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Abstract We continue our efforts in modeling Daphnia magna, a species of water
flea, by proposing a continuously structured population model incorporating density-
dependent and density-independent fecundity and mortality rates. We collected new
individual-level data to parameterize the individual demographics relating food avail-
ability and individual daphnid growth. Our model is fit to experimental data using the
generalized least-squares framework, and we use cross-validation and Akaike Infor-
mation Criteria to select hyper-parameters. We present our confidence intervals on
parameter estimates.

Keywords Continuous structured populationmodels · Inverse problems ·Generalized
least squares · Model selection · Information content · Residual plots

1 Introduction

Structured population models (SPMs) track the density of a population of individuals
over time with respect to a physiologically structured variable, such as age or size.
SPMs have been used to describe a wide variety of ecological data, see Caswell (1989,
2005), Diekmann et al. (2007), Keyfitz and Caswell (2005), Ellner et al. (2016), Ellner

Electronic supplementary material The online version of this article (doi:10.1007/s11538-017-0344-8)
contains supplementary material, which is available to authorized users.

B Erica M. Rutter
erutter@ncsu.edu

1 Department of Mathematics, Center for Research in Scientific Computation, North Carolina
State University, Raleigh, NC 27695, USA

2 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-017-0344-8&domain=pdf
http://dx.doi.org/10.1007/s11538-017-0344-8


2628 E. M. Rutter et al.

and Guckenheimer (2011) and the references therein. SPMs are desirable because they
describe the life history of the organism and allow for dependence of age or density on
growth, survival, and fecundity rates. SPMs can be both discretely structured (Leslie
1945) or continuously structured (Sinko and Streifer 1967).

A continuously structured population model can be preferable to a discrete model
for several reasons. When using discrete structured population models (SPMs),
parameter estimation may be computationally unstable when parameters are time
or age-dependent (Banks et al. 2009; Wood 1994). Previous work (Banks et al. 2007,
2008) has indicated that the Sinko–Streifer model (Sinko and Streifer 1967), a contin-
uously structured population model, is more amenable to estimating age-dependent
parameters than discretely structured models. Further, we have previously (Adoteye
et al. 2015a) compared discrete and continuous SPMs for the density-independent
Daphnia magna survival data and found that the Sinko–Streifer model generated a
better fit to data.

Daphnia magna is a species of water flea that has been widely studied in ecotox-
icology due to their ability to quickly reproduce and their sensitivity to exogenous
chemicals. Daphnids are often used to gauge the hazard of pesticides or other
chemicals on the ecosystem (LeBlanc et al. 2013; Rider and LeBlanc 2005; Wang
et al. 2005, 2011). Ecological risk assessments that use daphnids are most com-
monly performed at the organismal response. However, organismal response level
does not directly correlate to population-level responses nor does it allow for causal
association to ecosystem adversity, which remains of interest to toxicologists (Coun-
cil 2013). Mathematical models may be used to quantitatively connect organismal
assessment information to the population level (Ankley et al. 2010; Council 2013;
Hanson and Stark 2011). Recent daphnid structured population modeling efforts
have lacked age-dependent demographics (Erickson et al. 2014), an estimation of
density-dependent parameter uncertainty, or have focused on qualitative model anal-
ysis instead of model validation (Diekmann et al. 2010; El-Doma 2011, 2012; Farkas
and Hagen 2007; Kramer et al. 2011). Thus, current daphnia SPMs do not accu-
rately capture the long-term dynamics of aggregate (Banks et al. 2014) population
data.

It has long been suggested that daphnid growth is dependent upon food availabil-
ity (Kooijman and Metz 1984). In particular, duration of the juvenile stage may be
dependent on quantity of available resources (Nisbet and Gurney 1983). Previous
mathematical models (de Roos et al. 1990) argue that dependence of growth on food
availability allows for limit cycle emergence and oscillatory behavior. Correspond-
ing mathematical models have incorporated resource-dependent growth, fecundity
and mortality (Ananthasubramaniam et al. 2011). Nelson et al. (2007) introduced a
stage-structured model incorporating juveniles, adults, and algae. Using this model,
McCauley et al. (2008) discovered that the coexistence of large-amplitude fluc-
tuations with small amplitude cycles in consumer-resource systems may be due
to delayed juvenile stage duration. However, although these previous models are
well formulated and mathematical analysis was performed, they did not include
fitting the models to longitudinal experimental data. In addition, these models do
not consider the other effects of density dependence, such as the accumulation of
metabolites in the media resulting from overcrowding, which has been shown to
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influence daphnid fecundity (Goser and Ratte 1994). Preuss et al. (2009) investi-
gated these density-dependent effects in an individual-based model and discovered
that, in addition to intraspecific competition, crowding effects must be incorpo-
rated.

