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Abstract

Equation learning methods present a promising tool to aid scientists in the modeling
process for biological data. Previous equation learning studies have demonstrated
that these methods can infer models from rich datasets; however, the performance of
these methods in the presence of common challenges from biological data has not
been thoroughly explored. We present an equation learning methodology comprised
of data denoising, equation learning, model selection and post-processing steps that
infers a dynamical systems model from noisy spatiotemporal data. The performance of
this methodology is thoroughly investigated in the face of several common challenges
presented by biological data, namely, sparse data sampling, large noise levels, and
heterogeneity between datasets. We find that this methodology can accurately infer
the correct underlying equation and predict unobserved system dynamics from a small
number of time samples when the data are sampled over a time interval exhibiting both
linear and nonlinear dynamics. Our findings suggest that equation learning methods
can be used for model discovery and selection in many areas of biology when an
informative dataset is used. We focus on glioblastoma multiforme modeling as a
case study in this work to highlight how these results are informative for data-driven
modeling-based tumor invasion predictions.
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1 Introduction

Mathematical models are a crucial tool for inferring the mechanics underlying a scien-
tific system of study (Nardini et al. 2016) or predicting future outcomes (Ferguson et al.
2020). The task of interpreting biological data in particular benefits from mathematical
modeling, as models allow biologists to test multiple hypotheses in silico (Ozik et al.
2018), optimally design experiments (Walter and Pronzato 1990), or create personal-
ized medical treatment plans for patients (Baldock et al. 2014). A common question
for mathematicians and biologists alike is: which model(s) sufficiently describe a given
dataset (Warne et al. 2019)? This is a challenging question to resolve, as there may be
several candidate models that can describe the data comparably well, or the underlying
mechanics may be poorly understood. This challenge of inferring a data-driven math-
ematical model is further complicated by common issues with biological data that
inhibit our understanding of the underlying dynamics. Such challenges include large
amounts of noise (Francis et al. 2003; Perretti et al. 2013), sparse time sampling (Bal-
dock et al. 2014; Massey et al. 2020; Hawkins-Daarud et al. 2019), inter-population
heterogeneity (Wang et al. 2009), and complex forms of observation noise (Banks
et al. 2014; Lagergren et al. 2020)

Partial differential equations (PDEs) are used to model many spatiotemporal phe-
nomena, ranging from the signaling proteins inside of cells (Mori et al. 2008) to
the migration patterns of animal populations (Garcia-Ramos and Rodriguez 2002).
Reaction—diffusion—advection equations in particular are suited to describe biological
processes that involve the simultaneous transport and growth or decay of a substance
over time. Such equations may be written as

ur=V-(Du,x,t)Vu) =V - (V(u,x,t)u) + f(u, x, 1), (1)

with system-specific initial and boundary conditions for some quantity of inter-
estu = u(x,t),x € R" ¢t e [y, tr] that spreads with diffusion rate D(u, x, 1),
migrates with advection rate V(u, x,t), and grows or decays with reaction rate
f(u,x,t). One common example used for modeling biological phenomena is the
Fisher—Kolmogorov—Petrovsky—Piskunov (Fisher—KPP) equation (Fisher 1937):

uy = DAu + ru (1—%). )

This equation assumes u has a constant rate of diffusion D(u, x,t) = D € R, grows
logistically with intrinsic growth rate » € R until it reaches the population carrying
capacity K € R, and does not advect (V (u, x, t) = 0). Given an initial condition with
compact support, solutions to the Fisher—KPP equation converge to traveling wave
solutions that spread with constant speed 2+/Dr (Kolmogoroff et al. 1937). One can
also show that the steepness of the propagating front depends on the ratio D/r; the
front becomes more steep as D/r decreases and becomes more spread out as D/r
increases, see Murray (2002) for details.

The Fisher—KPP equation was initially proposed to model the spread of an advan-
tageous gene (Fisher 1937), but has since been used to model many biological
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phenomena including wound-healing experiments (Jin et al. 2016; Nardini and Bortz
2018; Warne et al. 2019) and the spread of invasive species (Urban et al. 2008). In
particular, it has been shown to be an informative model for glioblastoma multiforme
(GBM), an aggressive brain tumor known for its heterogeneous behavior between
patients (Baldock et al. 2014; Massey et al. 2020; Rockne et al. 2015). Using two
time samples of standard clinical imaging in conjunction with key assumptions about
how the imaging relates to cell density, the parameters D and r can be estimated for
patients based on the wave front velocity and steepness (Hawkins-Daarud et al. 2019).
Inferring these two parameters from patient data aids in characterizing the inter-patient
heterogeneity common to this disease, thereby enabling data-driven modeling-based
prognosis. For example, Baldock et al. (Baldock et al. 2014) found that a patient-
specific metric of invasiveness, given by D/r, predicts the survival benefit of gross
total resection for GBM patients and, more recently, Massey et al. (2020) correlated
this metric with temozolomide efficacy, a chemotherapy drug currently used in the
standard of care to treat GBM. The accurate selection of a mathematical model to aid
in interpreting patient GBM data is a vital tool in informing our understanding of the
efficacy of potential treatment plans for this disease.

The Fisher—KPP equation thus serves as a useful model that provides insight into
patient GBM dynamics through model prognosis and prediction of outcomes from
therapeutic interventions (Massey et al. 2020). For any scientific process (GBM
progression, population growth, species migration, etc.), determining which model
accurately describes the underlying dynamics can be a challenging process. Common
methods to choose such a model include deriving a multi-scale model from assump-
tions on individual interactions (Nardini et al. 2016), theorizing a heuristic model from
expert knowledge, or utilizing model selection techniques (Bortz and Nelson 2006;
Ulmer et al. 2019; Warne et al. 2019). Model selection studies often consider several
plausible hypotheses to describe a given process (Akaike 1998; Bortz and Nelson
2006). Whichever of these prescribed models most parsimoniously describes the data
is ultimately classified as the final selected model (Burnham et al. 2002). Common cri-
teria to select models include the Akaike information criterion (AIC) or the Bayesian
information criterion (Akaike 1974; Schwarz 1978). If one has little understanding
of the underlying dynamics, however, then performing a thorough model selection
study may be challenging. For example, determining the form of Eq. (1) that best
describes a given dataset can become a computationally infeasible problem due to
the many possible combinations of D(u, x,t), V(u, x, t), and f(u, x, t) that one may
need to consider. Furthermore, separate numerical methods may be needed for the
accurate simulation of these different term combinations, and determining the effects
of numerical error on statistical inference is an ongoing area of research (Nardini and
Bortz 2019). A robust methodology to directly infer one or a few candidate models
for a given biological dataset will be a valuable tool for mathematical modelers.

Equation learning is a recent area of research utilizing methods from machine
learning to infer the mathematical model underlying a given dataset (Brunton et al.
2016; Kaiser et al. 2018; Lagergren et al. 2020; Mangan et al. 2017; Rudy et al. 2017,
Zhang and Lin 2018, 2019). Brunton et al. introduced the Sparse Identification of
Nonlinear Dynamics (SINDy) algorithm, which is able to discover the governing equa-
tions underlying the chaotic Lorenz system and other systems that can be described
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with ordinary differential equation models (Brunton et al. 2016). This method was
extended for application to PDEs in an algorithm called PDE Functional Identifi-
cation of Nonlinear Dynamics (PDE-FIND) (Rudy et al. 2017). These studies have
motivated many more investigations into how modelers can infer the governing equa-
tions for experimental data, such as how methods from Bayesian inference can be
used for uncertainty quantification (Zhang and Lin 2018). Lagergren et al. recently
demonstrated that a neural network can be used to reduce noise in data, which in turn
improves the performance of the PDE-FIND algorithm in identifying biological trans-
port models (Lagergren et al. 2020). For example, the Lagergren et al. study found
that the Fisher—KPP equation can be correctly inferred from spatiotemporal data that
has been corrupted with proportional error with noise levels as high as 25%.

