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Computer simulators are widely used to describe and explore physical processes. In some cases, several
simulators are available, each with a different degree of fidelity, for this task. In this work, we combine field
observations and model runs from deterministic multifidelity computer simulators to build a predictive
model for the real process. The resulting model can be used to perform sensitivity analysis for the system,
solve inverse problems, and make predictions. Our approach is Bayesian and is illustrated through a
simple example, as well as a real application in predictive science at the Center for Radiative Shock
Hydrodynamics at the University of Michigan. The Matlab code that is used for the analyses is available
from the online supplementary materials.
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1. INTRODUCTION

Deterministic computer models are used to simulate a wide
variety of physical processes (Sacks et al. 1989; Santner,
Williams, and Notz 2003; Welch et al. 1992). Oftentimes, a
single run of the code requires considerable computational ef-
fort, making it infeasible to continually exercise the simulator.
Instead, experimenters attempt to explore the computer model
response (and to some extent the physical process) using a lim-
ited number of computer model runs.

In some applications, several simulators of the physical pro-
cess are available, each with different levels of fidelity. The
varying levels of fidelity can occur, for example, because of
the presence of reduced order physics in lower fidelity models,
different levels of accuracy specified for numerical solvers, or
solutions obtained on finer grids. In these cases, a higher fidelity
model is assumed to better represent the physical process than a
lower fidelity model, but also takes more computer time to pro-
duce an output than a lower fidelity model. Combining relatively
cheap lower fidelity model runs with more costly high-fidelity
runs to emulate the high-fidelity model has, thus, been a sig-
nificant problem of interest (Kennedy and O’Hagan 2000; Qian
et al. 2006; Qian and Wu 2008; Cumming and Goldstein 2009).

The most common approach to combining the outputs of mul-
tifidelity simulators was proposed by Kennedy and O’Hagan
(2000). Their work writes a high-fidelity model as a linear com-
bination of the next lowest fidelity model and a discrepancy term.
With an alteration of the linear combination used to model the
high-fidelity simulator, Qian et al. (2006, Qian and Wu 2008)
also used the Bayesian hierarchical Gaussian process to model
the response surfaces. Cumming and Goldstein (2009) further
generalized the model and used a Bayes linear approach.

Another important application of computer simulators is that
of calibration (e.g., Kennedy and O’Hagan 2001; Higdon et al.

2004) where the aim is to combine simulator outputs with phys-
ical observations to build a predictive model and also estimate
unknown parameters that govern the behavior of the mathemat-
ical model. The latter endeavor amounts to solving a sort of
inverse problem, while the former activity is a type of regres-
sion problem. In this setting, it is common to write the physical
observations as a sum of the simulator output, a systematic
discrepancy, and observational error. This approach has been
adapted to consider a variety of output data structures (e.g.,
Higdon et al. 2008; Paulo, Garca-Donato, and Palomo 2012).
These approaches to model calibration have used only a single
computer model and have not considered the use of multifidelity
simulators.

Motivated by applications at the Center for Radiative Shock
Hydrodynamics (CRASH) at the University of Michigan, the
aim of this work is to develop new methodology to combine
outputs from simulators with different levels of fidelity and
field observations to make predictions of the physical system
with associated measurements of uncertainty. The CRASH sim-
ulators also require estimation of optimal values for several
input parameters (i.e., calibration parameters), and the simu-
lators have different calibration parameters depending on the
level of fidelity, thereby complicating the calibration problem.
In the spirit similar to Kennedy and O’Hagan (2000, 2001) and
Higdon et al. (2004), we propose a predictive model that incor-
porates computer model outputs and field data, while attempting
to estimate the calibration parameters. The approach calibrates
each computer model to the next highest level of fidelity model,
and the simulator of the highest fidelity is then calibrated to
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the field measurements. All response surfaces are modeled us-
ing Gaussian process (GP) models, and the various sources of
information that inform predictions of the physical system are
combined with a Bayesian hierarchical model.

The article is organized as follows: In Section 2, we intro-
duce the proposed methodology and the GP models, along with
the relevant prior distributions. The framework for prediction
will be discussed at the end of the section. A simple example
from the literature and an application from CRASH are used to
demonstrate the proposed approach in Section 3. Further dis-
cussion follows in Section 4, with some concluding remarks in
Section 5.

2. A HIERARCHICAL MODEL FOR MULTIFIDELITY
MODEL CALIBRATION

In this section, a Bayesian hierarchical model that cali-
brates multifidelity computer simulators is proposed. Through-
out, higher fidelity codes are assumed to better represent the
real-world process but require more computing resources to sim-
ulate the system. For ease of exposition and notation, we present
the case where there are only two computer simulators—a high-
fidelity and a low-fidelity model. It is conceptually easy to ex-
tend the proposed methodology to cases with more than two
simulators, and this setting is discussed in Section 4.

2.1 The Hierarchical Model

Throughout this work, the simulators are assumed to be deter-
ministic mathematical functions that map inputs to outputs. The
computer codes have two types of inputs: (i) design variables,
x, that are adjustable or measurable in the field experiments;
and (ii) calibration parameters, t, whose values are thought to
impact the physical system, but are unknown a priori. The latter
inputs can only be adjusted within the simulator, but are not
measurable in the field. We use t to denote inputs for calibration
parameters used to run the code and let θ stand for the true,
or optimal, values of the calibration parameters in the field. In
model calibration problems, the issue is to build a predictive
model for the field process and also to estimate the unknown
calibration parameters.

