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We consider adapting a canonical computer model calibration apparatus,
involving coupled Gaussian process (GP) emulators, to a computer experi-
ment simulating radiative shock hydrodynamics that is orders of magnitude
larger than what can typically be accommodated. The conventional approach
calls for thousands of large matrix inverses to evaluate the likelihood in an
MCMC scheme. Our approach replaces that costly ideal with a thrifty take
on essential ingredients, synergizing three modern ideas in emulation, cali-
bration and optimization: local approximate GP regression, modularization,
and mesh adaptive direct search. The new methodology is motivated both by
necessity—considering our particular application—and by recent trends in
the supercomputer simulation literature. A synthetic data application allows
us to explore the merits of several variations in a controlled environment and,
together with results on our motivating real-data experiment, lead to notewor-
thy insights into the dynamics of radiative shocks as well as the limitations of
the calibration enterprise generally.

1. Introduction. Rapid increases in computational power have made com-
puter models (or simulators) commonplace as a way to explore complex physical
systems, particularly as an alternative to expensive field work or physical exper-
imentation. Computer models typically idealize the phenomenon being studied,
inducing bias, while simultaneously having more parameters than correspond to
known/controlled quantities in the field. Those extra “knobs” must be adjusted to
make the simulator match reality. Computer model calibration involves finding
values of such inputs, so that simulations agree with data observed in physical ex-
periments to the extent possible, and accounting for any biases in predictions based
on new simulations.

Here, we are interested in computer model calibration for experiments on ra-
diative shocks. These are challenging to simulate because both hydrodynamic
and radiation transport elements are required to describe the physics. The Uni-
versity of Michigan’s Center for Radiative Shock Hydrodynamics (CRASH) is
tasked with modeling a particular high-energy laser radiative shock system. The
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CRASH team developed a code outputting a space–time field that describes the
evolution of a shock given specified initial conditions (the inputs), and has col-
lected outputs for almost 27,000 such cases. The code has two inputs involved in
addressing known deficiencies in the mathematical model, but which don’t directly
correspond to physical conditions. Our goal is to find values for these inputs, by
calibrating the simulator to a limited amount of field data available from an ear-
lier study, while simultaneously learning relationships governing the signal shared
between simulated and field processes in order to make predictions under novel
physical regimes.

Kennedy and O’Hagan (2001) were the first to propose a statistical framework
for such situations: a hierarchical model linking noisy field measurements from
the physical system to the potentially biased output of a computer model run with
the “true” (but unknown) value of any calibration parameters not controlled in the
field. The backbone of the framework is a pair of coupled Gaussian process (GP)
priors for (a) simulator output and (b) bias. The hierarchical nature of the model,
paired with Bayesian posterior inference, allows both data sources (simulated and
field) to contribute to joint estimation of all unknowns.

The GP is a popular prior for deterministic computer model output [Sacks et al.
(1989)]. In that context, GP predictors are known as surrogate models or em-
ulators, and they have many desirable accuracy and coverage properties. How-
ever, their computational burden severely limits the size of training data sets—
to as few as 1000 input–output pairs in many common setups—and that burden
is compounded when emulators are nested inside larger frameworks, as in com-
puter model calibration. Consequently, new methodology is required when there
are moderate to large numbers of computer model trials, which is increasingly
common in the simulation literature [e.g., Kaufman et al. (2011), Paciorek et al.
(2013)].

Calibrating the radiative shock experiment requires a thriftier apparatus along
several dimensions: to accommodate large simulation data, but also to recognize
and exploit a massive discrepancy between the relative sizes of computer and field
data sets. First, we modularize the model fitting [Liu, Bayarri and Berger (2009)]
and construct the emulator using only the simulator outputs, that is, ignoring the in-
formation from field data at that stage. Unlike Liu, Bayarri and Berger, who argued
for modularization on philosophical grounds, we do this for purely computational
reasons. Second, we insert a local approximate GP [Gramacy and Apley (2015)] in
place of the traditional GP emulator. We argue that the locality of the approxima-
tion is particularly handy in the calibration context which only requires predictions
at a small number of field data sites. Finally, we illustrate how mesh adaptive direct
search [Audet and Dennis (2006)]—acting as glue between the computer model,
bias and noisy field data observations—can quickly provide good values of cali-
bration parameters and, as a byproduct, enough useful distributional information
to replace an expensive posterior sampling.
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The remainder of the paper is outlined as follows. Section 2 describes the ra-
diative shock application and our goals in more detail. Section 3 then reviews the
canonical calibration apparatus with a focus on limitations and remedies, includ-
ing approximate GP emulation. Section 4 outlines the recipe designed to meet
the goals of the project. Illustrations on synthetic data are provided in Section 5,
demonstrating proof of concept, exploring variations and discussing limitations.
We return to the motivating example in Section 6 equipped with a new arsenal.
The paper concludes with a brief discussion in Section 7.

2. Calibrating simulated radiative shocks. The CRASH team is interested
in studying shocks where radiation from shocked matter dominates the energy
transport and results in a complex evolutionary structure. These so-called radia-
tive shocks arise in practice from astrophysical phenomena (e.g., super-novae) and
other high-temperature systems [e.g., see Drake et al. (2011), McClarren et al.
(2011)]. Our particular work, here, involves a large suite of simulation output and
a small set of twenty field observations from radiative shock experiments. Our goal
is to calibrate the simulator and to predict features of radiative shocks in novel set-
tings.

The field experiments were conducted at the Omega laser facility at the Univer-
sity of Rochester [Boehly et al. (1997)]. A high-energy laser was used to irradiate
a beryllium disk located at the front end of a xenon (Xe) filled tube [Figure 1(a)],
launching a high-speed shock wave into the tube. It is said to be a radiative shock
if the energy flux emitted by the hot shocked material is equal to or larger than
the flux of kinetic energy into the shock. Each physical observation is a radiograph
image [Figure 1(b)], and the quantity of interest for us is the shock location: the
distance traveled at a predetermined time.

The experimental (input) variables are listed in the first column of Table 1, and
the ranges or values used in the field experiment (the design) are in the final col-
umn. The first three variables specify the thickness of the beryllium disk, the xenon

(a) (b)

FIG. 1. (a) Sketch of the apparatus used in the radiative shock experiments. A high-energy laser is
used to ignite the beryllium disk on the right, creating a shock wave that travels through the xenon
filled tube. (b) Radiograph image of a radiative shock experiment.
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TABLE 1
Design and calibration variables and input ranges for computer experiment 1 (CE1) and 2 (CE2)
and field experiments. A single value means that the variable was constant for all simulation runs

Input CE1 CE2 Field design

Design variables
Be thickness (microns) [18,22] 21 21
Xe fill pressure (atm) [1.100,1.2032] [0.852,1.46] [1.032,1.311]
Time (nano-seconds) [5,27] [5.5,27] 6-values in [13,28]
Tube diameter (microns) 575 [575,1150] {575,1150}
Taper length (microns) 500 [460,540] 500
Nozzle length (microns) 500 [400,600] 500
Aspect ratio (microns) 1 [1,2] 1
Laser energy (J) [3600,3990] [3750.0,3889.6]
Effective laser energy (J)∗ [2156.4,4060]

Calibration parameters
Electron flux limiter [0.04,0.10] 0.06
Energy scale factor [0.40,1.10] [0.60,1.00]
∗The effective laser energy is the laser energy × energy scale factor.

fill pressure in the tube and the observation time for the radiograph image. The next
four variables are related to the geometry of the tube and the shape of the appara-
tus at its front end. Most of the physical experiments were performed on circular
shock tubes with a small diameter (in the area of 575 microns), and the remaining
experiments were conducted on circular tubes with a diameter of 1150 microns or
with different nozzle configurations. The aspect ratio describes the shape of the
tube (circular or oval). In our field experiments the aspect ratios are all 1, indicat-
ing a circular tube. Our predictive exercise involves extrapolating to oval shaped
tubes with an aspect ratio of 2. Finally, the laser energy is specified in Joules.

Explaining the inputs listed in the remaining rows of Table 1 requires some
details on the computer simulations. Two simulation suites were performed, sepa-
rately, on super-computers at Lawrence Livermore and Los Alamos National Lab-
oratories, and we combine them for our calibration exercise. The second and third
columns of the table reveal differing input ranges in the two computer experiments
(denoted CE1 and CE2, resp.). Briefly, CE1 explores the input region for small,
circular tubes, whereas CE2 investigates a similar input region, but also varies the
tube diameter and nozzle geometry. Both input plans were derived from Latin Hy-
percube samples [LHSs, McKay, Beckman and Conover (1979)]. The thickness
of the beryllium disk could be held constant in CE2 thanks to improvements in
manufacturing in the time in between simulation campaigns.

