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a b s t r a c t

This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty

(QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction

technique to deal with functional data from the first code and then develop an emulator for this

reduced data. Our particular application deals with conditions created by laser deposition in a radiating

shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to

construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be

used as an initial condition for a three-dimensional code that will compute the evolution of the

radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not

successful at reducing the number of parameters required to describe the Hyades output. We decided

on an alternate approach using physical arguments to decide what features/locations of the output

were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then

used a piecewise linear fit between these locations. This reduced the number of outputs needed from

the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS

and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to

input parameters.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The quantification of margins and uncertainty (QMU) is a topic
that has received considerable attention of late, particularly by the
National Nuclear Security Agency, as reflected for example in the
recent National Research Council study [1]. A core component of
QMU is uncertainty quantification, and, as emphasized by the NRC
report, there is a strong need to further develop the methodology
for this work, especially in using computational models to predict,
with uncertainty, the threshold or design values for successful
operation of an engineered system. Another aspect stressed in the
report is that there should not be a monolithic QMU approach: a
diversity of approaches to determining the margins and quantify-
ing uncertainty needs to be actively developed.

In performing QMU analyses on complex, multiphysics sys-
tems the task can be further complicated by the fact that several
ll rights reserved.

.

computer codes may be linked together (i.e., the output from one
code becomes the input for another). In such a case the input
parameters for a computer code are a field of values rather than
several discrete inputs. Therefore, to robustly predict the behavior
of the system will require characterizing the uncertainty/sensi-
tivity of the system to changes in any one of the numbers that
comprise these field inputs.

As part of a related problem, the task of QMU is especially
challenging when the number of uncertain input parameters or
output quantities of interest is large. In such a case exploring the
parameter space to ensure acceptable operation of the system
may not be achievable via sampling techniques especially if
performing computer simulations is expensive. Moreover, for
robustness purposes perturbation and first-order reliability meth-
ods may not be adequate. In such a case it may be desirable to
construct an emulator for the computer code.

An emulator attempts to reduce the computer code output into a
regression model. If one thinks of a computer code as a, complicated
perhaps, function f ð~xÞ that maps input values to some number of
output quantities, the emulator is a fit f̂ ð~xÞ � f ð~xÞ. To construct an

www.elsevier.com/locate/ress
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Fig. 1. Diagrams of the CRASH experiments from the base experiment to the

year-5 extrapolation experiment. The shock tubes are filled with xenon gas.
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emulator one does a series of computer simulations by varying the
input values and then uses the outputs of those simulations to build a
regression model. Emulators are obviously useful in the case where
the computer code is expensive to run because evaluations of f̂ are
basically free. Of course in the QMU enterprise one cannot rely on an
emulator to draw conclusions about a system behavior because the
regression model might miss important aspects of the simulation due
to its approximate nature. Nevertheless, one can use an emulator to
define regions of the input space where the system will not perform
acceptably and then use additional computer simulations to confirm
the performance. Also, for calibration of a computer code [2] or
building a predictive model [3,4] as a part of QMU the emulator can
be used to rapidly generate samples of the computer code.

In this paper we deal with a situation where one desires to
construct an emulator for a computer code that is part of a chain
of linked computer codes. This requires constructing an emulator
that can reproduce field data. To accomplish this task we first
develop a method to reduce the field data to O(10) degrees of
freedom. This data reduction is accomplished by using physics-
based reasoning rather than statistical techniques. These degrees
of freedom can be used to reproduce, with acceptable error, the
field data. Then we construct an emulator to predict the values of
these output degrees of freedom given a set of inputs to the
computer code. In this manner we can generate the field data that
is the input to the second code using only the emulator. We
believe that our approach could have wide applicability to QMU
practitioners or others performing uncertainty analyses in the
situation where several linked computer codes are a part of the
simulation strategy. Though we have not explored this potential
application, we surmise this data reduction strategy could also be
useful in linking codes solving different scales of a physical
problem, such as linking atomistic to mesoscale to engineering
scale codes. Our method contrasts with previously described,
generic approaches for dealing with functional data based on
principal component analysis [2] and wavelet decompositions [5].
In the absence of a physics-based data reduction strategy these
methods would be an excellent starting place. Moreover, we are
optimistic that some hybrid of our approaches would likely be a
fruitful avenue for future research.

The motivation for this work was the uncertainty quantifica-
tion of simulations relevant to the mission of the Center for
Radiating Shock Hydrodynamics (CRASH), funded by the Depart-
ment of Energy Predictive Science Academic Alliance Program
(PSAAP). At CRASH we endeavor to simulate and predict the
behavior of laser-driven shock waves traveling at high Mach
number down a gas-filled tube. The temperatures reached in
the experiment are high enough that energy carried by X-ray
radiation affects the dynamics of the shock evolution. To simulate
these shocks an Eulerian radiation hydrodynamics code, the
CRASH code, has been developed based on a 3D, adaptive,
massively parallel magnetohydrodynamics code [6]. Using the
CRASH code, we will predict experimentally observable quantities
such as shock location as a function of time. To initialize the
CRASH code we use a Lagrangian radiation-hydrodynamics code,
Hyades [7], that computes the laser energy deposition and early
time shock formation. Therefore, we take the field data for the
hydrodynamics and radiation variables from Hyades (approach-
ing 103 outputs even for 1D simulations with simplified physics)
to initialize the CRASH simulation. As a result, to compute the
sensitivity/uncertainty of the CRASH predictions for the result of
an experiment, we need to know the sensitivity of the Hyades
outputs to its uncertain inputs. If we had to compute sensitivities
to each of the Hyades outputs, this task would be nearly hopeless.