An important feature of the application that motivated the
current work is that the calibration parameters for the computer
models are not all the same. Some of the calibration parameters,
tf , are shared among the simulators, whereas others are required
inputs only to individual computer models. The vectors of cali-
bration inputs exclusive to the high- and low-fidelity models are
denoted as th and tl , respectively.

First consider the low-fidelity computer model with in-
puts (x, tf , tl) (i.e., the design variables and calibration pa-
rameters that are shared and unshared with the high-fidelity
simulator), where x = (x1, . . . , xp), tf = (tf,1, . . . , tf,mf

), and
tl = (tl,1, . . . , tl,ml

). An output Yl(·) from the low-fidelity simu-
lator, ηl(·), is univariate and written as

Yl(x, tf , tl) = ηl(x, tf , tl). (1)

Similarly, the high-fidelity simulator, ηh(·), has inputs (x, tf , th),
where th = (th,1, . . . , th,mh

), and univariate output Yh(·):
Yh(x, tf , th) = ηh(x, tf , th).

Both simulators are used to describe the same process, but
will not always give the same response. There are a few obvious
reasons why this is the case. The lower fidelity model is inferior
to the high-fidelity simulator since it may, for example, fail to
capture some processes that the high-fidelity code can more
accurately model. Furthermore, the two codes do not share all
of the same inputs. The input vector th only appears in the high-
fidelity model and thus, any impact that these variables have
on the output cannot be captured by the low-fidelity model.
Similarly, the inputs tl appear only in the low-fidelity model.
To address these issues, we take the approach of writing the
high-fidelity simulator as a discrepancy-adjusted version of the
low-fidelity model (e.g., Kennedy and O’Hagan 2000; Qian et al.
2006)

Yh(x, tf , th) = ηl(x, tf , θ l) + δ2(x, tf , th). (2)

Specifying the first term in Equation (2) as ηl(x, tf ,

θl) amounts to partially calibrating (partially in the sense that
the other calibration parameters must still be estimated) the first
simulator to the second simulator. Recall, we will generally use
t’s to denote inputs to the code and θ ’s to denote the optimal
values for the calibration parameters, respectively. Furthermore,
the discrepancy, δ2(·), represents the systematic differences be-
tween the partially calibrated low-fidelity model and the high-
fidelity code. Finally, notice that δ2(·) is a function of not only
the design variables—as in Kennedy and O’Hagan (2001)—but
also (tf , th). The calibration parameters are included in this dis-
crepancy term because they can be modified in the high-fidelity
code. Therefore, this discrepancy term captures the systematic
differences in the outputs from the two computer models over
values of the design variables and the changes in the calibration
inputs tf and th.

In addition to simulator output, there are also field obser-
vations that are used to inform predictions. Since the higher
fidelity simulator is assumed to better represent the physical
process than the low-fidelity simulator, it is natural to model the
field observations with the simulator of highest fidelity. Similar
to Kennedy and O’Hagan (2001), a discrepancy function, δf (·),
is used to capture the systematic inadequacy of the high-fidelity
simulator. The field observations are noisy versions of the mean
process, and thus independent and identically distributed (iid)
observational errors are included in our specification. For design
variable setting, x, the univariate field process is written as

Yf (x) = ηh(x, θf , θh) + δf (x) + ϵ, (3)

where ϵ ∼ N (0, 1/λy). Substituting Equation (2) into Equation
(3) allows the field observations to be written as

Yf (x) = ηl(x, θf , θ l) + δ2(x, θf , θh) + δf (x) + ϵ. (4)

So, the response surface for the field data is written as the
sum of the calibrated low-fidelity simulator, the calibrated dis-
crepancy between the two different simulators, the discrepancy
between the high-fidelity model and the data, as well as ob-
servational error. From here on out, we describe the response
surfaces for the low- and high-fidelity simulators and the field
data using the framework described in Equation (1), Equation
(2), and Equation (4), respectively.

It is possible at this point to envision applications with more
than two simulators, each ranked from lowest to highest levels
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of fidelity. For example, consider the case where there are three
simulators of different fidelity, η1(·), η2(·), and η3(·), where
η1(·) is of the lowest fidelity and η3(·) is best at describing
the physical process. Outputs from η1(·) and η2(·) are modeled
as described earlier. Next, the relationship between η2(·) and
η3(·) is similarly described by Equations (1) and (2). Through
substitution, η3(·) can then be written as η1(·) and two discrep-
ancy functions. Finally, through the same sort of substitution,
the field observations can be written as the sum of lowest fidelity
simulator, a sequence of discrepancy terms, and observational
error. More on this in Section 4.

2.2 Gaussian Process Models

To make predictions of the physical system, the response sur-
faces for the low-fidelity simulator and discrepancies need to be
estimated. We follow the common practice of using indepen-
dent GPs to model the response surfaces (e.g., see Sacks et al.
1989; Kennedy and O’Hagan 2001). The reason for using these
models, in general, boils down to the success of the GP as a non-
parametric regression estimator and also the ability of the GP
model to provide a basis for statistical inference for the outputs
of deterministic computer codes. From a Bayesian viewpoint in
this context, one can think of the GP as a prior distribution over
the class of functions produced by the low-fidelity simulator and
the discrepancies, respectively.

