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Abstract. Although mathematical modeling is a mainstay for industrial and
many scientific studies, such approaches have found little application in neu-

rosurgery. However, the fusion of biological studies and applied mathematics

is rapidly changing this environment, especially for cancer research. This re-
view focuses on the exciting potential for mathematical models to provide new

avenues for studying the growth of gliomas to practical use. In vitro studies

are often used to simulate the effects of specific model parameters that would
be difficult in a larger-scale model. With regard to glioma invasive properties,

metabolic and vascular attributes can be modeled to gain insight into the in-

filtrative mechanisms that are attributable to the tumor’s aggressive behavior.
Morphologically, gliomas show different characteristics that may allow their

growth stage and invasive properties to be predicted, and models continue to

offer insight about how these attributes are manifested visually. Recent studies
have attempted to predict the efficacy of certain treatment modalities and ex-

actly how they should be administered relative to each other. Imaging is also a
crucial component in simulating clinically relevant tumors and their influence

on the surrounding anatomical structures in the brain.

1. Mathematical models in medicine. Over the last several decades, much re-
search has been devoted to understanding the physical and biological properties
of gliomas in the effort to develop an extensive knowledge of this disease. Math-
ematical models are vital to many disciplines of science. Yet, compared to other
scientific disciplines, there has been relatively little effort within neurosurgery or
neuro-oncology to exploit such knowledge to form predictive systems that could
accurately model or simulate the behavior of a malignant glioma. Such modeling
could improve our sense of growth and invasive patterns and might translate into a
useful clinical tool.
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This review presents an up-to-date survey of several types of mathematical mod-
els to characterize, quantify, and predict the complex behavior of gliomas. Al-
though there have been other review papers published on the mathematical status
of glioblastoma modeling [21], numerous recent advances in the field necessitate a
current review. We emphasize dynamical models of tumor growth, i.e., systems of
ordinary and partial differential equations, in contrast to statistical models that seek
to infer correlations between clinical measurements and patient outcomes. Although
statistical methods can provide useful rules of thumb for estimating outcomes like
patient survival or response to treatment, they provide little insight into glioma
biology.

Cancer is an inherently multi-scale process and different types of models ade-
quately describe different aspects of the proliferation and spread of gliomas. All
of the time and spatial scales of glioblastoma are important, from individual cell
interactions to the role nutrients and brain geometry play on the tumor. This pa-
per includes both microscopic and macroscopic models to ensure that all aspects of
glioblastoma growth are covered.

We discuss several types of models in this paper, all of which are useful for de-
scribing different aspects of glioblastoma evolution and growth: spheroid models,
vascular models, morphological models, and treatment models. We begin this pa-
per by introducing in vitro spheroid models in section 2, which serve as a basis for
understanding the basic dynamics of the proliferation and diffusion of glioblastoma
cells. They approximate the growth of glioblastoma when the tumor is small and
includes many reaction-diffusion models. These models can be effective in simulat-
ing the initial growth of the tumor cells. Since these models are in vitro, there is
ample opportunity to compare models with experimental data, which allows param-
eters related to basic tumor dynamics to be estimated. Section 3 explores current
research related to vascular and metabolic models. As the glioma tumor grows in
size, it requires more nutrients and begins to co-opt and create nearby vasculature
to provide the necessary nutrition. How the tumors are affected by nutrition, an-
giogenesis, and tumor vasculature is of great interest since this has been shown to
influence the invasiveness and aggressiveness of the tumor. Section 4 summarizes
research regarding morphological models. Morphological models are imperative to
understanding the characteristics of the glioblastoma and how those characteristics
determine and affect the evolution of the tumor. The biological processes involved
in tumor growth and spread, such as chemotaxis, haptotaxis, cell-cell adhesion are
studied individually and combined, to determine their influence on tumor shape and
growth rate. In section 5, the models covered relate to the efficacy of treatments and
therapies in eliminating tumor growth and prolonging patient life. Once the tumor
reaches a detectable size, some type of treatment such as resection, chemother-
apy, or radiotherapy is applied. The treatment models are concerned with using
one or more of these treatments in combination to advance therapeutic options for
glioblastoma patients.

We conclude the paper in section 6 with a discussion on the use of imaging
in current glioma models. to validate the mathematical models, it is helpful to
have experimental or clinical data. Experimental data often arises from in vitro
experiments, and are meant to help isolate parameter values which can be used
for more complicated in vivo models. These experimental images are often cou-
pled with the in vitro spheroid tumors described above. Clinical data includes MR
images and CT scans to visualize actual gliomas. Oftentimes, these images may
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be time series, which allows the researcher to observe how the tumor evolves as
time passes. The mathematical models comparing with clinical images often fea-
ture finite-element models as well as models which incorporate the brain structure
and shape. Qualitative comparisons of the simulated tumor and actual tumor can
validate the predictive ability of the model. Quantitative comparisons appear to
be much more difficult, as small uncertainties in the initial simulated tumor may
drastically change the output at the end time series.

2. In vitro multicellular tumor spheroid growth models. In vitro experi-
ments allow the investigator to model growth and other desired tumor properties
without external influences, such as host-tumor and vascular interactions, unless
specifically incorporated. Multicellular tumor spheroids, composed of an initially
small number of cells, provide a closed system in which the regulation of prevascular
tumor expansion via three-dimensional intratumoral interactions can be closely ex-
amined. Idealized experiments also allow investigators to develop and parameterize
simple mathematical models of cell growth, the parameters of which can be used
for more involved future models. The mathematical models covered in this section
mainly include reaction-diffusion models, continuum models, and simple discrete
models.

Chignola et al. [6] used a stochastic Gompertzian-like mathematical model to
describe a positive correlation between tumor variability and asymptotic volume.
The implications of this relationship suggest that the maximum size of a tumor can
potentially be determined from the multiple growth kinetics identified in a single
tumor. The development of a maximum volume signifies that any further expansion
of the tumor spheroid results in a greater increase in volume than surface area,
leading to a decrease in nutritive supply and central necrosis, because the spheroid
lacks any sort of neovascularization [8, 11]. With this in mind, Deisboeck et al. [8]
used their tumor spheroid model to illustrate that, at this critical volume, individual
cell invasion was a means of increasing surface area, thus signifying a relationship
between tumor size and the onset of invasion. In their in vitro assay, tumor spheroids
were grown in an extracellular matrix (ECM) gel and their infiltrative properties
analyzed. According to their model, not only does tumor volume, or proliferation,
seem to influence invasion, but invasion can also stimulate proliferation. In the
early stages of their model, tumor spheroid invasion rapidly occurs at 24 h followed
by volumetric growth at 48 h and another round of invasion at 72 h, implying
that invasion can indeed lead to proliferation. Furthermore, once cells have begun
infiltration, it is proposed that they undergo intra-branch homotype attraction.
According to this concept, migratory cells follow each other along a pre-formed
path in response to autocrine and paracrine signals ultimately toward some nutrient
source, which is indicative of a complex self-organizing adaptive bio-system [8].

Cellular automata are a class of discrete mathematical models that can produce
realistic simulations of the behavior of individual cells. Cellular automata define
“rules” by which the state of a given cell at the next time step depends on the state
of some number of its nearest neighbors at the current time. Even simple nearest-
neighbor rules can result in complex behavior; adjusting even a single parameter
in the rules can reproduce, at least qualitatively, many of the complex interactions
seen in vivo [28]. One such interaction that has profound effects on the invasion of
glioma cells is cell adhesion.