The computer simulator required two further inputs which could not be con-
trolled in the field, that is, two calibration parameters: the electron flux limiter and
the laser energy scale factor. The electron flux limiter is an unknown constant in-
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volved in predicting the amount of heat transferred between cells of a space–time
mesh used by the code. It was held constant in CE2 because in CE1 the outputs
were found to be relatively insensitive to this input. The laser energy scale factor
accounts for discrepancies between the amounts of energy transferred to the shock
in the simulations and experiments, respectively. To explain, in the physical sys-
tem the laser energy for a shock is recorded by a technician. However, things are
a little more complicated for the simulations. Before running CE1, it was felt that
the simulated shock would be driven too far down the tube for any specified laser
energy. Instead, the effective laser energy—the laser energy actually entered into
the code—was constructed from two input variables, laser energy and a scale fac-
tor. For CE1 these two inputs were varied over the ranges specified in the second
column of Table 1. CE2 used effective laser energy directly.

Our analysis uses both laser energy and the laser energy scale factor, which
is treated as a calibration parameter. If the scale factor “calibrates” to one, then
there was no need to down-scale the laser energy in the first experiment. Using
both data sources requires reconciling the designs of the two experiments. To that
end, we expand the CE2 design by gridding values of laser energy scale factor
and pairing them with values of laser energy deduced from effective laser energy
values from the original design. When gridding, we constrained the scale factors
to be less than one but no smaller than value(s) which, when multiplied by the
effective laser energy (in reciprocal), imply a laser energy of 5000 Joules. Under
those restrictions, an otherwise uniform grid with 100 settings of the scale factor
yields a total of 26,458 input–output combinations, combining CE1 and expanded
CE2 sets, to use in the calibration exercise. Figure 2 shows the design over laser
energy and energy scale factor.

Our overarching goals here are three-fold: (a) design a calibration apparatus that
can cope with data sizes like those described above, check that we understand its
behavior in controlled settings (synthetic data), and determine how best to deploy

FIG. 2. Marginal design for laser energy and energy scale factor from both experiments.
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it for our real data (exploratory analysis); (b) determine the settings of the two-
dimensional calibration parameter, note if down-scaling was necessary in CE1,
and gain an understanding of the extent to which the field data are informative
about settings for either parameter; (c) obtain (via a particular setting of the cal-
ibration parameter) a high-quality predictor for field data measurements in novel
input conditions. In Section 4.3 we describe a (distribution of) input setting(s) of
interest to the CRASH team, for which field data have been collected, which we
use to benchmark our own predictions. Since this experiment is for an oval-shaped
disk, the predictions rely heavily on the computer model output to make an extrap-
olation, as the field training data observations involved only circular disks.

3. Elements of computer model calibration. As explained above, the ra-
diative shock experiment involves runs of a deterministic computer model M at
a large set of inputs NM = 26,458, and a much smaller number NF = 20 of ob-
servations from a physical or field experiment F . In what follows we refer to the
inputs shared by M and F as design variables, and denote them by x. The re-
maining (two in our case) calibration parameters required for M are labeled as u,
so that M takes inputs (x, u). A primary goal is to predict the result of new field
data experiments, via M , which means first finding a good u. Below we outline the
elements involved in such an endeavor, with the focus on limitations and remedies.

3.1. Hierarchical models and modularization. Kennedy and O’Hagan (2001,
hereafter KOH) proposed a Bayesian framework for coupling M and F . Let yF (x)

denote a field observation under conditions x, and yM(x,u) the (deterministic)
output of a computer model run under conditions x and calibration inputs u. KOH
represent the real process R as the computer model output at the best setting of
the calibration parameters, u∗, plus a discrepancy term acknowledging that there
can be systematic disagreement between model and truth. In symbols, yR(x) =
yM(x,u∗) + b(x).1 The field observations connect reality with data:

yF (x) = yR(x) + ε = yM(
x,u∗) + b(x) + ε where ε

i.i.d.∼ N
(
0, σ 2

ε

)
.(1)

The unknowns are u∗, σ 2
ε and the bias b(·). KOH propose a Gaussian process (GP)

prior for b(·), which we review in detail in the following subsection. Known infor-
mation or restrictions on u-values can be specified via a prior p(u), or otherwise
a default/uniform prior can be used. Reference priors are typical for σ 2

ε .
If evaluating the computer model is fast, then inference is made rather straight-

forward using residuals between computer model outputs and field observations,
yF (x)−yM(x,u), which can be computed at will for any u [Higdon et al. (2004)].

1We choose b(x) for the discrepancy term and casually refer to it as “bias” throughout even though

the actual bias, yM(x,u∗) − yR(x), which is a property of M not R, would actually work out to
−b(x).
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However, running the computer model is usually time consuming, as is indeed the
case in our example. In such situations it is useful to use an emulator or surro-
gate model in place of yM(·, ·). An emulator is a fitted model ŷM(·, ·) trained on
a set of NM simulations of M run over a design of (x, u)-input values. KOH rec-
ommend a GP prior for yM . Rather than performing inference for yM separately,
using just the NM runs as is typical of a computer experiment in isolation [e.g.,
Morris, Mitchell and Ylvisaker (1993)], they recommend inference joint with b(·),
u and σ 2

ε using both field observations and runs of the computer model. From
a Bayesian perspective this is the coherent thing to do: infer all unknowns jointly
given all data.

It is also practical when the M is very slow, giving small NM , and, moreover,
even a small number NF of field data observations can be highly informative about
the emulator ŷM(·, ·) in that setting. But, more generally, this approach is fraught
with computational challenges. Coupled b(·) and yM(·, ·) lead to parameter iden-
tification and MCMC mixing issues, and emulation demands substantial compu-
tational effort in larger NM contexts, even when applied in isolation. These chal-
lenges are all compounded under coupling.

Liu, Bayarri and Berger (2009) propose going “back to basics” by fitting the
emulator ŷM(·, ·) independently, using only the NM simulations. Inference for
the rest of the KOH calibration apparatus is still joint, for all parameters given
ŷM and field data yF . Their argument for this so-called modularization is philo-
sophical, and is a response to previous work outlining how fully Bayesian joint
inference in the KOH framework unproductively confounds emulator uncertainty
with bias discrepancy [Santner, Williams and Notz (2003)]. Our justification for
entertaining modularized calibration is different: decoupling has computational
advantages. Since our NM � NF , a small amount of field data cannot substan-
tively enhance the quality of the emulator obtained under joint inference. In other
words, we don’t lose much by modularizing. However, despite simplifying many
matters, a marginalized approach would still require large NM emulation for our
application, and is therefore no panacea.

3.2. Gaussian process emulation and sparse/local approximation. Gaussian
process (GP) regression is canonical for emulating computer experiments [Santner,
Williams and Notz (2003)]. The reasons are many, but, as we shall see, computa-
tional tractability is not one of them. Technically, the GP is a prior over functions
between x ∈ R

p and Y ∈ R such that any finite collection of Y -values (at those x’s)
is multivariate normal (MVN). Therefore, it is defined by a mean vector μ and co-
variance matrix �, and these values may be specified in terms of hyperparameters
and x-values. Homoskedasticity and stationarity are common simplifying assump-
tions in emulator applications. Often μ is constant/zero and � = τ 2K has constant
scale τ 2 and correlations K defined only in terms of displacements x − x′.



1148 R. B. GRAMACY ET AL.

Performing GP regression requires applying the same logic, conditionally on
data DN = (XN,YN) = ([x�

1 , . . . , x�
N ]�, [y1, . . . , yN ]�). Given values of any hy-

perparameters, the predictive distribution for Y(x) at new x’s is directly avail-
able from MVN conditionals. Integrating out τ 2 under a reference prior [see, e.g.,
Gramacy and Polson (2011)] yields a Student-t with

mean μ(x|DN,KN) = k�(x)K−1
N YN,(2)

and scale σ 2(x|DN,KN) = ψ[K(x,x) − k�(x)K−1
N k(x)]

N
,(3)

and N degrees of freedom, where k(x) is the N -vector whose ith component is
Kθ(x, xi), defining the correlation function given hyperparameters θ ; KN is an
N × N matrix whose entries are Kθ(xi, xj ); and ψ = Y�

N K−1
N YN . Inference for

θ can proceed by maximizing (e.g., Newton-schemes based on derivatives of) the
likelihood,

p(Y |Kθ) = �[N/2]
(2π)N/2|KN |1/2 ×

(
ψ

2

)−N/2

,(4)

or via the posterior ∝ p(Y |Kθ)p(θ) in Bayesian schemes.
Observe that prediction and inference (even sampling from the GP prior) re-

quires decomposing an N × N matrix to obtain K−1
N and |KN |. Thus, for most

choices Kθ(·, ·) and point-inference schemes, data sizes N are limited to the low
thousands. Bayesian approaches are even further limited, as orders of magnitude
more likelihood evaluations (and matrix inversions) are typically required, for ex-
ample, for MCMC. Assuming stationarity can also sometimes be too restrictive,
and unfortunately relaxation usually requires even more computation [e.g., Ba and
Joseph (2012), Paciorek and Schervish (2006), Schmidt and O’Hagan (2003)].