We begin by first considering the specification for the low-
fidelity simulator. The outputs are treated as a realization of a
random function of the form

Yl(x, tf , tl) =
p∑

i=1

fi(x, tf , tl)βi + Z(x, tf , tl),

where f1, . . . , fp are regression functions, β = (β1, . . . ,βp)′ is
the vector of unknown regression coefficients, and Z is a mean
zero GP. We follow the convention of most simulator appli-
cations by specifying the mean function as a constant, µ, and
model the response surface through the covariance structure.
The covariance between observations at inputs (x, tf , tl) and
(x′, t′f , t′l) is specified as

cov[Z(x, tf , tl), Z(x′, t′f , t′l)]

= 1
ληl

p∏

s=1

ρ
4(xs−x ′

s )2

ηl ,s

mf∏

s=1

ρ
4(tf,s−t ′f,s )2

ηl ,p+s

ml∏

s=1

ρ
4(tl,s−t ′l,s )2

ηl ,p+mf +s , (5)

where ληl
is the marginal precision of the GP for the low-fidelity

simulator. The (p + mf + ml)-vector ρηl
is the vector of cor-

relation parameters that govern the dependence in each of the
component directions of x, tf , and tl (e.g., Linkletter et al. 2006;
Higdon et al. 2008).

The discrepancy, δ2(·), captures the systematic differences
between the high- and low-fidelity simulators as a function of
the inputs, (x, th, tf ), that are adjustable in the high-fidelity
model. Continuing as earlier, δ2(·) is modeled as mean zero GP
with covariance

cov[Z(x, tf , th), Z(x′, t′f , t′h)]

= 1
λ2

p∏

s=1

ρ
4(xs−x ′

s )2

2,s

mf∏

s=1

ρ
4(tf,s−t ′f,s )2

2,p+s

mh∏

s=1

ρ
4(th,s−t ′h,s )2

2,p+mf +s , (6)

where λ2 is the marginal precision of the discrepancy function,
and the vector of correlation parameters for this discrepancy
function is ρ2.

A zero-mean GP is chosen for the discrepancy, δf (·), between
the response from high-fidelity simulator and the mean physical
process. Let λf denote the marginal precision of the discrepancy
function, δf (·), and ρf be the vector of correlation parameters
for the p design variables. The covariance function for δf (·) has
the form

cov[Z(x), Z(x′)] = 1
λf

p∏

s=1

ρ
4(xs−x ′

s )2

f,s . (7)

Denote the number of field observations and high-fidelity
and low-fidelity simulation trials by nf , nh, and nl , respec-
tively. Furthermore, define the vector of all observations and
simulation outputs as Y = (YT

f , YT
h , YT

l )T , where Yf is the
nf × 1 vector of field measurements, Yh is the nh × 1 vector of
high-fidelity simulator responses, and Yl is the nl × 1 vec-
tor of low-fidelity simulator outcomes. The field measure-
ments have associated calibration parameters (tf , th, tl) =
(θf , θh, θ l). Similarly, the high-fidelity simulator has associated
calibration inputs (tf , th, θ l), where (tf , th) can vary for each
run of high-fidelity code specified by the experimental design.

To simplify notation, denote θ = (θf , θh, θ l), λ = (ληl
, λ2,

λf ), and ρ = (ρηl
, ρ2, ρf ). The likelihood for Y is

L(Y|θ ,µ,λ, ρ) ∝ |(Y|− 1
2 exp{(Y − µ)T (−1

Y (Y − µ)},

where µ is the constant mean vector and

(Y = (ηl
+

(
(2 0(nf +nh)×nl

0nl×(nf +nh) 0nl×nl

)

+
(

(f + (y 0nl×(nf +nh)

0(nf +nh)×nl
0(nf +nh)×(nf +nh)

)

, (8)

where 0a×b is the a × b matrix of zeroes. The covariance matrix
(ηl

for the low-fidelity simulator GP is obtained by applying
Equation (5) to each pair of the (nf + nh + nl) observations and
simulation outputs in Y. Similarly, the covariance matrix (2 is
obtained by applying Equation (6) to each pair of the nf +
nh observations and model high-fidelity simulator responses,
(YT

f , YT
h )T . Equation (7) is applied only to each pair of field

observations to construct the covariance matrix (f . Finally, the
covariance matrix for the measurement error, ϵ, is given by the
nf × nf diagonal matrix (y = (1/λy)Inf

.
2.2.1 Prior Distributions and MCMC. The posterior dis-

tribution of calibration and statistical model parameters,
(θ , µ,λ, ρ), takes the form

π(θ ,µ,λ, ρ|Y) ∝ L(Y|θ,µ,λ, ρ) × π (θ) × π (µ)
×π (λ) × π (ρ), (9)

where we abuse notation and denote the prior distributions for
θ , λ, and ρ as

π (θ) =
mf∏

i=1

π (θf,i) ×
mh∏

i=1

π (θh,i) ×
ml∏

i=1

π (θl,i),

π (λ) = π (ληl
) × π (λ2) × π (λf ) × π (λy),
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and

π (ρ) =
p+mf +ml∏

i=1

π (ρηl,i
) ×

p+mf +mh∏

i=1

π (ρ2,i) ×
p∏

i=1

π (ρf,i),

respectively.
Since the calibration parameters are scaled uniformly to the

unit interval [0, 1] (e.g., Linkletter et al. 2006), the prior for each
of the component in θ is chosen to be an independent Normal
distribution centered at 0.5 (center of the unit interval) with
standard deviation 10. The choice of large standard deviation
results in a weak information prior, allowing the data to move
the calibration parameters. The prior for the precision of the
marginal variance, ληl

, is chosen to encourage its values to be
close to 1—the idea being that the low-fidelity model should
capture much of the signal in the observations. We use a gamma
distribution (denoted generally as Gam(a, b)) for the prior for ληl

π (ληl
) ∝ λ

aηl
ηl exp{−bηl

ληl
}.