In a two-dimensional simulation, Aubert et al. [3] inserted a probability threshold
that quantified the strength of cell-cell adhesion to their cellular automaton (see
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figure 1). The model is set up to have each cell be hexagonal, which is either free or
occupied by a single cell. At each update, a cell may move only to the free hexagons
surrounding it, but will remain where it currently is if the chosen updated position
is already occupied. To account for cell-cell adhesion, a threshold value, p ∈ [0, 1],
is chosen. At each evolution, a random number r ∈ [0, 1] is chosen, and if r < p
the cell moves to a position whose nearest neighbors are occupied, and opposite if
r > p. As the adhesion parameter, p, varied from weak (p = 0) to strong (p = 1),
the ability of individual glioma cells to invade surrounding normal tissue decreased.
Simulations with p = 1 correlated best with experimental data, suggesting that cell
adhesion plays an important role in the behavior of gliomas [3].

Figure 1. Simulated patterns of migration using different val-
ues of the probability threshold, which quantifies cell-cell adhesion.
p=0 corresponds to a weak cell-cell adhesion, and p=1 corresponds
to a strong cell-cell adhesion. (Source: Aubert M, Badoual M,
Féreol S, Christov C, Grammaticos B. A cellular automaton model
for the migration of glioma cells. Phys Biol. 2006 Apr 13;3(2):93-
100. DOI:10.1088/1478-3975/3/2/001. Reproduced by permission
of IOP Publishing.) [3].

Continuum mathematical models rely on differential equations to express growth
dynamics in terms of rates of change of various quantities of interest. Unlike cellular
automata, such models do not attempt to simulate individual cells; rather, they es-
timate population densities of cells at grid points within the computational domain.
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As with cellular automata, model parameters related to cell adhesion strongly af-
fect the cells’ invasiveness, expressed in terms of rate of spread into regions of low
cell density. Adhesion can affect the invasive properties of glioma cell lines that
have historically been associated with increased aggression and malignancy. When
a wild-type glioma (U87WT) was grown in a three-dimensional collagen gel in vitro
assay, it exhibited greater invasiveness and a faster shed rate than the mutated cell
line (U87∆EGFR), which has an amplified expression of epidermal growth factor
receptor (EGFR). Because the fit to experimental observations was optimal when
higher parameters were used for undirected motility and shed rate for the wild
type within the continuum model, these dramatic differences in phenotypes may be
attributable to changes in cell adhesion. For example, cell-cell adhesion between
∆EGFR cells may increase. However, Stein et al. [53] proposed that the wild type
cells have an increased affinity for collagen in the medium, indicating that they
can more readily overcome cell-cell adhesions and infiltrate the surrounding matrix,
thus exhibiting a greater degree of haptotaxis.

Stein et al. [53] also discovered that the proliferating cells and invasive cells
need to be modeled separately as they exhibit drastically different behaviors. To
further explain, we look to the equations governing the behavior of the cell core
(proliferating cells) and the migratory cells. The tumor sphere radius is assumed
to be increasing at a constant rate, vc, and shedding invasive cells at a rate, s. The
behavior of the invasive cells, ui(r, t) is as follows:

∂ui(r, t)

∂t
= D∇2ui︸ ︷︷ ︸

diffusion

+ gui

(
1− ui

umax

)
︸ ︷︷ ︸

logistic growth

− vi∇r·ui︸ ︷︷ ︸
cells leaving tumor

+ sδ(r −R(t))︸ ︷︷ ︸
shed cells from core

where R(t) = R0 +vct, describes the radius of the proliferating cells at time t. R0 is
the radius of the tumor core at initial time, and vc represents the velocity with which
the tumor core radius increases. The parameters of the model are D, the constant
diffusion rate, the intrinsic growth rate g, and the rate at which the migratory cells
move away from the tumor core vi. Their simulations showed that by separating the
populations of proliferating cells and migratory cells, they were able to accurately
model the behavior of migratory cells, when compared with experimental data (see
figure 2) [53].

One limitation to reaction-diffusion type models is that uniform symmetric diffu-
sion is assumed. For glioblastomas which have biased diffusions, higher-order mod-
els may be necessary. Fort and Sole [12] modeled beyond the standard reaction-
diffusion-advection, and were able to show greater agreement with experimental
data. They showed that cells do not move equally probable in all directions, but
rather move in a bias towards the invasion front. Patient specific values, which can
be measured for each patient, dictate the effect of biased dispersal, which can largely
influence the tumor growth predictions and the efficacy of resection surgery [12].

The use of spheroids will continue to be a vital tool in the effort to predict
tumor behavior. As with every method, however, there are limitations. In vivo,
malignant gliomas are not regular spheroids; they are a heterogeneous composition
of cells. When estimating the invasive radius of glioma cells, investigators usually
draw a best-fit ring around the invasive area [64]. Stein et al. [54] proposed a
novel algorithm, automated invasive radii estimation (AIRE), which predicts the
invasive zone radius based on the graininess of a bright-field image (a function of
cell density). At very high cell densities, such as in the tumor core, and at very low
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Figure 2. Simulations and experimental data plotted for U87WT
and U87∆EGFR with parameters listed. Both the invasive radius
and cell counts are plotted. Note that the wild type U87 requires
a much larger velocity bias to match experimental data. (Source:
Stein, Andrew M., et al. “A mathematical model of glioblastoma
tumor spheroid invasion in a three-dimensional in vitro experi-
ment.” Biophysical journal 92.1 (2007): 356-365. Used with per-
mission from Cell Press.) [53].

cell densities, such as outside the invasive zone, graininess can be expected to be
very low. However, at intermediate cell densities, such as in the infiltrative zone,
graininess is expected to be high. The algorithm quantifies this value to provide
an automated measurement of cell density and radius. Since many spheroid-based
models use invasion area and cell density as a function of time, AIRE can provide
investigators more accurate measurements in addition to decreasing calculation time
and resources for future studies. Eventually, it may be possible to develop this
algorithm to automatically calculate infiltrative radii in actual patient computed
tomography (CT) and MR images [54].

3. Metabolic and vascular models. As noted with the growth of in vitro spher-
oids, glioma growth is thought to begin avascularly, followed by angiogenesis and
vascular tumor growth [1]. A growing tumor requires a lot of nutrients, and once
a tumor reaches a certain size, it begins to co-opt existing vasculature and to grow
new vasculature to met those demands. The models in this section are concerned
with not only the effects of glucose, oxygen, and other necessary nutrients, but
also the growth and maintenance of the vasculature required to deliver them. In
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this section, for modeling purposes, the tumor cell population often is divided into
normal, hypoxic, and necrotic cell components, all of which function differently.
The separation into different cell types has been show to allow researchers to model
all types of dynamics visible in gliomas, as well as create conjectures on how the
phenotypic switch from proliferative tumors to migratory tumors is achieved. The
mathematical models discussed in this section include compartmentalized models
and more involved cellular automaton models.

