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A B S T R A C T

The first few disease generations of an infectious disease outbreak is the most critical phase to implement control
interventions. The lack of accurate data and information during the early transmission phase hinders the ap-
plication of complex compartmental models to make predictions and forecasts about important epidemic
quantities. Thus, simpler models are often times better tools to understand the early dynamics of an outbreak
particularly in the context of limited data. In this paper we mechanistically derive and fit a family of logistic
models to spatial-temporal data of the 1905 plague epidemic in Bombay, India. We systematically compare
parameter estimates, reproduction numbers, model fit, and short-term forecasts across models at different spatial
resolutions. At the same time, we also assess the presence of sub-exponential growth dynamics at different
spatial scales and investigate the role of spatial structure and data resolution (district level data and city level
data) using simple structured models. Our results for the 1905 plague epidemic in Bombay indicates that it is
possible for the growth of an epidemic in the early phase to be sub-exponential at sub-city level, while main-
taining near exponential growth at an aggregated city level. We also show that the rate of movement between
districts can have a significant effect on the final epidemic size.

1. Introduction

Compartmental dynamic models have become a standard tool to
investigate mechanisms of infectious disease transmission and control
[1]. This approach is particularly successful in improving our under-
standing of the spread of infectious diseases when sufficient outbreak
data or key epidemiological parameters such as transmission rates are
available. However, in reality each new outbreak emerges with factors
that may differ from previously well-studied outbreaks, e.g. geo-
graphical, socio-economical, strain variation. Thus, we can argue that
during the early stage of a new outbreak, when data is scarce and is
subject to significant uncertainty, it is often difficult to statistically
connect complex mathematical models to partial data of an unfolding
outbreak.

On the other hand, simple models are often capable of capturing the
qualitative behavior of an epidemic with only a small number of
parameters. However, these models often provide a good fit to data and
perform well in short-term forecasts, but do not necessarily inform the
exact mechanisms behind the transmission process or the effects of

control interventions. For instance, standard compartmental models
often assume early exponential growth in the absence of susceptible
depletion and the effects of control interventions or behavior changes.
Although this assumption is appropriate in some situations, it could be
the result from the aggregation of local exponential and sub-ex-
ponential growth patterns at finer spatial scales [2,3]. In other words,
model fit may depend on the spatial scale at work [4].

In this paper we mechanistically derive (or derive in the context of
population contact structure and human behavioral change) and fit a
family of logistic models to spatial-temporal data of the 1905 plague
epidemic in Bombay, India. We systematically compare parameter es-
timates, reproduction numbers, model fit, and short-term forecasts
across models at different spatial resolutions. At the same time, we also
assess the presence of sub-exponential growth dynamics at different
spatial scales [3,4] and investigate the role of spatial structure and data
resolution (district level data and city level data) using simple struc-
tured models.
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1.1. Background on the 1905–1906 plague in Bombay

Bubonic plague is an infectious disease that is caused by the bac-
terium Yersinia pestis. Bubonic plague is spread through inflected flea
bites, as well as exposure to the tissue or fluids of an animal infected
with the plague, but not directly from human to human, unless it is the
uncommon pneumonic plague [5]. Untreated, bubonic plague mortality
is estimated at 30–60%.

It is hypothesized that the flea transmits bacteria to a host through
the blocked flea paradigm [6]. The flea consumes the blood of an in-
fected host, and the bacteria multiply until they form a blockage be-
tween the fleas’ esophagus and stomach. This blockage can take any-
where from 5 days post infection to 2–3 weeks post infection [7]. The
blockage prevents the flea from digesting new blood, until the blockage
is resolved, implanting plague bacteria into a new host. The factors that
influence the efficiency of transmission between flea and host are still
not well understood [8].

When considering the epidemics of bubonic plague in India, spread
of the disease was markedly seasonal. Early attempts at forecasting
plague were informed by weather: low hot weather and monsoon
season temperatures were expected to favor high incidence of plague
[9]. Some have suggested the seasonality stems from the ability of the
flea to transmit the bacteria to the new host during inclement tem-
peratures, although new research suggests that temperature does not
significantly affect efficiency of transmission [10]. Regardless, weather
variation is a major factor in the spread of vector-borne diseases [11].

Plague was first observed in the Mandvi region of Bombay in 1896
[12]. Year after year, the plague epidemic appeared to persist in
Bombay in a seasonal fashion [13]. Roughly half the city attempted to
flee in order to escape the plague, but the plague spread throughout
India in the following years. By 1914, more than 8.5 million people had
perished, and some areas of India reported plague deaths until the
1940s [14]. A commission was formed in 1905 to investigate the me-
chanisms responsible for the high burden of plague. As part of this ef-
fort, the number of deaths due to plague on a bi-weekly basis were
collected from 12 separate districts in Bombay by a team of scientists
and medical professionals [15]. In 1906, the plague in Bombay ex-
hibited a case fatality rate of approximately 90% [15].