When expert knowledge is unavailable, we have found that
aηl

= bηl
= 5 works reasonably well as the choice centers

the prior distribution at 1 with a reasonably large variance,
thereby allowing for a fairly broad exploration of the posterior.
Similarly, the priors chosen for the remaining precision
parameters are also gamma distributions. Similarly, we use
the default prior distributions, Gam(1, 0.001), suggested by
Higdon et al. (2004) for the hyperparameters of priors for the
remaining precision parameters. This specification implies a
relatively uninformative prior for these precision parameters
and encourages the data to choose a suitable value.

The components in ρ are bounded within the unit interval.
Hence, a natural choice of prior for any ρ ∈ ρ is an independent
Beta distribution (denoted Beta(c, d)) of the following form:

π (ρ) ∝ (ρ)c−1(1 − ρ)d−1.

Conventionally, the Beta priors are flat, with a mean near 1 and
a small variance (e.g., Williams et al. 2006). This is based on
the prior belief that all the inputs are equally uncorrelated to the
simulator and allows the data to decide upon the dependence of
the simulator on the different inputs by moving the ρ’s away
from 1 in the posterior. In our experience, the default choice of
Beta(1, 0.001), suggested by Higdon et al. (2004) and Williams
et al. (2006), encourages strong enough dependence in each of
the parameters and works well in general.

The posterior distribution for each parameter is explored
using MCMC. Specifically, single-site Metropolis updates
(Metropolis et al. 1953) are used for the components of ρ and
θ . Proposals are made for each of these parameters from a uni-
form distribution centered at the parameter’s current value. The
widths of the uniform distributions (one for each component
parameter) are precomputed by running short MCMC runs and
choosing a width that gives an acceptance rate of about 0.44
(Gelman et al. 2004). Although this adjustment does not guar-
antee an acceptance probability of 0.44, we have found this
procedure to be helpful at choosing widths resulting in accep-
tance ratios between 0.25 and 0.75 and, more importantly, en-
courages the MCMC to converge. Good default choices for the
widths for the updates can also be found using the method pro-
posed by Graves (2005). For each of the precision parameters,

we used Hastings updates (Hastings 1970), where the proposed
value is drawn from a uniform distribution centered at the cur-
rent parameter value, with a width that is proportional to the
parameter’s current value. We have found that a width that is
0.3 times the current parameter value (originally proposed by
Higdon et al. 2008) works fairly well in general. It is feasible
to use Metropolis updates for the precision parameters as well,
but in the problems we have encountered, we have found the
Hastings updates result in faster convergence.

2.3 Prediction

The main goal of this endeavor is prediction. Using the
MCMC draws for the parameters, we estimate the posterior
predictive distribution for a new field measurement at new in-
puts, xnew. Given the posterior realizations from Equation (9),
predictions of the field measurement, Yf (xnew), can be made at
a new input setting xnew.

The joint distribution between Y and Yf (xnew), conditional
on the parameters θ , λ, and ρ, is

(
Y

Yf (xnew)

) ∣∣∣∣∣ (θ ,λ, ρ) ∼ MVN(0,(new),

where the covariance matrix, (new, is analogous to the covari-
ance in Equation (8)—there is an extra row and column in
(new as a result of appending Yf (xnew) to Y.

Through the usual properties of the multivariate normal dis-
tribution, the predictive distribution of Yf (xnew), conditional on
Y and the parameters, is

Yf (xnew) | (Y, θ ,λ, ρ) ∼ MVN(µpred,(pred), (10)

where µpred = (new
21 ((new

11 )−1Y and (pred = (new
22 −

(new
21 ((new

11 )−1(new
12 . The matrices (new

ij are submatrices
of (new where

(new =
(

(new
11 (new

12

(new
21 (new

22

)

.

The submatrix (new
11 is an (nf + nh + nl) × (nf + nh + nl) ma-

trix, while (new
12 and (new

21 are of dimension (nf + nh + nl) ×
1 and 1 × (nf + nh + nl), respectively. The remaining subma-
trix, (new

22 , is a scalar.
To make predictions, we first sample a vector of parameters

from Equation (9). Next, conditional on the sampled parameters,
a prediction is sampled from Equation (10). The sampling of
parameters and predictions is repeated many times to provide
estimated posterior quantities (e.g., posterior mean, variance, or
prediction intervals).

3. EXAMPLES

In this section, two examples are presented. The first example
is a simple simulator that is used to demonstrate the proposed
approach. After illustrating our implementation and some diag-
nostics to assess the adequacy of the model fit, a small simulation
study is carried out to investigate the predictive performance of
the proposed methodology. The second example is the appli-
cation that motivated this work, and involves a radiative shock
experiment conducted at CRASH. The main goal is to predict
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Figure 1. Response surface of the low-fidelity simulator, the high-fidelity simulator, and the mean of the physical process as outlined in
Equations (11)–(13).

the observed field measurements given the outputs from two
simulators and a set of field trials.

