from one member to another
is required. The movements can be of three types: adding a
polynomial term (birth), deleting a polynomial term (death),
or modifying a polynomial term. Subsequently, we compute the
acceptance ratio and decide to accept/reject the proposedmove.
Given the functional form of the emulator, posterior sampling
for other model parameters is relatively standard. We mention
the entire MCMC scheme in detail in Appendix D of the online
supplementary materials.

A key feature of the proposed approach is the ability to focus
on simpler models. The reversible jump step for selecting poly-
nomials involves a prior distribution onmembers ofVr,s,t . Three
parameters control the overfitting: the Poisson prior for k, the
upper bound for that prior k0, and the order restriction on the
polynomials induced by r, s, and t in (7). Conditional on k
terms in the expansion, we use a uniform prior on every pos-
sible selection of k terms fromVr,s,t . Alternative prior specifica-
tions to emphasize even simpler models can be considered (see
Appendix F of the online supplementary materials).

4. Simulation Studies

In this section, some of the properties of the proposed approach
are investigated via simulation. The real-world application that
motivated this work is presented in Section 5.

4.1 Effect of Basis-Set Size on Predictive Uncertainty

The change in predictive uncertainty as a result of an increase in
the number of candidate basis functions is now investigated. For
one-dimensional inputs, this amounts to increasing the value of
r. As r increases, there are likely more choices of basis func-
tions that can adequately fit the data, thereby increasing the
model uncertainty. To see this, consider the following numer-
ical model:

y(ζ ) = ζ 3 + 4 sin(3πζ )/(1 + ζ 2),
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Figure . Uncertainty analysis for the adaptive emulator chosen from of the first r = (left) , (middle) , and (right)  Legendre polynomials: (top row) the sampling
variability in number of selected nonconstant functions k for each choice of r; (bottom row) posterior predictive uncertainty (% credible intervals) for y(ζ ) over the
range of ζ , the blue dashed curves indicate the function y(ζ ) and the blue stars represent the training data.

where the ζ is chosen uniformly over [−1, 1]. The function is
evaluated at 14 different inputs that are used to emulate the
model and compare the predictive uncertainty over a grid. We
choose to work with a small training set to easily visualize
any change in uncertainty due to changes in r. The proposed
methodology is deployedwith r = 15, 30, and 45 Legendre poly-
nomials. To explore the effect of r, we set k0 = r, that is, we let
the model choose all basis functions if required. For each value
of r, we also look at the posterior sampling distribution of k.

Simulation results are shown in Figure 1. Comparing the dia-
grams in the top panels, the peak of k = 6 is similarly attained
for each choice of r. In the bottom panel, we observe a tighter
predictive interval with r= 15 than r= 30. Since there are fewer
collections of basis functions, there is less model uncertainty.
Setting r = 45 gives a wider interval due to increased in model
uncertainty. As we keep increasing r, the prediction intervals for
the proposed model begin to mimic the shape of uncertainty
intervals for GP-based models.

So, when is working with a large number of basis functions
beneficial? If we have knowledge about the complexity and shape
of the computer model, this information will be useful to deter-
mine the necessary number of basis functions. In absence of spe-
cific knowledge, it does make sense that one should first attempt
to determine some notion about the complexity of the response
surface. This should be done in any case to choose the sample
size for the computer experiment. A benefit of our approach,
from a design and analysis perspective, is one explicitly consid-
ers the model complexity.

4.2 Predictive Performance of the Emulator

We move to comparative studies based on synthetic datasets
from four numerical models. The first two models F1 and F2
have a two-dimensional input ζ = (ζ1, ζ2)

T ∈ [−1, 1]2. The
next two models F3 and F4 use a three-dimensional input ζ =

(ζ1, ζ2, ζ3)
T ∈ [−1, 1]3. The response functions are presented

in Table 1. These four models cover a wide class of functions
including logarithmic, exponential, trigonometric, irrational, as
well as interactions between inputs. They are also fairly smooth
and thus GP models should do relatively well.