We propose a continuously structured SPM for Daphnia magna that includes both
density-independent and density-dependent growth, fecundity, and mortality. We per-
form individual-level experiments determining the effect of food restriction on daphnid
growth to inform our model. We fit our model to Daphnia magna data using a vec-
tor generalized least-squares framework and perform cross-validation. We determine
local sensitivities on all estimated parameters to understand how the model is affected
by parameter changes. Further, we calculate confidence intervals and standard errors
for our parameters. We also propose a slight variation on our model, allowing for more
flexibility in the relationship between density-dependent mortality and biomass. We
estimate the additional parameters and show, using the Akaike Information Criteria
score, that the more complex model does not perform better than the simpler model.
We also obtain realistic confidence intervals using the simpler model.

2 Mathematical Model

We employ the Sinko–Streifer equations (1967) that describe the continuous-time
dynamics of a population structured over a continuous variable, which in this case we
take to be age (a). u(t, a) represents the population at time t of age a.

∂u(t, a)

∂t
+ ∂u(t, a)

∂a
= −μind(a)μdep(a, M(t))u(t, a) (1)

Themortality rate is a product of a density-independent rate,μind(a), and a density-
dependent rate μdep(a, M(t)). The density-dependent rate depends on age as well as
total biomass at time t , given by M(t). The density-dependent rate is a dimensionless
scaling factor that changes with the biomass. This function is intended to describe the
effects of food availability as well as other factors that may influence the survival,
such as overcrowding (Goser and Ratte 1994). Our boundary condition represents the
introduction of neonates into the population and is given by:

u(t, 0) =
∫ amax

0
kind(s)kdep(M(t − τ))u(t, s)ds (2)

The fecundity kernel in the recruitment term is similarly described by density-
independent and density-dependent rates. The density-dependent rate is dimensionless
and scales the density-independent rate with the increase in biomass. This rate
describes the effects of crowding, such as lower algae levels or other resource scarci-
ties. Following the assumptions validated in previous results (Adoteye et al. 2015b),
the density-dependent rate is delayed and depends on the biomass τ days ago.
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The equation describing total population biomass is given by:

M(t) =
∫ amax

0
u(t, s)

(
KM0ers

K + M0(ers − 1)

)L

ds. (3)

where L represents the exponent that relates daphnid length to daphnid biomass.
Based on previous results (Adoteye et al. 2015b), and results explained in Sect. 3.1,
the length of each daphnid is assumed to follow a logistic growth curve. We model
biomass as daphnid length raised to an exponent L , since daphniamass typically varies
allometrically with length with the exponent having a value between 2 and 3 (de Roos
et al. 1990). We then integrate over all ages in order to obtain the total biomass of the
population.

We assume that the density-dependent rate ofmortality is a non-decreasing function
of population biomass, i.e.,

∂μdep
∂M ≥ 0, and that it is a non-increasing function of age,

i.e.,
∂μdep

∂a < 0.We use a hill function to describe the effect of age and a linear function
to describe the effect of biomass:

μdep(a, M(t)) = 1 + c1M(t)
ch23

ch23 + ah2
. (4)

Wemake the additional assumption thatμdep only affects non-reproductive individ-
uals and has no effect on reproductive individuals (adults). To model this assumption,
we take c3 = 8 days old (the age just before the first offspring are produced) and the
hill coefficient h2 = 10, which describes a sharp cutoff in the age at which density
has an effect on mortality.

We assume that the density-dependent rate of fecundity is a non-increasing function
of population biomass, i.e.,

∂kdep
∂M ≤ 0. To model this behavior, we used the following

hill function:

kdep(M(t − τ)) = qh3

qh3 + M(t − τ)h3
(5)

This functional form is chosen in order to describe a monotone decreasing dependence
of fecundity on biomass that is biologically relevant, i.e., the total fecundity rate
k = kindkdep equals kind when M(t) = 0 and is approximately zero for sufficiently
large M(t).

The density-independent rates of fecundity and mortality were estimated from
individual-level data (Adoteye et al. 2015b), further explained in Sect. 3.1. The
daily data for density-independent fecundity were used to directly parameterize the
density-independent fecundity, kind(a), as a function of age. For μind(a), we used an
age-varying function that we previously estimated (Adoteye et al. 2015a) within a
density-independent Sinko–Streifer framework using piecewise linear splines (Banks
and Davis 2007).