3.1 Toy Example

We begin with the “toy” example in Bastos and O’Hagan
(2009), with some slight alterations. That is, the setting has
been modified to accommodate two simulators and field experi-
ments. In addition, we refashion the computer models to include
two design variables, a common calibration parameter and cali-
bration parameters that exist in each simulator, respectively. For
simplicity, all the input settings and calibration parameters are
chosen from the unit interval.

We specify the low-fidelity model as:

yl(x, tf , tl) = ηl(x, tf , tl)

=
(

1 − exp
(

− 1
2x2

))

× 1000tf x3
1 + 1900x2

1 + 2092x1 + 60
1000tlx

3
1 + 500x2

1 + 4x1 + 20
. (11)

The high-fidelity model is defined as the low-fidelity response
model plus a discrepancy term:

yh(x, tf , th) = ηl(x, tf , θl) + 5 exp(−tf )
x

th
1

100
(
x

2+th
2 + 1

)

= ηl(x, tf , θl) + δc(x, tf , th). (12)

To illustrate the proposed approach, we simulate outputs
from the respective models. Following Loeppky, Sacks, and
Welch (2009), we used a 40-run random Latin hypercube de-
sign (Mackay, Beckman, and Conover 1979) for the low-fidelity
simulator. Since, in practice, the high-fidelity model is likely to
be more computationally expensive than the low-fidelity model,
only 10 runs are generated—also chosen using a random Latin
hypercube design.

In most simulator applications, there are relatively few field
observations. Consequently, to mimic this setting, only three

field observations were simulated from the mathematical model

yf (x) = ηl(x, θf , θl) + δc(x, θf , θh) + 10x2
1 + 4x2

2

50x1x2 + 10
+ ϵ

= ηl(x, θf , θl) + δc(x, θf , θh) + δf (x) + ϵ, (13)

where ϵ ∼ N (0, 0.52).
For this example, the true value of the common calibration

parameter is chosen to be θf = 0.2, while the calibration pa-
rameter appearing only in the high- and low-fidelity models is
chosen to be θh = 0.3 and θl = 0.1, respectively.

Figure 1 displays the response surfaces for the two simulators
and also the mean response surface for the field process. A quick
glance at the figure reveals that the high-fidelity model appears
closer to the mean process than the low-fidelity model. This
represents the framework we are working within insofar as the
high-fidelity model is assumed to be more like the true system
than the low-fidelity model.

The posterior distribution of the model parameters was sam-
pled using MCMC as outlined in Section 2.2.1. The MCMC
chain is initialized with θf = θh = θl = 0.5 (i.e., the center of
the input space), ληl

= 1, λ2 = λf = λy = 20 and all the cor-
relation parameters, ρ are chosen to be 0.1 as we assume that
the simulator and discrepancies are dependent on all the in-
puts. Through visual inspection of the traceplots (not shown),
we found that, for the data encountered in this example, con-
vergence is achieved in the first 1000 steps or so. The MCMC
was run for 10,000 steps, where the first 2000 steps are treated
as burn-in and discarded in further analysis. The code for this
analysis can be found in the online supplementary materials.

In addition to the data simulated from Equations (11)–(13)
used to fit the proposed model (i.e., the training set), a validation
dataset was generated from Equation (13), so that the predictive
performance can be evaluated. The validation set consisted of 25
field observations with input settings, x, chosen using random
Latin hypercube sampling. We use the posterior mean prediction
at x to estimate Yf (x). Figure 2 shows the predicted versus actual
values for each of the validation points. The figure shows that
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Figure 2. Predicted versus actual field measurements of the valida-
tion set (with the y = x line). The online version of this figure is in
color.

the predictive model performs reasonably well since the points
center around the y = x line.

Figure 3 displays the deviations of the predictions from the
true values plotted against the predictions and also the input
settings in each dimension. In each case, no obvious pattern
is found in the plots, suggesting the outputs have similar de-
gree of smoothness across the input space and that no obvious
systematic behavior was unaccounted for.

While not the specific goal of the proposed methodology,
we now consider the estimation of the calibration parame-
ters. Figure 4 shows the estimated one-dimensional and two-
dimensional marginal posterior distributions of the calibration
parameters. Vertical dashed lines are plotted at the true val-
ues of the calibration parameters. In general, these posterior
distributions can be interpreted as representing the uncertainty
in the calibration parameters given the very limited number of
observations and small numbers of simulations from imperfect
simulators. A quick glance at the plots reveals that, except for
θl , the calibration parameters are not being constrained by the
data. It is not too surprising that we can constrain θl , but not the
calibration of the other parameters, since there are more out-

puts (comparisons between the low- and high-fidelity models)
to inform this parameter. The inability to constrain the other
calibration parameters is likely due to the well-known issue of
confounding between the calibration parameters and the dis-
crepancy functions (e.g., Loeppky, Bingham, and Welch 2006)
and the dearth of data. The confounding can be mitigated to
some extent by the use of more informative prior distributions
and also more observations.

The diagonals show the marginal posterior distributions of
the calibration parameters, with the true values marked with
vertical dashed lines. The off-diagonals subplots contain the
two-dimensional marginal posterior distributions for the three
calibration parameters. The solid lines represent the 95% high
posterior density region.