A key demand on the emulator in almost any computer modeling context, but
especially for calibration, is that inference and prediction (at any/many x) be fast
relative to running new simulations (at x). Otherwise, why bother emulating? As
computers have become faster, computer experiments have become bigger, limit-
ing the viability of standard GP emulation. Sparsity is a recurring theme in recent
searches for emulators with larger capability [e.g., Eidsvik et al. (2014), Haaland
and Qian (2011), Kaufman et al. (2011), Sang and Huang (2012)], allowing de-
compositions of large covariance matrices to be either avoided entirely, be built up
sequentially, or be carried out using fast sparse-matrix libraries.

In this paper we use a recent sparse GP methodology developed by Gramacy
and Apley (2015). They provide a localized approach to GP inference/prediction
that is ideal for calibration, where the full inferential scheme (either KOH or mod-
ular) only requires ŷM(x,u) for (x, u)-values coinciding with field-data x-values,
and u-values along the search path for u∗, as we describe in Section 4. The idea is
to focus expressly on the prediction problem at an input x. In what follows we use



CALIBRATING A LARGE COMPUTER EXPERIMENT 1149

x generically, rather than (x, u) as inputs to ŷM . The local GP scheme acknowl-
edges that data input locations in XN which are far from x have vanishingly small
impact on the predictive equations (2)–(3). This is used as the basis of a search for
locations Xn(x) ⊂ XN which minimize Bayesian mean squared prediction error
(MSPE). The search is performed in a greedy fashion, giving an approximate solu-
tion to the local design problem, and paired with efficient updates to the local GP
approximation as new data points are added into the local design. Building a pre-
dictor in this way, ultimately using equations (2)–(3) with a data subset Dn(x),
can be performed in O(n3), a substantial savings if n 
 N . Pragmatically, one can
choose n as large as computational constraints allow.

Gramacy and Apley (2015) show empirically that these MSPE-based local de-
signs lead to predictors which are more accurate than nearest neighbor—using
the nearest XN values to x—which is known to be suboptimal [Stein, Chi and
Welty (2004), Vecchia (1988)]. They also extend the scheme to provide local in-
ference of the correlation structure, and thereby fit a globally nonstationary model.
All calculations are independent for each x, so local inference and prediction on
a dense set of x ∈ X can be trivially parallelized, accommodating emulation for
designs of size N = 106 in under an hour [Gramacy, Niemi and Weiss (2014)].
An implementation is provided in an R package called laGP [Gramacy (2013)].
However, independent calculations for each x—while providing for nonstationar-
ity and parallelization—yield a discontinuous global predictive surface, which can
present challenges in our calibration context.

4. Proposed method. What we propose is thriftier than KOH in three ways,
and thriftier than the modularized version in two ways: It (a) modularizes the KOH
hierarchical model; (b) deploys local approximate GP modeling for the emulator
ŷM(x,u); and (c) performs maximum a posteriori (point) inference for u via the
induced fits for the bias b̂(x) under a GP prior. Given a value for the calibration
parameter, u, the rest of the scheme involves a cascade of straightforward Newton-
style maximizing calculations. Below we describe an objective function which,
when optimized, performs the desired calibration, giving an estimated value û, for
u∗. We then discuss how to predict YF (x) at new x-values given û and the data.

4.1. Calibration as optimization. Let the field data be denoted as DF
NF

=
(XF

NF
,YF

NF
), where XF

NF
is the design matrix of NF field data inputs, paired with

an NF vector of yF observations YF
NF

. Similarly, let DM
NM

= ([XM
NM

,UNM
], YM

NM
)

be the NM computer model input–output combinations with column-combined x-
and u-design(s) and yM -outputs. Then, with an emulator ŷM(·, u) trained on DM

NM
,

let Ŷ
M|u
NF

= ŷM(XF
NF

,u) denote a vector of NF emulated output y-values at the XF

locations obtained under a setting, u, of the calibration parameter. With local ap-
proximate GP modeling, each ŷ

M|u
j -value therein, for j = 1, . . . ,NF , is obtained

independently (and in parallel) via local sub-design XnM
(xF

j , u) ⊂ [XM
NM

,UNM
]
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and locally inferred hyperparameters θ̂j ≡ θ̂ (DnM
(xF

j , u)). The size of the local
sub-design, nM , is a fidelity parameter. Larger nM values provide more faithful
(compared to a full GP) emulation at greater computational expense. Finally, de-
note the NF -vector of fitted discrepancies as Ŷ

B|u
NF

= YF
NF

− Ŷ
M|u
NF

.
Given these quantities, the quality of a particular u can be measured by the joint

probability density of observing YF
NF

at inputs XF
NF

. We obtain this from the best

fitting GP regression model trained on data DB
NF

(u) = (XF
NF

, Ŷ
B|u
NF

), emitting es-
timator b̂ for the bias given u.2 Values of u which lead to a higher probability
of observing YF

NF
under the GP prior for b(·), modeling the discrepancy between

computer model emulations and field data, are preferred. We therefore suggest
finding û to maximize that probability, while simultaneously maximizing over the
parameterization of b(·), via hyperparameters θb, by solving the following opti-
mization problem:

û = arg max
u

{
p(u)

[
max

θb

pb

(
θb|DB

NF
(u)

)]}
.(5)

Here p(u) is a prior for u and pb(θb| . . .) is a shorthand for our bias “fit” b̂: the
marginalized posterior under a GP prior with lengthscale hyperparmeters θb and
noise parameter σ 2

ε . It is computationally feasible to use a full, rather than approx-
imate, GP for b(·) since NF is small. The “inner” maxθb

can be performed us-
ing Newton-like methods with closed-form derivatives with respect to the length-
scale θb. The “outer” maxu is discussed shortly.

Algorithm 1 represents the “inner” max portion of (5) in pseudocode for a more
detailed second look. In our implementation, steps 1–5 in the code are automated
by applying a wrapper routine in the laGP package, called aGP, which loops over
each element j of the predictive grid, performing local design, inference for θ̂j

and subsequent prediction stages, in parallel via OpenMP. With NF and nM small
relative to NM , the execution of the “for”-loop is extremely fast. In our examples
to follow (Sections 5–6), we use a local neighborhood size of nM = 50. Steps 8–9
are implemented by functions of the same names in the laGP package.

The GP model for b(·), fit in step 8, estimates a nugget parameter (in addition to
lengthscale θ̂b) to capture the noise term σ 2

ε in (1), whereas the local approximate
ones used for emulation, in step 3, do not. For situations where bias is known to
be very small/zero, it is sensible to entertain a degenerate GP prior for b(·) with
an identity correlation matrix. In that case, step 8 in Algorithm 1 is skipped and
step 9 reduces to evaluating a predictive density under an i.i.d. normal likelihood
with μ = 0, that is, only averaging over σ 2

ε . Note that Algorithm 1 works with log
probabilities for numerical stability, while equation (5) is represented in terms of
unlogged quantities.

2Note that DB
NF

(u) tacitly depends on hyperparameters θ̂j since it is defined through local GP
emulation.
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Algorithm 1 Calculating the pb(θb|DB
NF

(u)) term in equation (5)

Require: Calibration parameter u, fidelity parameter nM , computer data DM
NM

,

and field data DF
NF

.
1: for j = 1, . . . ,NF do
2: I ← laGP(xF

j , u|nM,DM
NM

) {get indicies of local design}

3: θ̂j ← mleGP(DM
NM

[I ]) {local MLE of correlation parameter(s)}

4: ŷ
M|u
j ← muGP(xF

j |DM
NM

[I ], θ̂j ) {predictive mean emulation following
equation (3)}

5: end for
6: Ŷ

B|u
NF

← YF
NF

− ŶM|u {vectorized bias calculation}

7: DB
NF

(u) ← (Ŷ
B|u
NF

,XF
NF

) {create data for estimating b̂(·)|u}

8: θ̂b ← mleGP(DB
NF

(u)) {full GP estimate of b̂(·)|u}

9: return llikGP(θ̂n,D
B
NF

(u)) {the objective value of the mleGP call above}

4.2. Derivative-free optimization of the calibration objective. We turn now to
the “outer” maxu in (5), thinking of the “inner” maxθb

as an objective which can
be evaluated following Algorithm 1. The discrete nature of independent local de-
sign searches for ŷM(xF

j , u) ensures that this objective is not continuous in u. In
fact, as we illustrate in our empirical work, it can look “noisy,” although it is in
fact deterministic. This means that optimization with derivatives—even numeri-
cally approximated ones—is fraught with challenges. We opt for a derivative-free
approach [see, e.g., Conn, Scheinberg and Vicente (2009)].