We have, however, been able to reduce the number of outputs
required to adequately characterize the Hyades results using
physical insight. The CRASH output is not sensitive to every detail
of the Hyades output, and we have leveraged this fact to
characterize the Hyades output using only 40 parameters. We
can compute the sensitivity of these 40 parameters to quantify
how much the uncertainties in the input to Hyades affect its
output. As a result we have identified the areas of input space
where we need to focus effort in reducing uncertainties. This data
reduction has the added benefit of making the linking of the two
codes more automated and reproducible. Finally, as part of our
strategy for using Hyades to initialize CRASH we have performed
a series of experiments to be used to calibrate the Hyades output.
By reducing the field data and creating an emulator, this future
calibration exercise can be performed much more rapidly.

The overarching goal of CRASH is to use experiments and
simulation studies from the first four years of the project to build
the capability to model the so-called year five experiment that is
an extrapolation beyond the previously performed experiments.
As shown in Fig. 1, the base experiment has a laser-driven shock
launched down a cylindrical tube of xenon. The year-4 experi-
ment complicates the geometry by having the shock initially
launched into a larger cylindrical tube that necks down into a
smaller tube. These experiments, and their accompanying simu-
lation studies, will be used to inform our ability to predict several
quantities of interest (e.g., shock position) in the year-5 experi-
ment where a cylindrical tube necks down into a elliptical tube.
To be able to quantify the uncertainties in our prediction for the
year-5 experiment we will need to be able to justify that:
�
 Our physics models are adequate (i.e., that we can validate our
models for this particular experiment).

�
 Our code is behaving in the way we expect (i.e., our code has

been through several relevant verification exercises).

�
 We understand how uncertainties in the inputs affect the

output of the code and our prediction.

All of these justifications are being compiled into an exhaustive
evidence file. Indeed we studied to what extent our models are
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‘‘valid’’ for the simulations of interest. A discussion of how this
validation is coupled to uncertainty quantification can be found
in [8].

The activities at CRASH do deal with risk and margin, but
perhaps in ways that may not be obvious. Given that we must
predict the several quantities of interest on an experiment in a
geometry on which we have no data, our primary risk is that our
computational strategy will not be sufficient to predict with
quantifiable uncertainty the results of the year five experiment.
To deal with this risk we have delineated several strategies to add
higher fidelity physics models, if necessary. We are performing
detailed uncertainty quantification and predictive modeling on
the experimental data that we do have to assess this risk. For a
description of such a predictive modeling exercise see a compa-
nion paper in this issue by Holloway, et al. [8]. The concept of
margin for our predictive science campaign is more nebulous. All
expert judgment indicates that the year five experiment will
‘‘work’’ insofar as a radiative shock will launched down the tube.
Our margin is in the computer simulations: how wrong can our
physical models be without making our predictions fail? The
work outlined in this paper seeks to answer questions about both
the risk and the margin in part of the computational strategy at
CRASH. To assess the sensitivity of the output of Hyades and its
impact on the CRASH simulation we needed to both reduce the
field data to a few degrees of freedom, and build an emulator to
explore the range of Hyades inputs. The results pointed to us
input uncertainties that were most affecting our computations.
Therefore, to mitigate the risk associated with these uncertainties
we must take steps to minimize them.

The outline of this paper is as follows. The next section
describes the basics of the radiating shock experiments and the
simulations we perform. This is followed in Section 3 by a
discussion of how the data from Hyades are partitioned using
physical motivation. In Section 4 we discuss the two approaches
we used to develop an emulator for the partitioned Hyades data,
and Section 5 describes the actual Hyades run set used to build
the emulator. Then we describe the results of the emulator
construction and perform a sensitivity analysis in Section 6.
Section 7 details how we used the emulator output in a CRASH
uncertainty quantification (UQ) study, and we conclude the paper
in Section 8.
1 Mesh tangling happens because a Lagrangian hydrodynamics code moves

the spatial mesh along with the flow of material. When there is significant

shearing or other mixing, the mesh nodes can cross (‘‘tangle’’) creating negative

volume cells [12]. This tangling of the mesh is often unavoidable in multi-

dimensional flows and usually results in the simulation crashing.
2. Description of the experiment and corresponding
simulation

Here we give an overview of our experiments and simulation;
for the details of the underlying physics of the radiative shocks
see, for example, [9–11]. In these experiments a laser pulse
irradiates a thin disk of beryllium (Be) metal at the end of a
xenon (Xe) filled tube (see Fig. 1 for a diagram). The energy of the
laser causes the surface of the Be to ablate. To balance the
momentum of the ablating material, a shock wave is driven into
the Be at about 50 km/s. When this shock wave breaks out of the
Be into the Xe, it is propagating at a speed of roughly 200 km/s
and heats the Xe to temperatures above 5�105 K. At these high
temperatures the Xe becomes a plasma and emits a great deal of
energy in the form of soft X-ray radiation. This radiation travels
ahead of the shock, heating the unshocked xenon and providing
feedback to the shock dynamics. Such a situation where radiation
affects the evolution of a material system is a topic of applied
physics known as radiation hydrodynamics. A salient difference
between radiation hydrodynamics and ordinary hydrodynamics is
that in ordinary hydrodynamics material ahead of a shock does
not know the shock is coming because the shock travels faster
than the speed of sound in the material. The presence of radiation
energy upsets this classical picture of a shock and introduces new
phenomena. The particular radiating shock experiments with
which we are concerned can be viewed as scaled experiments
for understanding astrophysical shock waves and other high
temperature phenomena [11].