Biological data presents many challenges for equation learning methods. Equation
learning studies have not been thoroughly tested in settings where data observation
is limited to a small number of time samples. As many as 300 time samples of a
spatial process were observed in inferring PDE models in Lagergren et al. (2020), and
the authors of Rudy et al. (2017) considered spatiotemporal datasets with as many as
501 time samples. Rudy et al. (2017) demonstrated that the PDE-FIND algorithm can
reliably infer model equations when only a small number of randomly chosen spatial
values are used for equation inference, but a dense number of spatiotemporal time
samples were used prior to this inference step to estimate derivatives from the data.
As the sampling of biological data is often sparse, equation learning methods must be
robust in inferring equations with only limited time samples before they can be widely
adopted for biological data. Furthermore, many biological phenomena exhibit wide
variation between realizations. To the best of our knowledge, all previous equation
learning studies infer the underlying model for only a single-parameter realization
without considering how the final inferred equation results change over a realistic
range of parameter values. Determining how equation learning methods perform in
the presence of each of these data challenges is critical if equation learning methods
are to become widely adopted in the biological sciences. Such an investigation is
particularly relevant for biomedical applications, including GBM growth, as clinicians
may only measure the tumor volume with MR images once or twice (Baldock et al.
2014), and the estimated parameters for the same reaction diffusion model can vary
widely between patients (Wang et al. 2009).

We investigate two biological questions in this work: (i) how many time samples
are sufficient to learn the governing equation underlying a set of data and (ii) how
do these results depend on the underlying parameter values and noise levels? Such
questions are of direct interest to the biological community, as data may be expensive
to collect, or model parameters may not be identifiable with the available data (Rutter
etal. 2017). Obtaining MR images in oncology, for example, can be expensive, leading
to only a small number of images for each patient. This challenge leaves GBM mod-
elers with only one or two MR images from which they can estimate patient-specific
values, including the metric of invasiveness (D/r) or individual diffusion and growth
parameters (D and r) (Baldock et al. 2014; Hawkins-Daarud et al. 2019). Similar
challenges are present in ecology where an invading species’ range and population
size must be estimated from partial data and may only be measured annually or at a
small number of locations (Dwyer et al. 1998; Lubina and Levin 1988). Developing
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u(t, x) ux(t, x) Model 1: Final equation:
e = et 20 +2u — 2u? Uy = 0.3 + 2.9u — 2.8u?
Model 2: Model analysis:
T(E ) U, XY up = 03Uy + 29u — 2.8u? U = Dty + Tu(1—w),
Model 3: r=28+02
Up = Uy + L4u — 27uPuy, D =.32+£.03

Fig.1 Visualization of our data denoising and equation learning methodology. The steps in this methodology
include 1. data denoising, where we use an ANN to smooth input noisy spatiotemporal data, which can then
be used for numerical differentiation, 2. equation learning, where we infer a small number of candidate
models to describe the dynamics of the given dataset, 3. model selection and post-processing, where we
infer which of these models parsimoniously describes the given data and interpret the final selected model

methods to determine which datasets can reliably be used for equation learning is a
crucial step before the broad adoption of such methods for mathematical modeling of
experimental, clinical, or field data.

The goal of this work is to examine the success of equation learning methodologies
in the presence of limited time sampling, large noise levels, and different parameter
combinations. We focus on the Fisher—KPP equation in this study due to its wide
use in the mathematical biology literature, but the results presented in this work will
extend to many common models of biological phenomena. We begin by discussing
data generation and introducing our equation learning methodology in Sect. 2. We
present our results on equation learning, fit and predicted system dynamics, parameter
estimation, and uncertainty quantification in Sect. 3. We further discuss these results
in Sect. 4 and give final conclusions on this work and its applicability to biological
studies in Sect. 5.

2 Methods

In this section we describe the datasets used throughout this study and detail the
implementation of our data denoising, equation learning, and model selection methods.
We discuss data generation in Sect. 2.1, data denoising in Sect. 2.2, equation learning
and model selection in Sect. 2.3, and methods for parameter estimation and uncertainty
quantification from the inferred model in Sect. 2.4. The equation learning methodology
we adopt is summarized in Fig. 1. The code used for this methodology is available
online at https://github.com/biomathlab/PDE-Learning-few-time-samples.

2.1 Data Generation

We assume data are generated from one-dimensional spatial simulations of Eq. (2)
with an initial condition given by
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2
u(x,1 = 0) = 0.lexp (—%) 3)

We assume data are sampled over spatiotemporal grids of the form

Xi=xo4+(G—DAx, i=1,.... M Ax=-S""0 )
i = X0 ’ - LRI ] k) - M _ 1
. . Iy —1o
tj=to+(j—DAt, j=1,...,N, At:N T 5)
The spatial grid used for all simulations here is specified by xo = —17 cm, xy = 17

cm, M = 200. We will consider two time scales in this study by fixing #yp = 0.15 years
and letting either 1y = 0.5 years (denoted as a short simulation) or ty = 3 years
(denoted as a long simulation) and discuss values of N below.

We assume the data arise from the observation model

yijj =ulxi, tj) +w; € i=1,...,M, j=1,...,N. (6)

In Eq. (6), the data points, y; ;, are assumed to be observations of Eq. (2) that have
been corrupted by noise from errors in the data collection process. Any negative values
of y; j are manually set to zero. The entire spatiotemporal dataset may be written as

y={yij }{:11 ﬁ, and y; will denote all spatial data points at the time #;. To match

a previous study (Lagergren et al. 2020), we assume the error takes the form of a
statistical model with weights given by

w; j = ouxi, t;)7. @)

In these weights, the ¢; ; terms are independent and identically distributed (i.i.d.)
realizations of a standard normal random variable with mean 0 and variance 1, and
we will set 0 = 0.01 or 0.05. We set y = 0.5 in this work, in which Egs. (6) and
(7) form a proportional error statistical model, meaning that the variance of the data
point y; ; is proportional to u(x;, t;) (Banks et al. 2014). Such a statistical model
has been used previously for modeling cell fluorescence data (Banks et al. 2011). In
practice, however, the appropriate statistical model depends on the system under study
and how data are collected. For example, a lognormal model was assumed for viral
data in Bortz and Nelson (2006). We note that although we assume the constant y is
known a priori in Eq. (7), there exist methods for determining the value of y when it
is unknown (Banks et al. 2016). To further aid in the denoising and equation learning
methods presented later on, we manually remove spatial data points from each dataset
for which the value of |y; ;| never exceeds 10~ for any time points j = 1, ..., N.
We are concerned with several data aspects in this study to investigate the per-
formance of our methodology in the presence of biological data challenges. Namely,
we vary the number of time samples N, the parameter values (D, r) parameterizing
u(x, t), whether data are sampled over the long or short time interval, as well as the
noise level in the data. We will vary each of these values over the following domains:
N = {3,5,10}, (D,r) = {(3,3), (30, 30), (30, 3), (3, 30)}, ty = {0.5,3.0}, and
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Fig.2 (Colour figure online) Simulated noisy data of the Fisher-KPP equation with 5% noise and N = 5
time samples for the a slow simulation, b fast simulation, ¢ diffuse simulation, and d nodular simulation.
Solid lines represent noiseless simulations of Eq. (2), and points represent observations generated by Eq. (6).
Blue plots correspond to ¢ = 0.15 years, green plots correspond to t = 0.73 years, red plots correspond
to t = 1.3 years, black plots correspond to ¢ = 1.88 years, and magenta plots correspond to r = 2.45
years. Note that both the vertical and horizontal axes change between all four images based on the profile
of u(t, x)