Specifically, we use an implementation of the mesh adaptive direct search
(MADS) algorithm [Audet and Dennis (2006)] called NOMAD [Le Digabel (2011)],
via an interface for R provided by the crs package [Racine and Nie (2012)].
MADS proceeds by successive pairs of search and poll steps, trying inputs to the
objective function on a sequence of meshes which are refined in such a way as
to guarantee convergence to a local optima under weak regularity conditions; for
more details see Audet and Dennis (2006). Direct, or so-called pattern search,
methods such as these have become popular for many challenging optimization
problems where derivative information is either not available or where approxima-
tions to derivatives may lead to unstable numerical behavior. We are not the first
to use MADS/NOMAD in the context of computer modeling. MacDonald, Ranjan
and Chipman (2012) used it to search for the smallest nugget, leading to numer-
ically stable matrix decompositions for near-interpolating GP emulation. Our use
is novel in the calibration context.

As MADS is a local solver, NOMAD requires initialization. We recommend
choosing a starting u-value from evaluations on a small random space-filling de-
sign, however, in our experiments (e.g., Section 5), starting at the center of the
space performs almost as well.
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4.3. Predictions for field data. Posterior predictive samples of YF (x)|û, rep-
resenting the empirical distribution of field-data observations at a novel x given
a calibrated computer model using û, can be obtained by running backward
through the KOH model (1) with estimated quantities b̂(x) and ŷM(x, û). That
is, obtaining a predictive sample at x involves executing the following steps in
sequence:

YM ∼ ŶM

(
x|θ̂ (x)

)
via local GP under equations (2)–(4)

(6)
with data DnM

(x),

Yb ∼ b̂(x|θ̂b) via full GP under equations (2)–(3) with data Db̂
NF

(û),(7)

YF = YM + Yb combining computer model, bias and noise.(8)

On the left, above, we abuse notation somewhat and let estimated emulator and
bias processes “stand in” for their corresponding predictive equations. Pointers
to those equations are provided on the right. In an unbiased version, the zero-
mean Student-t draws in (7) are equivalent to GP ones with nugget-augmented
diagonal correlation matrix K = diag(1 + σ 2

e ) with both scale τ 2 and noise σ 2
e

terms integrated out. Equation (6) reminds that local GP emulation depends on
both local design and locally estimated lengthscales.

Again consider Algorithm 1 for a second look. Field prediction involves first
running back through steps 2–4 to obtain a local design and correlation parameter
[implementing equation (6)], parallelized for potentially many x; then performing

steps 7–9 using saved Db̂
NF

and θ̂ from the optimization [equation (7)]. However,
rather than evaluate a predictive probability, instead save the moments of the pre-
dictive density (step 9) at the new x locations. These can then be combined with the
computer model emulation(s) obtained in step 4, thus “de-biasing” the computer
model output to get a distribution for YF (x)|û, that is, undoing step 6. Ideally, the
full Student-t predictive density would be used here, in step 4, leading to a sum
of Student-t random variables [equation (8)] for ŷM(x, û) and b̂(x) comprising
yF (x)|û. However, if NF ,nM ≥ 30 summing normals suffices, meaning no sam-
pling is necessary.

As a sum of random samples from a convolution of two GP predictive distribu-
tions, the resulting field predictions account for many uncertainties, arising from
both noise observed in the field and from model quantities estimated from both
data sources. Still, it is important to clarify that some uncertainties are overlooked
in this approach. The biggest omission is uncertainty in û. Monte Carlo alterna-
tives to optimizing u, such as posterior sampling or the bootstrap, are always an
option. But these might not be good value considering identification issues known
to plague KOH-style calibration [Loeppky, Bingham and Welch (2006)]. Our em-
pirical work shows that predictions under û retain many desirable accuracy and un-
certainty attributes, despite (or in spite of) such clearly evident concerns. When u∗
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is a primary goal, we later show how NOMAD evaluations can be salvaged to ap-
proximate a (log) posterior surface, and that these largely agree with a much more
expensive bootstrap alternative. Finally, deploying point-estimates (e.g., MAP) for
lengthscales and other hyperparameters, like θ̂b and θ̂ (x), is a common “Empir-
ical Bayes” practice. With local GP emulation, overlooking such uncertainties is
one of many deliberate acts of pragmatism, including that of local design search.
Since local GPs overestimate uncertainty relative to full-data counterparts [see,
e.g., Gramacy and Haaland (2015)], a measure of conservatism is organically built
in.

5. Illustrations. In this section we entertain variations on a synthetic data-
generating mechanism akin to one described most recently by Goh et al.
(2013), who adapted an example from Bastos and O’Hagan (2009). It uses two-
dimensional field data inputs x, and two-dimensional calibration parameters u,
both residing in the unit cube. The computer model is specified as follows:

yM(x,u) = (
1 − e−1/(2x2)

)1000u1x
3
1 + 1900x2

1 + 2092x1 + 60

100u2x
3
1 + 500x2

1 + 4x1 + 20
.(9)

The field data is generated as

yF (x) = yM(
x,u∗) + b(x) + ε,

(10)

where b(x) = 10x2
1 + 4x2

2

50x1x2 + 10
and ε

i.i.d.∼ N
(
0,0.52)

,

using u∗ = (0.2,0.1). We keep this setup, however, we diverge from previous uses
in the size and generation of the input designs, and the number of field data repli-
cates.

Our simulation study is broken into two regimes, considering biased and un-
biased variations, and is designed (i) to explore the efficacy of the proposed ap-
proach; (ii) to investigate performance in different scenarios (with/without bias,
unreplicated and replicated experiments, etc.); and (iii) to motivate alternatives for
our real data analysis in Section 6. Both simulation regimes involve 100 Monte
Carlo (MC) repetitions and proceed as follows.

Each repetition uses a two-dimensional LHS of size 50 (on the unit cube) for the
field data design, with three variations on the number of replicates, {1,2,10}, for
each unique design variable setting, x, leading to NF ∈ {50,100,500} random re-
alizations of YF . The computer model design begins with a four-dimensional LHS
of size 10,000. It is then augmented with simulation trials that are aligned with the
field data design. We take 10 points per input in the field data, differing only in
the u-values: the 500 total (x1, x2)-values are paired with a two-dimensional LHS
(also of size 500) of (u1, u2)-values. Combining with the second LHS, this gives
NM = 10,500 random (x1, x2, u1, u2) locations for the deterministic simulation
of YM .
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In each MC repetition, a NOMAD search for û is initialized with the best value
found on a maxmin design of size 20, which is obtained by searching stochastically
over a two-dimensional LHS of size 200. Vague independent Beta(2,2) priors on
each component of u discourage the solver from finding solutions that lie on the
boundary of the search space. Finally, a two-dimensional LHS of size 1000 is used
to generate an out-of-sample validation set of yF values without noise, that is,
εx = 0. Root mean-squared errors (RMSEs) and estimates û of u∗ are our main
metrics of comparison.

In addition to varying the number of replicates, our comparators include varia-
tions on the calibration apparatus and emulation of yM . For example, we compare
our local approximate modular approach (Section 4) to versions using the true
calibration value, u∗, a random value in the two-dimensional unit cube, ur , and
combinations of those where yM is used directly—that is, assuming free computer
simulation, and thus bypassing the emulator ŷM . On the suggestion of a referee,
we also include GP predictors derived from the field data YF

NF
only, bypassing the

computer model and calibration parameter(s) entirely. Together, these alternatives
allow us to explore how the error in our estimates decompose at each level of the
approximate modularized calibration.

5.1. Unbiased calibration. Figure 3 summarizes results from our first regime:
generating field data without bias, that is, setting b(·) = 0 in equation (10) and
fitting the model bias-free, that is, only estimating σ 2

ε . Consider the top left panel
first, which shows boxplots of RMSEs arranged by numbers of replicates (three
groups of six from left to right), and then by the use of an emulator ŷM or not
(subgroups of three within the six). Observe that a random calibration parameter,
ur (labeled as “urand,” the middle boxplot in each group of three), gives poor pre-
dictions of yF . By contrast, using the correct u∗ with yM directly (labeled “u∗-M”,
fourth boxplot in each group of six), that is, not emulating via ŷM , leads to nearly
perfect prediction. Contrasting with the corresponding “u∗-Mhat” boxplots (first
in each group of six) reveals the relative “cost” of emulating via ŷM with u∗.
Together, “urand” and “u∗” variations span the best and worst alternatives. Dis-
tinctions between the rest are more nuanced.