Using computer simulation we seek to predict several features
of the shock, such as its position down the tube as a function of
time and the thickness of the layer of shocked Xe. The paradigm
we have adopted uses a Lagrangian radiation hydrodynamics
code, Hyades, to compute the laser energy deposition and system
evolution for the first 1.3 ns (the laser pulse duration is 1 ns at full
width half maximum). The result of the Hyades computation is an
initial condition for the CRASH code, an adaptive mesh refinement
(AMR) Eulerian radiation hydrodynamics code that computes the
shock behavior in the Xe. This hand-off from Hyades to CRASH is
necessitated by the mesh tangling that results when modeling
complex flows using a multidimensional Lagrangian code.1 This
mesh-tangling problem is so severe that Hyades cannot evolve
the system up to times at which the experimental observations
are made. CRASH cannot, however, model the laser absorption;
therefore, modeling at early times with Hyades is necessary
unless one were to add a laser package to the CRASH software.
The decision to try and use Hyades coupled to CRASH does
introduce some risk in terms of having an accurate simulation.
Namely, by coupling two codes there is some risk than an error in
the coupling will decrease our margins to acceptably model the
experiment. There is, however, a risk mitigation plan in place.
If the linked arrangement is not able to model the data from the
base experiment and we can reasonably infer that the linking is
the culprit, we can choose to invest resources into adding a laser
package into CRASH. If, on the other hand, the Hyades-CRASH link
can acceptably simulate the results from the base experiment, we
should be able to justify that this positive result will carry over to
the year-5 experiment.

To develop confidence in this linked arrangement between
codes, we need to understand the sensitivity of the Hyades results
as a function of (1) experimental conditions such as laser
irradiance, Be disk thickness, Xe gas pressure, etc. (2) numerical
parameters such as the number of mesh points or the number of
energy groups. Moreover, because we are interested in using the
output from Hyades to initialize the main simulation code, we are
presented with a large number of parameters (hundreds of mesh
points times the number of hydrodynamic variables) for which
we desire sensitivity information. In the next section we discuss
our approach for reducing the number of parameters needed to
characterize the Hyades output. Later we will describe the process
of generating a regression model for the Hyades output.
3. Physics-informed partitioning of Hyades output

One might hope to develop an analytic model of the structure
of the Hyades output at a given time. For our application this
would be the time at which the Hyades output is used to initialize
the CRASH code. This would offer the merit of having physically
based parameters that could be adjusted to fit the Hyades results.
Unfortunately, this turns out to be quite complex because the
effects of the laser-heated electrons continue for several hundred
picoseconds after the end of the laser irradiation. Alternatively,
one might hope to do fitting of the Hyades output to identify a
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simple, parameterized, description of the structure. Our initial
attempts to do this by purely statistical methods, such as the
Bayesian Partition model [13], did not go well, in part because this
is a purely statistical model that does not benefit from the
physical principles we take for granted. In particular, the statis-
tical methods indicated that we needed 150 degrees of freedom to
describe the Hyades data. For example, this, or indeed any,
statistical model cannot know that temperature must always be
positive without explicitly adding this to the model. To cope with
this shortcoming we approached the data reduction from a
different perspective: we developed a physically motivated parti-
tioning of the Hyades 1D output. This made the development of
an emulator much more efficient because we needed to predict
the simulation output of many fewer degrees of freedom.

Fig. 2 shows the velocity, density, and pressure profiles from a
1D Hyades run at a time of 1.25 ns (the initialization is standar-
dized at 1.3 ns and with a position of zero corresponding to the
left edge of the Be disk). The link time between Hyades in CRASH
is constant across our linked runs so as to not introduce additional
uncertainty in the initialization of CRASH. This run is tuned to
match the observed location of the shock in the Xe gas at 13 ns
[14]. The smooth curves show the Hyades profiles while the solid,
piecewise-linear curves show a interpolated fit. First we discuss
the origin of the observed structures. The laser irradiates the Be
disk, first driving a shock wave through it. The shock wave breaks
out of the rear of the Be disk in about 500 ps, after which two
things happen. First, the rarefaction ahead of the rear surface
drives a shock into the Xe gas at just over 100 km/s. Second,
a pressure gradient develops from the released rear material
toward the denser material heated by electron heat transport
from the laser absorption region. This pressure gradient accel-
erates the bulk of the Be, a process that can be simply modeled as
rocket acceleration. By the decline of the laser irradiance from
1 to 1.1 ns, the bulk of the Be has reached the same velocity as the
initial shock, about 120 km/s.

Nevertheless, the end of the laser irradiation is not the end of
the Be acceleration, because the pressure gradient that acceler-
ates the Be remains present until the electrons cool by expansion
and heat conduction. As the electrons cool, the pressure profile
develops the peaked structure seen in Fig. 2. The Be to the right of
the peak continues to be accelerated, while the Be to the left of
the peak is decelerated. As a result, the region to the left of the
peak has very little impact on the subsequent dynamics. One
would expect that there is no need to model this precisely, or
even to include the material far enough from the peak, in order to
accurately initiate the CRASH calculation. The pressure drops with
time, so that by 2 ns the pressure profile has flattened out and no
longer accelerates the Be. Much later on, the structure evolves
toward that of a blast wave in which the pressure accelerates
material gradually away from the shock.

In the figure, one can see a region of reduced pressure gradient
to the right of the peak. This is a remnant of the initial launching
of the shock in the Xe at shock breakout. If one follows the line
upward from the left boundary (near x¼0) of this flat region, one
can see that this corresponds to the location of maximum
velocity. The further acceleration of the Be after 1 ns has launched
a velocity impulse forward through the leading edge of the Be.
The maximum velocity is about 180 km/s at 1.25 ns and occurs at
x¼0.0125 cm, and in this calculation reaches 220 km/s by 1.5 ns
when the velocity impulse has overtaken the shock in the Xe.
This corresponds to the maximum post-shock ion temperature
found by Hyades, which is about 2 keV. At 1.25 ns, the shock is
established in the Xe but is most evident in the figure in the
density. At this time, the immediate post-shock ion temperature
is about 700 eV. The structure in the Xe is not well resolved at this
time, with both the pressure and the velocity showing gradual
transitions. This is unavoidable in the context of doing a viable 1D
Lagrangian model.

The density maximum is located between the maxima of
pressure and velocity, and is the natural result of the ablation of
Be to the left and the expansion of the rear Be surface to the right.
Once the velocity maximum has overtaken the shock, the velocity
profile becomes and stays quite linear. This is typical of freely
evolving hydrodynamic systems and corresponds to steady
expansion with time. As the system expands, the density
decreases and the density maximum eventually disappears.