Figures 4(b), 4(c), and 4(d) display the estimated pos-
terior distributions of the calibration parameters for other
sample sizes. The panels are the results of the simulations
with (i) nl = nh = 20, nf = 3, (ii) nl = nh = nf = 40, and
(iii) nl = nh = nf = 100. The first case was chosen as a more
simulation rich version of the earlier example. Comparing
Figure 4(b) with the results in Figure 4(a), we see that the
mode of the posterior distribution of θl is closer to the true value
(solid line) and there is less variability in the posterior distri-
bution when there are more simulations. However, very little is
learned about the calibration parameters θh and θf . To gain more
information on these parameters, there needs to be more field
observations. Panels (c) and (d) consider cases where the num-
ber of simulations and field trials is larger than before. As the
number of observations and simulations increases, the model is
able to better estimate the calibration parameters. An interesting
observation is that the shared calibration parameter θf is better
constrained in panel (c) than θh. The reason for this, we surmise,
is that given the same number of field trials both the low and
high-fidelity models help inform θf , but only the high-fidelity
model directly informs θh. When there are relatively many sim-
ulations and observations, all of the calibration parameters tend
to be well constrained (panel (d)).

A subsequent simulation study is performed to compare pre-
dictions of the new model with approaches that only use some of
the simulations. Models ML and MH are implementations of the
Kennedy and O’Hagan (2001) approach using the data obtained
from the low-fidelity simulator and experiments, and outputs
obtained from the high-fidelity simulator and experiments,

Figure 3. Diagnostics plots for the simple example: (a) Prediction error against predictions; (b) prediction error against x1; (c) prediction
error against x2. The online version of this figure is in color.
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Figure 4. Plot of the two-dimensional marginals for the posterior distributions of the three parameters for different sample sizes. The online
version of this figure is in color.

respectively. Predictions from these models are compared with
those from the proposed approach—denote MLH. In other
words, we are investigating whether the proposed methodology
of combining all simulations and observations is better in some
sense than the Kennedy and O’Hagan (2001) method using one
of either the low-fidelity model or high-fidelity model outputs
alone.

The simulation study is carried out as follows. Using random
Latin hypercube sampling, 100 sets of training and validation
data are first generated independently. Each training set contains
the same number of outputs as the first illustration: 40 simulated
values from the low-fidelity simulator, 10 computer runs from
the high-fidelity simulator and 3 field observations. For each
simulated training set, models ML, MH, and MLH are esti-
mated, and predictions of the validation set are obtained from
each model. The predictions are evaluated by computing the
root mean squared prediction errors (RMSPE) for the validation
data. This is done for each of the 100 simulated training and val-
idation datasets. The simulation study results are summarized
in Figure 5.

Figure 5 reveals that the RMSPE from the proposed model is
consistently smaller than the RMSPE of the other two models.
Interestingly, in panel (a), we notice that the RMSPE is larger
for the high-fidelity model than the low-fidelity model. This
is the result of having relatively few runs of the high-fidelity
code. Looking at Figure 5(b), when nl = nh = 20 and nf = 3,
prediction using the higher fidelity outputs does better than

prediction using only the low-fidelity outputs. In either case,
the proposed approach that uses all sources of data tends to do
better in terms of RMSPE.

In general, we found that the proposed model that makes
use of all the simulations works well for making predictions
for the physical system. The simulation demonstrates that more
efficient estimation is gained through this approach. Although
calibration is not the priority, we come across a similar issue
encountered by Kennedy and O’Hagan (2001)—calibration is
difficult with limited amounts of data. However, as the num-
ber of outputs and observations increases, more information is
available to calibrate the parameters of interest. In the case of
calibration in our setting, it is important to note what is being
achieved. That is, the posterior distributions reflect the uncer-
tainty in the calibration parameters given the observations and
the imperfect simulators.

3.2 CRASH Application

The application that motivated the proposed methodology
arises from radiative shock experiments at CRASH. Figure 6
gives a diagram of the system that we want to predict. In the
physical experiments, a high-energy laser pulse irradiates a thin
disk of beryllium at the front end of a xenon-filled tube. The
energy deposited in the surface causes the beryllium to ablate.
A shock wave is then driven by the ablation pressure through
the beryllium disk. After the shock wave breaks out of the
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Figure 5. Boxplots of the RMSPE obtained from the 100 simulated datasets analyzed using models ML, MH, and MLH. The online version
of this figure is in color.

beryllium disk, the disk acts as a piston, propagating the shock
at a high speed into the xenon. When the xenon is shocked, it is
heated to temperatures well over 100,000◦K and emits thermal
X-ray radiation. These shocks are considered radiative when the
radiation energy flux from the shock is high enough to impact
the structure of the shock wave. Details regarding the radiative
shock physics can be found in Drake et al. (2011). The radiating
shock experiments that we are concerned with can be viewed as
small-scale experiments for understanding astrophysical shock
waves and other high-temperature phenomena (Drake et al.
2011; McClarren et al. 2011).

Several measurements of interest are taken from each shock
experiment and also simulations. We focus here on the time
taken for the shock wave to exit the beryllium disk (breakout
time). Our experiments were carried out at the OMEGA Laser

Laser 
Beryllium Disk 

Xenon filled tube 

Shock 

Figure 6. A pictorial version of the apparatus used in the radiative
shock experiments. The vertical bar represents the beryllium disk where
the laser deposits energy. The shock wave breaks through the beryllium
disk and moves down the xenon-filled tube (horizontal bar). The online
version of this figure is in color.