1.2. Existing work on the 1905–1906 plague in Bombay

The first influential mathematical model investigating the spread of
bubonic plague in Bombay was constructed by Kermack and
McKendrick [16], an ODE model that included three compartments:
susceptible individuals, infected individuals, and immune (or re-
covered) individuals. While this model was able to fit the curve of
human deaths due to plague in 1906, it was not designed to explain
multi-year plague outbreaks. Additionally, as direct human-human in-
fection due to pneumonic plague was rare, this homogeneous mixing
modeling framework was not well suited to explain the underlying
disease dynamics of this plague epidemic. A more recent model of
plague transmission dynamics [17] includes 5 compartments: suscep-
tible rats, infected rats, recovered rats, average number of fleas per rat,
and free fleas. Using this epizootic model, it was possible to estimate the
number of human cases. Their stochastic metapopulation model was
used to predict the probability that the epidemic would persist in the
rodent population for more than 1, 2, and 10 years [18]. Other re-
searchers have furthered this model. For instance, in ref. [19], an ex-
tended 9-compartment model includes the human population (suscep-
tible, infected, recovered and victim) while removing the emphasis on
inherited resistance in the rat population previously given in ref. [17].
They also used a Holling type 2 search strategy for the rat population.
With this model, they were able to show agreement with the Bombay
1905–1906 epidemic data. Recently, Bacaer extended the model to
consider the seasonality of the plague by linking temperature with the
transmission rate between fleas and humans [20]. The resulting model

successfully explains multiple years of data. In addition to mechanistic
transmission models of plague, a number of studies have analyzed
spatiotemporal transmission patterns of plague [21,22]. A notable ex-
ample of a long term study in ref. [23] used statistical global modeling
techniques to study the correlation between outbreaks among humans
and the epizootics in two species of rats (M. decumanus and M. rattus).

While previous modeling efforts are useful to understand the me-
chanisms of the plague, they do not address the problem in real time,
especially in the early phases. Additionally, plague outbreak data is
often limited to the number of new cases or deaths in a particular area,
it complicates the use of complex multi-host mechanistic models that
involve many parameters. For this reason, it is often more appropriate
to start outbreak investigations using simple phenomenological models.
Here we build on previous work [2,3,24] to investigate the 1905
Bombay plague epidemic.

1.3. Models employed in this study

The generalized-growth model (GGM) has been previously shown to
be a useful tool to characterize the early growth trajectory of an in-
fectious disease outbreak [25]. The GGM takes the following form,

′ =x rxp (1)

where x(t) is the cumulative number of infections at time t, r is the
intrinsic rate of infection and p (0≤ p≤ 1) is the scaling of growth
parameter [25]. When =p 1 we recover the exponential growth model
and when 0≤ p≤ 1, the early growth phase is following sub-ex-
ponential growth.

To incorporate sub-exponential growth into a model for forecasting
past the ascending phase of an epidemic, we employ the generalized
Richards equation (GRM), which is a generalized version of the Richard
model [26]:
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(2)

Here, x(t) is the cumulative number of infections at time t, r is the
intrinsic rate of infection, K is the final epidemic size, p (0≤ p≤ 1) is
the scaling of growth parameter and “the exponent of deviation” a is a
parameter that modulates the peak-time of incidence [25,27]. We ob-
tain the original Richard model when =p 1 and the logistic equation
when =p 1 and =a 1.

The generalized-Richards model has been previously used to fit and
forecast single-epidemic outbreaks. Recently, both the GRM and GGM
were used to study the 2001 epidemic foot-and-mouth disease in the
UK, showing the ability of the models to generate short term forecasts
in absence of extensive data [28]. In a similar way, the GRM was used
to make forecasts in the recent Ebola and Zika outbreaks [29,30].
Special cases of this model have also been used to fit past outbreaks of
several infectious diseases. For instance, a multi-phase Richards model
was successful in describing the trajectory of the SARS outbreak in
Toronto including estimates of turning points of the epidemic curve
[31]. Another study has used the Richards equation to model four se-
parate cases of epidemics: H1N1 in Canada, SARS in the greater Tor-
onto area, dengue in Singapore, and SARS in Taiwan [27], and directly
related the parameters in the compartmental SIR model with those of
the Richards equation.