Tumor growth may progress by vessel co-option, blood vessel regression, and then
growth, a process mediated by three key proteins: vascular endothelial growth fac-
tor (VEGF), angiopoietin-1 (Ang-1), and angiopoietin-2 (Ang-2) [17,24,25]. Models
evaluating such conditions tend to focus on the microstructure of the tumor. Gev-
ertz and Torquato [17] developed a cellular automaton that describes brain tumor
growth along with the evolution of microvasculature. Their model confirmed that
upregulation of Ang-2 in the presence of functional VEGF induced angiogenesis,
whereas Ang-2 alone caused vessel regression. Potential treatment strategies that
may prevent vascular growth and decrease tumor aggressiveness were discussed.

Since the VEGF-VEGFR complex forms in response to vessel regression and
hypoxia, thereby stimulating angiogenesis, blockage of this pathway may prevent
tumor growth to a macroscopic size and clinical relevance. Alternatively, one may
predict the inhibition of Ang-2 will reduce tumor growth. However, while angio-
genesis will not occur, neither will vessel regression, meaning the tumor can survive
and grow from co-opted vessels as predicted by the model. According to these sim-
ulations, an effective treatment will inhibit angiogenesis and allow vessel regression,
which would prevent tumor from growing beyond a diameter of 1–2 mm [17].

Tumor microvasculature is also known to play a key role in the efficiency of
tumor cells’ glycolytic phenotype and its function in invasion. The glycolytic phe-
notype is the exclusive use of anaerobic metabolism in tumor cells, causing them
to produce relatively large quantities of acid, which may aid invasion. By using a
modified cellular automaton and partial differential equations, Gatenby and Gawl-
inski [16] modeled the glycolytic phenotype in the early and late phases of tumor
growth, respectively. Their simulations indicated that a critical point of normal
tissue density, tumor tissue density, and excess acid concentration may confer a
transformation from a benign to a malignant tumor. Microvessel density, within
some optimal range, will promote this acid-mediated invasion. Below the ideal ves-
sel density for a certain acid concentration, excessive H+ will be toxic even to the
tumor cells, because the vasculature is unable to buffer sufficient amounts of acid.
On the contrary, a vessel density above the optimal range buffers too much of the
produced acid, thereby hindering the ability of tumor cells to invade the surrounding
tissue [43]. This evidence offers potential routes of treatment to help further contain
the tumor and decrease its invasion. One method would be to induce self-poisoning
by increasing the amount of intra-tumoral acid through inhibiting angiogenesis or
simply by increasing tumor acid production. Furthermore, increasing normal cells’
tolerance to increased acid concentrations would enhance their ability to effectively
wall off the tumor and decrease invasion [16]. In either case, the role of acid is
clearly significant to tumor invasion and potential treatments.

The previously discussed models quantitatively analyzed particular effects of neo-
vasculature. Frieboes et al. [13] used their functional collective cell-migration units
(FCCMU) models, which are based on conservation laws, to distinctively depict the
morphology of evolving neovasculature. Moreover, their simulations calculate tumor
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cell spatial distribution and viability as a function of nutrient availability (figure 3).
The result is a unique model that accurately predicts areas of viable cells, necrosis,
and tortuous neovasculature, which is similar to in vivo observations.

Figure 3. A multiscale three-dimensional computer simulation
depicting a growing glioblastoma multiform (GBM). (A) A chrono-
logical simulation of growth over 3 months. VT and NT represent
viable and necrotic tissue, respectively. MV and NV are mature
blood-conducting vessels in red and new nonconducting vessels in
blue, respectively. Neovascularization is shown here to affect mor-
phology. (B) A histology-like section from the last frame seen in A.
Areas of white represent viable tumor regions; darker regions within
the section represent necrotic regions. (C) An additional view of
the tumor depicted in the last frame in A. (Source: Frieboes HB,
Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer EL, Cristini
V. Computer simulation of glioma growth and morphology. Neu-
roimage. 2007;37 Suppl 1:S59-70. Epub 2007 Mar 23. Used with
permission from Elsevier.) [13].

As a glioma expands, its vasculature becomes less and less likely to provide oxy-
gen and nutrients to all regions of the tumor. Consequently, areas of hypoxia are
introduced to zones of lesser perfusion, resulting in more aggressive behavior. This
hypothesis is supported by a positive correlation between relative hypoxia, the ratio
of hypoxic tumor volume to a T2-defined tumor volume, and tumor aggressiveness,
as quantified by the commonly used proliferation to diffusion rate ratio (ρ/D). Szeto
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et al. [60] used preoperative 18F-fluoromisonidazole (FMISO)-positron-emission tol-
erance images and serial T1-weighted gadolinium and T2-weighted MR imaging to
estimate patient-specific ρ and D values to predict tumor aggressiveness as a func-
tion of hypoxia.

Recent mathematical models have advocated treating these normoxic, hypoxic,
and necrotic cells as separate populations. In 2011, Swanson et al. [59] created
a compartmental model which separated normoxic, hypoxic, and necrotic glioma
cells, in addition to vasculature and angiogenic factors. The authors showed that
with this improvement, all dynamics of in vivo gliomas can be modeled. They pro-
pose that the interaction between tumor cells and their microenvironment are key
to developing malignancy. Martinez-Gonzalez et al. [38] developed and studied a
compartment style model which featured normoxic and hypoxic cells competing for
resources. They discovered that when vaso-occlusive episodes cause hypoxic condi-
tions, cell phenotypic switch occurs. They propose that attempting prevention of
collapsing micro vessels in the tumor may slow glioma migration. Papadogiorgaki et
al. [42] created a 3D multi-compartment continuum model which predicts avascular
glioma growth in an isotropic and homogeneous medium. The model simulates both
proliferation and migration by including interaction between four distinct glioma
cell populations: proliferative, hypoxic, hypoglycemic and necrotic cells in addition
to their tissue microenvironment. The effects of glucose and oxygen are taken into
account both individually and combined. By compartmentalizing the model as de-
scribed, the authors are able to see how subpopulations of the various types of cells
proliferate and diffuse, specifically allowing the researchers to determine the evolu-
tion of the malignant tumor cells. This also leads to the ability to estimate tumor
growth parameters, which are difficult to determine from experimental data [42].

Hatzikirou et al. [20] proposed that the actual transformation seen in glioma
cells from a proliferative phenotype to an invasive one is not attributed to muta-
tions only, but rather to hypoxia and their ‘Go or Grow’ mechanism. Evidence
suggests that a mechanism for this manifestation could be the down-regulation of
cadherins during hypoxia [56]. According to the authors of this model, direct sup-
port for their hypothesis can be found after glioma resection. When the tumor is
removed, there are invasive cells that are not resected and experience a return to
normoxic levels, facilitating their conversion back to the proliferative phenotype,
thereby explaining the quick recurrence and proliferation after removal [20]. If only
mutations were responsible for this switch to the proliferative phenotype, a much
longer period between treatment and recurrence would be observed. An unrealisti-
cally high phenotypic change rate via mutations, 103 phenotypic changes/division,
must be used in their model to achieve a recurrence in the length of time consistent
with clinical observations. Simulations also indicate that when resources are scarce,
a predominant invasive phenotype may produce a more fit tumor with a greater cell
population than one with proliferative cells in the majority, further supporting the
‘Go or Grow’ postulate [20]. These findings signify that enhanced tumor oxygena-
tion may be a means to decelerate tumor aggressiveness and metastasis, further
demonstrating the importance of metabolism and neovasculature in the potential
treatment of glioma.