With the above context, the following assumptions seem
reasonable for construction of a fit to the Hyades output: (1) Mate-
rial having significant negative velocity can be approximated by
very simple and inaccurate profiles, because it just continues to
slowly accelerate to the left and cannot impact the dynamics of
interest. The fit shown in the figure and described here ignores the
laser-heated corona at low density and approximately captures the
exponential density profile from the material that was heated by
electron heat transport. (2) The initial state of the radiation
precursor does not need to be modeled in detail, because the
energy through the shock by 1.3 ns is less than 10% of the energy
by 13 ns. We demonstrated this in test runs with CRASH that
removed the initial precursor heating.

First, the minimum position of the Hyades output is needed.
The fit shown uses half this value as its limit, because, as one can
see, the density and pressure profiles fall off much more steeply
(due to ignoring the laser heated corona). Call this value xmin.
Second, one needs the position, velocity, density, and pressure at
the locations where (from left to right):
�
 the velocity first exceeds �3�107;

�
 the velocity is 1

2 the maximum value;

�
 the derivative of the pressure abruptly decreases;

�
 the derivative of the pressure abruptly decreases again

(becoming negative or more negative);

�
 the density is maximum;

�
 the velocity is maximum;

�
 the interface is, from the Be side;

�
 the interface is, from the Xe side;

�
 the shock is located;

�
 the precursor properties are steady.

The data just described need to be ordered so that the position
monotonically increases. The fit then is piecewise linear in all
regions, beginning at xmin, except for the density and pressure,
which are fit as linear exponentials between the first two
locations from this list and left from there to xmin. There is no
need to fit the details of the shock structure, both because they
are unimportant for the long-term dynamics and because they are
incorrect as represented by Hyades. The piecewise linear fit
shown in Fig. 2 used the list of values shown in Table 1. One
could calibrate the fit to preserve some defined quantity of mass,
momentum, or energy, but at the present level of detail this
would be overkill. As noted above we allow a large discrepancy
between the fit and simulation output to the left of the Be disk
edge because the values at these locations do not influence the
behavior of what happens in the Xe tube: the material is outside
the tube and moving to the left.

It is hard to see how fewer locations might adequately
represent the physical system, except that one might drop the
one with the most negative velocity. The upshot here is that the
profiles are minimally represented by four parameters at 10
locations. The total of 40 parameters include some that might
be inferred from correlations, but not many. We refer to this
partitioning, especially when in the context of an emulator, as the
physics informed emulator (PIE).



Fig. 2. Hyades output (blue) at 1.25 ns compared with piecewise linear fit from the physics informed emulator (red). The position of zero corresponds to the left edge of

the Be disk: (a) Hyades results and (b) detail of (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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Table 1
Parameters from 1D Hyades (cgs units).

Position Velocity Density Pressure Material

u4�3� 107 �0.008363001 �2.04Eþ07 0.016829163 3.62Eþ12 Be

p left corner 0.004615684 3.50Eþ06 0.168068666 1.05Eþ13 Be

r half max 0.010460472 1.29Eþ07 0.342857445 1.01Eþ13 Be

p rt corner 0.010801793 1.45Eþ07 0.510666015 9.92Eþ12 Be

r max 0.011342457 1.65Eþ07 0.738250317 7.88Eþ12 Be

u max 0.012412547 1.90Eþ07 0.182946 4.57Eþ12 Be

Be at interface 0.013004106 1.76Eþ07 0.138409625 4.61Eþ12 Be

Xe at interface 0.01302491 1.76Eþ07 0.740472601 4.43Eþ12 Xe

Shock 0.013222783 1.50Eþ07 0.049271551 1.35Eþ12 Xe

Precursor 0.063511755 2.07Eþ05 0.006476877 3.55Eþ10 Xe

17.3 ns

PIE
<100 µm

error

Full field 
PIE

Axial Distance (m)

Density

Fig. 3. Comparison of density at 17.3 ns from CRASH simulations initialized with

the full Hyades output to simulations initialized using the physics informed

emulator (PIE).
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To verify that these 40 parameters are adequate to describe
the Hyades data used to initialize CRASH, we compared simula-
tions of the shock evolution using CRASH with the nominal
configuration (see Section 5) using the full Hyades output to
simulations initialized using the 40 parameters of the physics
motivated partitioning of the data. In Fig. 3 we show a sample of
the results of these simulations. In this particular example we see
that the different initializations do affect the simulation output
somewhat. Nevertheless, the change in shock position is on the
order of our experimental uncertainty, which is on the order of
100 mm due to several factors including timing of the radio-
graphy and projecting the shock tube onto planar film. Other
features in the solution have changed slightly: behind the shock,
the velocity, pressure, and density have a slightly different shape
between 0.001 and 0.002 m. Roughly speaking one could consider
this a rudimentary validation of the process of using the 40
parameters to replace the Hyades field data at 1.3 ns for this
particular experimental set up. Without a more formal analysis of
how accurate this fit is, we cannot rely on it in our final
predictions for the year-5 experiment. We can, however, use this
fit for nearby experiments and to develop predictive models
based on experimental data.
4. Emulators

Given a reduction of the Hyades field data to a small number of
degrees of freedom, we are in a position to construct an emulator
for the Hyades code for these experimental configurations. Before
detailing how this is done we will first outline the reasoning for
constructing an emulator. Given that Hyades is proprietary soft-
ware that can only be run in serial calculations, we want to be
able to calibrate its output, as mentioned before, and determine
its sensitivities and uncertainties over given ranges of input
parameters. Given the number of input parameters and the fact
that high resolution calculations with this serial code are expen-
sive, we desire a means to generate efficient, approximate results
from Hyades calculations for calibration and uncertainty quanti-
fication purposes. This was the primary motivation for building
an emulator, and to this end we did hundreds of Hyades calcula-
tions varying the relevant input parameters. Extracting the 40 PIE
parameters from these runs we were able to build a regression
model that generates a response surface for each of the 40
degrees of freedom.