The third and sixth boxplots (from the left) show RMSEs obtained with û via
a single field data replicate. RMSEs obtained under yM or ŷM are very similar,
with the former being slightly better. This indicates that the local approximate
GP emulator is doing a good job as a surrogate for yM . The story is similar for
two replicates, giving slightly lower RMSEs (boxplots 9 and 12), as expected. Ten
replicates (15 and 18) lead to greater differentiation between yM and ŷM results,
implying more replicates provide a more accurate and lower variance estimate û.
Considering how bad things can get (“urand”), all of the other estimates are quite
good relative to the best possible (“u∗-M” and “u∗-Mhat”).

The top left panel does not include a boxplot for the predictor based on fit-
ting a GP to the field data only—the comparator recommended by the referee.
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FIG. 3. Comparison on unbiased data, 100 MC replicates. The top left panel shows RMSE to the
true response on hold-out sets, and the bottom left shows the corresponding standard deviations.
The top right panel shows three examples of the chosen calibration parameter(s) û, and the bottom
right shows 1-d density estimates ûa conditional on the true value u∗

b of the other coordinate. True
u∗ values are shown as dashed-blue lines, with a blue triangle positioned at their intersection. The
boxplot axes and scatter plot legend entries indicate if u is estimated (“uhat”) or if the true value is
used (“u∗”); Field data sets with 1, 2 and 10 replicates at each design location are shown, arranged
in three groups of six along the x-axis in the left panels; estimators using ŷM (“Mhat”) and yM

(“M”) are grouped into three groups of six. Whiskers of the “urand” boxplots are truncated to
improve visualization.

We chose not to include these because of how they would adversely affect the
scale of the y-axis. The summary statistics (min, inter-quartile range, and max) are
as follows: (0.44,0.56,0.73,1.13) for one repetition, (0.31,0.44,0.59,0.96) for
two, and (0.22,0.30,0.45,0.97) for ten. These are pairwise dominated by every
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other comparator (with the same number of replicates), including those based on
random ur . Clearly, the computer model/emulator is the key to good prediction.

The bottom left panel shows estimated predictive standard deviations (SDs) for
each variation, whose corresponding RMSEs are directly above. SDs are calculated
by factoring in the predictive variances from both stages: emulation uncertainty (if
any), plus bias/noise components. The random calibration parameter, ur , gives
the greatest uncertainty, which is reassuring given its poor RMSEs. Uncertainties
coming from ŷM and yM are very similar.

The top right panel shows estimated û-values for three representative cases. The
others follow these trends and are omitted to reduce clutter. In all three the û-values
found are along a straight line going through the true value u∗ = (0.2,0.1). This
is the case whether emulating with ŷM or using yM directly, although we observe
that when there are more replicates, or when yM is used directly, the points cluster
more tightly to the line and more densely near u∗. We conclude that there is a ridge
in the integrated likelihood for u, giving equal density to combinations (e.g., in
ratio) of u1 and u2 values.

This is confirmed in the bottom right panel, which shows (MC average) densi-
ties for one u-coordinate conditional on the true value of the other. The pull of our
prior, toward the center of the space, is visible in both panes, but is far weaker when
one of the coordinates is fixed. Further simulation (not shown) reveals that, in this
situation, weaker u-priors move estimates closer to the true u∗, however, uniform
priors can yield û-values on the boundary, particularly near u2 = 0.2. Also, observe
that the posterior evaluations appear “noisy.” This is an artifact of the discrete na-
ture of the local design search underlying ŷM(x,u). The objective surface is in fact
deterministic. Smoothly varying values of the calibration parameter(s) may cause
abrupt changes in the local design, and lead to abrupt (if small) changes to local
emulation and ultimately to the maximizing posterior probabilities, motivating the
NOMAD solver.

To wrap up with timing, we report that the most expensive comparator (“uhat-
Mhat-10”) took between 159 and 388 seconds, averaging 232 seconds, over all 100
repetitions on a 16-core Intel Sandy Bridge 2.6 GHz Xeon machine. That large
range is due to variation in the number of NOMAD optimization steps required,
spanning 11 to 33, averaging 18.

5.2. Biased calibration. Figure 4 shows a similar suite of results for the full,
biased, setup described in equations (9)–(10), modeled with a GP prior on b(·). At
a quick glance one notices the following: (1) the û estimates (top right) are far from
the true u∗ for all calibration alternatives considered; (2) the random setting ur isn’t
much worse than the other options (top left). Looking more closely, however, we
can see that the û versions are performing the best in each section of the chart(s).
These are giving the lowest RMSEs (top left) and the lowest SDs (bottom left).
They are doing even better than with the true u∗ setting. So while we are not able
to recover the true u∗, we nonetheless predict the field data better with the values
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FIG. 4. Comparison on biased data, 100 MC replicates. The explanation of the panels is the same
as for Figure 3.

we do find. Our modularized approximate calibration method is excelling at one
task, prediction of yF , possibly at the expense of another, estimating u∗.

The explanation is nuanced. The bias (10) is not well approximated by a station-
ary process, and neither is (9) for that matter. But our fitted b̂ assumes stationarity,
so there is clearly a mismatch with (10). The local approximate GP emulator does
allow for adaptivity of correlation structure over the input space, and thus can ac-
commodate a degree of nonstationary in the computer model (9). That explains
why our emulations were very good, but not perfect, in the unbiased case (Fig-
ure 3). In this biased case, the full posterior distribution, inferring both full and
local GPs, is using the flexibility of the joint modeling apparatus to trade off re-
sponsibility, in effect exploiting a lack of identifiability in the model, which is
a popular tactic in nonstationary modeling (further discussion in Section 7). It is
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tuning û to obtain an emulator that better copes with a stationary discrepancy,
resulting in a less parsimonious and larger magnitude estimate of b, but one for
which b̂(·)+ ŷM(·, û) gives good predictions of yF (·). Meanwhile, the local GP is
faced with a more demanding emulation task.

Again, we chose not to show boxplots for the field-data-only comparator in
the figure because they would distort the y-axis scale. The summary statistics are
as follows: (0.44,0.57,0.71,1.13) for one repetition, (0.35,0.46,0.61,1.23) for
two, and (0.20,0.29,0.47,0.88) for ten. These are similar to the values obtained
for the unbiased case, but it is important to note that they are not directly com-
parable since the data-generating mechanisms are different—the former does not
augment with equation (10).

Time-wise, the most expensive comparator (“uhat-Mhat-10”) took between 538
and 1700 seconds, averaging 1049 seconds, over all 100 repetitions. The number
of NOMAD optimization steps was similar to the unbiased case, ranging from 11
to 32, averaging 18. The main difference in computational cost was compared to
the unbiased case due to estimating the GP correlation structure for b̂, requiring
O(N3

F ) computations for NF = 500.

6. Calibrated prediction for radiative shocks. We return now to our moti-
vating example, having proposed a thrifty framework for calibration and explored
its behavior in several variations on a representative benchmark problem. Our ex-
perimental setup for calibration and prediction is similar to the one described in
Section 5. In particular, we again entertain both biased and unbiased alternatives,
being unsure about the extent of bias in the simulator relative to the field data.
One substantial distinction, however, between our synthetic data and the radiative
shock experiment, concerns the input space and the local isotropy assumptions
underlying our local approximate GP emulator. This wasn’t an issue in our previ-
ous experiments since the inputs were in the unit cube, and the responses (9)–(10)
varied by similar magnitude(s) within that range.

The radiative shock experiment involves a larger (and disparate unit) input space
(Table 1), therefore, we augment biased and unbiased variations with pairings of
two different types of preprocessing of the inputs. Our first type of preprocessing
simply scales all inputs to lie in the unit 10-cube, mimicking our synthetic exper-
iment. We call this the “isotropic” case, since all input directions share a common
lengthscale. In the local GP emulator, ŷM , local isotropy does not preclude global
anisotropy or even nonstationarity. However, the discrepancy b̂ has global reach,
so isotropy can be restrictive—however, with only twenty field data observations,
isotropy has the virtue of parsimony.