Lastly, we incorporate spatial structure explicitly by using a logistic
growth patch-model as studied in ref. [24]. Specifically, we study the
effect that movement and quarantine strategies have on the final epi-
demic size. Based on the layout in Fig. 1, it is natural to consider a
three-patch model where patch one includes Fort North and South,
patch two includes Mandvim, Chakla, Market, Oomarkhadi, and Dongri
and patch three includes Dhobi Talao, Bhuleshwar, Fanaswadi, Khara
Talao, Khumbharwada, and Khetwadi. The three patch model takes the
following form,
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where xi is the cumulative number of infections in patch i, mi, j re-
presents the rate at which cumulative infections travel from patch i to
patch j and Ki is the final epidemic size in patch ith if it were isolated
from the rest.

1.4. Data

An advisory committee was formed in 1905 to collect extensive data
on rat, flea and human cases through laboratory testing. These data
were later used to infer the connection between the outbreak in the rat
population with the outbreak in the human population. In this paper we
employ incidence data collected from this commission which involved
bi-weekly reports of plague mortality for each of the twelve districts
that made up Bombay [15]. To resolve the non-uniformity in the
starting time of the epidemic district-wise for the global fitting, we
selected data points after which the outbreak has taken place in all
districts.

2. Methods

2.1. Parameter estimation and confidence interval generation

We use the built-in MATLAB function LSQCURVEFIT to obtain
parameter estimates within a predetermined lower and upper bounds
via nonlinear least-squares. Parametric bootstrap with Poisson error
structure was implemented to generate 200 model realizations based on
the best fitted curve as described in ref. [32]. From these 200 realiza-
tions, we calculated 95% confidence intervals for model parameters and
other epidemiological quantities [33].

2.2. Forecasting comparison

For the twelve districts of Bombay that we are studying, the onset
week corresponds to the start of the monotone increase in the number
of new cases. All models were initialized using the reported incidence at
this point. Models were then trained on 4, 6 and 8 data points (corre-
sponding to 8, 12 and 16 weeks) from this initial point. Incidence
forecasts were made 2, 3 and 4 data points into the future (4, 6 and 8
weeks respectively).

2.3. Classification of exponential growth and the effective reproduction
number

We define near-exponential growth to be when the confidence in-
terval of the p estimate contains values greater than 0.9. Near-ex-
ponential growth in this case means the exponential growth assumption
in the early stage is acceptable. As in previous studies, we use the GGM
to analyze the initial growth phase of incidence cases. Specifically, if
the confidence interval for p contains only values lower than 0.9, we
categorize it as sub-exponential (polynomial) growth.

The effective reproduction number, Re(t), is defined as the average
number of new infections generated by one infectious individual at time
t. It can be estimated by using incidence data that is generated by the
generalized-growth model and information about the probability dis-
tribution of the generation interval [25]. We numerically estimated the
effective reproduction number by generating case incidence data from
the GGM and using the discretized renewal equation:

=
∑ = −

R t I
I ρ

( ) ,e i
i

j
i

i j j0 (4)

where Ii denotes incidence at calendar time ti, ρj denotes the discretized

Fig. 1. Zoomed in view of the study area taken from [15].
Region/patch 1, 2 and 3 are the blue, dark grey and grey area
respectively. The numbers show the population per acre. To
study the spatial component, we consider the three regions as
divided here. Since we do not have data for Esplanade, this
region is not used directly in the modeling. However, taking
advantage of the fact that Esplanade creates a natural barrier
between Fort North and South and the other two regions, we
choose the corresponding regions in a way that allows for
dynamics where two patches were right next to each other and
another was “disconnected”. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the
web version of this article.)
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probability distribution of the generation interval. We assumed a gen-
eration interval with a Gamma distribution of 7 days and a standard
deviation of 2 days [34].

Additionally, the effective reproduction number can be directly
computed for the GGM with the following formula [25]:

= ⎡
⎣
⎢ +

−
− +

⎤
⎦
⎥

−
R
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(1 )
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g

g
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(5)

where g is the disease generation, Tg is the generation interval taken to
be 7 days for the 1905–1906 Bombay plague and = −A x (0) p1 [34]. We
train the GGM using the first 3, 4 and 5 data points (6, 8 and 10 weeks)
to obtain estimations for r and p.

3. Results

3.1. Model derivations

The usual presentation of logistic models implies the notion that the
intrinsic growth rate, r, and the carrying capacity, K, are independent,
which neglects the possibility of a connection between the two as
shown in chapter 6 of [35]. Here, we provide two mechanistic deri-
vations of the GRM (and thus the logistic equation) in an epidemic
setting.