Facility at the University of Rochester (Boehly et al. 1997).
Two metrics were used to obtain measurements of the shock
breakout. The streaked optical pyrometer (SOP) records a two-
dimensional image with optical light emission in one spatial
dimension and is streaked in time in the other direction (Miller
et al. 2007). To measure shock breakout, SOP views beryllium
disk on the side opposite the laser irradiation. The detector sees
no signal from the hot, shocked material until the shock reaches
the back surface of the disk, indicating shock breakout. The other
metric is the active shock breakout (ASBO) diagnostic (Barker
and Hollenback 1972). ASBO reflects a probe laser off the
back surface of the beryllium disk and uses interferometry for
measuring the relative distance from the target to the diagnostic
over time. When the shock reaches the back surface of the disk, it
accelerates the surface, changing the distance from the detector
to the target. Both the SOP and ASBO metrics can be used to
provide measurements of the shock breakout time. In practice,
we have used both to compute the breakout time for a shock and
taken the average of the two inferred computed values as the
measurement. Of course, the shocks move very quickly (more
than 100 km/s) and the breakout from the beryllium happens in
a very short time period. For this setup, the time measurement
system measures the breakout time in picoseconds (10−12 s).

Using two different radiation-hydrodynamics codes (1D-
CRASH and 2D-CRASH), we aim to predict the shock breakout
time. The 2D-CRASH code includes two-dimensional processes
and interactions that the one-dimensional code, or 1D-CRASH,
does not. As a result, the 2D-CRASH model is not only assumed
to be able to model the experiments better than the 1D-CRASH
code, but it is also more computationally expensive.

The design variables for this experiment are the thickness of
the beryllium disk (x1) and laser energy (x2). The electron flux
limiter is calibration input to both simulators and is denoted
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Figure 7. Predicted versus actual breakout times and 95% prediction
intervals. The online version of this figure is in color.

as tf . The laser energy scale factor is an additional calibration
parameter, tl , required by the 1D-CRASH code but not the 2D-
CRASH simulator. The high-fidelity computer code has two
calibration inputs—beryllium gamma (th,1) and wall opacity
scale factor (th,2). All the inputs are scaled to the unit interval
before fitting the data to the proposed model.

We have 365 simulations from 1D-CRASH and 104 2D-
CRASH runs available. The designs for each computer ex-
periment were Latin hypercube designs, optimized using a
space-filling criterion (Johnson, Moore, and Ylvisaker 1990).
There are also eight experiments that were conducted using the
OMEGA laser where the breakout time was recorded.

The MCMC was set up as in the previous examples, with one
exception. From previous usage of the laser, it was known that
the observational standard error was about 50 × 10−12 s—or
approximately 1 after standardizing. A gamma distribution with
shape and scale parameter (10,000, 10,000) was chosen for the
prior of λy . This is an informative prior that tightly centers
the gamma distribution at 1. The widths for the Metropolis
updates are chosen as outlined in Section 2.2.1. We found that
convergence was achieved shortly after 1000 MCMC steps. So,
the MCMC was run for 10,000 steps and the first 2000 were
discarded as burn-in.

Like the previous example, the deviations of the predictions
from the observed breakout times are plotted against the predic-
tions and the two input settings (diagnostic plots not shown). No
obvious pattern is found in any of the diagnostic plots, thereby
suggesting that the model fit is adequate. The code for this anal-
ysis can be found in the online supplementary materials.

A leave-one-out study is conducted to evaluate the predictive
ability of the new approach. That is, we delete an observation, fit
the proposed model, and predict the deleted observation. This is
done for each of the eight observations. Figure 7 is a plot of the
resulting predictions against the observed breakout time. The
95% posterior prediction interval for each point is shown in the
figure. The predictions are fairly close to the observed values
and, thus most points are near to the y = x line. However, the
second observation from the left gives a prediction interval that
almost fails to capture the observation.

Similar to the previous example, the proposed approach of
combining all simulations and observations is compared to the
Kennedy and O’Hagan (2001) method using one of either the
1D-CRASH or 2D-CRASH outputs alone. The results are shown
in Figure 8. Looking at the Figure, the proposed methodology
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Figure 8. The horizontal dotted line in each subplot draws the actual observed breakout time. The first two bars of “+” on the far left of the
plots are the simulated outputs from 1D and 2D-CRASH, respectively. The 95% prediction intervals, denoted as vertical intervals, are obtained
from fitting models ML, MH, and MLH, respectively. The mean of each prediction interval is denoted with circle. The online version of this
figure is in color.
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Figure 9. Plot of the two-dimensional marginals for the posterior distribution of the four parameters. The diagonals show the marginal
posterior distributions of the calibration parameters. The off-diagonals subplots contain the two-dimensional marginal posterior distributions for
the four calibration parameters. The solid lines represent the 95% high posterior density region. The online version of this figure is in color.

has prediction intervals that are usually smaller than prediction
intervals obtained from model ML and MH—though not univer-
sally so. The prediction intervals from model MH are generally
the widest. The prediction intervals from the new methodology
contained the observations, but the prediction of breakout time
for shot (f) was outside of both prediction intervals from ML
and MH.

The results in Figure 8 point to the proposed approach being
generally more successful at predicting the breakout time than
using the observations with the low- or high-fidelity simulators
alone. With that said, the results are not as striking as in the
previous section. The benefits of the proposed methodology
will depend on issues related to the specific application. In the
end, the quality of the predictions will be based on features such
as the ability of the simulators to mimic the real process, the
form of the discrepancies, and the number of simulations and
observations. In this example, we had quite a few runs from both
simulators and emulated both simulators fairly effectively—we
could not know we could do so beforehand—but did not have
very many observations.