o = {0.01, 0.05}. The units for D,r, and 7 are mm? /year, 1/year, and year, respec-
tively. We will refer to each of these (D, r) combinations as slow, fast, diffuse, and
nodular simulations, respectively. Figure 2 depicts some resulting datasets from these
four simulations over the long time interval, and we observe that the slow simulation
invades the spatial domain the least, whereas the fast simulation invades the spatial
domain most for the four simulations. The diffuse and nodular simulations invade a
similar amount of the spatial domain, but the diffuse simulation does so with a gradu-
ally varying profile, whereas the nodular simulation invades with a steep profile. These
simulation names and parameters are borrowed from a previous GBM modeling study
(Hawkins-Daarud et al. 2019) to cover the ranges of D and r that have been inferred
for GBM patients. Figure 3 presents histograms of measured metrics of invasiveness
(D/r) and velocities from 200 GBM patients as well as where the four simulations

@ Springer



119 Page8o0f33 J.T. Nardini et al.

Table 1 Summary of the varied parameters used throughout this study

Variable Realized values Labels

N 3,5,10 3,5,10

(D, r) (3, 3), (30, 30), (30, 3), (3, 30) Slow, fast, diffuse, nodular
ty 05,3 Short, long

o 0.01, 0.05 1%, 5%

Units for D are mm2/year, r are 1/year, and 7 ¢ are year

(aZo GBM Patient D/r Distribution (b)35 GBM Patient Velocity Distribution
: — T T -
__Nodular ! ! _ Slow
50 Simulation 1 301 Simulation
_ _Fast & Slow \ bl | _ Diffuse & Nodular
% Simulations ! o ! Simulations
S | __Diffuse 1 2 20| 1 __Fast
3% Simulation ! ) ' Simulation
o 1 g 15 ]
W 20 1 . s 1
1 1
1 10 1
10 d 0
1
| sif
0 | I 1 1 ‘
-2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 0 L 1 1 J
50 100 150 200 250

. 2
Pre-Surgical D/r Measurements (mm*, Iog10 Scale) T1Gd Velocity Measurements (mm/year)

Fig. 3 Histograms of measured GBM patient values from Neal et al. (2013a,b), including a presurgical
D/r values and b T1Gd velocity

from this study fall in these distributions (Baldock et al. 2014; Neal et al. 2013a,b).
Table 1 summarizes the range of parameters used in this study, as well as their labels
used throughout.

2.2 Data Denoising

The first step in the equation learning process is data denoising and differentiation. Data
denoising for equation learning refers to the process of approximating the solution and
derivatives of an underlying dynamical system from a set of observed data. Previous
methods relied on the use of finite differences for numerical differentiation in the case
of noiseless data and polynomial splines in the presence of noise (Boninsegna et al.
2018; Rudy et al. 2017; Zhang and Lin 2018). Lagergren et al. recently introduced
a method that leverages artificial neural networks (ANNS) to be used for robust data
smoothing and numerical differentiation in the presence of large amounts of noise and
heteroscedastic data (Lagergren et al. 2020).

A data denoising ANN, denoted by % (x|0), is a differentiable function with inputs
consisting of spatiotemporal points, X = (x, #), and outputs consisting of approxima-
tions for u (x). The ANN is parameterized by the set 6 consisting of weight matrices W;
and bias vectors b; fori = 1, ..., L+ 1 where L indicates the number of hidden layers
or “depth” of the ANN. The size of each weight matrix and bias vector is determined by
the number of neurons or “width” of the corresponding layer and its preceding layer.
In particular, for the weight matrix and bias vector in the i layer, the width of the
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Fig. 4 Diagram of the equation learning pipeline. Left: data denoising step in which an artificial neural
network (ANN) is used to approximate the solution to the dynamical system. Right: library construction
step where partial derivatives of the trained ANN are used to construct the left-hand side (u;) and library
of candidate right-hand side terms (®) of the desired PDE

i — 1 layer determines the number of rows of the weight matrix, while the width of the
i" layer gives the number of columns and length of the weight matrix and bias vector,
respectively. “Activation functions” (e.g., the sigmoid function o (x) = 1/(1 +e7%))
are applied element-wise in between layers to introduce nonlinearity to the ANN.

With appropriately chosen activation functions, ANNSs are in the class of functions
known as universal function approximators (Hornik 1991). In practice, this means that
given large enough width and depth, ANNs can approximate any continuous function
on a compact domain arbitrarily well. Therefore, following (Lagergren et al. 2020), we
use ANNS as surrogate models for the quantity of interest, u(x, ). Backpropagation
of a trained ANN can be used for numerical differentiation, which is used to construct
candidate terms for the equation learning task. See Fig. 4 for a diagram of the data
denoising procedure.

The ANN in this work is chosen to have three hidden layers with 256 neurons in each
layer. This choice is large enough to give the ANN sufficient capacity to approximate
the solution u. Concretely, this ANN can be written as

h(x|6) = ¢<0<0(0(XW1 +b1) Wa+by) Wi + bs ) W4+b4> @)

where the weight matrices are denoted by W, € R2%256 W, W3 € R256x256 and
Wy e R256x1 bias vectors are denoted by b1, b2,b3 € R2%6 and by € R, and
activation functions are denoted by o (x) = 1/(1 +e™¥) and ¢ (x) = log(l + e¥).
Note that ¢ (also called the “softplus” function) is specifically chosen to constrain
neural network outputs to [0, co) since we assume values of u(x) are non-negative.

The ANN parameters 6 are optimized using the first-order gradient-based Adam
optimizer (Kingma and Ba 2017) with default parameters and batch optimization. The
ANN is trained by minimizing the objective function given by:

26 MXI:V h(xi,1]160) = i, 2+Mivh( 510y ©
= - J - - Xj, t;
. |h('xia tj |9)|}/ ij v h(xivt_j|9)¢[umin»umax]

i,]
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over the set of ANN parameters 6. The first term of Eq. (9) corresponds to the gen-
eralized least squares error between the ANN £ (x|0) and the observed noisy data y.
The second term acts as a regularization penalty to ensure ANN values stay between
the minimum and maximum observed values of u. We assume that # is normalized
so that umin = 0, umax = 1. Note that in the small-time-sample limit (e.g. three time
samples), the ANN can output unrealistic values between time samples. Therefore,
for a given batch of data, the first term of Eq. (9) is evaluated on the corresponding
batch of observed data values, while the second term is evaluated on a fixed 100 x 100
grid spanning the input domain.