4. Morphology in glioma models. Without doubt, morphology, both micro-
scopically and macroscopically, is a decisive indicator of glioma growth and invasion.
For this reason, an abundance of recent research has emphasized tumor morphology
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and its prognostic indications. Several studies investigating different glioma char-
acteristics and their effects on tumor morphology and evolution are reviewed in this
section. Characteristics that are heavily studied include chemotaxis, haptotaxis,
and cell-cell adhesion. Models in this section strive to capture the morphological
phenomena observed in vivo, and furthermore, quantify the conditions necessary to
create those phenomena. Models in this section are represented by more discrete
models as well as reaction-diffusion models.

Glioma morphology can be studied in a straightforward manner with multicel-
lular tumor sphenoids, which provide a relatively simple demonstration of growth
characteristics. Two of the most fundamental foundations of glioma cell movement
are chemotaxis and homotype attraction, which is the secretion of soluble paracrine-
acting agents that attract similar cells [47]. In their discrete model of microscopic
brain tumor growth characteristics using multicellular tumor sphenoids, Sander
and Deisboeck [47] predicted invasive morphologies based on different strengths
of chemotaxis and homotype attraction. Their simulations showed that a strong
chemotaxis, either with or without a strong homotype attraction, was needed to
induce invasion in a disc-like pattern around the tumor core. Turning off the
chemotaxis and homotype attraction parameters produced a more compact area
of randomly moving cells. Alternatively, when a very strong chemotaxis and very
strong homotype attraction were implemented, the invasive zone was characterized
by chain-like structures infiltrating the surrounding medium. This appearance was
visually similar to migration of bacteria, but different biologically in the sense that
bacteria tended to proliferate while in motion [47].

Haptotaxis, the movement of cells along some extracellular substrate like col-
lagen or laminin, would make this model more complete. This parameter was
closely examined in a discrete model investigating the relative influences of cell-
ECM adhesion and cell-cell adhesion on invasion [63]. Cell-cell adhesion had less
of an effect on depth of invasion than cell-ECM adhesion. However, reducing cell-
cell adhesion in the presence of increased proteolytic enzyme secretion markedly
increased invasion. This finding suggests that mutations decreasing cell-cell adhe-
sion phenotypically emerge in the presence of substantially increased secretion of
ECM-degrading enzymes, such as metalloproteinases (MMP), which aid in glioma
invasion and growth [9, 63].

Turner and Sherratt [63] also studied the morphology of the infiltrating “ad-
vancing front.” When forces of cell-ECM and cell-cell attraction equalized, a split
occurred in the “fingers” of migratory cells. The split gave rise to a front of detached
invasive cells governed by cell-ECM adhesion and a group of cells retreating to the
main tumor mass governed by cell-cell adhesion. When a proliferation parameter
was included in this simulation, fewer detached advancing fronts were observed. The
“fingers” initially fixing the migratory cells to the main tumor mass were thicker and
remained connected to the front longer because dividing cells were pushed forward,
thereby oddly reducing invasion in this case. This comprehensive work suggests
that therapies increasing cell-cell adhesion and reducing cell-ECM attraction may
help contain glioma cells and prevent diffuse invasion [63].

Competition for nutrients and their availability through gradients also play a key
role in glioma morphology. Through the use of a nutrient-limited, reaction-diffusion
model, Ferreira et al. [10] showed that high nutrient consumption by normal cells
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induced papillary, or finger-like, tumor morphologies due to decreased nutrient avail-
ability. Increased consumption of essential mitotic nutrients by cancerous cells also
provoked more diffuse growth patterns (figure 4).

Ferreira et. al’s model is similar to the previously mentioned Aubert et. al model,
in that each individual cell is modeled in a structure. In this case, the tissue is
modeled as a square lattice, and the capillary vessels, through which the nutrients
diffuse, is located at the top of the lattice. There are there three types of cells in
the tumor mass lattice: normal σn, cancerous σc, and necrotic cells σd. Only the
cancerous cells can ‘pile up’ in one lattice cell. It is assumed that some nutrients
are more important for the cancerous cells to grow and develop than others. The
nutrients are separated into essential nutrients N(~x, t) and nonessential nutrients
M(~x, t). The concentration fields of these nutrients is governed by the following
non-dimensionalized equations:

∂N

∂t
= ∇2N︸ ︷︷ ︸

diffusion

− α2Nσn︸ ︷︷ ︸
absorption into normal cells

− λNα
2Nσc︸ ︷︷ ︸

absorption into cancer cells

∂M

∂t
= ∇2M︸ ︷︷ ︸

diffusion

− α2Mσn︸ ︷︷ ︸
absorption into normal cells

− λMα
2Mσc︸ ︷︷ ︸

absorption into cancer cells

where λN and λM represent the nutrient consumption rates of essential and noness-
ential nutrients by cancerous cells, and α represents the nutrient consumption rates
for healthy cells.

Each individual cell in the lattice can be selected at random to perform cell
division, cell migration, or cell death. In the case of division, if the cell is in the
tumor, then the daughter cell occupies the same lattice square. If the cell is on the
tumor border, then the daughter cell randomly occupies one of the nearest neighbor
sites. The ability to divide is governed by the concentration of essential nutrients
per cancer cell. The cancer cells can migrate with a certain probability. A cancer
cell in the interior of the tumor moves to a randomly selected nearest neighbor site.
The movement of cancer cells on the border depends on the number of cancer cells
at each site. If there is only one cancer cell at a given border site, then it migrates
by interchanging places with a neighboring “invaded” cell. Otherwise, migrating
cells move to the position of the nearest normal or necrotic cell. The probability
of migration is dependent upon the nonessential nutrients. Cancer cells die with a
certain probability which is governed by the nonessential nutrients present on the
selected cell. The probabilities for each of these actions are given below:

Pdiv(~x) = 1− exp

[
−
(

N

σcθdiv

)2
]

Pmov(~x) = 1− exp

[
−σc

(
M

θmov

)2
]

Pdel(~x) = exp

[
−
(

M

σcθdel

)2
]

Nutrient consumption by normal cells and essential nutrient consumption by
cancer cells governed by the model parameters α and λN , respectively, were key in
predicting tumor morphology and glioma shape instability.
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Figure 4. Along the y-axis, α represents the nutrient consump-
tion for normal cells and increases moving up the axis. Along the
x-axis, λN represents the consumption rate of mitotic essential nu-
trients by the cancer cells and increases moving along the axis.
Darker regions are indicative of high cancer cell densities. For low
normal cell and tumor cell nutrient consumption, an abundance
of nutrients is available, which is why the tumor can thrive with
a compact morphology. As normal cell and tumor cell nutrient
consumption increases, a shortage of nutrients develops as the mor-
phology becomes more papillary. (Reprinted figure with permission
from: Ferreira SC Jr, Martins ML, Vilela MJ. Reaction-diffusion
model for the growth of avascular tumor. Phys Rev E Stat Nonlin
Soft Matter Phys. 2002 Feb;65(2 Pt 1):021907. Epub 2002 Jan
23. DOI: 10.1103/PhysRevE.65.021907. Copyright 2002 by the
American Physical Society.) [10].