Our first derivation of the Richards Model is adapted from a similar
derivation found in [24]. Assuming no births, natural deaths or im-
migration of susceptible individuals and that infected individuals do not
return to the susceptible class, the classical Kermack and McKendrick
infectious disease model can be adapted to obtain the following system
of differential equations that model the susceptible (S) and infectious
individuals (I):

′ = −
+
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where β is the infection rate and μ is the disease induced death rate.
Note that we assume there is no recovery because the equation is de-
rived specifically for the early phase of an epidemic. From system (6)
the cumulative number of infections at time t, denoted by x(t), has
derivative ′ = ≈+x t β βI( ) ,SI

S I (assuming ≈+ 1S
S I ). Below we assume

that ′ =x t βI( ) .
Behavior assumption: During an epidemic, a change in behavior in

the community that mitigates the transmission rates is expected as an
epidemic unfolds [36]. This might include better access to health care
or, in the case of the Bombay plague epidemic, attempting to clean the
streets and sewers to control the rat population [37]. This response is
modeled by a function of the total reported cases and has a decreasing
effect on the per-capita infection rate. That is,

′
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(7)

is a decreasing function of the total number of reported cases x(t).
In the following, we assume that = −f x t r bx t( ( )) (1 ( ( )) )a for some

positive constants r, b and a. The chosen f(x(t)) has the simplest func-
tion form that reflects the desired property on the per-capita infection
rate. Hence,
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where = +K a
b

( 1) a1/
. Here we interpret r as the intrinsic infection rate, b is

a proportionality constant that corresponds to strength and effective-
ness of disease interventions and preventive strategies, K is the final
epidemic size and the parameter a corresponds to a nonlinear change in
the behavior response which can be interpreted as the intensity of the
behavior response as more cases are reported. Note that this is the GRM
with =p 1.

The mechanistic derivation of the GRM follows from a geometric
interpretation. Let X be the population of total infected individuals
living in the circle of radius R, see Fig. 2. We assume homogeneous
mixing of the population within this circle, so X is proportional to the
area of this circle, e.g. =X aπR2 for some proportional constant a. This
is equivalent to =R X aπ/ .

Since the infection spreads via contact, the growth of X is propor-
tional to the immediate surrounding (grey) area with a small radius
extension h. Note that this is a reasonable assumption due to the chance
of encountering a susceptible person from outside the infected circle is
higher than one from the inside. This is especially true if the outbreak is
in its early stage (the circle is small), so the ratio between the im-
mediate surrounding and the area of the circle is relatively high.
Additionally, we assume the death rate of X is proportional to some
power of its size. Thus we have

′ = −X β πRh dX2 q

where β and d are corresponding proportional constants. Using the
relationship of R and X, this equation becomes

′ = − = ⎡
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q1/2 1/( 1/2)

2 . The value of p in

the 2 dimensional case is 1/2. However, as the dimension increases, the
value of p increases strictly and approaches 1, e.g. in 3 dimensions

=p 2/3. The dependence of the value of p on the dimension of the
problem is a geometrical property of the derivation. The higher di-
mension perhaps links to the more number of ways for the outbreak to
spread, which would make sense given the higher number of dimension
corresponds to the higher value of p.

3.2. Forecasting comparison

The Logistic model and GRM incidence forecasts for the district
Fanaswadi and the entire city of Bombay are shown in Figs. 3 and 5,
respectively. There are three clear trends that should be noted. First, the
confidence interval is smaller when more data are used for fitting.
Secondly, global forecast and fitting are better than local forecast and
fitting. Lastly, forecasting confidence intervals, calibrated on data past
the peak of the epidemic, become significantly smaller in comparison to

Fig. 2. Spatial representation of the system in 2 dimensions.
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Fig. 3. Six–week ahead incidence
forecasts of Bombay city. Left column:
Logistic model fitted using an in-
creasing amount of incidence data: 8,
12, 16 and 20 epidemic weeks. Right
column: The generalized Richards
model fitted using an increasing
amount of incidence data: 8, 12, 16
and 20 epidemic weeks. Gray curves
correspond to the ensemble of 200
realizations for the model forecast. The
mean (solid red line) and 95% CIs
(dashed red lines) of the model fit en-
sembles (gray curves) are also shown.
The vertical dashed line separates the
calibration and forecasting periods.
(For interpretation of the references to
color in this figure legend, the reader is
referred to the web version of this ar-
ticle.)

Fig. 4. RMSE for calibration and
Six–week ahead incidence forecasts of
the 1905 Plague epidemic in Bombay
city. Left column: RMSE of logistic
model. Right column: RMSE error of
the generalized Richards model. The
mean (solid red line) and 95% CIs
(dashed red lines) are also shown.
(For interpretation of the references
to color in this figure legend, the
reader is referred to the web version
of this article.)