The observables for the data set we collected are the total counts of daphnids within
two size classes, which are described by an age cutoff a1 that we previously determined
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by estimating the relationship between age and size (Adoteye et al. 2015b):

S1(t) =
∫ a1

0
u(t, s)ds (6)

S2(t) =
∫ amax

a1
u(t, s)ds (7)

The total population size is the sum of S1(t) and S2(t), or

N (t) =
∫ amax

0
u(t, s)ds (8)

The integral in these population counts ends at a specified age, amax, which we take
to be 90 days. This limit is older than the last surviving daphnid we found in density-
independent experiments, and allows for finitely defined age-mesh in the numerical
PDE solver.

3 Methods

3.1 Data

The population data used to fit our model are obtained as previously described in
Adoteye et al. (2015b), but here we will briefly describe the data for completeness. A
longitudinal study was performed, in duplicate, over 102 days. The daphnid media,
reconstituted from deionized water as previously described (Baldwin and LeBlanc
1994), was seeded with five 6-day-old female daphnids. Daphnids were counted every
Monday,Wednesday and Friday for the first three weeks of the experiment and weekly
thereafter. Daphnia were separated into two size classes with a fine-mesh 1.62-mm-
pore-size net.

The parameters used for density-independent rates are based on individual-level
experiments also described in Adoteye et al. (2015b). Thirty individual daphnids were
housed in 50-mLbeakers containing40mLof daphnidmedia. Theyhadmedia changed
daily andwere being fed 7×106 cells of algae (Pseudokirchneriella subcapita) and 0.5
mg (dry weight) of Tetrafin™ fish food. This amount of food differs from laboratory
conditions and was inspired by previous work (Olmstead and LeBlanc 2007). Major
axis length as well as fecundity were measured daily until all daphnids had died (after
74 days). The major axis lengths were fit to a logistic curve individually to determine
parameters r , K , and M0 (Adoteye et al. 2015b).

We subsequently performed a 14-day individual experiment to assess the effects
that food restriction had on daphnid growth and, consequently, biomass, defined in
Eq. (3). Although previous experimental work has shown that the major axis length
of adult daphnids decreases with food restriction, exact experimental procedures or
data were not included (Kooijman and Metz 1984). We tested 3 food levels: our
laboratory control (receiving 1.12×107 cells of algae (Pseudokirchneriella subcapita)
and 0.8 mg Tetrafin™fish food daily), a medium food group (receiving 3.5×106 cells
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Fig. 1 (Color figure online) Results from the individual-level study of food restriction on daphnid growth.
Black circles represent data points from each individual daphnid. The red line represents the mean fit to a
logistic curve. The black dashed lines represent the logistic curve fit to each individual daphnid

of algae daily with 0.25 mg Tetrafin™ fish food), and a low food group (receiving
1.75 × 106 cells of algae daily with 0.125 mg Tetrafin™ fish food). All preceding
fish food measurements are by dry weight. Fish food was prepared by blending 4mg
of Tetrafin™ fish food with 400 mL of water. Feedings were split in half, occurring
at 10 am and 5 pm daily. Media changes occurred daily at 9 am. Each of these food
level experiments contained 28 individual daphnids, housed in 40 mL of daphnid
media in 50 mL beakers. Neonates were harvested within 2 hours of being born.
Daphnid major and minor axis lengths were measured daily at 9 am. We used a
microscope camera (Handheld Digital Microscope Pro, 44308, Celestron, Torrance,
California, USA) to take individual photos of each daphnid and the associated software
to measure major and minor axis lengths. Online resource 1 contains a spreadsheet
of all measurements. All associated pictures and measurements are available on the
Open Science Framework (https://osf.io/vnm2x/).

Figure 1 depicts the lengths of individual daphnids as a function of time. We tested
for differences in growth rate and adult size between the control food group, the
medium food group, and the low food group. We fit the individual data to logistic
curves, since previous results indicated that the logistic curve fit individual daphnid
length better than other models, including the Gompertz equation, a constant, and
linear equations (Adoteye et al. 2015b).

We used a nonlinear mixed effects modeling framework as described in David-
ian and Giltinan (1995). This hierarchical nonlinear model consists of two stages:
estimating the intra-individual parameters and variances followed by estimating the
inter-individual parameters and variances. The goal is to determine the mean values
of our parameters (r and K ) over the population of daphnids, as well as their variance.
The intra-individual statistical model is given by:

yi = fi (βi ) + ei (9)

where i represents the individual, yi is the response of the i th individual, fi is the
logistic function, βi are the parameters being estimated for individual i (in this case
βi = (ri , Ki )). ei is the random intra-individual errors for the i th individual and
is assumed that (ei |βi ) ∼ N (0,C), where C represents the covariances. Secondly,
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Table 1 Mean parameter estimates and variances along with individual daphnid parameter estimates for
the logistic equation using a nonlinear mixed effects model for the Adoteye et al. (2015b) food group, the
control food group, the medium food group, and the low food group

Food group Parameter K r M0

Adoteye et al.
(2015b)