Frieboes et al. [14] also investigated the nutrients’ outcome on morphology and
through their reaction-diffusion model provided further support that nutrient gra-
dients potentially have a direct impact on tumor morphology and invasion. To
reinforce their findings, the authors demonstrated that formation of sub-tumors,
which are a group of cells growing away from the main tumor mass, was the result
of nutrient diffusion gradients and not hyper-proliferation of a single cell. Half the
cells in a spheroid were stained one color and the other half were stained another
color. The spheroid was allowed to grow within the experimental parameters. The
resulting sub-tumors were comprised of cells of both colors, indicating one hyper-
proliferative cell was most likely not responsible for the sub-tumor outcroppings.

Kim and Roh [30] reported that the inclusion of cell-cell adhesion, in addition to
random diffusion, chemotaxis, and haptotaxis, led to the ability to see all migration
patterns that have been reported previously in experiments. The morphology of
the migrating cells shifting from branching to dispersion depending on the values
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of the adhesion, haptotactic, and chemotactic parameters. In further detail, the
chemotactic sensitivity, which is related to the tendency of the cell to move into
glucose-rich areas, controls the speed of migration. Additionally, as cell-cell adhe-
sion is increased, the speed of the front of the migration decreases, which offers
the possibility of therapy which would cause over expression of the cell adhesion
molecules. Gao and Wei [15] perform a full analysis of the mathematical model to
prove the existence of a unique global solution.

Godlewski et al. [18] determined that a single microRNA influenced prolifera-
tion, migration, and sensitivity to glucose deprivation. The microRNA, miR-451
regulates the balance between proliferation and migration: higher levels of glucose
increase the levels of miR-451, which causes elevated cell proliferation, lower levels
of glucose decrease the levels of miR-451, which in turn enables the glioma cells to
migrate. Kim et al. [32] incorporated miR-451 into a mathematical model, which
shows how the levels of glucose affect cell proliferation and migration. Their find-
ings include that if the glucose levels fluctuate, tumor growth and spread is faster.
They propose that drugs which upregulate miR-451 act to slow down the migration
of the glioma cells, which could impact efficacy of resection.

To summarize the notion that tumor cell substrates affect morphological pat-
terns seen in gliomas, Bearer et al. [4] proposed tumor growth and invasion are
predictable and quantifiable processes guided by substrate gradients and regulated
by genotypic, phenotypic, and microenvironmental parameters. They used a mul-
tiscale mathematical model of tumor evolution, which considered phenotype, geno-
type, and morphological parameters, to consistently and accurately simulate all
known invasive microscopic morphologies, such as chains, detached clusters, and
protruding “fingers” [4, 7, 13, 66, 69]. The authors suggested that these migrating
cells enlarge their surface exposure to substrates by avoiding a compact globular
morphology. Finally, this mathematical model predicted that the observed invasive
morphologies were linked to genotypic and phenotypic changes dependent on sub-
strate gradients and other microenvironmental parameters, thereby exhibiting the
growth phase of the tumor and its clinical relevance [4].

5. Modeling radiotherapy, chemotherapy, and glioma resection. While
most aspects of studies reviewed thus far have involved simulating the endogenous
properties of gliomas, we now consider models that include the effects of imple-
menting various forms of treatment in an attempt to determine their efficacy and to
propose better therapeutic options. These models usually depict tumor changes on
a larger scale, and often include full brain geometry. As mentioned, the length of
survival after a glioma is diagnosed has improved little in the last several decades.
Therefore, it is necessary to be able to model therapies and illustrate why they work
or how they can be improved. The main therapies studied in this section include
resection, or the removal of the main tumor mass, chemotherapy, and radiotherapy.
These therapies are studied alone and in conjunction with one another in hopes of
increasing patient survival time.

Relative to radiotherapy, recent work has accurately outlined therapeutic success
with regard to resection and in vivo tumor responses during treatment. According
to a four-dimensional computer modeling system that used a cubic mesh superim-
posed on a tumor and its anatomical surroundings, an increase in clonogenic cell
density (CCD), the number of proliferating tumor cells, renders the tumor more
difficult to treat, resulting in quicker regrowth after a short pause in radiation, such
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as on weekends during a treatment regimen [52]. The highest CCD in the tumor is
assumed to be in the proliferating layer, where it is twice that of the G0 layer and
10 times that of the necrotic layer. The authors also reported that an accelerated
hyperfractionated (AHF) schedule allows the tumor to grow to the original total
number of cells faster than the hyperfractionation (HF) schedule [52]. This finding
suggests that for aggressive tumors HF may lengthen the time till full recurrence.
That is, tumor cells eluding death at the end of AHF irradiation began to prolif-
erate and considerably outnumbered cells that evaded irradiation at the time HF
was terminated. Also of great importance to glioma response during radiotherapy
was the degree of hypoxia in the tumor. The oxygen enhancement ratio (OER)
quantified hypoxia and positively correlated with tumor radioresistance. Although
these findings may seem to simulate the obvious, the authors point out that their
model represents a way to further quantify the relationships seen in a dynamic and
complex tumor environment [52].

Stamatakos et al. [51] used a similar model but simulated chemotherapy with the
drug temozolimide (TMZ) in hopes of merging it with a study comparable to the
study mentioned above. Two different fractionation schemes and how they affected
treatment outcome were investigated. Based on these simulations, giving TMZ
once a day for the first 5 days in a 28-day schedule was more effective at decreasing
the total number of metabolically living tumor cells than giving the same 5 doses
uniformly throughout the 28-day schedule, a result that is consistent with clinical
observations [51]. The same assumptions involving CCD in different tumor regions
were used here as in the previous study, an improvement to previous work that
used only two subpopulations of tumor cells, those susceptible and those resistant
to chemotherapy [62]. Radiotherapy with concurrent chemotherapy increases sur-
vival times, and a reaction-diffusion mathematical model has shown that concurrent
chemotherapy can increase median survival time by 2.5 months [55].

Another method that has been used to measure the efficacy of radiotherapy
is the comparison of an untreated virtual control (UVC) to actual patient data.
Within the UVC, survival time of the untreated scenario is estimated using a fatal
tumor burden, which is measured in one of two ways: a fatal tumor radius or a
fatal number of tumor cells. Swanson et al. [58] used patient-specific parameters
of ρ, D, and v (proliferation, diffusion, and the radial expansion velocity of the
glioma), obtained from two serial MRIs of patients before treatment to simulate
the UVC and to estimate an untreated survival time based on the fatal tumor
burden. This projected life expectancy was compared to the actual survival time of
the treated patient and showed at least qualitatively some degree of radio-sensitivity
or radio-resistance. Also of interest is not only the untreated virtual control, but
also estimating the time when the tumor began growing as a means of trying to
understand what can cause glioblastoma. Murray has used methods to estimate
both the time from tumor initiation to tumor detection as well as the time from
tumor detection to death from tumor burden [41]. Wang et al. [65] follow a very
similar approach in quantifying the therapeutic response index. This index is a ratio
of the actual survival time to that of the UVC, thus indicating the effectiveness of
treatment for a patient. A positive correlation was observed between therapeutic
response index and net proliferation.

Since it has been observed that radio-sensitivity exists, studies have attempted to
quantify and estimate a value for the overall radio-sensitivity of a tumor. Rockne et
al. [46] assumed a typical response window of -30% to +20% change in pretreatment
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radius immediately after cessation of treatment. This assumption was based on data
from the RECIST (Response Evaluation Criteria in Solid Tumors) criteria. Knowing
the typical response window of gliomas to radiotherapy, the authors estimated a
broad range in which the radio-sensitivity may lie. This value was applied to all
cells of the tumor and an in silico simulation of response to radiotherapy was run. A
larger value of radio-sensitivity indicated a higher net proliferation rate and greater
tumor response. The obvious shortcoming of this model is that it used a broad
range of radio-sensitivity for its simulations.