In a second version we rescale those inputs by a crude estimate of the global
lengthscale obtained from small random subsets of the computer model run data.
Specifically, we randomly sample 1000 elements of the full 26,458 design, in 100
replications, and save the maximum a posteriori estimate of a separable length-
scale hyperparameter from a Gaussian correlation function. The distribution of
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TABLE 2
Summary of estimated lengthscales from a separable power correlation function applied 100 times

to a random subsample of size 1000 from the full 26,458 design

Elect Energy
Be Laser Xe Aspect Nozzle Taper Tube flux scale

thick energy press ratio length length diam Time limit factor

25% 0.17 1.94 3.26 2.68 3.54 3.15 3.26 0.51 0.51 2.48
50% 0.64 2.11 3.65 2.94 3.85 3.57 3.55 0.69 0.88 2.73
75% 1.05 2.33 4.07 3.25 4.20 3.95 3.77 0.91 1.35 2.98

those lengthscales is summarized in Table 2. Observe that while some inputs (the
middle ones: Xe pressure, aspect ratio, nozzle length, taper length, tube diame-
ter) might cope well with a common lengthscale, the analysis suggests others re-
quire faster decay. Be thickness, time and electron flux limiter benefit from length-
scales roughly 4× shorter than those above; laser energy and energy scale factor
almost 2×. We entertain dividing the (already cube-scaled) inputs by square roots
of median lengthscales to circumvent the limits of isotropy in estimating both ŷM

and b̂.
Finally, a few other small changes from Section 5 are worth noting. We initialize

the search for û, a two-vector comprising of electron flux limiter and energy scale
factor, with a larger space-filling design (of size 200 compared to 20). Since we
are not performing a Monte Carlo experiment with hundreds of repetitions, we can
afford a more conservative, computationally costly, search. When estimating the
discrepancy b̂, we apply a GP model to the subset of inputs which actually vary
on more than two values in the field data (laser energy, Xe pressure, time). See
the final column in Table 1. We drop tube diameter, which has only two unique
settings, however, the results aren’t much changed when it is included.

6.1. Exploratory analysis. Before providing results based on a full calibra-
tion, in the four variations described above, we report on an exploratory analysis
concentrated on stressing aspects of the full framework—emulation, bias, calibra-
tion and prediction—with the aim of gaining insight into what differences might
be expected under those variations, if any.

The first aspect is a sensitivity analysis to see which inputs have substantial im-
pact on the response, with a local GP emulator under both isotropic and separable
preprocessing regimes. Average main effect functions are computed for each input
[Sobol (1993)] and displayed in Figure 5. Each panel of the plot gives the emulator
response curve for an input, averaged over the remaining inputs. Observe in Fig-
ure 5 that both preprocessing specifications give essentially the same results. The
most influential inputs, marginally, are laser energy, time and laser energy scale
factor. The code is relatively less sensitive to the others, on average. Foreshadow-
ing somewhat, our prediction exercise in Section 6.3 involves inputs with an aspect
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FIG. 5. Main effects plots for the emulated simulation runs.

ratio of 2. Since there are no field data runs with that setting (see Table 1), even cal-
ibrated predictions would be relying primarily on the emulated computer model to
make an extrapolation. The emulator shows a negligible effect for that input, so we
can rest assured that predictions in this unsampled regime are not wildly different
from where the models were trained.

We next report on a leave-one-out study to asses the predictive ability of the
four variations on our calibration methodology and gain confidence that it is cap-
turing variability in the input space and between simulation and field data. In turn,
each of the twenty field observations is deleted, models are fit to the remaining
observations and (all) simulations, and the deleted observation is predicted. The
left panel of Figure 6 indicates that all four methods are performing well, with
none obviously dominating the other in terms of predictive means. Paired t-tests
fail to detect differences in mean predictive ability among all pairs of compara-
tors. The right panel shows 95% credible intervals from those predictions, after
subtracting off the true values. Here there may be some differences between the
methods visually. For example, the biased predictors seem to have the smallest in-
tervals, on average, which makes sense considering what we understand about the
data-generating mechanism. However, a Bartlett test of unequal variances fails to
reject the null that all four predictors have the same variance. This may be due to
the small sample size of twenty.
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FIG. 6. Leave-one-out predictions for the radiative shock location field data versus true-values
(left), and with error-bars after subtracting out the true value (right).

6.2. Model calibration. We turn now to a full analysis of the calibration exer-
cise in four variations. The image plots in Figure 7 show the log posterior surface
interpolated from all evaluations of the objective (Algorithm 1), combining the ini-
tial design and NOMAD searches. The intersecting lines indicate û’s thus found, and
the open circles are estimates obtained under a parametric bootstrap, discussed in
more detail shortly. The unbiased experiments took about 20 minutes to run on a 4-
core hyperthreaded machine, whereas the biased ones took fifteen. That ordering
would seem paradoxical, since the biased models have more quantities to estimate,
however, the NOMAD convergence was faster for the biased version, requiring fewer
iterations navigate the posterior surface in search of û.

Several observations are noteworthy. All four variations reveal that the poste-
rior surface is much flatter for the electron flux limiter than for energy scale factor,
as expected. There is consensus on a value of scale factor between 0.75 and 0.8,
meaning that scaling the laser energy in CE1 was indeed helpful. The separable
models, biased or unbiased, largely agree on a setting of the electron flux lim-
iter, however, the isotropic versions disagree with that setting and disagree among
themselves. We attribute this divergence to the scales estimated in preprocessing
from Table 2. Estimating a bias adds fidelity to the model, bringing estimates closer
to those obtained in the separable version(s), providing further illustration (aug-
menting the discussion in Section 5.2) of the dual role of the discrepancy estimates
in the calibration framework.

As in our synthetic examples, observe that we obtain a “noisy” profile of the
log posterior in a search for û, although the objective is technically deterministic.
When the data are highly informative about good û, leading to a peaked surface,
the noise is negligible. However, when it is flatter, the noise is evident. Figure 8
shows both cases via a slice through the surface(s) fixing the electron flux limiter
at its midway value. Being a more flexible model, with weaker identification, the
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FIG. 7. Profile log-likelihood surfaces for the calibration parameters, electron flux limiter and
energy scale factor, in four setups. Clockwise from top left (MAP setting indicated by intersecting
lines): isotropic unbiased; isotropic biased; separable biased; separable unbiased. Open circles show
estimates obtained under parametric bootstrap resampling.

biased setup yields a much shallower log posterior surface. In the figure this is
revealed by the right-hand y axes in both plots, compared to the left-hand ones.
Correspondingly, the red dots for biased posterior values are noisier. The shal-
lower and “noisier” surface may explain why NOMAD stopped earlier—possibly
prematurely—in the biased setup.

For a second look at uncertainty in û we re-performed inference on one hun-
dred parametric bootstrap re-samples of the field data observations YF

NF
. See, for

example, Kleijnen (2014) for a nice review of the bootstrap applied to models of
simulation experiments. The resulting estimates are shown as open circles in Fig-
ure 7. Observe that the bootstrap estimates agree with the heat plot depiction of
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FIG. 8. Slice(s) of the profile log posterior surface over energy scale factor with electron flux limiter
fixed to its midway value in the range: isotropic on left; separable on right. In both plots, the left axes
show scale for the unbiased model, and the right for the biased one.

the posterior density, as interpolated from the NOMAD samples. An exception may
be the separable unbiased case (bottom right), which contains a dispersed cluster
of lower energy scale factor estimates paired with larger estimated electron flux
limiter settings. It is important to note that the bootstrap distribution would not,
in general, be identical to the posterior surface. However, we draw comfort from
their large degree of similarity in this example. The dual summaries of uncertainty
in the figure(s) suggest that the û-values we estimated from the original YF

NF
s are

both representative (among open circles) and obtain high probability (in light col-
ored regions) under the posterior. If NOMAD is indeed converging prematurely in
the biased setup, due to the “noise” in the objective, the bootstrap results suggest
it is still finding highly probable û values.