We can also use an emulator to generate rapid variations in
input conditions to the CRASH code. This would be useful for
generating on the fly simulations between laser shots during an
experimental campaign (the CRASH experiments generally con-
sist of about 10 instantiations of the experiment over the course
of one day at the Omega laser). One feature of the laser facility we
use is that the actual laser energy put into the system is known
after the shot; we can request a particular laser energy but due to
variability in the laser system the actual amount of energy
delivered will vary. With an emulator we can rapidly generate
information about the experiment between shots to possibly
adjust diagnostics and improve the usefulness of later shots.

It should be noted that for high consequence simulations one
must be skeptical of using an emulator. The errors introduced by
approximating a simulation run might lead to wholly incorrect
predictions of system performance. Rather we believe that an
emulator is most useful in constructing predictive models and
exploring the uncertainties and sensitivity of a code and generat-
ing a rough idea of the failure points of the system. Using an
emulator in such a way, can greatly reduce the number of heroic
computer simulations needed to assess the performance of the
system.

To construct an emulator, we consider a regression model for the
responses of the outputs Yi, i¼1,y,n, from n runs of simulations
or experiments on the predictors or the inputs Xi¼(Xi1, y,Xim)
such that

Yi ¼ f ðXiÞþei and XiAD�Rm, ð4:1Þ

where f is an unknown regression function that we wish to estimate,
ei is a random error with zero mean, usually assumed to be from a
Gaussian distribution, and D is the domain of interest, e.g., convex
hull defined by the predictors.

In our case, because we are dealing with computer simulation
and not performing a measurement, the value of e is zero. Each of
the 40 PIE parameters for a given run of Hyades is a Yi that we will
model independent of the other 39 parameters. Modeling these
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parameters as related is the topic of ongoing research, including
the use of seemingly unrelated regression models [15]. In princi-
ple we should be able make use of the known relations between
the parameters. For instance, the parameters are ordered so that
the position is an increasing function, and the other values of
density are all less than the density maximum.

The two approaches used to construct a regression model are
detailed in the remainder of this section.

4.1. Multivariate adaptive regression splines (MARS)

Multivariate adaptive regression splines (MARS) [16] is a
nonparametric regression. With k basis functions Bi and suitable
coefficients ai, i¼1,y,k, the MARS estimates f such that

f̂ ðxÞ ¼
Xk

i ¼ 1

aiBiðxÞ, ð4:2Þ

where xAD. The basis function Bi with the degree of the interac-
tion Ji consists of the sign indicators sij ¼ 71, knot points tij, and
the order ri

BiðxÞ ¼
1, i¼ 1,QJi

j ¼ 1½sijðxnði,jÞ�tijÞ
ri �þ , i¼ 2,3, . . . ,

(
ð4:3Þ

where ð�Þþ ¼maxð0,�Þ, and nði,jÞ gives the index of the predictor
variable split on tij. The optimum basis functions including knot
points can be achieved by the generalized cross-validation criterion
[17]. Bayesian MARS (BMARS) [18] assigns a prior distribution to
every unknown parameter in the model. The sign indicators sij and
order ri are assumed uniform on the set {�1,1} and {0,1,y,R},
respectively, for the maximum order R. The interaction terms Ji and
the components of interaction effects are also uniformly selected.
For example, if two-way interaction Ji¼2 is selected with pre-
dictors Xi ¼ ðXi1,Xi2,Xi3Þ, then the interaction effect is equally likely
to be one of fXi1Xi2,Xi1Xi3,Xi2Xi3g. The prior for the number of knots
and their locations are assumed to be uniform, respectively, on
positive integers less than the number of training data points and
on the location of training data points. The ai use a Gaussian prior
with mean zero and variance of 104. By using a class of reversible
jump Metropolis–Hastings algorithms for Markov chain Monte
Carlo (MCMC) [19], the BMARS collects samples of parameters
from their joint posterior distribution. An advantage of BMARS is to
identify significant main effects and interaction effects. In addition,
the distribution of knots of each predictor reveals the complexity of
the relationship between each predictor and the response.

4.2. Gaussian process regression

Gaussian process regression (GPR) generates a Gaussian distribu-
tion of functions that attempts to interpolate the output data.
Specifically, the Gaussian process is a collection of random variables,
where any finite subset of the random variables has a joint Gaussian
distribution. The random variables for Gaussian process regression
are the values of f(Xi) at the given points Xi. Like a Gaussian
distribution, a Gaussian process is entirely determined by its mean
and covariance. The data are normally standardized to have a mean
of zero, and the covariance is determined by a covariance function
that is chosen to have certain properties. In our case we use the
squared exponential covariance function which assures that the
function f(Xi) is smooth. This covariance function has the form

kðXi,XjÞ ¼ s2
f exp �

Xm
k ¼ 1

ðxik�xjkÞ
2

2l2k

( )
: ð4:4Þ

The covariance function has mþ1 parameters: the maximum
allowable covariance (s2

f ), and the m length parameters lk. These
parameters are estimated using the empirical Bayes procedure
[20,21]. Using the covariance function we construct a covariance
matrix K of size n�n with elements

Kij ¼ kðXi,XjÞ, ð4:5Þ

and then write the Gaussian process regression distribution for
training data X as

fðXÞ 	N ð0,KÞ: ð4:6Þ

Then to predict f(Xn) at some number nn of input points, we use the
fact that f(X) and f(Xn) are distributed by a joint Gaussian. Then the
conditional expected value of f(Xn) is

E½fðX
ÞjfðXÞ,X
,X� ¼KðX
,XÞKðX,XÞ�1fðXÞ: ð4:7Þ

The covariance for f(Xn) is given by

var½fðX
ÞjfðXÞ,X
,X� ¼KðX
,X
Þ�KðX
,XÞKðX,XÞ�1KðX,X
Þ: ð4:8Þ

Therefore, in Gaussian process regression we have a value for the
mean and covariance at each point where we wish to evaluate the
regression model.