Further work has individualized this parameter based on the strong correlation
with the net proliferation rate of a tumor. For each patient, multiple values of
radio-sensitivity parameter were chosen and radiotherapy was simulated for each.
The simulated and actual post-therapy T1-weighted gadolinium and T2-weighted
MR images were compared, and a value of radio-sensitivity was calculated, through
regression, to minimize the radii between the two images. Although future work
should not discount the importance of undetectable infiltrative cells, there was no
correlation between radio-sensitivity and the invasion rate. This finding suggests the
degree of invasiveness may have no bearing on glioma response to radiotherapy [40].
To the authors’ knowledge, this is the first instance of estimating a radio-resistance
parameter for individual patients in vivo. It is more personalized than estimating
cellular survival fraction from a standard dose of 2 Gy, as used by Kirkby et al. [33]
and it is also more specific than using parameters from the broad RECIST criteria.

Due to the diffuse nature of gliomas, in particular GBM, surgical resection is
typically viewed as a means to increase patient survival time rather than provide a
cure. In a simplified model of glioma recurrence after resection, Alvord [2] explained
that a tumor the size of the original mass can be observed in as few as 6 or 7 dou-
bling times. As mentioned, it has been proposed that the usually non-proliferating
infiltrative cells experience a return to normoxic levels upon resection, inducing a
return to proliferative growth [20]. However, the time it takes for a GBM to regrow
to its original size can be extended with subsequent radiotherapy and chemotherapy.
One area under investigation with respect to this is the manner in which to admin-
ister these two treatments. Using a reaction-diffusion model, Powathil et al. [44]
demonstrated that postoperative radiotherapy was more effective when given with
neo-adjuvant, concurrent, and adjuvant chemotherapy compared to only concur-
rent and adjuvant chemotherapy. Based on their model, the authors proposed that
concurrent chemotherapy affects only invasive cells; the neo-adjuvant method, how-
ever, affects all tumor cells temporally while radiotherapy kills remaining cells in
the target area.

Tian et al. [61] conducted another experiment that models the efficacy of post-
operative radiation and chemotherapy and further included the radius of resection
as a means to quantify the degree of removal. The model is radially symmetric
tumor, with a radius at resection time of R0 = 20 mm. After partial resection, a
smaller sphere of radius R∗ is removed, and is filled with cerebrospinal fluid. The
model describes the behavior of the remaining shell of the tumor as it undergoes
radiotherapy and chemotherapy. The total number of cells is constant, with x as
the tumor stem cell density and y as the dead cell density. r = R(t) denotes the
boundary of the tumor, which determines the survival of the patient - tumors which
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reach 40 mm are assumed to be fatal. The governing equations are as follows:
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where u(r, t) denotes the radial velocity of the tumor at time t and radius r. λ
represents the proliferation rate of the tumor cells, δ the lysis rate of the tumor
cells, and µ the removal rate of the necrotic cells. The radiation parameters include
A, the rate at which radiation kills cells, and B the Temozolomide killing rate.

This mathematical model showed that for a tumor with an original radius 20 mm,
resection followed by radiotherapy yielded a survival time of 52 weeks and 46 weeks
when the radii of resection were 19 mm and 18 mm, respectively. This study thus
quantified the common view that greater removal lengthens survival. Interestingly,
postoperative radiotherapy distributed over 12 weeks instead of the standard 6
weeks increased survival time by about 4 weeks. However, when the standard dose
of 60 Gy was doubled, survival increased from 46 to 80 weeks. However this model
failed to include the toxic effects that excessive radiation would have on normal
cells, a parameter that could be included in future improvements of the model [61].
Analysis of the mathematical model is presented in great detail by Yang et al. [67]
which finds necessary conditions for the combination of radiation and chemotherapy
to ensure tumor eradication.

Similarly, a comprehensive study by Eikenberry et al. [9] used a continuous
reaction-diffusion model based on actual patient MR imaging data. Their model
was capable of demonstrating the effects of surgical resection, radiotherapy, and
chemotherapy to show both quantitatively and qualitatively that resection is more
beneficial when followed by radiotherapy. Moreover, the model showed that the
origin of the glioblastoma affected diffusiveness and invasion, thus affecting surgi-
cal outcome. Tumors originating deep within the brain, particularly around the
ventricles, were more aggressive and had greater mass than those of superficial ori-
gin, while tumors from the brain stem and temporal lobes were shown to be larger
than superficial but smaller than deep. This evidence has correlated with meta-
bolic imaging studies of human gliomas in vivo [48]. Finally, to apply their model
to an actual clinical scenario, the authors simulated the 20-month history of GBM,
which is notable for resection at diagnosis, 8 months, and 14 months, and standard
radiation and Gamma Knife treatment as well as chemotherapy after the initial re-
section. The model incorporated three- and two-dimensional simulations. However
the three-dimensional modeling required the computational power of a supercom-
puter, whereas a two-dimensional model was far less intensive computationally and
entailed fewer parameters. Their model results showed a course of progression qual-
itatively comparable to the actual MR images of the patient. Their findings verified
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that their approach has the potential to depict behaviors of invasion and the out-
comes of different treatments realistically [9]. However, their findings will need to
be verified with additional subjects and scenarios.

Kim [29] proposed a larger-scale hybrid model in hopes of determining therapeu-
tic approaches to eliminating the invasive glioma cells after resection has occurred,
which includes exploiting their earlier discoveries about the effect of glucose and
miR-451 on tumor migration and proliferation [32]. The simulated therapy would
include injecting chemoattractants at the resection site to attract migratory tumor
cells back to the original tumor area. This would be closely followed by glucose
injections, which would lead to higher levels of miR-451, inducing cell proliferation,
and more importantly, stifling cell migration. A follow-up surgery would then be
used to eliminate the new tumor mass – ostensibly with no outlying invasive tumor
mass [29, 31]. The authors do mention potential setbacks, however, including that
if the glucose injection is initiated too early, it may induce proliferation in the dis-
persed tumor mass, leading to a worse outcome. Other potential setbacks include
how to ensure that a high enough level of miR-451 to ensure there is no glioma
cell migration, a concern which was recently addressed. As long as the adminis-
trations are spaced close enough together, the glioma cells will stay on the path to
proliferation instead of migration [50].

6. Use of imaging in glioma models. Advances in MR imaging and CT technol-
ogy have led to impressive improvements in the visualization of gliomas. Neverthe-
less, it remains difficult to correlate the imaging appearance of tumors like glioblas-
toma with the local density of viable cells. Although the location and extent of the
tumor core can be identified with good accuracy, there are few data with which to
quantify tumor cell populations in edematous and other more distant regions. In
addition, although commonly held to represent the most active or dense areas of
glioblastoma tissue, the high signal from MR contrast agents such as gadolinium do
not necessarily equate to regions of increased tumor cell density. As well, areas of
radio necrosis may not be distinguished from tumor using conventional MR imag-
ing techniques, but require techniques such as MR spectroscopy, positron emission
tomography, or other nuclear isotope scanning techniques [27, 45, 49]. Hence, MR
images and CT scans cannot be used directly to estimate the initial conditions for
continuum models of tumor growth. Future research efforts directed at this ques-
tion would help computational scientists devise and parameterize continuum models
that might make useful quantitative predictions, perhaps over periods of weeks to
months, of the growth and spread of gliomas in individual cases. Models in this
section often include full brain geometry to be able to compare with patient images,
and also take into account white and gray matter, mass effect, and diffusion tensor
imaging. Many of the models in this section are finite-element models.