To prevent the ANN from overfitting to the data, the following measures are taken.
The training data are randomly partitioned into 80%/20% training and validation sets.
The network parameters are iteratively updated to minimize the error in Eq. (9) on the
training set. The network that results in the best error on the validation set is saved.
Note that data from the validation set are never used to update network parameters.
We use a small batch size of 10 to train each ANN. A small batch size acts as an
additional form of regularization that (i) helps the ANN escape local minima during
training and (ii) allows for better generalization (Keskar et al. 2017). We employ early
stopping of 1000 (i.e., training ends if the validation error does not decrease for 1000
consecutive epochs) to ensure convergence of each ANN independently.

The trained ANN is then used in the following Equation Learning step to build a
library of candidate equation terms consisting of denoised values of u and the approx-
imated partial derivatives of u. All network training and evaluation is implemented in
Python 3.6.8 using the PyTorch deep learning library.

2.3 Equation Learning, Model Selection, and Equation Post-processing

The second step of our equation learning methodology is to infer several candidate
models to describe the data’s dynamics. From the approximations of « and its partial
derivatives from the ANN, we use the PDE-FIND algorithm (Rudy et al. 2017) to
infer data-driven governing equations. This algorithm consists of first building a large
library of candidate terms for the inferred model and then selecting which of these
terms to include in the final model.

The PDE-FIND algorithm builds a library of potential right-hand side terms in the
matrix, ®. The columns of ® are comprised of candidate terms for the final inferred
models. We use a library consisting of ten terms given by

2 2 2 2 2
O = [Uy, Uy, U, U™, Uy, Uy, Uy, Wy, UY, U] (10)

We included polynomials, partial derivatives, and the cross-products of these terms due
to their wide usage in reaction—diffusion terms, but note that the choice of terms can
be specified by the user and will change with different applications. For other studies,
it may be more appropriate to include trigonometric terms, logarithms, convolutions
of functions, etc.

From ©®, the PDE-FIND algorithm then recovers which terms should be included
in the final inferred model by solving the linear system
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u; = 0F, arn

where £ is a vector parameterizing the final inferred differential equation model.
Nonzero elements of & parameterize the relevant right-hand side terms of the inferred
model. For example, if we inferé = [0, 0.03, 0.3, —0.3, 0,0, 0, 0, 0, 0] with the terms
in ® from Eq. (10), then this vector denotes that the inferred equation is the Fisher—KPP
equation with D = 0.03 and r = 0.3.

Sparse linear regression methods are used to solve Eq. (11) sparsely to ensure that
the final recovered model is simple and contains a small number of terms. Following
our previous study (Lagergren et al. 2020), we use the adaptive forward—backward
Greedy algorithm to estimate & (Zhang 2009). This algorithm requires estimation of
the optimal tolerance with which to solve Eq. (11); to estimate this hyperparameter, we
randomly split the spatiotemporal domain into 50%/50% training and validation sets.
Our previous study showed that small but systematic biases from the ANN can lead to
incorrect terms being inferred, so we incorporate a round of “pruning” after solving
Eq. (11). During this round of pruning, we check the sensitivity of the mean-squared
error ||u; — (~)§ ||% to each nonzero entry in &. The i term of é is included in the final
inferred equation if |ju; — @ié,- ||% increases by 5%, where ©); is a copy of @ that is
missing the i term and & is the estimated parameter vector in the absence of this
term. The 5% threshold was chosen so that the final inferred equation is sensitive to
the final model terms; however, the choice to use 5% was arbitrary and not tuned to
any of the datasets. A smaller threshold would increase the number of terms in the
model, and a larger threshold would reduce the number of terms. The PDE-FIND
algorithm is sensitive to the training-validation split of the spatiotemporal domain, so
we infer 100 equations from 100 random training-validation domains and choose the
three most common forms as the final inferred equations.

The third step of our equation learning methodology is model selection and post-
processing of these inferred equations. To select which of the three top models best
describes a given dataset, we implement the following model selection procedure. We
perform forward simulations of these three top models starting with initial conditions
from the first time sample, y;. Numerical implementation of the inferred equations is
discussed in “Appendix A.” From these three models, we select the model with the
lowest AIC score when compared to data at the final time sample y, as our selected
model. The AIC here is advantageous because when two models lead to similar outputs,
it will select the simpler model and avoid complex models. We include some post-
processing of this model to ensure that the final model is interpretable. In particular,
we ensure that the transport terms in the final recovered model can be written in a flux
formulation and in turn conserve mass. For example, the diffusion term u,, by itself
can be re-written as u, = (u, ), and is thus in conservation form. The term u)z( by itself
cannot be re-written in conservation form so it would be manually removed. If the two
terms u)% and uu,, are simultaneously recovered, then we keep both terms because
u)zc +uuy, = (uuy),. While we could have specified such conservation equation forms
in ® manually, we chose to keep this process as flexible as possible and incorporate
a small amount of post-processing for domain-specific tasks.
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2.4 Parameter Estimation and Uncertainty Quantification

We will consider the performance of the PDE-FIND algorithm in parameter estimation
for a given dataset by solving Eq. (11) where & is composed of the terms in Fisher—KPP
equation. We build the two column library of terms given by ® = [u(1 —u), uy,] and
solve the linear system u; = ©£ using the linalg.Istsq function in the Python Numpy
subpackage. We perform this computation for 100 separate training sets comprised
of 50% of the spatiotemporal domain to determine how much these parameter esti-
mates vary. This method of randomly selecting several subsamples of the domain for
uncertainty quantification is known as subagging (a sobriquet for subsample aggre-
gating) (Buhlmann 2012). We set our parameter estimate to be the median of these
100 estimates, and we set its normalized standard error to be the standard error of
these estimates divided by the median value. Note that typical parameter estimation
approaches involving a differential equation model require explicitly solving the model
over a range of parameter values. In contrast, our approach does not require solving
the mathematical model because we have instead approximated the solution and its
derivatives during the denoising step (see Sect. 2.2).

3 Results

We investigate the performance of our equation learning methodology in the presence
of sparse time sampling over both the short and long time scales. We exhibit these
results using artificial datasets simulated from the four simulations described in Table 1.
Equation inference is discussed in Sect. 3.1, and parameter estimation and uncertainty
quantification when the underlying equation is known are discussed in Sect. 3.2.

3.1 Equation Discovery

We test the performance of our equation learning method on artificial data that have
been generated from all four simulations for N=3, 5, or 10 time samples over both
the short (0-0.5 years) and long (0-3 years) time scales with 1% noise (Table 2)
and 5% noise levels (Table 5 in “Appendix B”’). We investigate whether our equation
learning methodology is able to infer the Fisher—KPP equation from noisy data and
how well the final inferred equations describe the true underlying dynamics. We test
the model’s predicted dynamics by investigating both how the inferred models match
the dynamics they were trained on and how the models predict system dynamics that
they were not trained on. We further consider our methodology’s ability to infer the
correct underlying equation form over a finer range of (D, r) values in Sect. 3.1.3.