For each of these, we simulate between 400 and 700 obser-
vations and leave out 100 randomly as test sets. Placing uni-
form prior distributions for the inputs, the appropriate orthog-
onal polynomial family is the Legendre polynomials. We fit
our model with the training data and predict the value of the
response over the test set. For the set of candidate polynomials,
we useVr,s,t with r = 10, s = 3, and t = 10. The proposed gPC
model is compared to a stationary GP emulator and a nonsta-
tionary alternative (treed Gaussian process (tGP; Gramacy and
Lee 2008)). The GP and tGP methods were implemented using
the “tGP” R package (Gramacy 2007) with constantmean, a sep-
arable power exponential correlation function, and a nugget.
Each MCMC was run for 12,500 iterations, rejecting the first
20% of draws and thinning the rest at every fifth draw. The
emulation approaches are compared using the following cri-
teria: (i) absolute predictive bias: average absolute difference
between the actual response and its posterior predictive estimate
for each point in the test set; (ii) predictive uncertainty: width
of 90% posterior credible set (between 5% and 95% quantiles
of posterior samples) for each point in the test set; (iii) empiri-
cal coverage: the proportion of the test responses are contained
inside their 90% credible sets; and (iv) runtime. Randomizing
the selection of the test points, we replicate the simulation 50

Table . Response functions used for simulation studies.

Function y(ζ) Function y(ζ)

F exp(ζ1 + ζ2) F 4ζ 21 ζ
2
2 ζ

2
3 + log(1 + ζ1ζ3)

F 3 cos(2πζ1) + 7ζ 21 +
2ζ1 log(1 + ζ2)

F 2ζ 21 +
√
1 + ζ3
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Table . Comparison of predictive performance and runtimes.

Simulation details

Abs. predictive Predictive Empirical coverage
Model Data size Method bias uncertainty by % credible sets Runtime

gPC .×10−2 . . ∼  sec
F  GP .×10−2 .  ∼ .min

tGP .×10−2 .  ∼ .min
gPC .×10−2 . . ∼  sec

F  GP .×10−2 .  ∼ min
tGP .×10−2 . . ∼ min
gPC .×10−2 . . ∼  sec

F  GP .×10−2 .  ∼ min
tGP .×10−2 . . ∼ min
gPC .×10−2 . . ∼  sec

F  GP .×10−2 .  ∼ min
tGP .×10−2 .  ∼ min

times. Table 2 provides a summary of the performance averaged
over the replications.

Table 2 reveals generally better results for the proposed
approach. Specifically, the average credible set width reduces by
75%–90% under gPC compared to the other approaches. Addi-
tionally, in spite of the significantly shorter prediction intervals,
the 90% credible sets have always covered more than 90% of
the test responses. From a computational perspective, the gPC-
based emulator is relatively fast—about 40%–90% faster than
a GP-based emulator. A closer look at those numbers reveals
that, with an increase in size of the training dataset, the rela-
tive savings in runtime goes up rapidly. When large numbers of
runs from a simulator are available, the computational advan-
tage of the proposed emulator over GP will be beneficial. While
computer models can be computationally challenging, experi-
menters may have moderate to large samples because of super-
computing resources (Kaufman et al. 2011; Goh et al. 2013).

The choice of k0 (the maximum number of bases used at any
iteration) is now investigated. As an illustration of what happens
in practice, we simulate 500 observations from the model (F4)
and fit it with four different values of k0 = 5, 20, 30, 45, keeping
everything else exactly same. Posterior samples of k, the number
of nonconstant polynomial functions included in the model, are
obtained under each value of k0. The corresponding posterior
histograms are shown in Figure 2.

Observe that with k0 = 5, the proposed method mostly
chooses models with five basis functions. This indicates that a

larger number of basis functions is likely desirable. With k0 =
20, the decaying right-tail behavior of the posterior distribution
indicates that enough basis functions are present to sufficiently
capturemost of the variability.We decided to increase k0 further
to see if this pattern changes when more terms can be included.
With k0 set at 30 and 45, the behavior of the posterior distri-
bution of k is essentially unchanged from k0 = 20. That is, the
model continues to put maximum probability in the range of
four to eight basis functions. In general, we recommend going
through the above exercise to determine a reasonable choice for
k0 for any dataset. Conservatively, we have found that choos-
ing k0 to be roughly twice the maximum number of functions
selected in the MCMC iterations is a good default choice. This
generally allows good fit to the data and also includes enough
basis functions to incorporate a sufficient amount of model
uncertainty.