6.3. Prediction. Next we make predictions on an interesting input setting pro-
vided to us by the CRASH team. The configuration is listed in the “nominal set-
tings” column in Table 3. In past experiments, it was found that some of the desired
input values were not achieved for certain inputs when measured on the experimen-
tal apparatus (i.e., in the field). For example, the laser energy could be set to 4000
joules, but a laser energy of 3900 joules is what is observed. Our aim here is to
provide predictions for field data experiments before they are run on the appara-
tus. Therefore, for three of the variables the CRASH team provided a distribution
over the inputs (third column in the table). In the case of Be thickness, no variation
was observed in past experiments, but as a conservative accounting of uncertainty,
the input was sampled from a uniform distribution within manufacturing speci-
fications. We were asked to propagate these uncertainties through the calibrated
predictive model(s).
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TABLE 3
Settings and distributions for the design variables in the 2012 experiments. The Be thickness is

uniform over the specified range and the Laser energy and Xe fill pressure are both normal with the
specific mean and standard deviation

Input Nominal value Distribution

Design variables
Be thickness (microns) 21 Unif(20.5,21.5)

Laser energy (J) 3800 N (3800,81.64)

Xe fill pressure (atm) 1.15 N (1.15,0.10)

Tube diameter (microns) 1150
Taper length (microns) 500
Nozzle length (microns) 500
Aspect ratio (microns) 2
Time (ns) 26

In this manner the exercise is one of propagation uncertainty quantification
in the most basic sense: determining how uncertain inputs filter to uncertain out-
puts. As discussed in Section 4.3, our calibration is able to further account for
some additional estimation uncertainties, like from emulation, estimation of bias
and observation error σ 2

ε , but not others like û without further simulation (e.g.,
a bootstrap). To clarify, the scheme used here is as follows: (i) sample an input x

according to Table 3; (ii) sample from the predictive distributions for y at that x

given û, as in Section 4.3; (iii) repeat. We note that augmenting with iteration over
bootstrap estimates of û produces a slightly larger spread, but these results are not
shown here. The goal of this experiment is to explore how a calibrated model (i.e.,
using one good choice of u) predicts in a small out-of-sample exercise.

Figure 9, focusing first on the left panel, shows the predictive distributions for
our four variations. We first observe that, on the scale of the response marginalized
over all inputs (roughly from 1000 to 4500), the predictive distributions are re-
markably similar for all methods, despite choosing different û for the electron flux
limiter. However, observe that estimating bias leads to predictions (red densities)
exhibiting a greater degree of uncertainty. Those models involve extra estimating
steps and the random values of the nominal settings from Table 3 filter through to
mean and variance values for the estimated bias. That the mode of the final dis-
tribution under the biased model (dashed-red) is distinctly larger than the others,
while at the same time providing substantial spread for smaller values (but not
larger ones—i.e., it is skewed toward the modes of the others), suggests that these
predictions are the most conservative. This squares well with an a priori preference
for estimating bias and allowing separate lengthscales for each input.

The right panel shows a boxplot version of the same distributions alongside the
output for a field experiment subsequently performed at the nominal input settings
in Table 1. From the plot we can see that all four distributions were quite accu-
rate, showing greatest agreement with the separable biased variation. We conclude
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FIG. 9. Predictive densities for the 2012 experiments. The acronyms IU, IB, SU, SB link boxplots
on the right to the densities shown plotted on the left. M indicates the marginal computer model data;
F indicates the marginal distribution of the field data.

that there is a certain robustness to our calibration exercise(s), lending assurances
to the methodology generally, and to the predictions provided for the motivating
application.

7. Discussion. Motivated by an experiment from radiative shock hydrody-
namics, we presented a new approach to model calibration that can accommodate
large computer experiments, which are increasingly common in simulation-based
applied work. The cost of computation continues downward, with more and more
processor cores being packed onto motherboards, and more nodes into computing
clusters, whereas the costs of field work remain constant (or possibly increasing).
Although the established, fully Bayesian KOH approach to calibration has many
desirable features, we believe that it is too computation heavy to thrive in this en-
vironment. Something thriftier, retaining many of the salient features of KOH, is
increasingly essential.

Our method pairs local approximate Gaussian process (GP) emulation with
a modularized approach to calibration, where the glue is a flexible derivative-free
optimization method. The ingredients have been carefully chosen to work well
from an engineering standpoint. All software deployed is open source and available
in R. The extra subroutines we developed have been included in the laGP package
on CRAN. During the time that this paper was under revision, we came across two
works [Damblin et al. (2015), Wong, Storlie and Lee (2014)] attacking computer
model calibration leveraging similar themes: backing off of fully Bayesian aspects
of KOH, and framing calibration as optimization. As we are, both of these papers
are motivated by pragmatism when it comes to devoting substantial computational
resources to quantities which are poorly identified. Our method is unique in its
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treatment of large-scale computer model emulation via local approximation, and
in providing open source software.

The biggest drawback of our approach is that it doesn’t average over uncertainty
in the estimated calibration parameter û. As demonstrated in Figure 7, output from
the scheme can provide insight into the posterior for u, giving an indication of how
robust a particular choice of û might be. However, we do not provide a method
for sampling from that distribution, as we believe that would require too much
computation to be practical. As we demonstrate, a parametric bootstrap is always
an option, which is a tack also taken by Wong, Storlie and Lee (2014). But in our
real-data example, it would seem that a small amount of extra uncertainty comes
at the very high price of ∼100× greater computational effort.

We observed, as many have previously, that the calibration apparatus can yield
excellent predictions even when the estimated û is far from the true value. This
can be attributed to the extreme flexibility afforded by coupled nonparametric re-
gression models, of which GPs are just one example, which further leverage an
augmented design space: the calibration parameters, u. Authors have recently ex-
ploited similar ideas toward tractable nontstationary modeling. In the first case Ba
and Joseph (2012) proposed coupling GPs, and in the second Bornn, Shaddick and
Zidek (2012) proposed auxiliary input variables. We were surprised to discover
that the KOH calibration model, preceding these methods by nearly a decade, ef-
fectively nests them: in the first without auxiliary inputs, and in the second without
bias.

REFERENCES

AUDET, C. and DENNIS, J. E. JR. (2006). Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim. 17 188–217 (electronic). MR2219150

BA, S. and JOSEPH, V. R. (2012). Composite Gaussian process models for emulating expensive
functions. Ann. Appl. Stat. 6 1838–1860. MR3058685

BASTOS, L. S. and O’HAGAN, A. (2009). Diagnostics for Gaussian process emulators. Technomet-
rics 51 425–438. MR2756478

BOEHLY, T. R., BROWN, D. L., CRAXTON, R. S., KECK, R. L., KNAUER, J. P., KELLY, J. H.,
KESSLER, T. J., KUMPAN, S. A., LOUCKS, S. J., LETZRING, S. A., MARSHALL, F. J.,
MCCRORY, R. L., MORSE, S. F. B., SEKA, W., SOURES, J. M. and VERDON, C. P. (1997).
Initial performance results of the OMEGA laser system. Opt. Commun. 133 495–506.

BORNN, L., SHADDICK, G. and ZIDEK, J. V. (2012). Modeling nonstationary processes through
dimension expansion. J. Amer. Statist. Assoc. 107 281–289. MR2949359

CONN, A. R., SCHEINBERG, K. and VICENTE, L. N. (2009). Introduction to Derivative-Free Op-
timization. MPS/SIAM Series on Optimization 8. SIAM, Philadelphia, PA. MR2487816

DAMBLIN, G., BARBILLON, P., KELLER, M., PASANISI, A. and PARENT, E. (2015). Adaptive
numerical designs for the calibration of computer models. Technical report, AgroParisTech.

DRAKE, R. P., DOSS, F. W., MCCLARREN, R. G., ADAMS, M. L., AMATO, N., BING-
HAM, D., CHOU, C. C., DISTEFANO, C., FIDKOWSKI, K., FRYXELL, B., GOMBOSI, T. I.,
GROSSKOPF, M. J., HOLLOWAY, J. P., VAN DER HOLST, B., HUNTINGTON, C. M., KARNI, S.,
KRAULAND, C. M., KURANZ, C. C., LARSEN, E., VAN LEER, B., MALLICK, B., MARION, D.,
MARTIN, W., MOREL, J. E., MYRA, E. S., NAIR, V., POWELL, K. G., RAUCHWERGER, L.,

http://www.ams.org/mathscinet-getitem?mr=2219150
http://www.ams.org/mathscinet-getitem?mr=3058685
http://www.ams.org/mathscinet-getitem?mr=2756478
http://www.ams.org/mathscinet-getitem?mr=2949359
http://www.ams.org/mathscinet-getitem?mr=2487816


CALIBRATING A LARGE COMPUTER EXPERIMENT 1167

ROE, P., RUTTER, E., SOKOLOV, I. V., STOUT, Q., TORRALVA, B. R., TOTH, G., THORN-
TON, K. and VISCO, A. J. (2011). Radiative effects in radiative shocks in shock tubes. Opt.
Commun. 7 130–140.

EIDSVIK, J., SHABY, B. A., REICH, B. J., WHEELER, M. and NIEMI, J. (2014). Estimation and
prediction in spatial models with block composite likelihoods. J. Comput. Graph. Statist. 23 295–
315. MR3215812

GOH, J., BINGHAM, D., HOLLOWAY, J. P., GROSSKOPF, M. J., KURANZ, C. C. and RUTTER, E.
(2013). Prediction and computer model calibration using outputs from multifidelity simulators.
Technometrics 55 501–512. MR3176554

GRAMACY, R. B. (2013). laGP: Local approximate Gaussian process regression. R package ver-
sion 1.0.