3.1.1 Learning Equations from Data with 1% Noise
All final inferred equations for 1% noisy data are presented in Table 2. Table cells are

highlighted in bold face when the correct underlying equation form (i.e., the Fisher—
KPP equation) is inferred. We also tested the ability of the inferred equations with
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Fig. 5 Fit and predicted dynamics for the slow simulation with N = 5 time samples and 1% noise. a
The simulated learned equation for the slow simulation that was inferred from data sampled over the time
interval [0,0.5]. b The model that was inferred over the time interval [0,0.5] is used to predict the dynamics
over the time interval [0,3]. ¢ The simulated learned equation for the slow simulation that was inferred from
data sampled over the time interval [0,3]. d The model that was inferred over the time interval [0,3] is used
to predict the dynamics over the time interval [0,0.5]

N = 5 time samples to match the dynamics they were trained on and predict dynamics
on a separate time interval (Figs. 5, 8, 9, 10 in “Appendix C”). In short, we are able
to infer the correct underlying equation for the slow and diffuse populations on the
long time interval with as few as N = 3 time samples. We are able to infer the correct
underlying equation for the fast and nodular populations on the short time interval
with as few as N = 5 time samples.

The slow simulation on the short time scale For noisy data sampled over the short time
interval for the slow simulation, our equation learning methodology infers the Fisher—
KPP equation with N = 5 and 10 time samples. With N = 3 points, the Fisher—-KPP
equation is not inferred. In Fig. 5a, we simulated the inferred equation for N = 5 time
samples over the short time scale and observe that this equation accurately matches
the true underlying dynamics. When this same equation is simulated over the long
time scale, it does not accurately describe the true underlying dynamics (Fig. 5b).

The slow simulation on the long time scale For noisy data sampled over the long
time interval for the slow simulation, our equation learning methodology infers the
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Fisher—KPP equation for all values of N considered. In Fig. 5¢c we simulate the inferred
equation for N = 5 time samples over the long time scale. The simulation matches
the true dynamics well in many areas, although there is some disparity at t = 1.88
and 2.45 years for |x| > 0.75. When this same equation is simulated over the short
time scale, it accurately matches the true underlying dynamics (Fig. 5d).

The diffuse simulation on the short time scale For noisy data sampled over the short
time interval for the diffuse simulation, our equation learning methodology does not
infer the correct underlying equation for any of the chosen values of N. In Fig. 8 in
“Appendix C,” we simulated the inferred equation for N = 5 time samples over the
short time scale and observe that this equation does not match the true underlying
dynamics. When this same equation is simulated over the long time scale, it does not
accurately describe the true underlying dynamics.

The diffuse simulation on the long time scale For noisy data sampled over the long
time interval for the diffuse simulation, our equation learning methodology infers the
Fisher—KPP equation for all values of N considered. In Fig. 8, we simulate the inferred
equation for N = 5 time samples over the long time scale. The simulation matches the
true dynamics qualitatively well in many areas. When this same equation is simulated
over the short time scale, it accurately matches the true underlying dynamics.

The fast simulation on the short time scale For noisy data sampled over the short time
interval for the fast simulation, our equation learning methodology infers the Fisher—
KPP equation for N = 5 and 10 and does not infer the Fisher—KPP equation for
N = 3.InFig. 9 in “Appendix C,” we simulated the inferred equation for N = 5 time
samples over the short time scale and observe that the inferred equation accurately
describes the true underlying dynamics. When this same equation is simulated over
the long time scale, it accurately matches the true underlying dynamics.

The fast simulation on the long time scale For noisy data sampled over the long
time interval for the fast simulation, our equation learning methodology does not
infer the correct underlying equation for any of the chosen values of N. In Fig. 9 in
“Appendix C,” we simulated the inferred equation for N = 5 time samples over the
long time scale and observe that this equation does not accurately describe the true
underlying dynamics. When this same equation is simulated over the short time scale,
it does not accurately describe the true underlying dynamics.

The nodular simulation on the short time scale For noisy data sampled over the short
time interval for the nodular simulation, our equation learning methodology infers the
Fisher—KPP equation for all values of N considered. In Fig. 10 in “Appendix C,” we
simulated the inferred equation for N = 5 time samples over the short time scale and
observe that the inferred equation accurately describes the true underlying dynamics.
When this same equation is simulated over the long time scale, it accurately matches
the true underlying dynamics.

The nodular simulation on the long time scale For noisy data sampled over the long
time interval for the nodular simulation, our equation learning methodology does not
infer the correct underlying equation for any of the chosen values of N. In Fig. 10 in
“Appendix C,” we simulated the inferred equation for N = 5 time samples over the
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long time scale and observe that this equation does not accurately describe the true
underlying dynamics. When this same equation is simulated over the short time scale,
it does not accurately describe the true underlying dynamics.

3.1.2 Learning Equations from Data with 5% Noise

All final inferred equations for 5% noisy data are presented in Table 5 in “Appendix B.”
Table cells are highlighted in bold face when the correct underlying equation form
(i.e., the Fisher—KPP equation) is inferred. Details of the results are discussed in
“Appendix B.” In short, we learn the correct equation for data from the slow simulation
on the long time interval with N = 5 and 10 time samples. For data from the diffuse
equation, we infer the correct equation over the long time interval with N = 3 time
samples. For data from the fast simulation, we infer the correct equation over the
short time interval with N = 10 time samples. For data simulated from the nodular
simulation, we infer the correct equation over the short time interval with N = 3 time
samples and over the long time interval with N = 10 time samples.

We also test the ability of the inferred equations with N = 10 time samples to
match the dynamics they were trained on and predict dynamics on a separate time
interval (Fig. 11 in “Appendix C”). The learned equations from data from the slow and
diffuse simulations over the long time interval can accurately predict the simulations’
dynamics on the short time interval. The learned equations from data from the fast and
nodular simulations over the long short interval can accurately predict the simulations’
dynamics on the long time interval. Further description of the prediction results is
provided in “Appendix C.”

3.1.3 Learning Equations for Intermediate (D, r) Values

Recall that the four considered simulations in this study correspond to values rep-
resenting somewhat extreme examples of estimated values from a cohort of GBM
patients (Wang et al. 2009). In this section, we investigate the performance of our
equation learning methodology for intermediate values of D and r from 1% noisy
data with N = 5 time samples. Here we are interested in if we can infer the correct
equation form and score the accuracy of an inferred model form using the true positive
ratio (TPR) given by:

TP

TPR = ————,
TP + FP + FN

12)

where “TP” stands for true positives (nonzero terms in the final inferred equation
that are nonzero), “FP” stands for false positives (nonzero terms in the final inferred
equation that are zero), and “FN” stands for false negatives (zero terms in the final
inferred equation that are nonzero). Note that a score of TPR = 1 indicates that the
correct underlying equation form has been recovered and a TPR score less than 1
indicates that the incorrect underlying equation form has been recovered.

We inferred the equations underlying such data over 25 different (D, r) combina-
tions (Fig. 6). We let both D and r vary over five values from a log-scale between
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Fig.6 TPR scores over a range of (D, r) values. a Depiction of where the slow, diffuse, nodular, and fast
simulations fall on these plots. b TPR scores for the 25 (D, r) combinations for data sampled on the short
time interval (0-0.5 years). ¢ TPR scores for the 25 (D, r) combinations for data sampled on the long time
interval (0-3 years)

their lower and upper values from Table 1. Over the short time interval, the correct
underlying form is often inferred for larger values of r (r = 5.3, 9.5, 16.9, 30.0/year),
but is not usually inferred for r = 3.0/year. Over the long time interval, the correct
underlying form is often inferred for smaller values of » (r = 3.0, 5.3, 9.5/year), but is
not usually inferred for r = 16.9 or 30.0/year. These results suggest that simulations
with higher growth rates ( > 3.0/yr.) can be correctly inferred from data sampled
over the short time interval, while simulations with lower growth rates (r < 9.5/yr.)
can be correctly inferred from data sampled over the long time interval.