4.3. Comparison of models

The two approaches, GPR and Bayesian MARS take two
different approaches to the regression problem. GPR takes a
holistic view of the data: it builds a regression model by evaluat-
ing a covariance function at every input point. This contrasts with
the MARS approach that uses knot points to segregate the data
into snapshots that can be described using different basis func-
tions. As a result of these different perspectives, GPR can take a
look at the overall effects of the data on the regression model,
whereas MARS is formulated to look at both the main effects of
the input data as well as their interactions. The approach of MARS
is superior when the true function has different regimes. For
example if it has a rapidly varying region and an asymptotic
regime, as is the case with the function f ðxÞ ¼ ðlog xÞ2=

ffiffiffi
x
p

, MARS
can separate f(x) into a rapidly varying piece near x¼0 and a
slowly varying piece as x-1. Gaussian Process Regression
cannot discriminate between these two different regimes of the
function. We show results for this regression problem in Fig. 4.
The results demonstrate the above point that GPR cannot capture
the change in behavior of the underlying function. We do note,
however, that modifications to the standard GPR such as the treed
GPR [22] model can allow it to handle changes in function
behavior. Also, an ANOVA decomposition can be used to deter-
mine interactions between inputs and other effects [23]. We plan
on using these tools in future studies.

One drawback to the BMARS result that is obvious from Fig. 4
is that it still has some uncertainty at the training data. If the data
have no uncertainty, as in the output from a computer model, the
uncertainty that appears in the BMARS result is undesirable.
Whereas the GPR results show where more training data is
needed to eliminate uncertainty, the BMARS uncertainty away
from training points is similar to that near training points.
Another potential issue with BMARS is that the priors specified
for the parameters of the fit may not be sufficiently broad to
capture the correct effects. We attempt to deal with this by using
very expansive priors, though we cannot be guaranteed that these
are large enough for every application.

In terms of the number of parameters required to describe the
regression model, Gaussian Process Regression requires only
mþ1 parameters. This contrasts with MARS, where there are
parameters that describe the knot points, the interactions, the
sign indicators, and basis function order. Of course, for the extra
parameters one receives a more flexible regression model as
discussed above. This is a two-edged sword, however, because
the model can be over-parameterized by higher order interaction,



Table 2
Hyades simulation input parameters and ranges.

Parameter Nominal Range (%) Min Max

Beryllium thickness 0.020 mm 10 0.018 0.022

Laser energy 3.8 kJ 15 3.23 4.37

Pulse duration FWHM 1 ns 10 0.9 1.1

Xenon density 0.0065 g/cc 10 0.00585 0.00715

Tube length 5 mm �20 4 5

Laser rise time 100 ps 50 50 150

Slope of laser pulse 30 0.85 1.15

Mesh resolution (number of

zones in Be)

65 zones 20 200

Number of photon groups 20 100

Electron flux limiter 0.05 0.03 0.1

Time step control multiplier 1 0.25 1

Beryllium opacity multiplier 1 0.7 1.3

Beryllium gamma 1.4 1.667

Xenon gamma 1.2 1.4

Xenon opacity multiplier 1 0.7 1.32 4 6 8 10 12 14 16
–0.5
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Fig. 4. Comparison of the two regression models under consideration, GPR and

BMARS, for f ðxÞ ¼ ðlogxÞ2=
ffiffiffi
x
p

: (a) GPR and (b) BMARS.
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larger number of knots, or higher order basis functions. Therefore,
after constructing a BMARS model one must look at the results to
verify that these parameters have reasonable values.
5. Simulations

To map the relevant input space for our radiating shock
simulation we have run 512 Hyades simulations. The input space
we consider is 15 dimensional and we apply a uniform distribu-
tion for each dimension; see Table 2 for a list of the different input
parameters and the range for each. Of these 15 different inputs
seven describe the experimental configuration being simulated
(the first seven entries in Table 2), and 8 are parameters that
relate to numerical accuracy (e.g., number of zones in the Be disk)
and model calibration (e.g., Be gamma in an ideal gas model for
the equation of state). The 512 simulations used a Latin hyper-
cube design to partition the 15 dimensional input space. See Fig. 5
for some scatter plots from this design.

The range of parameters related to the experimental config-
uration were determined from measured variances in the experi-
ments combined with expert judgment. In all cases the range is
selected to be larger than the true expectations of range. The Be
thickness and tube length are based on the variance of fabrication
measurements of the targets from the last several shots in the
radiative shock campaign. The variances for the laser energy,
pulse duration, rise time and pulse slope are determined from
rough analysis of summary information after each experiment.
Each of those measurements are known to a high degree of
accuracy, but they vary from shot-to-shot by the amount
indicated. The pressure of the Xe gas is recorded from a transdu-
cer readout right up to the shot and is also known very well. It
can, however, vary from target-to-target due to varying leak rates
and the time it takes from target delivery to shot at a given
leak rate.

The code parameters were chosen after discussion of what
constituted a reasonable and sensible range. In the case of the
electron flux limiter, a parameter that attempts to correct for the
fact that Hyades uses a diffusion model even though there are
super-thermal electrons in the system for which this model is
incorrect, the nominal value was chosen based on use of the code
with similar experiments, and the range was set so that it
encompassed the ranges used in other simulation studies
[24–26]. The gamma and opacity multiplier (a parameter used
to increase or decrease the opacity) for each material was chosen
to represent what physical values were considered reasonable for
the model. The amount the time step size is allowed to change,
the so-called time step multiplier, was limited on the high end for
code stability purposes and was limited on the low end mainly for
practicality. Lastly, the mesh and photon group resolution nom-
inal values were set based on use of the code with similar
experiments. The range of both was set such that the top end
would be well above the value necessary for convergence of the
outputs and the low end would provide somewhat under-
resolved results in a detectable way.