GRAMACY, R. B. and APLEY, D. W. (2015). Local Gaussian process approximation for large com-
puter experiments. J. Comput. Graph. Statist. 24 561–578. MR3357395

GRAMACY, R. and HAALAND, B. (2015). Speeding up neighborhood search in local Gaussian pro-
cess prediction. Technometrics. To appear. Available at arXiv:1409.0074.

GRAMACY, R. B., NIEMI, J. and WEISS, R. M. (2014). Massively parallel approximate Gaussian
process regression. SIAM/ASA J. Uncertain. Quantificat. 2 564–584. MR3283921

GRAMACY, R. B. and POLSON, N. G. (2011). Particle learning of Gaussian process models for
sequential design and optimization. J. Comput. Graph. Statist. 20 102–118. MR2816540

HAALAND, B. and QIAN, P. Z. G. (2011). Accurate emulators for large-scale computer experiments.
Ann. Statist. 39 2974–3002. MR3012398

HIGDON, D., KENNEDY, M., CAVENDISH, J. C., CAFEO, J. A. and RYNE, R. D. (2004). Combin-
ing field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput. 26
448–466. MR2116355

KAUFMAN, C. G., BINGHAM, D., HABIB, S., HEITMANN, K. and FRIEMAN, J. A. (2011). Effi-
cient emulators of computer experiments using compactly supported correlation functions, with
an application to cosmology. Ann. Appl. Stat. 5 2470–2492. MR2907123

KENNEDY, M. C. and O’HAGAN, A. (2001). Bayesian calibration of computer models. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 63 425–464. MR1858398

KLEIJNEN, J. P. C. (2014). Simulation-optimization via Kriging and bootstrapping. J. Simul. 8 241–
250.

LE DIGABEL, S. (2011). Algorithm 909: NOMAD: Nonlinear optimization with the MADS algo-
rithm. ACM Trans. Math. Software 37 Art. 44, 15. MR2774836

LIU, F., BAYARRI, M. J. and BERGER, J. O. (2009). Modularization in Bayesian analysis, with
emphasis on analysis of computer models. Bayesian Anal. 4 119–150. MR2486241

LOEPPKY, J., BINGHAM, D. and WELCH, W. (2006). Computer model calibration or tuning in
practice. Technical report, Univ. British Columbia.

MACDONALD, N., RANJAN, P. and CHIPMAN (2012). GPfit: An R package for Gaussian process
model fitting using a new optimization algorithm. Technical report, Acadia Univ., Wolfville, Nova
Scotia. Available at arXiv:1305.0759.

MCCLARREN, R., RYUB, D., DRAKE, P., GROSSKOPF, M., BINGHAM, D., CHOU, C.-C., FRYX-
ELL, B., VAN DER HOLST, B., HOLLOWAY, J., KURANZ, C., MALLICK, B., RUTTER, E. and
TORRALVA, B. (2011). A physics informed emulator for laser-driven radiating shock simulations.
Reliab. Eng. Syst. Saf. 96 1194–1207.

MCKAY, M. D., BECKMAN, R. J. and CONOVER, W. J. (1979). A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Technometrics
21 239–245. MR0533252

MORRIS, M. D., MITCHELL, T. J. and YLVISAKER, D. (1993). Bayesian design and analysis
of computer experiments: Use of derivatives in surface prediction. Technometrics 35 243–255.
MR1234641

http://www.ams.org/mathscinet-getitem?mr=3215812
http://www.ams.org/mathscinet-getitem?mr=3176554
http://www.ams.org/mathscinet-getitem?mr=3357395
http://arxiv.org/abs/arXiv:1409.0074
http://www.ams.org/mathscinet-getitem?mr=3283921
http://www.ams.org/mathscinet-getitem?mr=2816540
http://www.ams.org/mathscinet-getitem?mr=3012398
http://www.ams.org/mathscinet-getitem?mr=2116355
http://www.ams.org/mathscinet-getitem?mr=2907123
http://www.ams.org/mathscinet-getitem?mr=1858398
http://www.ams.org/mathscinet-getitem?mr=2774836
http://www.ams.org/mathscinet-getitem?mr=2486241
http://arxiv.org/abs/arXiv:1305.0759
http://www.ams.org/mathscinet-getitem?mr=0533252
http://www.ams.org/mathscinet-getitem?mr=1234641


1168 R. B. GRAMACY ET AL.

PACIOREK, C. J. and SCHERVISH, M. J. (2006). Spatial modelling using a new class of nonstation-
ary covariance functions. Environmetrics 17 483–506. MR2240939

PACIOREK, C., LIPSHITZ, B., ZHUO, W., PRABHAT, KAUFMAN, C. and THOMAS, R. (2013).
Parallelizing Gaussian process calculations in R. Technical report, Univ. California, Berkeley.
Available at arXiv:1305.4886.

RACINE, J. S. and NIE, Z. (2012). crs: Categorical regression splines. R package version 0.15-18.
SACKS, J., WELCH, W. J., MITCHELL, T. J. and WYNN, H. P. (1989). Design and analysis of

computer experiments. Statist. Sci. 4 409–435. MR1041765
SANG, H. and HUANG, J. Z. (2012). A full scale approximation of covariance functions for large

spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 111–132. MR2885842
SANTNER, T. J., WILLIAMS, B. J. and NOTZ, W. I. (2003). The Design and Analysis of Computer

Experiments. Springer, New York. MR2160708
SCHMIDT, A. M. and O’HAGAN, A. (2003). Bayesian inference for non-stationary spatial co-

variance structure via spatial deformations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 743–758.
MR1998632

SOBOL, W. (1993). Analysis of variance of “component stripping” decomposition of multi exponen-
tial curves. Comput. Methods Programs Biomed. 39 243–257.

STEIN, M. L., CHI, Z. and WELTY, L. J. (2004). Approximating likelihoods for large spatial data
sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 275–296. MR2062376

VECCHIA, A. V. (1988). Estimation and model identification for continuous spatial processes. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 50 297–312. MR0964183

WONG, R. K., STORLIE, C. B. and LEE, T. C. (2014). A frequentist approach to computer model
calibration. Technical report, Iowa State Univ., Ames, IA.

R. B. GRAMACY

BOOTH SCHOOL OF BUSINESS

UNIVERSITY OF CHICAGO

CHICAGO, ILLINOIS 60637
USA
E-MAIL: rbgramacy@chicagobooth.edu

D. BINGHAM

DEPARTMENT OF STATISTICS AND

ACTUARIAL SCIENCE

SIMON FRASER UNIVERSITY

BURNABY, BRITISH COLUMBIA V5A 1S6
CANADA

E-MAIL: dbingham@stat.sfu.ca

J. P. HOLLOWAY

M. J. GROSSKOPF

C. C. KURANZ

E. R. RUTTER

M. T. TRANTHAM

R. P. DRAKE

CENTER FOR RADIATIVE SHOCK

HYDRODYNAMICS

UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109
USA
E-MAIL: hagar@umich.edu

mikegros@umich.edu
ckuranz@umich.edu
ruttere@umich.edu
mtrantha@umich.edu
rpdrake@umich.edu

http://www.ams.org/mathscinet-getitem?mr=2240939
http://arxiv.org/abs/arXiv:1305.4886
http://www.ams.org/mathscinet-getitem?mr=1041765
http://www.ams.org/mathscinet-getitem?mr=2885842
http://www.ams.org/mathscinet-getitem?mr=2160708
http://www.ams.org/mathscinet-getitem?mr=1998632
http://www.ams.org/mathscinet-getitem?mr=2062376
http://www.ams.org/mathscinet-getitem?mr=0964183
mailto:rbgramacy@chicagobooth.edu
mailto:dbingham@stat.sfu.ca
mailto:hagar@umich.edu
mailto:mikegros@umich.edu
mailto:ckuranz@umich.edu
mailto:ruttere@umich.edu
mailto:mtrantha@umich.edu
mailto:rpdrake@umich.edu

	Introduction
	Calibrating simulated radiative shocks
	Elements of computer model calibration
	Hierarchical models and modularization
	Gaussian process emulation and sparse/local approximation

	Proposed method
	Calibration as optimization
	Derivative-free optimization of the calibration objective
	Predictions for ﬁeld data

	Illustrations
	Unbiased calibration
	Biased calibration

	Calibrated prediction for radiative shocks
	Exploratory analysis
	Model calibration
	Prediction

	Discussion
	References
	Author's Addresses