All of the above models had inputs that impacted the out-
put. However, in many computer experiments, there are a large
number of redundant simulator inputs. We carried out another
study using the Zhou (1998) function after adding inert inputs
to the data analysis. We found that the tGP results in a smaller
predictive bias compared to our method, but gPC achieves a
significant reduction in predictive uncertainty—the 90% cred-
ible intervals, on an average, are approximately one-third to
one-half as wide as those from tGP. We present the entire
simulation study in Appendix E of the online supplementary
materials.

Figure . Posterior variability of number of nonconstant functions in the emulator under different choices of the bound k0 . The dataset has been simulated using themodel
in (F).
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4.3 Simulation Studies for KOH Setting

We extend our simulations to the model described in (3) that
uses a KOH framework for combining simulation output with
field observations. First, we look at predictive diagnostics for
examples where the field experiment resembles the computer
model without any discrepancy. Next, the proposed approach is
investigated in simulations in presence of a discrepancy between
the simulator and themean of the field process. The latter exam-
ple also illustrates the proposed model’s ability to include inputs
that are not continuous.

.. ModelsWithout Discrepancy
We compare the predictive accuracy of the proposed method-
ology with the original GP-based KOH model when we have a
combination of model outputs and field observations. Here, we
assume no discrepancy between the two processes so δ = 0 in
(3). For the numerical models, we choose (F2) and (F3) from
Section 4.2. For (F2), we select ζ1 as the controlled input and ζ2
as the calibration parameter. For (F3), we consider two varia-
tions: (i) (ζ1, ζ2) are used as design variables and ζ3 as the cali-
bration parameter; and (ii) ζ1 is the design variable and (ζ2, ζ3)

are chosen to be calibration parameters. The objective is to
investigate how increasing the number of calibration parameters
(that need to be estimated by the model) affects the uncertainty
in prediction of field observations at new inputs.

We first simulate 125 observations from the computermodel.
Then, we fix a value of the calibration parameter and simulate
20 training points and 70 test points for field data by varying
the design variable. The MCMC procedure involving Legendre
polynomials from Section 3.2 is employed on the computer
model and training data (without using the fixed value of cal-
ibration parameter for the “field” data) to predict the response
at 70 test points. Same has been done with gPC replaced by
the GP function, as in original KOH setting. We replicate the
entire simulation procedure 30 times and, in Table 3, we provide
a summary of the predictive performance averaged over the
replications:

As observed in Table 3, use of gPC results in considerable
gain over GP with respect to predictive uncertainty in all cases
without affecting the desired 90% coverage rate. The bias is com-
parable for F3 but is significantly smaller for F2. An interesting
outcome of this analysis is the change in predictive performance
of the model between the two cases of F3. There is significant
increase in predictive uncertainty and bias when we change one

of the controlled inputs ζ2 to a calibration parameter. So, uncer-
tainty in learning ζ2 for the latter propagates to the prediction
of responses at test points resulting in reduced empirical cov-
erage proportion for 90% credible intervals. Another significant
part of the simulation is comparison of the runtimes for both
methods. InGP settings, every candidate for ζ induces a (partial)
change in the correlation matrix requiring additional computa-
tions. We can expedite the computation by using a component
wise random-walk MH sampler instead of a multinomial draw,
as discussed in Section 3.2. If we use the component-wise multi-
nomial update of ζ for GP as we have done for gPC, the run-
time will increase by a large factor from what is observed above.
Hence, gPC provides a computationally faster KOH implemen-
tation, with better prediction quality compared to GP.

.. ModelWith Discrepancy and Discrete Input
Now,we consider an examplewhere the “field”model is different
from the numerical model. For the choice of inputs, we specif-
ically consider a scenario where GP-based emulator can not be
employed. We start with the following numerical model:

y = 2.0 + 0.20x2 + 1.5 log(1 + ζ 2),

where we draw x using a uniform distribution on [−1, 1] and
ζ from a Poisson(4) distribution. We simulate 170 observa-
tions from this model using different combinations of x and ζ .
Next, 20 training and 100 test observations are generated with
a “real life” discrepancy δ(x) = 1.80(1 + sin(2πx))2 impacting
the above model. A measurement error with scale parameter
0.05 is also added to these “real” observations tomatch the setup
of the shock experiment dataset in Section 5. Because ζ takes
discrete values, a Gaussian process prior on the input cannot be
used. (See Qian, Wu, andWu (2009) and Zhou, Qian, and Zhou
(2011) for a direction on how to define a GP prior when there
are qualitative outputs in the computermodel.) However, we can
still use the gPC representation in (4). The gPC is constructed
using Legendre polynomials for x and Charlier polynomials for
ζ . We use two different models—with and without a model for
discrepancy function as in (3). We replicate the entire simula-
tion procedure 50 times and, in Table 4, we provide a summary
of the performance averaged over the replications.