In Fig. 6 the values for the shock location and density at the
shock measured at 1.3 ns are shown as a function of the six input
parameters that were shown to be most important by the
sensitivity analysis below. In these scatter plots a discernible
trend in the data as a function of an input parameter indicates
that the output quantity of interest is strongly influenced by that
parameter. Fig. 6 indicates that the shock location is dependent
on the electron flux limiter and the laser energy: as each of these
parameter values increases the shock location appears to
increase. The density at the shock does not have such an obvious
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Fig. 5. Scatter plots for Latin hypercube design for 4 of the 15 input dimensions for building the Hyades emulator.
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influence by any of these six parameters. Later, we will return to
the question of which input parameters are most important by
performing statistical analyses on the emulator results.
6. Hyades outputs emulation and discussion

The obvious litmus test for an emulator is how well it can
predict the output of the code. To test the ability of GPR and
BMARS to predict the output of Hyades we used 363 randomly
selected Hyades runs from the set of 512 as test data. The results
for shock position from BMARS and GPR emulators compared
with the actual Hyades shock position on the test data are shown
in Fig. 7. Shock position is one of the most important output
parameters because it is experimentally measurable and the
location of the shock in the initial conditions for CRASH should
have a large effect on the CRASH output. In Fig. 7 perfect
emulation would have the data fall on the red line given by
y¼x. A cursory glance at the figure shows that the mean values
from BMARS did a better job of predicting the shock location than
GPR, although it should be said that both regression methods did
predict the shock position within to 3%. The emulator results for
output parameters other than shock position demonstrated simi-
lar performance.

6.1. Analysis of GPR results

From the emulator we constructed using Gaussian Process
Regression we can use the values of lk found via the empirical
Bayes method to get information on which input parameters
affect the outputs the most. Specifically, the value of 1/lk, called
the relative relevance, as computed by the empirical Bayes
method provide some information on which input parameters
affect the outputs the most [27]. Given that we standardized the
inputs before building the GPR, the relative relevances are unit-
less. Relative relevance can under report the sensitivity due to
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Fig. 6. Scatter plots for the shock location and density at the shock from the 512 Hyades simulations at 1.3 ns as a function of the six most important input parameters:

(a) shock location and (b) density at shock.
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Fig. 7. Comparison of the shock position at 13 ns as predicted by the regression models with the observed Hyades value from the 363 test data results. For prediction we

used the mean values from the models: (a) BMARS and (b) Gaussian process regression.

Fig. 8. Relative relevance (1/lk) for each input parameter in the GPR emulator for

the shock position at 13 ns.
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strong linear interactions. To account for this we looked for strong
linear effects in our outputs to assure that these effects are not
missed. In the shock location output it appeared that there are
linear effects in both the number of Be zones and the electron flux
limiter (see Fig. 6). Nevertheless, as we will see below, the relative
relevance for these terms is still significant.

In Fig. 8 we show the relative relevance for each input
parameter, showing its influence on the shock position. From this
figure we see that numerical and model calibration parameters,
specifically the mesh resolution and the electron flux limiter, have
the largest effect on the shock position. The fact that these
parameters are important for the shock position is not surprising.
Changing the number of mesh zones in the Be can change the
shock position because the error in the numerical results is
related to the mesh resolution as well as the fact that adding a
Be zone might cause a discontinuous change in the shock
position. In general, one would like to know the output when
the number of zones is large to make the discretization error
as small as possible. This consideration will be made when
initializing CRASH.

Similarly, the electron flux limiter is a model parameter that
attempts to account for the fact that a fluid model cannot
properly capture nonlocal heat transport by the electrons. By
changing this parameter the maximum rate at which heat is
conducted by electrons to higher density from the laser-heated
corona is changed. In turn changing how heat moves through the
problem also changes how the shock moves. The large importance
of the electron flux limiter has spurred us to further investigate
the germane literature to properly constrain the range of this
parameter.

Next in importance is the gamma of the Be material, a model
calibration parameter that relates to the compressibility of the Be
plasma. Experimental parameters, specifically the Be disk thick-
ness and laser energy, are the fourth and fifth most important
parameters. In turn adjusting the disk thickness and laser energy
would have a larger effect on the shock position at 1.3 ns than, for
instance, adjusting the laser rise time. The fact that parameters
that describe the experiment are not the leading parameters in
terms of relative relevance, indicates that the numerics and model
calibration aspects of a Hyades simulation are the dominant
mechanism for changing shock position.

The fact that the GPR results suggest that model calibration
parameters are a critical part of controlling the shock position
gets at the risk noted in our computational strategy. Given the
fact that Hyades will have to be calibrated in these parameters,
we will need to demonstrate that we can formulate a common
setting or small range of settings for these parameters that will be
adequate for predicting our year-five experiment. If we cannot
demonstrate this we will be forced to (1) either account for this
additional uncertainty in our predictions or (2) re-allocate
resources to add a laser package to the CRASH code. In this way
the GPR analysis is an example where statistical information will
inform our the physics and modeling decisions.

6.2. Analysis of BMARS results

Using the BMARS results we have estimated the interactions
between experimental parameters in the emulator. We do this by
looking at the MCMC samples from the posterior distribution for the
interaction parameters for the emulator and calculating the prob-
ability that a sample has that interaction term. In Fig. 9 we plot the
probability that a particular interaction is in a sample of the emulator
model for the shock position. The figure uses a 1 for laser energy, 2 for
laser pulse duration, 3 for Xe density, and 4 for Be disk thickness;
0 denotes no interaction. For example, 100 denotes the effect of laser
energy only, and 124 is the interaction between laser energy, laser
pulse duration, and Be disk thickness. From the figure we can see that
each of these four parameters is significant because each sample from
the posterior distribution has these effects, i.e., we could not leave out
these parameters and have an emulator of similar accuracy. Similarly,
changing one of these parameters would change the shock position.
Also, the two way interaction between laser energy and pulse
duration and the three way interaction between laser energy, pulse
duration, and Be disk thickness are important. These interactions are
not completely unexpected. For instance, if the Be disk thickness is



Fig. 9. Significance of effects of experimental parameters on the shock position.