3.2 Parameter Estimation and Uncertainty Quantification

We investigated parameter estimation accuracy and uncertainty quantification using
the PDE-FIND algorithm when we know that the underlying form is the Fisher—KPP
equation. Results using data from the short time interval are presented in Sect. 3.2.1
and the long time interval in Sect. 3.2.2.
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Table 3 1d parameter estimation and uncertainty quantification results for all simulations with 5% noisy
data on a short time interval (0-0.5 years)

Parameter True Median % Error Normalized SE
Slow simulation D 3 0.928 69.1 0.25
r 3 2.089 30.4 0.059
Fast simulation D 30 31.422 4.7 0.084
r 30 29.84 0.5 0.012
Diffuse simulation D 30 22.462 25.1 0.132
r 3 2.345 21.8 0.062
Nodular simulation D 3 3.595 19.8 0.227
r 30 28.588 4.7 0.027

3.2.1 Parameter Estimation and Uncertainty Quantification Over the Short Time
Interval

We investigated the performance of the parameter estimation and uncertainty quan-
tification methodology from Sect. 2.4, which is similar in concept to the PDE-FIND
algorithm, but we assume the true underlying equation is known a priori. We use data
with 5% noise and N = 5 time samples on the short time interval (Table 3) and attempt
to estimate D and r. The fast simulation has the most accurate parameter estimation
results on this time interval with error rates for D and r of 4.7% and 0.5%, respectively.
The nodular simulation has error rates for D and r of 19.8% and 4.7%, respectively.
The error rates for r from the slow and diffuse simulations have error rates of 30.4%
and 21.8%, respectively. This methodology estimates D with an error rate of 69.1%
for the slow simulation and 25.1% for the diffuse simulation. The normalized stan-
dard errors, defined as the standard error of the parameter estimates divided by their
median value, for r fall between 0.012 and 0.062 for all four simulations, and the more
inaccurate estimates tend to exhibit higher normalized standard errors here. The nor-
malized standard errors for D are higher, as they fall between 0.084 and .25 for all four
simulations, demonstrating that this method exhibits higher variation in estimating D
than in estimating . The fast simulation yields the smallest normalized standard error
of 0.084, while the slow simulation yields the highest normalized standard error of
0.25.

3.2.2 Parameter Estimation and Uncertainty Quantification Over the Long Time
Interval

We investigated the performance of the PDE-FIND algorithm for parameter estimation
and uncertainty quantification with 5% noise and N = 5 time samples on the long time
interval (Table 4) for the parameters D and r. The smallest parameter estimate error
rates are found for the diffuse simulation with error rates of 4.4 and 11.8% for D and r,
respectively. PDE-FIND estimates r with small error rates between 6.0 and 9.4% error
for the remaining simulations. The error rates for the remaining simulations for D fall
between 25.4 and 32.7%. The diffuse simulation yields the lowest normalized standard
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Table 4 1d parameter estimation and uncertainty quantification results for all simulations with 5% noisy
data on a long time interval (0-3 years)

Parameter True Median % Error Normalized SE
Slow simulation D 3 2.063 31.2 0.168
r 3 2.786 7.1 0.02
Fast simulation D 30 37.624 25.4 0.248
r 30 28.189 6.0 0.047
Diffuse simulation D 30 28.681 4.4 0.101
r 3 2.646 11.8 0.012
Nodular simulation D 3 2.02 32.7 0.248
r 30 27.166 9.4 0.023

error for r of 0.012, while the fast simulation yields the highest normalized standard
error of 0.047. The diffuse simulation yields the smallest normalized standard error
for D of 0.101, while the fast and nodular simulations yield the highest normalized
standard errors for D of 0.248.

4 Discussion

We investigated the performance of our equation learning methodology in equation
inference, dynamics prediction, and parameter estimation from noisy data over a range
of common challenges presented by biological data. These challenges include a wide
variation in parameter values, sparse data sampling, and large amounts of noise. We
used artificial data that have been generated from the Fisher—KPP equation throughout
this study due to the broad applicability of this model for many biological phenomena,
including tumor progression and species invasion. The diffusion and proliferation
values considered in this work correspond to the ranges of measured values from
GBM patients (Wang et al. 2009).

We observe in Table 2 that this methodology successfully recovers the correct
underlying equation for the slow and diffuse simulations when data are observed on
a long time interval of 0-3 years. The correct underlying form can be recovered with
as few as three time samples on this time interval, and similar accuracy is achieved
with five and ten time samples. Over the shorter time interval of 0-0.5 years, however,
this methodology often either infers an incorrect equation form or infers the correct
equation form with poor parameter estimates for these two simulations. With ten time
samples from the slow simulation, for example, this methodology infers an equation
with a carrying capacity that is ten times smaller than the true carrying capacity. Simi-
larly, the inferred equation for the diffuse simulation will grow unbounded. These two
simulations share a low proliferation rate of 3/year, suggesting that these simulations
only exhibit their linear dynamics on the short interval and thus require the longer time
interval for equation learning methods to accurately infer their nonlinear dynamics.
These conclusions are supported by observing that the inferred equations from data
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that are sampled over the longer time interval can still accurately predict the system
dynamics on the shorter time interval.

Alternatively, our equation learning methodology successfully recovers the correct
underlying equations for the fast and nodular simulations over the shorter time interval
of 0-0.5years. These two simulations share a high growth rate (30/year), suggesting
that the systems’ nonlinear dynamics are sufficiently sampled over the shorter time
interval for successful equation recovery from equation learning methods. The inferred
equations on this shorter time interval generalize well to predict the true underlying
dynamics on the long time interval of 0-3 years. Our equation learning methodology
does not infer the correct underlying equation for these two simulations when data
are sampled over the long time interval. We observe in Fig. 2 that these simulations
appear to have converged to their traveling wave profiles between the first and second
time samples of the long time interval. Traveling waves are a known problem for the
PDE-FIND algorithm because multiple reaction—diffusion—advection equations will
lead to traveling wave solutions. A previous study proposed simulating bimodal data
to distinguish between the advection equation and Korteweg—de Vries Eq. (Rudy et al.
2017). Here, we propose that sampling the dynamics before a traveling wave profile
has been attained can lead to accurate equation inference for the Fisher—KPP equation.

These results point to some limitations of current equation learning methodologies,
namely that the learned equation may depend on the number of time samples and
when the data are sampled. Such considerations are particularly relevant when the true
underlying equation is not known a priori. When the correct equation was inferred
throughout this study, we observe that the inferred equation form, as well as the inferred
parameters, tends not to change much with the number of data points. Simulations of
correctly inferred equations were also able to accurately match data that were sampled
on a different time interval. These findings suggest that future equation learning studies
should thus consider testing the sensitivity of an inferred equation to the number of
time samples and the ability to accurately predict unobserved system dynamics.