Fig. 5. Six–week ahead incidence
forecasts of Fanaswadi. Left column:
Logistic model fitted using an in-
creasing amount of incidence data: 8,
12, 16 and 20 epidemic weeks. Right
column: The generalized Richards
model fitted using an increasing
amount of incidence data: 8, 12, 16 and
20 epidemic weeks. Gray curves corre-
spond to the ensemble of 200 realiza-
tions for the model forecast. The mean
(solid red line) and 95% CIs (dashed
red lines) of the model fit ensembles
(gray curves) are also shown. The ver-
tical dashed line separates the calibra-
tion and forecasting periods. (For in-
terpretation of the references to color
in this figure legend, the reader is re-
ferred to the web version of this ar-
ticle.)
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forecasting using only data before the peak of the epidemic. It should be
noted that long term forecast (several months) can have high varia-
bility, especially when model calibration uses 8 and 12 weeks of in-
cidence data. Additionally, in general, the logistic model has compar-
able forecasting properties to the Generalized Richard model, for
example see Figs. 4 and 6. More generally, training the models on 12-
week incidence data and forecasting 8 weeks in to the future, gives a
root mean square error (RMSE) mean of 296 (median = 104, IQR:
[70.6, 185]) for the generalized Richards model and a RMSE mean of
304 (median = 103, IQR: [67.1, 183]) for the logistic model. We refer
the reader to Table 1 and supplemental Tables S1 and S2 for more
details concerning the comparison of forecasting errors.

In a previous study, the deceleration of growth parameter (p) during
the epidemic in Bombay was estimated in the range of [0.68, 1] with
mean value of 0.86 [3]. Our results at the city level agree with this
estimation (95% CI: [0.78, 1] with mean 0.96), yet are slightly higher
when using 8 weeks of incidence data. However, estimations at the sub-
city level show that sub-exponential growth is quite common. Indeed,
Fig. 7 illustrates that with 8 and 10 weeks of data the 95% confidence
intervals of p shrink around values consistent with sub-exponential
growth. In general, p varies across geographic locations at the sub-city
level (median = 0.64, IQR: [0.42, 0.74], using 6 weeks of incidence
data). Estimations of p using 8 weeks of epidemic data using the GGM
are summarized in Table 1. Supplementary Tables S1 and S2 provide p
estimations for 12 and 16 weeks. The difference in estimations of p at

the district and city level support the hypothesis that exponential
growth at the global level may be a result of multiple sub-exponential
growth profiles aggregated at the local level.

The estimations of the effective reproduction number in Fig. 8
which are summarized in Table 1 and supplementary Tables S1 and S2
show four clear trends. First, the estimations using Eq. (5) tend to have
narrower confidence intervals than the ones obtained from the Renewal
Equation (Eq. (4)). Second, the more data points used for fitting para-
meters, the smaller the confidence intervals are. Third, the confidence
intervals for global estimates are smaller in comparison to the estimates
for district. Finally, most of the estimations hover around the value of
1.5 and within the range between 1 and 2, with the exception of
Khumbharwada. This shows consistency between the two methods of R
estimation. Indeed, the effective reproduction number is fairly uniform
across geographic locations at the sub-city level (median = 1.23 IQR:
[1.15, 1.33], using 12 weeks of incidence data and the renewal equa-
tion). Furthermore, our global estimates are similar to the estimate
found in literature with median = 1.37 and IQR: [1.19, 1.61] [25]. This
result shows interesting similarities and contrasts between the two
methods for estimating the reproduction number with respect to the
number of data points used for fitting and the geographical variations.

3.3. Patch model fitting

As a numerical exercise to investigate how migration may change

Fig. 6. RMSE for calibration and
Six–week ahead incidence forecasts of
Fanaswadi. Left column: RMSE of lo-
gistic model. Right column: RMSE
error of the generalized Richards
model. The mean (solid red line) and
95% CIs (dashed red lines) are also
shown. (For interpretation of the re-
ferences to colour in this figure le-
gend, the reader is referred to the web
version of this article.)

Table 1
Summary table of key epidemiological quantity estimates and forecasting errors provided by the GGM and GRM. Both models were trained on 8 weeks of incidence
data. Forecasting error is based on short-term forecasts 4 weeks into the future. Quantities inside bracket represent the 95% confidence interval.

District p (GGM) R Renewal Eq. R Eq. (5) GRM Forecasting Error (RMSE) Logistic Forecasting Error (RMSE)