The effects are numbered 1¼ laser energy, 2¼ laser pulse duration, 3¼Xe density,

4¼Be disk thickness, and 0¼no effect.
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increased, then the laser energy and pulse duration could be changed
to compensate for the greater mass of Be to accelerate. This analysis,
however, does not show what the relative strength of the interactions
is, only what interactions are important.

From the BMARS emulator we can also estimate how many
different ‘‘regimes’’ or snapshots of the input/output pairs are
needed to predict the shock position. A histogram for the number
of knots in the samples from the posterior distribution of the
emulator for the shock position is shown in Fig. 10. From this
figure we can see that the emulator needs at least 7 knots to
describe the training data with 7 and 8 being the most common
number of knots. Note that the training data allows up to 512
knot points.
7. Initialization of CRASH

The next step in generating CRASH simulations whose output
could be used to assess its predictive capability was to use the
emulator to initialize an uncertainty quantification run set of the
CRASH code. The run set was based on a Latin hypercube design
over 7 dimensions of the 15 dimensional input space and had 320
prescribed CRASH runs (see [8] in this issue for a detailed analysis
of this study). To do this initialization we chose the GPR emulator
because we were planning on constructing a GPR-based Kennedy-
O’Hagan type model for the final simulation output relative to
experiment [3].

To use the PIE to construct the initial state for the CRASH
predictive model runs, we eliminate 8 of the Hyades inputs. For
the number of energy groups and number of Be zones we evaluate
the PIE at the 75th percentile of the input range because a study
of the output showed the simulation to be well converged there.
For laser pulse shape parameters (pulse duration, laser rise time,
slope of the lase pulse) the nominal values are used because these
parameters show only modest relative relevance to shock position
and can be controlled more precisely than the input range to the
study might suggest. Tube length is eliminated for a similar
reason. The time step control multiplier also results in only a
modest relative relevance and a swing in the range of the shock
location of only 35 mm, compared to an average experimental
error of 60 mm. The electron flux limiter value was also set to its
nominal value. While this parameter shows significant effect on
the shock location, we did not have a rational basis on which to
calibrate it, and as shown in [8], the predictive model succeeds
without it. We do note that picking the nominal values for some
model calibration parameters would not be adequate to quantify
the margin in a system’s performance because the range over
which those parameters vary introduce epistemic uncertainty
into the CRASH results.

The results of generating the CRASH UQ run set using the GPR
emulator for Hyades is shown in Fig. 11. Here we show the 40 PIE
parameters as a function of input set number. Using the GPR
emulator we have information about the distribution about the
mean of the parameters. Later analysis of the CRASH outputs,
perhaps by sampling from the distributions of the PIE parameters,
will be able to discern if the uncertainty in the PIE parameters will
impact the CRASH output.
8. Summary and conclusion

We have outlined a specific example of sensitivity analysis/
uncertainty quantification in the case where functional output
from one computer simulation is fed to another computer
simulation. In our case both simulations are radiation-hydrody-
namics calculations: the first simulation involves a calculation of
the deposition of laser energy to a target, and the second models
the long-time behavior of the radiating shock produced. To
characterize the output of the first simulation, and thereby
characterize the input to the second simulation, some sort of
data reduction technique is necessary. Though purely statistical
techniques exist to handle data reduction, we found they did not
adequately reduce the degrees of freedom. We then resorted to
physical insight about what features of the data were important.

Our efforts at physics-based data reduction were successful in
regards to the fact that we were able to reduce the number of
parameters required to describe the data from approximately
thousands to 40. Using our reduced data we were then able
to leverage existing nonparametric regression tools, namely
Gaussian Process Regression and Bayesian MARS, to build an
emulator for the simulation output and analyze the sensitivity in
the mapping from input to output. This sensitivity analysis has
lead us to further investigate how to reduce the uncertainty for
several input parameters in order to reduce output sensitivity.

We believe that using experience and insight from a particular
field goes hand in hand with the statistical techniques used in
emulator construction and sensitivity analysis. Engineers and
scientists should not abrogate their knowledge and experience
when performing statistical analyses of simulation data. The
statistical tools and statistics professionals can lead to enormous
insight, but there are great synergies in combining statistical and
engineering insight. Our results, we believe, demonstrate this. We
encourage other researchers faced with data from numerical
computations to use their knowledge of the science of the



Fig. 11. Means and one standard deviation bounds of Hyades outputs to give 320 different initial conditions to CRASH.
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underlying equations to aid them in reducing their data and in the
larger mission of assessing predictive capability.

We believe that emulators are a useful tool in the uncertainty
quantification piece of the QMU enterprise. In our study the
emulator construction gave us insight into which inputs were the
dominant mechanisms that influence a quantity of interest. An
emulator can also be used in code calibration or to rapidly map
the performance range of the system of interest, perhaps in
creating an approximate cumulative distribution function for a
quantity of interest. The emulator, however, should be used to
inform where in input space to allocate computational resources
for high fidelity, rather than make broad decrees about system
performance.

We are presently working on a similar data reduction on two-
dimensional functional data for two linked simulations. In this
case we are trying to reduce tens or hundreds of thousands of
parameters. For this case we believe it will be necessary to use
both physics insight and statistical techniques to reduce the data
to a manageable number of parameters. Overall, the lesson that
physics insight is an essential part of the uncertainty quantifica-
tion process has been instilled in our team.
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