The model fit without the discrepancy adjustment results in
larger bias and wider credible sets for test responses. This is
expected because, in the simulation step, the discrepancy func-
tion was added to the mean of the response. Since we have not
used a model for δ(x), the scale parameter σr of the error term

Table . Predictive diagnostics for “field”observations at new input configurations.

Input Prediction criteria

Simulation Design Calibration Absolute Empirical coverage
model Method variables parameters bias Uncertainty by % credible set Runtime

gPC . . . ∼ 5min
F ζ1 ζ2

GP . . . ∼ 17min
gPC . . . ∼ 5min

F ζ1 , ζ2 ζ3
GP . . . ∼ 17min
gPC . . . ∼ 8min

F ζ1 ζ2 , ζ3
GP . . . > 30min
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Table . Effect of accounting for discrepancy on predictive diagnostics.

Prediction criteria

Absolute Empirical coverage
Method bias Uncertainty by % credible sets

gPC with
discrepancy

. . .

gPC without
discrepancy

. . .

ϵ(r) gets large to account for the additional signal not accounted
for by the statistical model. As a result, the prediction inter-
vals get wider. In Figure 3, we illustrate this decrease in predic-
tive accuracy due to exclusion of discrepancy term for one of
those 50 replications. It is clear that for a considerable number
of test points, the credible interval for model without discrep-
ancy underestimated the true responses. This happens because
the simulation model for δ(x) is a nonnegative function of x.

5. Analysis of Radiative Shock Experimental Dataset

We turn to a real application based on an experimental dataset
on radiative shocks. The experiment is connected to the inves-
tigation of how radiative shocks influence the observed emis-
sions from supernova and how they affect the evolution of young
supernova remnants (Chevalier 1997). It is possible to gener-
ate and observe radiating shock waves (whose behavior is rel-
evant to that of astrophysical shock waves) in the laboratory by
using high-energy lasers to shock and then accelerate a Be disk
down a plastic tube filled with Xe gas; see Reighard et al. (2006)
and Kuranz et al. (2013) for details. The quantity of interest is
the time when the laser-driven shock wave first emerges from
the Be disk, designated as the “shock breakout time.” This time
ranged from about 200 to 500 picoseconds. These experiments
were the subject of extended research using computer simula-
tions (McClarren et al. 2011; Van der Holst et al. 2013). Some

of these simulations used a two-dimensional Lagrangian radia-
tion hydrodynamics code, referred to here as H2D. Our analysis
used the results of one specific H2D run set, defined as follows.
There are five inputs to the computational model: p = 2 design
variables (x): Be disk thickness (ranging from 10 to 21microns),
laser energy (ranging from 3403 to 3946 Joules); and q = 3 cali-
bration inputs (ζ): electron flux limiter, Be gamma constant, and
the wall opacity of the plastic tube. The first four of these inputs
were found, inMcClarren et al. (2011), to be important in a pre-
vious analysis that explored the relative importance of 15 factors.
The wall opacity parameter was added as an additional source of
uncertainty specific to our two-dimensional code. A set of 104
runs of the computer model was conducted to cover the five-
dimensional input space. Stripling et al. (2013) described the
design of this run set in detail. Additionally, weworkwith results
from eight of the laboratory experiments.

The range of measurement inaccuracy (±10 picoseconds),
added with another error of ±50 picoseconds arising from the
experimental settings, is converted into a zero mean Gaussian
error, with scale determined using the 3σ criterion. All the
five inputs in this problem are known to lie within bounded
intervals. Independent uniform prior distributions are placed
over the intervals for the calibration parameters. Location-scale
adjustments were applied to the input data to shift their values
within [−1, 1]. To implement the proposed methodology, Leg-
endre polynomials were used for all inputs.