Fort North & South 0.60 [0, 1] 1.20 [0.40, 2.01] 1.41 [1.00, 1.65] 31.02 [3.87, 42.49] 24.46 [1.85, 42.22]
Mandvi 0.89 [0.31, 1] 1.38 [0.89, 1.77] 1.38 [1.22, 1.48] 23.11 [2.20, 57.50] 20.00 [1.85, 54.09]
Chakla 0.99 [0.87, 1] 1.56 [1.40, 1.73] 1.68 [1.62, 1.73] 317 [64.66, 570] 242 [28.7, 544]
Market 0.61 [0, 1] 1.20 [0.73, 1.69] 1.43 [1.00, 1.60] 60.51 [14.33, 79.38] 55.81 [10.37, 77.99]
Oomarkhadi 0.74 [0.54, 0.98] 1.37 [1.16, 1.57] 2.10 [1.94, 2.24] 131 [31.00, 344] 98.36 [52.61, 117]
Dongri 0.74 [0.32, 1] 1.30 [0.95, 1.63] 1.61 [1.40, 1.74] 52.10 [4.01, 149] 56.53 [13.70, 138]
Dhobi Talao 0.85 [0.53, 1] 1.46 [1.11, 1.75] 1.80 [1.64, 1.99] 76.16 [5.52, 250] 82.53 [15.64, 258]
Bhuleshwar 0.89 [0.66, 1] 1.45 [1.20, 1.70] 1.75 [1.65, 1.87] 109 [11.71, 270] 116 [14.11, 270]
Fanaswadi 0.39 [0.05, 0.73] 1.13 [0.82, 1.40] 1.74 [1.11, 2.08] 47.61 [7.69, 71.34] 91.57 [9.40, 256]
Khara Talao 0.89 [0.63, 1] 1.64 [1.38, 1.86] 2.47 [2.11, 2.74] 242 [43.16, 479] 169 [24.51, 427]
Khumbharwada 0.65 [0.38, 0.91] 1.30 [1.02, 1.56] 2.10 [1.84, 2.26] 99.02 [87.23, 98.60] 88.83 [54.38, 95.66]
Khetwadi 0.67 [0.22, 1] 1.28 [0.86, 1.63] 1.72 [1.36, 1.92] 67.49 [25.10, 127] 66.08 [25.96, 129]
Global 0.96 [0.78, 1] 1.44 [1.27, 1.60] 1.57 [1.53, 1.62] 175 [15.69, 358] 149 [14.64, 290]
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the final epidemic size of an outbreak, we fit the 3-patch model si-
multaneously to three data sets comprised of 3-patches in Bombay as
shown in Fig. 1. Parameter estimations and model fits are shown in
Fig. 9 and migration bifurcation plots are shown in Figs. 10 and 11.
Bifurcation plots with respect to migration between patches 2 and 3
show that certain levels of movement between the two patches can
produce final epidemic sizes that are well over the final epidemic size
given when the patches are isolated from each other ( + +K K K1 2 3). A
possible explanation as to why this occurs is because the movement of a
patch composed of many smaller districts will be significantly larger
than the individual rate of movement of each district. Thus, if each
district has a substantial rate of movement corresponding to sub-ex-
ponential growth, we can expect that the effective rate of movement of

the global patch is large enough to account for near exponential
growth. The left panel in Fig. 10 shows the importance of sending
people to a less volatile patch, in this case, patch 1. That is, increasing
migration into patch 1 from the neighboring patches effectively re-
duced the overall final epidemic size. On the other hand, migration out
of patch 1 and into the more volatile patches 2 and 3 ultimately de-
creases the overall final epidemic size, but less effectively.

Comparison between the rate of movement with relation to patch 1
(Fort North and South) and rates of movement between patch 2 and 3
show agreement with our understanding of the situation during
Bombay plague. Individuals have limited movement and geographical
barrier presents difficulty in transition to patch 1.

Result on global asymptotic stability and existence of a unique

Fig. 7. 95% confidence intervals for parameter p obtained by nonlinear least square fitting of the generalized growth model (GGM) to an increasing amount of data
(8–12 weeks) across the twelve different districts of Bombay. The global estimation of p corresponds to when all district data is aggregated together. Below the
horizontal dashed line is the region that classified as sub-exponential growth.

Fig. 8. R estimates using 8 and 12 weeks of incidence data. Estimates are generated in two ways: 1) the Renewal equation (Eq. (4)) coupled with 200 GGM ensemble
incidence forecasts and 2) parameter estimations from 200 GGM ensemble incidence forecasts used in Eq. (5). Estimations are at the district and global level. The
black dash line is reference for the value 1.
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positive steady state for an n-dimensional patch system is shown in
Lemma 3.1 in ref. [38], which is proved by applying Theorem 6.1 in
Hirsch [39]. This would in fact imply the boundedness of the cumula-
tive infection. However, the boundedness of the logistic model is often
given from the corresponding carrying capacity. On the other hand, our
simulation shows that it is possible for the population size to grow
beyond the cumulative carrying capacity of the patches in the logistic
patch model.

Interestingly, to the best of our knowledge, there has not been any
results establishing the conditions for the final epidemic size to surpass
the cumulative carrying capacity (e.g. + +K K K31 2 ). This may yield
insightful consequences with potential public health implications. A
meaningful inequality is not trivial in this case, as shown below.