For low noise (6 = 1%) data, the final inferred equation form appears robust
to the number of time samples. When data are observed over an appropriate time
interval where the underlying dynamics exhibit linear and nonlinear dynamics, then
the final equation form typically does not change between three and ten time samples
(Table 2). An exception is the fast simulation, which needed five or ten time samples
to recover the correct underlying equation. With a larger amount of noise (o = 5%),
the final inferred equation appears more sensitive to the number of observed time
samples. For example, the slow simulation required five or ten time samples to infer
the correct underlying equation and the fast simulation required ten time samples to
infer the correct underlying equation. Interestingly, our equation learning methodology
inferred the correct equation for the diffuse and nodular simulations with three time
samples with 5% noise but inferred incorrect equation forms for these two simulations
with five or ten time samples. We note, however, that the extra terms for the diffuse
simulation here correspond to backward negative nonlinear diffusion and advection
which a user may manually neglect if found in practice. Furthermore, we could have
had more success recovering the correct equation form by tuning hyperparameters
(such as the pruning percentage) here, but we instead focus on a flexible technique
that provides users with interpretable equations for users to then alter if needed.
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The four simulations considered throughout this work correspond to the outer ranges
of diffusion and proliferation observed in GBM patients. We further demonstrated in
Fig. 6 that our equation learning methodology is successful in recovering the correct
equation learning methodology for many intermediate (D, r) values. Typically, our
methodology has more success in accurate equation inference for larger values of r
(r > 5.3/year) on the short time interval and for smaller values of r (r < 9.5/year) on
the longer time interval for 1% noisy data.

Equation learning is promising technique for parameter estimation and uncer-
tainty quantification due to having a low computational expense. For example, solving
Eq. (11) for & does not require solving a differential equation, whereas typical param-
eter estimation routines require numerous differential equation model simulations
(Banks et al. 2014). We observe that parameter estimation appears more accurate for
the slow and diffuse simulations over the long time interval than for the short time
interval. Similarly, parameters are more accurate for the fast and nodular simulations
over the short time interval than the long time interval. Such methods could be used to
obtain computationally inexpensive initial parameter estimates for frequentist parame-
ter estimation approaches or for prior distribution specification for Bayesian inference
routines (Hawkins-Daarud et al. 2019). Parameter uncertainty has been proposed pre-
viously as a measure to infer the top equation form from several plausible candidates
(Zhang and Lin 2018). In support of this proposal, we observe in our work that smaller
amounts of parameter uncertainty result when data are sampled over an appropriate
time interval.

5 Conclusion

Methods from equation learning have the potential to become invaluable tools for
researchers in developing data-driven models, and in turn understanding the mechan-
ics underlying a biological process, estimating parameters, and predicting previously
unknown system dynamics. Before such methods become commonplace in the math-
ematical biology field, however, it is crucial to thoroughly investigate the performance
of such methods in the presence of common challenges that biological data present. We
have scrutinized the performance of a state-of-the-art equation learning methodology
in the presence of such challenges in this work. This equation learning methodology is
composed of a data denoising step with an ANN, equation learning through the PDE-
FIND algorithm (Lagergren et al. 2020; Rudy et al. 2017), and a final step comprised
of model selection and post-processing to ensure the inferred equation is simple and
biologically interpretable.

The biological data challenges considered in this work include sparse sampling of
data, a small number of time samples, parameter heterogeneity, and large noise levels.
Our equation learning method can recover the correct equation from data with a small
number of time samples when the data are sampled over an appropriate time inter-
val. Our methodology can also reliably predict previously unobserved dynamics when
trained over an appropriate time interval. When this methodology is not trained over
an appropriate time interval, however, the inferred equation and predicted dynamics
are not reliable. Determining when to sample the data for accurate inference in this
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Fig. 7 Histogram of measured GBM patient radii when first presenting in the clinic obtained from T1Gd
imaging

work crucially depends on the intrinsic growth rate of populations: fast-growing pop-
ulations require data sampling on a short time interval and slow-growing populations
require sampling on a long time interval for accurate inference. When sampled over an
appropriate time interval, datasets exhibited a combination of both initial linear model
dynamics and long-term nonlinear model dynamics. Such results suggest that an infor-
mative time interval for equation learning methods should include both of these phases
for accurate inference. Noisier data require more time samples for accurate recovery:
we observed in this work that three time samples were often sufficient for accurate
inference of 1% noisy data, but ten time samples were required for such inference on
5% noisy data. Deciphering when equation learning methodologies are reliable in the
presence of practical data challenges is important for biological research to ensure
these methods are not used to make incorrect inference for a system under study. The
challenges addressed in this study are prevalent in biological research, where expen-
sive or challenging data collection may limit us to sparse datasets (Baldock et al. 2014)
or measurement is often corrupted by noise (Perretti et al. 2013).

The values of diffusion and intrinsic growth considered in this work correspond to
the ranges of these values that have been measured from GBM patients’ MR images
(Wang et al. 2009). In Figs. 3 and 7 , we depict histograms of measured D /r ratios,
T1Gd velocities, and tumor radii from GBM patients before surgery. If one is inter-
ested in inferring the dynamics from patient data to inform treatment decisions for
improved prognosis or predicted dynamics, then patient-estimated D /r tumor veloc-
ity measurements can be combined with the results from this study to determine how
reliable the inferred equation may be. A patient’s tumor could be matched to one of the
four simulations considered in this work based on their measured D /r and velocity
estimates (for example, if the tumor has a high D/r value and low velocity, then this
tumor may correspond to the slow simulation). If patient data have been observed on
an appropriate time interval for inference (a longer time interval for slow and diffuse
simulations, a shorter time interval for fast and nodular simulations), then one may
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have a high degree of confidence in the inferred equation and dynamics. If patient
data have not been observed on an appropriate time interval for inference, then the
inferred equation and dynamics might not be sufficiently supported by the data. We
also observed in this work that if the population dynamics are primarily observed after
the population has reached confluence, then the inferred dynamics may not be reliable.
The tumor radius histogram in Fig. 7 can be used to further determine whether or not
observed patient data have already reached its carrying capacity and is suitable for
inference from equation learning methods.

We focused on inference of the Fisher—KPP equation in this work due to its wide
use in the biological literature (Hastings et al. 2005; Hawkins-Daarud et al. 2019;
Nardini and Bortz 2018). Previous equation learning studies have also successfully
inferred other common models in biology, including transport equations (Lagergren
et al. 2020), pattern-forming reaction—diffusion equations (Rudy et al. 2017), and
compartmental epidemiological models (Mangan et al. 2017). We expect that the
results, methodology, and open-source code presented in this work will enable other
researchers to assess whether equation learning methods can be applied to a wide array
biological data.