We first evaluate how the proposed gPC methodology com-
pares to the conventional GP-based model for emulating the
computer model (we move on to calibration shortly). For all
subsequent analysis, we choose Vr,s,t with r = 4, s = 3, and
t = 8. The GP model is chosen to have a constant mean and
a stationary, anisotropic covariance function with an expo-
nential form separable in its arguments, that is, C(a, b) =
σ 2exp(−

∑p+q
i=1 νi|ai − bi|).

The inference proceeds as follows: we leave out 11 randomly
chosen simulator runs as our test sample, then we build the

Figure . Comparison of predictive accuracy under gPC-based emulators (left) without discrepancy and (right) with discrepancy for one of the  replications. The blue
stars indicate the  response values from the test set, the red line connects the posterior mean response at the test inputs, and the green lines represent the middle %
posterior credible sets. The points are arranged in the increasing order of response values.
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Figure . Model performance on (left) average absolute bias and (right) width of % credible interval for prediction (in picoseconds) of test samples for the HD output.

emulator using the gPC or the GP model with the remaining
93 points as training data and obtain point estimate and 90%
predictive interval for each point in the test sample. This com-
pletes one trial. Randomizing selection of the test samples, we
perform 40 such trials. In Figure 4 and Table 5, we provide
the summary measures of predictive performance for both the
models—average absolute bias, predictive uncertainty (width of
90% posterior credible set), and empirical coverage rates. These
diagnostics indicate that use of the gPC contributes to smaller
bias as well as shorter predictive intervals without sacrificing the
expected coverage rate for future predictions.

The results from the simulations and from the laboratory
experiments can be simultaneously analyzed using the full hier-
archicalmodel fromSection 3. First, wewant to know if theH2D
numericalmodel is a good substitute for themean of the physical
system. In Section 2, we have noted that the discrepancy pro-
cess δ(x(r)) captures any potential difference between the two
systems. So, we have decided to fit the model with and without
including the δ function. Here, we follow a leave-one-out valida-
tion procedure. Models are fit to remaining data (simulator and
experimental outcomes together); point- and interval-estimates
for the leave-one-out data are obtained from posterior draws,
which were converted to estimates of absolute bias and uncer-
tainty as before. Table 6 displays a summary for the results.

Table . Improvement in predictive performance (in picoseconds) for gPC over GP.

Prediction criteria

Absolute Empirical coverage
Method bias Uncertainty within % credible set

GP . . .
gPC . . .

Table . Summary of discrepancy analysis between numerical and experimental
outputs.

Prediction criteria
(measured in picoseconds)

Method Absolute bias Uncertainty

gPC with discrepancy . .
gPC without discrepancy . .

Table . Posterior summaries for components of ζ.

Summary statistics Be gamma Wall opacity Flux limiter

Mean . . .
% credible interval (.,.) (.,.) (.,.)

Adding discrepancy term does not cause any significant
change in bias or prediction uncertainty. It is evident that the
H2Dcode adequately represents the dynamics of an actual shock
breakout experiment, so in future it can be relied upon for esti-
mating the shock breakout times in the explored experimental
ranges. Using the hierarchical model without discrepancy, the
calibration parameters were also investigated (ζ). The empiri-
cal summaries of the posterior distributions of the calibration
parameters are reported in Table 7. The corresponding poste-
rior histograms are presented in Figure 5.

The posterior distributions of Be gamma in the above model
looks to be most informative, as it is concentrated only over a
small subregion of its prior range. Flux limiter is reasonably well
constrained, but little is learned about the wall opacity. The pos-
terior histograms also suggest that future studies should con-
sider a larger range of Be gamma and flux limiter to see of the
potentially smaller values of the parameters are appropriate.

6. Discussion

We have presented a full Bayesian approach to emulate and cal-
ibrate a computational model using chaos-based expansions.
This specification uses the stochastic information about the
input to capture a wide range of output processes outside the
Gaussian family. With an adaptive basis function expansion,
integrating out the expansion coefficients results in an input-
dependent marginal nonstationary covariance pattern in the
emulator. Use of RJMCMC with conjugate hierarchical specifi-
cation enables us to efficiently perform a model search over the
space of candidate functions with varying complexity. Predic-
tion at a new input configuration is computed as weighted com-
bination of predictions from the selectedmodels. This approach
differs from the idea of choosing the “best” model to use for pre-
diction. We recommend it over the latter for two reasons: (i)
withmany candidate functions, there are oftenmultiple compet-
ing models with comparable performances (choosing only one
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Figure . Posterior density estimates for components of ζ in the HD dataset.

of them as the best and leaving everything else out amounts to
over-relying on just one specification); and (ii) like GPs, includ-
ing model uncertainty allows for complete uncertainty quantifi-
cation.