Fig. 12 suggests a direct way to obtain such condition in the case of
two patch logistic model, or precisely, + > +x x K K* *1 2 1 2 if and only if

>x xb a
1 1 . However, solving algebraically for something tractable from

the inequality >x xb a
1 1 seems unlikely. A clear mathematical result

would probably require a case by case consideration with respect to the
relation of r, m and K. We will explore this mathematical problem in
subsequent work.

4. Discussion

In this paper, we derived the generalized Richards model from first
principles and related the deceleration parameter p to the spatial di-
mension in which the disease is spreading. In addition, we used the
generalized-growth model to detect sub-exponential growth trajectories
at the sub-city level and estimate the effective reproduction number at
the sub-city and city level. We also assessed short-term forecast tra-
jectories of the logistic equation and the GRM. Results suggest that the
epidemic growth at the global level is near-exponential with p near 1
(95% CI: [0.78, 1] with mean 0.96), while the scaling of growth at the

Fig. 9. (Right) Model fit to incidence data from Bombay. Patch 1 consists of Fort North and South. Patch 2 consists of Mandvim, Chakla, Market, Oomarkhadi, and
Dongri. Lastly, patch 3 comprises of Dhobi Talao, Bhuleshwar, Fanaswadi, Khara Talao, Khumbharwada and Khetwadi. (Left) The parameter estimates of the best fit
for patch model.

Fig. 10. The effect of controlling migration rates in and out of Fort North and Fort South and how they influence the final epidemic size. Recall the notation: mij

means migration from patch i to patch j. (Left: migration into Fort North and South). In this case, the model shows that the final epidemic size is a decreasing
function of m21 and m31. (Right: migration out of Fort North and South). Increasing the rate that people from Fort North and South entering into the rest of the city
has a decreasing effect on the final epidemic size; however, this may not be true when the rate of movement is very small. Note that the impact of migration is not as
significant as in the previous case.
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local level is mostly in the range of sub-exponential.
The general assumption of exponential growth is not always optimal

(perhaps not even appropriate) in the early phase of an epidemic [2,3].
Exponential growth is a phenomenon well associated with cell growth
in an unlimited nutrient environment, but in a complex situation such
as the spread of an outbreak, it is overly simplistic. Intuitively, even in
the case of patient zero, where we could argue for unlimited supply of
“nutrient”, the rate of growth should still be dependent on other factors
such as the range of movement of the individuals within the region [4].
Additionally, this early exponential stage of an outbreak can become
short-lived once the disease has spread to more than a few individuals.
The initial growth rate is influenced by many factors that need to be
captured for a realistic understanding of the situation.

For the majority of the districts in Bombay city, our results suggest
that sub-exponential growth is quite common, but at the city scale,
growth is found to be near-exponential. Exponential growth at the city
scale is also consistent with what has been reported by another
study [25]. Ultimately, our results are preliminary and sub-exponential
growth is most likely associated with multiple mechanisms (e.g., com-
plex population mixing structures, reactive behavior changes, control
interventions, local customs).

A possible explanation of sub-exponential growth may be the net-
work structure of the susceptible population. In this case, we consider
the small-world network interpretation [40]. If we suppose that each
person has a close circle of friends/family members of size F. Then in a
small world, F can be approximated as x1/n where n is the degree of

separation (ranging between 2 and 8) and x is the population. We can
then partition the population x into = …X i n, 1, ,i . Here we define X1 to
be the initial set of infected individuals, =X x F2 1 to be the close friends
of X1, X3 to be the close friends of X2 excluding those already in X2 and
X1 and so forth. We assume that once the disease has spread beyond the
X2 population into the X3, most of the total population would have been
aware of this development and take counter measures to protect
themselves from getting infected - recall the behavioral assumption in
the first derivation. In other words, the disease is not likely to affect the
population in X4 and higher as effectively. This reasoning suggests that
the real susceptible population to be + +X X X ,1 2 3 which is approxi-
mately x3/n, which implies =p n3/ .

Our analysis shows that the growth rate during the ascending phase
of an epidemic can depend on the spatial scale of the data being used. In
other words, global spatial scales can mask valuable information that
can only be obtained by looking at local spatial scales. Indeed, we have
shown that sub-exponential growth rates at the sub-city level could
aggregate together and produce near exponential growth at the city
level during the 1905 Bombay epidemic. This phenomenon has been
observed during the Western Africa Ebola epidemic of 2014 and the
early dynamics of HIV/AIDS epidemics in Brazil [2,41]. Future studies
of how different spatial scales change the estimation of epidemiological
quantities and their underlying physical mechanisms are warranted.
The GGM and the GRM are important tools for gaining valuable in-
formation before details of the transmission mechanisms of the pa-
thogen are known and have proven to be indispensable theoretical tools
to inform and guide the future direction of the modeling community
[34]. More importantly, these models can prove to be quite useful in
quickly informing the allocation of public health resources and inter-
vention strategies by identifying locations that yield near-exponential
epidemic growth.