This work proposes many areas for future research for mathematicians and data
scientists working on computational methods and modeling for biological data. We
considered PDE-FIND’s performance for a fixed library consisting of ten terms in this
work. Future work should consider the performance and computational cost of this
method with an increasing amount of terms. We observed that changing the param-
eters of a mathematical model influences the spatiotemporal domain over which the
PDE-FIND algorithm can successfully recover the correct underlying equation. Future
research should aim to infer what an informative domain may be for general ODE and
PDE systems as well as methods to determine whether datasets contain high or low
information content for equation learning. As an example, only sampling near an equi-
librium solution will likely lead to a learned model of u; = 0, whereas only sampling
far away from stable equilibria may neglect nonlinear dynamics in the final learned
model. It will be interesting to further investigate what combinations of transient and
long-term dynamics are sufficient for accurate inference from biological systems data,
which may be difficult or expensive to collect. Improvements in data denoising and
equation learning methods will further inform this work. A recent neural network
architecture, termed a “Physics-informed neural network,” simultaneously denoises
data and estimates the parameters under the assumption that the model is known (Raissi
and Karniadakis 2018). The simultaneous denoising of data and equation inference
will likely improve both methods and is thus an important area for future research.
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A Simulating a Learned Equation

To simulate the inferred equation represented by the sparse vector é, we begin by
removing all zero terms from & as well as the corresponding terms from ®. We can
now define our inferred dynamical systems model as

Uy ZZ%'l@l (13)

We use the method of lines approach to simulate this equation, in which we discretize
the right-hand side in space and then integrate along the ¢ dimension. The Scipy
integration subpackage (version 1.4.1) is used to integrate this equation over time
using an explicit fourth-order Runge—Kutta method. We ensure that the simulation is
stable by enforcing the CFL condition for an advection equation with speed 2+/Dr is
satisfied, e.g., 24/Dr At < Ax. Some inferred equations may not be well-posed, e.g.,
u; = —uyy. If the time integration fails at any point, we manually set the model output
to 10° everywhere to ensure this model is not selected as a final inferred model.

For the final inferred columns of ® = [®, ®,, ..., ®,], we define nonlinear
stencils, A, such that Ap,u ~ ©,. As an example, we an upwind stencil (LeVeque
2007) for first-order derivative terms, such as A, , so that A, u ~ u,. We use a
central difference stencil for A, . For multiplicative terms, we define the stencil for
Ayu, as Ay v = u © (A, v), where O denotes element-wise multiplication so that
Ay, u ~ uuy. Similarly, we set A, . = Ay Ay, etc.

B Learning the 1d Fisher-KPP Equation with 5% Noisy Data

In Table 5, we present the inferred equations for all 1d datasets considered with o =
0.05.

The slow simulation on the short time interval For noisy data sampled over the short
time interval for the slow simulation, our equation learning methodology does not
infer the correct underlying equation for any values of N considered. Simulating the
inferred equation for N = 10 time samples over the short time scale does not lead to
an accurate description of the true underlying dynamics on the short time interval or
prediction of the true dynamics on the long time interval.

The slow simulation on the long time interval Over the long time interval, our equation
learning methodology does infer the Fisher—-KPP equation with N = 10 time sam-
ples. Simulating the inferred equation for N = 10 time samples over the long time
scale accurately matches the true underlying dynamics on the long time interval and
accurately predicts the true dynamics on the short time interval.

The diffuse simulation on the short time interval For noisy data sampled over the short
time interval for the diffuse simulation, our equation learning methodology does not
infer the correct underlying equation for any values of N considered. Simulating the
inferred equation for N = 10 time samples over the short time scale does not lead to
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an accurate description of the true underlying dynamics on the short time interval or
prediction of the true dynamics on the long time interval.

The diffuse simulation on the long time interval Over the long time interval, our
equation learning methodology does infer the Fisher—KPP equation with N = 3
time samples. Simulating the inferred equation for N = 10 time samples over the
long time scale accurately matches the true underlying dynamics on the long time
interval and accurately predicts the true dynamics on the short time interval (Fig. 11
in “Appendix C”).

The fast simulation on the short time interval For noisy data sampled over the short
time interval for the fast simulation, our equation learning methodology infers the
Fisher—KPP equation with N = 10 time samples. Simulating the inferred equation for
N = 10 time samples over the short time scale accurately matches the true underlying
dynamics on the short time interval and accurately predicts the true dynamics on the
long time interval (Fig. 11 in “Appendix C”).

The fast simulation on the long time interval Over the long time interval, our equation
learning methodology does not infer the correct underlying equation for any values
of N considered. Simulating the inferred equation for N = 10 time samples over the
short long scale does lead to an accurate description of the true underlying dynamics
on the long time interval or prediction of the true dynamics on the short time interval.

The nodular simulation on the short time interval For noisy data sampled over the short
time interval for the nodular simulation, our equation learning methodology infers the
Fisher—KPP equation with N = 3 time samples. Simulating the inferred equation for
N = 10 time samples over the short time scale does not lead to an accurate description
of the true underlying dynamics on the short time interval or prediction of the true
dynamics on the long time interval.

The nodular simulation on the long time interval Over the long time interval, our
equation learning methodology infers the Fisher—KPP equation with N = 10 time
samples. Simulating the inferred equation for N = 10 time samples over the long
time scale accurately matches the true underlying dynamics on the long time interval
and accurately predicts the true dynamics on the short time interval.

C Fit and Predicted Dynamics

The fit and predicted system dynamics for the diffuse, fast, and nodular s with 1%
noise and N = 5 time samples are depicted in Figs. 8, 9, and 10, respectively. The
fit and predicted dynamics for the diffuse and fast s with 5% noise and N = 10 time
samples are depicted in Fig. 11.
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(a) Diffuse Simulation, N = 05, (b) Diffuse Simulation, N = 05,
fit dynamics for [0,0.5] predicted dynamics for [0,3]
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Fig. 8 Fit and predicted dynamics for the fast with N = 5 time samples and 1% noise. a The simulated
learned equation for the fast that was inferred from data sampled over the time interval [0,0.5]. b The model
that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval [0,3]. ¢
The simulated learned equation for the fast that was inferred from data sampled over the time interval [0,3].
d The model that was inferred over the time interval [0,3] is used to predict the dynamics over the time
interval [0,0.5]. Simulated models are shown in solid lines, and the true underlying dynamics are shown by
dots
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(a) Fast Simulation, N = 05, (b) Fast Simulation, N = 05,
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Fig.9 Fit and predicted dynamics for the diffuse with N = 5 time samples and 1% noise. a The simulated
learned equation for the diffuse that was inferred from data sampled over the time interval [0,0.5]. b The
model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval
[0,3]. ¢ The simulated learned equation for the diffuse that was inferred from data sampled over the time
interval [0,3]. d The model that was inferred over the time interval [0,3] is used to predict the dynamics
over the time interval [0,0.5]
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Fig.10 Fitand predicted dynamics for the nodular with N = 5 time samples and 1% noise. a The simulated
learned equation for the nodular that was inferred from data sampled over the time interval [0,0.5]. b The
model that was inferred over the time interval [0,0.5] is used to predict the dynamics over the time interval
[0,3]. ¢ The simulated learned equation for the nodular that was inferred from data sampled over the time
interval [0,3]. d The model that was inferred over the time interval [0,3] is used to predict the dynamics
over the time interval [0,0.5]. While the simulations in part ¢ may appear to be the result of an unstable
numerical simulation, it instead is the result of a noisy initial condition combined with a an inferred ODE
model of the form u; = —28.58u2 + 28.55u. Small bumps in the initial condition grow to confluence over
time as depicted in this figure
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Diffuse Simulation, N = 10, Diffuse Simulation, N = 10,
(a) fit dynamics for [0,3] (b) predicted dynamics for [0,0.5]
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Fig.11 Sample fit and predicted dynamics for s with N = 10 time samples and 5% noise. a The simulated
learned equation for the diffuse that was inferred from data sampled over the time interval [0,3]. b The
model that was inferred over the time interval [0,3] is used to predict the dynamics over the time interval
[0,0.5]. ¢ The simulated learned equation for the fast that was inferred from data sampled over the time
interval [0,0.5]. d The model that was inferred over the time interval [0,0.5] is used to predict the dynamics
over the time interval [0,3]
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