Plots of the marginal posterior distributions of the calibration
parameters are shown in Figure 9. The posterior distributions
for all the calibration parameters, except the energy scale factor,
are not constrained in this application. This is expected because
of the limited number of experiments (nf = 8) that inform these
parameters.

4. DISCUSSION

In this section, some extensions and limitations of the pro-
posed approach are discussed. In addition, we identify some
avenues for future work.

So far, the focus has been on the setting where there are
only two simulators. The new methodology, however, can eas-
ily be extended to model applications that involve more than
two simulators. Suppose that there are H simulators denoted
as ηk(·) for k = 1, . . . , K , where ηk(·) is the next highest level
of fidelity model from ηk−1(·). The simulators share the same
design variables, x, and some common calibration parameters,
tf . The remaining calibration parameters required by each of
the respective simulators are denoted as tk , for k = 1, . . . , K .
The intersection between tk and t′k (k ̸= k′) is empty and thus
calibration parameters are included in either exactly one or all
of the simulators.

The lowest fidelity simulator outputs are denoted as

Y1(x, tf , t1) = η1(x, tf , t1).

The outputs from the higher fidelity simulators can then be
written as a combination of the lowest fidelity simulator and
discrepancy functions that capture the systematic differences
between pairs of simulators. For k = 2, . . . , K , the simulated
outputs are written as
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Yk(x, tf , th) = ηk(x, tf , tk)

= η1(x, tf , θ1) +
k−1∑

j=2

δj (x, tf , θ j ) + δk(x, tf , tk).

The experimental observations are written as the sum of the
low-fidelity simulator and discrepancy functions

Yf (x) = ηK (x, θf , θK ) + δf (x) + ϵ

= η1(x, θf , θ1) +
K∑

j=2

δj (x, θf , θ j ) + δf (x) + ϵ,

where δf (x) measures the discrepancy between the highest fi-
delity simulator and physical process. The response surfaces of
the different sources of data are modeled with GPs with mean
and covariance functions discussed in Section 2.2.

While it is conceptually simple to extend the setting to more
than two simulators, note that as the number of models grows,
likely so too will the number simulations. As a result, the co-
variance matrices (e.g., for the low-fidelity model) can become
so large that matrix inversion poses an additional computation
problem. This issue occurs for all applications of GPs where
many outputs are available. One way to deal with large datasets
is to change the GP specifications and use a compactly supported
covariance that reduces the computational effort through sparse
matrix techniques (e.g., Kaufman et al. 2011). Alternatively, a
multistage approach can be considered. That is, one would first
emulate the lowest fidelity simulator using only outputs from
that computer model. The next highest level of fidelity model
is calibrated using outputs from this simulator and the lowest
level of fidelity emulator. One can continue building models in
a hierarchical fashion. This has the impact on reducing the size
of the covariance matrices at each stage and thus the computa-
tional burden. A similar approach is used for implementing the
Kennedy and O’Hagan model in Bayarri et al. (2007).

Our choice of sampling method from the posterior
distribution—univariate random walk MCMC—has worked
fairly well in the examples encountered. However, as pointed
out by one of the referees, we would expect that, as the param-
eter space grows, a relatively large number of MCMC steps are
required to allow the random walks to converge. In these cases,
more efficient MCMC procedures are needed.

Some care should be taken in the prior specification for the
precision parameters for the GPs. We have found that the default
choices of prior distributions outlined in Section 2.2 work fine
in most cases (e.g., the simulations in Section 3.1). However, for
some datasets, extremely large values of λy are observed. This
amounts to essentially a model with no measurement error and
discrepancies that are interpolating the noise. We noticed the
phenomenon when the default priors are used for the CRASH
example. This can also happen with the model proposed by
Kennedy and O’Hagan (2001). In our case, we avoided this
problem because we had a more informative prior distribution
for λy . Alternatively, one can address this issue by rejecting
small values of a precision parameter in the MCMC (this was
done in Higdon et al. 2004), or at the design stage by taking
replicate field observations.

A further note of caution with respect to the experimental
design is that the design regions for the computer experiments

should coincide to avoid uncertainty due to extrapolation in the
discrepancies between models. Suppose for example, the design
for tf in the low-fidelity simulator explores a much larger region
than the design for the high-fidelity model. When predictions
are made, the proposed approach averages over the posterior
distribution of the calibration parameters. For values of θf from
the posterior that are outside of the range explored by the design
of the high-fidelity model, the proposed approach extrapolates
δ2(·). This results in larger prediction intervals.

Finally, there are some avenues for future research that can
be envisioned in other applications. For example, the pro-
posed model could be adapted to consider different output data-
structures such as functional or spatial responses. Furthermore,
our approach is not obviously suitable to settings where the sim-
ulators are not ranked by fidelity (e.g., climate models arising
from different research groups), in applications with more than
two simulators that involve common calibration parameters that
appear among a proper subset of the models or in settings with
design variables that appear in only some, but not all, simulators.

5. CONCLUSION

A new methodology, which combines outputs from multifi-
delity simulators and field observations, is proposed. The ap-
proach successfully uses a Bayesian hierarchical model to make
predictions of the physical system with associated measure-
ments of uncertainty (e.g., posterior variance or prediction in-
tervals). Different GPs are used to model the various response
surfaces. The real example that motivated this work used two
simulators of the process, but methodology can be easily ex-
tended to cases with more than two simulators.

SUPPLEMENTARY MATERIALS

Code and data: a zip folder containing Matlab code for the
toy example and the CRASH application, as well as the data
from the CRASH application.
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