A point of interest would be to know in what situations the
use of the proposedmethodologywill be beneficial. Ourmethod
employs a selection approach from a large pool of functions.
When the data size is small, as in Section 4.1, there is not suf-
ficient information to identify the best subset of functions. As
a result, the uncertainty increases. In that situation, use of an
interpolator such as GP is recommended. However, with mod-
erate or large number of data points, our method can provide a
much improved predictive performance at a significantly faster
runtime compared to any GP-based method and we strongly
promote use of this methodology in similar situations. Another
situation of interest is when the response is a function of sev-
eral inputs but only a few of them are actually consequential. As
our method finds an “effective” set of covariates {( j} from the
actual covariates by adaptively choosing important patterns, it
will offer a sparse representation of the predictivemodel in those
situations. There is scope for further research in this direction.

SupplementaryMaterials

Additional details: All appendices mentioned in this article (.pdf file)
R-code and dataset: The CRASH-UQ datasets used in Section 5 and R

codes to fit gPC-based model (one uses only the computer model output
and another uses the computer output and experimental outcomes simul-
taneously) (.zip file)

Acknowledgments

This work was funded by the Predictive Sciences Academic Alliances Pro-
gram in DOE/NNSA-ASC via grant DEFC52-08NA28616. Research of Dr.
Bani K. Mallick is supported by U.S. Department of Energy Office of Sci-
ence, Office of Advanced Scientific Computing Research, Applied Mathe-
matics program under Award Number DE-FG02-13ER26165.

References

Chevalier, R. A. (1997), “Type II Supernovae SN 1987A and SN 1993J,” Sci-
ence, 276, 1374–1378. [161]

Eldred, M. S., Webster, C. G., and Constantine, P. (2008), “Evalua-
tion of Non-Intrusive Approaches for Wiener-Askey Generalized
Polynomial Chaos,” in Proceedings of the 10th AIAA Non-Deterministic
Approaches Conference, Paper No. AIAA 2008-1892. [156]

Ernst, O. G., Mugler, A., Starkloff, H. J., and Ullmann, E. (2012), “On the
Convergence of Generalized Polynomial Chaos Expansions,” ESAIM:
Mathematical Modelling and Numerical Analysis, 46, 317–339. [155]

Goh, J., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., and
Rutter, E. (2013), “Prediction and Computer Model Calibration Using
Outputs From Multifidelity Simulators,” Technometrics, 55, 501–512.
[159]

Gramacy, R. (2007), “tgp: An R Package for Bayesian Nonstationary, Semi-
parametric Nonlinear Regression and Design by Treed Gaussian Pro-
cess Models,” Journal of Statistical Software, 19, 1–46. [158]

Gramacy, R. B., and Lee, H. K. H. (2008), “Bayesian Treed Gaussian Pro-
cess Models With an Application to Computer Modeling,” Journal of
the American Statistical Association, 103, 1119–1130. [156,158]

——— (2012), “Cases for the Nugget in Modeling Computer Experiments,”
Statistics and Computing, 22, 713–722. [156]

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Computer
Model Calibration Using High-Dimensional Output,” Journal of the
American Statistical Association, 103, 570–583. [154]

Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K., and Frieman, J.
A. (2011), “Efficient Emulators of Computer Experiments Using Com-
pactly Supported Correlation Functions, With an Application to Cos-
mology,” The Annals of Applied Statistics, 5, 2470–2492. [154,159]

Kennedy, M. C., and O’Hagan, A. (2001), “Bayesian Calibration of Com-
puter Models,” Journal of the Royal Statistical Society, Series B, 63, 425–
464. [153]

Kubo, I., Kuo, H. H., and Namli, S. (2007), “The Characterization of a Class
of Probability Measures by Multiplicative Renormalization,” Commu-
nications on Stochastic Analysis, 1, 455–472. [155]