With the use of the mechanical and anatomical properties of the brain, some
mathematical models employ the finite-element method to model brain deforma-
tions in response to tumor growth and surgical intervention [19, 37]. Using their
biomechanical model and an actual patient’s image, Kyriacou et al. [37] deduced
the appearance of the normal anatomy before disease via a biomechanical contrac-
tion or subtraction of the effects of a tumorous. This new “normal” image was
compared to an atlas for a normal-to-normal atlas registration. After this step, a
nonlinear regression scheme determined the tumor’s origin and growth properties
based on the previously seen anatomical deformation. This approach has interesting
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potential for modeling mass effect and tissue displacement effect. However, it can-
not calculate the effects of surrounding tissue stresses on the shape of the tumor,
a parameter that is essential for depicting irregular surface growth of the visible
tumor and mass effect [37]. Although it is convenient to use a standardized brain
atlas as a template for simulations, there may be significant anatomical differences
between the atlas and the patient.

Mass effect has been a perplexing problem for the development of tumor models
that primarily use patient imaging data. Accurately modeling such anatomical
deformations, often at a substantial distance from the tumor, is a critical step in
being able to offer pre-treatment guidance. An inverse estimation method using
complex partial differential equations was developed to drive a model that used the
smallest possible number of patient-specific parameters to precisely and efficiently
simulate growth and mass effect in a realistic clinical setting. With the comparison
of 21 landmarks between actual and modeled images, a reasonable correlation was
observed between the patient’s target image and the model. Any uniformity of
tumor growth in the simulation was a result of the brain being segmented into
white matter and ventricles only. The results also indicated that the use of a
small number of patient-specific and biologically driven parameters is sufficient to
accurately model glioma behavior [23].

To account for large deformations, edema can be modeled spherically around the
tumor as a soft material. Hogea et al. [22] used this method to quickly and efficiently
measure mass effect, but the approach is sometimes inaccurate. To determine if the
efficiency of similar models was heavily outweighed by the accuracy of slower, more
complex and costly models, Zacharaki et al. [68] compared what they refer to as
the nonlinear Lagrangian approach, a finite element formulation, and the piecewise
linear Eulerian method, which employs a linear elastic, incremental pressure model
[22, 40, 68]. The nonlinear Lagrangian method can be slightly more accurate with
regard to comparative landmark errors, but its performance is about 10 times slower
than the piecewise linear Eulerian method. The latter approach is likely to be the
method of choice in an efficient and rapid image-based glioma model [68].

It is commonly assumed that glioma cells preferentially migrate faster in white
matter than in gray matter, usually to a multiple of 5 [57]. Thus, not only is a
heterogenic model of the brain pertinent for accurate simulation, but the anisotropic
movement of glioma cells must be considered as well. Diffusion tensor imaging (DTI)
is a means of three dimensionally viewing white matter tracts in a patient and can
be used as a template to effectively demonstrate the anisotropic growth and invasion
of a glioma. Within the same basic framework, anisotropic modeling more closely
resembles in vivo tumor evolution than isotropic growth. It is sensitive to small
changes in initial tumor location, indicating it could be an accurate a way to derive
tumor origination [26]. However, although growth of the actual tumor is accurate,
parameters to account for mass effect have not been included.

Bondiau et al. [5] proposed another model with a similar DTI component. How-
ever, they went further to include a biomechanical parameter for various cerebral
anatomical structures, which allows proliferation of the tumor to depict mass effect.
The basis of the mechanical model is to use linear elasticity to model the brain
parenchyma behavior: relating stress to strain by σ = kε, with σ as the stress ten-
sor, k the elasticity of the brain, and ε is linearized Lagrange stress tensor. In this
case, k, varied depending on the structures of the brain: white matter, gray matter,
skull, and falx all had differing values. The stress is modeled by ε = 1

2 (∇χ+∇χt),
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where χ is the displacement of the point. From here, the governing mechanical
equilibrium equation is written as follows:

0 = (div σ)︸ ︷︷ ︸
divergence of stress

+ Fe︸︷︷︸
external forces on brain

Simulations agree well with patient MR images (figure 5). However, the DTIs
were from a normal atlas. Consequently, the future use of DTI data from actual
patients will be needed to personalize the model.

Figure 5. Correlations between various images used in the model.
In the images along the right, areas of white depict large differences,
whereas darker areas depict areas of similarity. (A) The image dif-
ferences between the initial image and the final simulated virtual
image, showing high variation in the ventricles (arrow 2). (B) Dif-
ferences between the initial and final real patient image after 6
months, again showing areas of high variation in the ventricular
area. (C) Differences between the simulated virtual and final real
images. The dark gray next to the arrow indicates smaller variation
in that area as opposed to the other comparisons. (Source: Bon-
diau PY, Clatz O, Sermesant M, Marcy PY, Delingette H, Frenay
M, Ayache N. Biocomputing: numerical simulation of glioblastoma
growth using diffusion tensor imaging. Phys Med Biol. 2008:879-
93. DOI:10.1088/0031-9155/53/4/004. Reproduced by permission
of IOP Publishing.) [5].
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A recent attempt to personalize a model has come from applying a parameter
estimation method to a reaction-diffusion model from serial MR images. Using the
Eikonal approximation method with serial images, Konukoglu et al. [35] mathemat-
ically emulated the evolution of the tumor front (delineation) and, as a result, the
speed of tumor growth in white and gray matter, thus characterizing brain inho-
mogeneities of that particular patient [34, 35]. The parameters can be estimated
and applied to their reaction-diffusion model, simulating the tumor evolution. A
fixed proliferation rate (ρ), regardless of the value, and the previously estimated
patient-specific diffusion rates accurately depict tumor growth. This work repre-
sents a successful and exclusive simulation of tumor evolution and is supported by
the strong correlation with actual patient images [35]. As mentioned, DTI of the
actual patient would further personalize this model and make it more exclusive to
the tumor under investigation.

Many of the previously cited models qualitatively compare images to their sim-
ulations to validate the model. Quantitative comparisons are much more difficult,
however, since the final tumor shape is extremely sensitive to the initial condition of
the tumor. To mitigate this issue, a mathematical procedure similar to that used in
weather forecasting has been applied to simple models of glioma growth to assess,
using synthetic data, the potential accuracy of forecasts of a glioma tumor in in-
dividual patients under reasonable assumptions regarding observational frequency
and uncertainty and errors in model parameters. Because of uncertainties in initial
conditions and the parameters of the model, the accuracy of a forecast often de-
grades with time. In the case of weather, predictions of a global numerical model
are no more accurate than climatological averages after 10 to 14 days. Therefore,
a method is needed to update the initial conditions based on recent observations
and model forecasts. This process is called data assimilation. At operational me-
teorological centers, atmospheric measurements are combined with model forecasts
to update the initial conditions of global models every 6 hours.