The bifurcation diagrams of the final epidemic size based on the rate
of movement are only meaningful in the early stage of the outbreak,
because as the outbreak progresses, the “intrinsic rate of growth”
changes. Furthermore, isolating or over-packing the infectious popu-
lation into a patch will cause an increase in the “intrinsic rate of
growth” or the “effective carrying capacity”, so it is inappropriate to fix
these parameters for an analysis in the long term. However, the bi-
furcation plots serve to show the significance of the rate of movement.
Realistically, however, when the rate of movement between each patch
increases, this causes a higher chance for a larger final epidemic size.
This perhaps suggests that a higher rate of movement is closely con-
nected to the exponential growth assumption. Additionally, we note
that all movement parameters relating to patch 1, which represents a
single district is much smaller in comparison to the movement between
patch 2 and 3. The rate of movement between patch 2 and 3 is a form of
an effective rate of movement between the districts in the two patches.
This can be explained via the natural barrier of Esplanada that separates
Fort North and South from the rest as seen in Fig. 1. This is because the
rate of movement between patch 2 and 3 in the model is a form of
effective rate of movement obtained through fitting, or an approxima-
tion of the total movement of the districts that belong to the patch.

It is worth noting that global stability analysis of dynamical systems
is a dominating feature in the mathematical study of epidemiological
models. However, attention should also be paid to non-standard aspects
of mathematical analysis, for example the condition at which the cu-
mulative infected population surpasses the total carrying capacity in a
patch model. This observation not only defies common sense, but also
questions the phenomenological definition of “carrying capacity”. Our
result suggests a more general and comprehensive mechanism linking
the “intrinsic rate of growth” and the “carrying capacity” in standard
logistic model, which we will explore in future work.

Parameter identifiability is a problem that can arise from complex
phenomenological models and limited data. In this sense, simpler
models often hold the advantage since they tend to be identifiable,
especially in the case of mechanistic models. We derived the Logistic

Fig. 11. Final epidemic size as a function of m23 and m32. Recall the notation:
mij means migration from patch i to patch j. The model predicts that it is
possible for the overall final epidemic size to be larger than + +K K K1 2 3.

Fig. 12. x1 and x2 nullclines plotted with the cumulative carrying capacity
+K K1 2. The intersections of the x1 and x2 nullclines with the cumulative car-

rying capacity have projections onto the x1-axis denoted by x a
1 and x b

1 respec-
tively.
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family mechanistically and obtained explicit relations between para-
meters. Thus, this supports its identifiability, e.g. the models can be
reduced to a simpler form with identifiable parameter. In the future,
perhaps a mechanistic relation between r and p that needs to be ex-
plored to possibly reach an identifiable stage for the GGM. It should be
noted that structural identifiability can still remain an issue as there are
examples where a simple model remains non-identifiable.

Due to the devastating nature of the Black Death, there have been
multiple studies and mathematical models addressing the spread of
Black Death through Europe in Medieval times. However, it has been
argued by historians that the Black Death may have been vastly dif-
ferent from modern plague in terms of transmission, spread, and ac-
quired immunity [42]. While the Bombay Plague Commission asserted
that the method of spread was due to the flea-rat-human vector [15],
others have argued that the Black Death may have been spread through
other means. Examining the rate at which disease spread through
Europe, and given the unseasonable temperatures for flea reproduction
and survival, ref. [43] demonstrates better fits to historical epidemic
data with a human-lice vector rather than the human-rat-flea vector.
Another study in ref. [44] used spatiotemporal stochastic modeling to
compare and contrast characteristics of the Black Death in Europe with
the bubonic plague spread in India. They concluded that the Black
Death and the modern plague were different in many key aspects: Black
Death moved much faster, seasonality is more important in modern
plague, and Black Death mortality was much larger. Other researchers
have also concluded that modern plague and Black Death were in-
herently different [45]. Therefore, it would be interesting to discover
whether, despite the many differences between the Bombay plague and
the Black Death, the simple model presented in this work would also
apply to the Black Death.

For future work, we would like to expand on our analyses by
comparing the predictive ability of each model under different scaling
of growth rate assumptions to further strengthen our conclusion re-
lating spatial scale and scaling of growth. Additionally, while we fix the
parameters in our analysis assessing the effect of migration, it is more
reasonable to let them change over time. Thus, it would be interesting
to derive a mechanistic relationship between m, r and K from first
principles with respect to other parameters in order to comprehensively
study the impact of immigration on final epidemic size.
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