Kuranz, C. C., Drake, R. P., Huntington, C. M., Krauland, C. M., Stefano,
C. A., Trantham, M., Grosskopf, M. J., Klein, S. R., and Marion, D. C.
(2013), “Early-Time Evolution of a Radiative Shock,”High Energy Den-
sity Physics, 9, 315–318. [161]

Loéve, M. (1978), Probability Theory (4th ed.), New York: Springer-Verlag.
[156]

Marzouk, Y. M., and Xiu, D. (2009), “A Stochastic Collocation Approach to
Bayesian Inference in Inverse Problems,” Communications in Compu-
tational Physics, 6, 826–847. [154,156]

McClarren, R. G., Ryu, D., Drake, P., Grosskopf, M., Bingham, D., Chou, C.,
Fryxell, B., Van der Holst, B., Holloway, J. P., Kuranz, C. C., Mallick, B.,
Rutter, E., and Torralva, B. R. (2011), “A Physics Informed Emulator
for Laser-Driven Radiating Shock Simulations,” Reliability Engineering
and System Safety, 96, 1194–1207. [161]

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979), “Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis
of Output From a Computer Code,” Technometrics, 21, 239–245. [155]

Paciorek, C., and Schervish, M. (2004), “Nonstationary Covariance Func-
tions for Gaussian Process Regression,”Advances in Neural Information
Processing Systems, 16, 273–280. [153,156]

Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2009), “Gaussian Process Models
for Computer ExperimentsWithQualitative andQuantitative Factors,”
Technometrics, 50, 383–396. [160]

Reighard, A. B., Drake, R. P., Dannenberg, K. K., Kremer, D. J., Grosskopf,
M. J., Harding, E. C., Leibrandt, D. R., Glendinning, S. G., Perry, T. S.,



164 A. CHAKRABORTY ET AL.

Remington, B. A., Greenough, J., Knauer, J., Boehly, T., Bouquet, S.,
Boireau, L., Koenig, M., and Vinci, T. (2006), “Observation of Collaps-
ing Radiative Shocks in Laboratory Experiments,” Physics of Plasmas,
13, 082901–082901–5. [161]

Richardson, S., and Green, P. J. (1997), “On Bayesian Analysis of Mixtures
With an Unknown Number of Components,” Journal of the Royal Sta-
tistical Society, Series B, 0, 731–792. [154,156]

Sacks, J., Schiller, S., and Welch, W. (1989), “Designs for Computer Exper-
iments,” Technometrics, 31, 41–47. [153]

Stripling, H. F., McClarren, R. G., Kuranz, C. C., Grosskopf, M. J., Rut-
ter, E., and Torralva, B. R. (2013), “A Calibration and Data Assimila-
tion Method Using the Bayesian MARS Emulator,” Annals of Nuclear
Energy, 52, 103–112. [161]

Van der Holst, B., Tóth, G., Sokolov, I. V., Torralva, B. R., Powell, K. G.,
Drake, R. P., Klapisch, M., Busquet, M., Fryxell, B., and Myra, E. S.
(2013), “Simulating Radiative ShocksWith the CRASHLaser Package,”
High Energy Density Physics, 9, 8–16. [161]

Xiu, D. (2007), “Efficient Collocational Approach for Parametric Uncer-
tainty Analysis,” Communications in Computational Physics, 2, 293–
309. [154]

Xiu, D., and Karniadakis, G. E. (2002), “The Wiener-Askey Polynomial
Chaos for Stochastic Differential Equations,” SIAM Journal of Scientific
Computing, 24, 619–644. [154,156]

Zhou,Q., Qian, P. Z. G., andZhou, S. (2011), “A SimpleApproach to Emula-
tion for Computer Models With Qualitative and Quantitative Factors,”
Technometrics, 53, 266–273. [160]


	Abstract
	1.Introduction
	2.Emulating and Calibrating Computer Models Using Basis Functions
	2.1.Construction of an Optimal Collection of Basis Functions
	2.2.Further Discussion of the Model

	3.Adaptive Selection of Chaos Terms
	3.1.Prior Support for the Hierarchical Model
	3.2.Parameter Estimation

	4.Simulation Studies
	4.1.Effect of Basis-Set Size on Predictive Uncertainty
	4.2.Predictive Performance of the Emulator
	4.3.Simulation Studies for KOH Setting

	5.Analysis of Radiative Shock Experimental Dataset
	6.Discussion
	Supplementary Materials
	Acknowledgments
	References