A proof-of-principle study by Kostelich et al. [36] showed that clinically useful
forecasts of tumor growth for 60 days hence are potentially feasible. They assim-
ilated synthetic magnetic resonance (MR) images from a control tumor into a set
of forecasts at intervals of 60 days. That is, they ran a GBM growth model from
statistically equivalent sets of initial conditions for 60 days to produce an ensemble
of forecasts that are representative of the range of possible outcomes for a patient in
two months’ time. Next, the actual state of the patient (obtained from a new MR
image) is used to update the forecasts to produce a new set of initial conditions. The
model is run again for 60 days, and the process is repeated for a total of six cycles
(360 days). Even in cases where there is a systematic mismatch between the model
used to generate the control tumor and that used to generate the forecasts, there
was still reasonable agreement between the control and the forecasts, provided that
the data assimilation cycle was performed sufficiently often (60 days in this case).
Figure 6 illustrates the results for the forecast and update cycle after 240, 300, and
360 days. The left column shows the “analysis mean” of the updated forecasts at
each time point; red colors indicate higher tumor cell density. The middle column
shows a color-coded representation, using the same color map, of the disagreement
between the analysis mean and the control tumor (i.e., the “truth”). The right
column shows the mean of the forecast ensembles, started from the same set of
initial conditions (on day 1) as those in the left column, but without assimilating
any intermediate synthetic MR images to update the model state vectors. This
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study demonstrated that data assimilation methodologies used for weather predic-
tion may be applicable to efforts to predict medical disease progression [39]. Such
efforts, once they are validated, may one day be useful for patient counseling and
treatment planning.

Figure 6. An image from Kostelich et al shows results of model-
ing a glioblastoma using Local Ensemble Transform Kalman Filter
state estimation [36]. The first, second, and third rows show the
results of forecasting from 240, 300, up to 360 days (top, middle,
bottom rows, respectively). The left column shows the final en-
semble analysis mean, and the middle column shows the pointwise
absolute difference between the analysis mean and the “true” tu-
mor. The right column shows the ensemble mean of free runs of the
models, i.e., the mean 360-day forecast of tumor progression with-
out the state update procedure. (Source: Kostelich EJ, Kuang Y,
McDaniel JM, Moore NZ, Martirosyan NL, Preul MC. Accurate
State Estimation from Uncertain Data and Models: An Applica-
tion of Data Assimilation to Mathematical Models of Human Brain
Tumors. Biol Direct. 2011; 6:64. Used with permission under the
terms of the Creative Commons Attribution Liscense.) [36].

7. Conclusion. The mathematical models discussed in this paper range from ra-
dially symmetric 1D models to complicated 3D computational simulations. Each of
the presented papers model a specific aspect of glioblastoma growth, morphology,
or treatment. Spherically symmetric tumor models allow important parameters to
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be accurately estimated, as they are also easy to replicate experimentally. Addi-
tionally, spherical models proved that there is drastically different behavior between
the main tumor (proliferative cells) and migratory cells, which showed it is neces-
sary to model tumor cells as separate populations, with differing behaviors [53]. As
tumors reach a certain size, it becomes necessary to model the angiogenesis and
growing vasculature. Several models have shown accuracy in predicting growth of
vasculature as well as areas of normoxic, hypoxic, and necrotic cells within the tu-
mor. Further models have included the effects due to haptotaxis, chemotaxis, and
cell-cell adhesion and determined sensitivity of tumor growth due to these effects.
Mathematicians have investigated the effects of not only biased diffusion, but also
piecewise constant diffusion to accurately model how nutrients and tumor cells mi-
grate through various brain tissue. The importance of glucose, oxygen and other
nutrients has also been thoroughly investigated. In particular, glucose levels have
been shown to directly influence tumor evolution - elevated levels of glucose increase
cell proliferation and lower levels of glucose enables cell migration [32].

The previously mentioned models do show how the tumor and vasculature evolve
throughout time, however, the effects of resection, radiotherapy, and chemotherapy
are essential to clinical practice. Given the malignancy of glioblastomas, it is imper-
ative that these tools are used intelligently to prolong the survival of the patient.
Recently, mathematical and computational models have modeled mixtures of all
three therapies, in an attempt to optimize patient survival times. Mathematicians
have developed untreated virtual control (UVC) of patient data to compare the
effects of radiotherapy without treating the tumor. This has led to development of
a parameter estimation of the ‘radiosensitivity’ of a tumor - how well the tumor
responds to radiotherapy. Others have shown experimentally that, contrary to what
one would expect, the invasion rate of the glioma has no effect on response to radio-
therapy. Some models incorporate resection in addition to radiotherapy and have
determined radiotherapy administration schedules which might lengthen survival.
The use of patient data to corroborate models is not common, but does exist in
one model which qualitatively matched the effects of resection, radiotherapy, and
chemotherapy [9].

The incorporation of experimental data, as well as imaging in the form of CT and
MR is also discussed. These images act to further validate proposed mathematical
models, although many of the comparisons remain qualitative in nature. These
models act on a macroscopic scale, and delve into brain geometry and the influence
this geometry has on the growth and migration of a tumor. As tumor growth is
highly sensitive to parameters and initial conditions, a model has been proposed
which ‘corrects’ itself when a new image is available.

Despite the progress that has been achieved so far, there are still many open
biological questions to be addressed mathematically for glioblastomas. Although
the effects of haptotaxis, chemotaxis, and cell-cell adhesion have been studied at
length, there may be other mechanics that influence the spread and evolution of
gliomas. How can the knowledge gained from these mathematical models further
our biological understanding of the tumor evolution, and how might we exploit this
understanding to mitigate the aggressiveness of a growing tumor? Other biological
questions that remain unanswered include the role of genetic data in tumor pro-
gression. How does genetic data affect growth, and how can it be incorporated into
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a relevant mathematical model? While the ultimate goal is to be able to use mod-
els to predict the growth and invasiveness of a tumor for a given patient, current
models are not accurate enough to be used in a clinical setting yet.

Various mathematical models will become a vital tool in the understanding of
gliomas. Similar to weather forecasting, the prediction of glioma behavior, as shown
by the work in this article, is possible for short periods, beyond which new clinical
data are required. Dynamic models, coupled with clinical measurements, may pro-
vide much more accurate predictions of glioma growth in individual patients than
statistical models alone. As computational thresholds and interaction among scien-
tists, clinicians, and mathematicians increase, the mathematical and biomechanical
methods capable of modeling cancer biological behaviors are likely to become even
more sophisticated. Such improvements may allow a precise system to be used in
predicting the course of treatment after a glioma is diagnosed. As such modeling
technologies become more sophisticated and reliable, they also may obviate the need
for certain repetitious experiments involving the use of live scenarios. The numerous
aspects of gliomas reviewed within these simulations are a means to develop models
of such complexity. The ultimate goal is to forecast tumor growth individually for
each patient, allowing growth pattern, velocity, and response to different treatment
modalities to be estimated.

Until recently collaborations between neurosurgeons and mathematicians have
been rare and focused on relatively esoteric topics. New research methods gained
through interaction and collaboration with scientists outside mathematics, such as
neurosurgeons, will encourage new approaches to what have been vexing clinical
and research problems. Mathematical models will certainly be an intimate part
of these new approaches toward the study and management of malignant gliomas.
Such collaborations can be exciting, refreshing, and will likely generate better care
for patients.
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