Fixed effect mean value 3.7346 0.0157 0.7333

Random effect variance 0.0010533 0.0048239 6.8978 × 10−7

Control Fixed effect mean value 3.8675 0.014398 0.8771

Random effect variance 0.024703 2.4357 × 10−9 –

Medium food Fixed effect mean value 3.4899 0.014718 0.8771

Random effect variance 0.036451 2.1267 × 10−6 –

Low food Fixed effect mean value 3.1032 0.013315 0.8771

Random effect variance 6.6215 × 10−8 1.5134 × 10−5 –

we assume that inter-individual variation is due to random effects, resulting in the
following model for βi :

βi = β + bi (10)

where β is the fixed effects (mean of all the βi ), and bi , the random effects that vary
in the population. It is assumed bi ∼ N (0, D) where D is a covariance matrix. Here,
we assume the covariance between r and K is zero and, thus, D is a diagonal matrix.
The diagonal entries of D form our random effect variances in Table 1. We used
MATLAB’s nlmefit function to perform our estimates of β and bi .

In contrast to the values found in Adoteye et al. (2015b), the initial condition M0
was assumed to be equal to the mean of the initial lengths of all daphnids, since this
resulted in the lowest residual mean squared error for each group. Using a one-way
T-test, we found that, although the K values were significantly different for each food
group (p < 0.01), the growth rate, r , was not. Estimates of the populationmean values
of r , K , and M0 and their associated random effect variances for each food group are
given in Table 1.

3.2 Generalized Least-Squares Parameter Estimation and Uncertainties

In order to fit the model to our available data, we use a vector generalized least-
squares (GLS) approach outlined in Banks et al. (2014) and Banks and Tran (2009).
We calculate the total number of daphnids in each size class: size class one is
S1(t, θ) = ∫ a1

0 u(t, s)ds, and size class two is S2(t, θ) = ∫ amax
a1

u(t, s)ds. Our
forward solution observations for a set of parameters θθθ is given by the vector
fff (t, θθθ) = [S1(t, θθθ), S2(t, θθθ)]T .
The statistical model we consider allows proportional errors and has the form (here

N is the number of observations)

YYY j = fff (t j ;θθθ) + fff γ (t j ;θθθ)E j , j = 1, 2, . . . , N , (11)
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where E j are independent and identically distributed (i.i.d.) with zeromean and covari-
ance V0 = diag(σ 2

01, σ
2
02). We estimate our parameters by seeking to minimize a

weighted least squares

N∑
j=1

www j
[
yyy j − fff (t j ;θθθ)

]2 (12)

where yyy j are the data and the weights www j depend on θθθ . This leads to the so-called
generalized least squares (GLS) formulation defined by the solution to the normal
equations

N∑
j=1

[
yyy j − fff (t j ;θθθ)

]T
V−1(t j ;θθθ)∇θk fff (t j ;θθθ) = 0, k = 1, . . . , κθ , (13)

where κθ is the number of parameters being estimated. We define

V (t j ;θθθ) = diag
(
f1(t j ;θθθ)2γ1 σ̂ 2

01, f2(t j ;θθθ)2γ2 σ̂ 2
02

)
(14)

and

σ̂ 2
0i = 1

N − κθ

N∑
j=1

(
yij − fi (t j ;θθθ)

fi (t j ;θθθ)γi

)2

, i = 1, 2, (15)

see Sections 3.2.5 and 3.2.6 of Banks et al. (2014). The iterative algorithm we use is
further explained in Banks et al. (2014) and Banks and Tran (2009). We note that in
the case of γ = 0, this reduces to the vectorized ordinary least squares.

Using asymptotic theory (Banks andTran 2009;Banks et al. 2014), the vector gener-
alized least-squares (GLS) estimator has a limiting distribution: θθθGLS ∼ N (θθθ0, 	

N
0 )

using the true parameter values θθθ0. Since these are unknown, we can approximate
using our estimated parameter vector, θ̂̂θ̂θ , and obtain θθθGLS ∼ N (θθθ0, 	

N
0 ) ≈ N (θ̂̂θ̂θ, 	̂N )

where

	̂N ≈
⎛
⎝ N∑

j=1

DT
j (θ̂̂θ̂θ)V (t j ; θ̂̂θ̂θ)Dj (θ̂̂θ̂θ)

⎞
⎠

−1

(16)

with

Dj =
⎛
⎝

∂ f1(t j ;θ̂̂θ̂θ)

∂θ1
. . .

∂ f1(t j ;θ̂̂θ̂θ)

∂θκθ

∂ f2(t j ;θ̂̂θ̂θ)

∂θ1
. . .

∂ f2(t j ;θ̂̂θ̂θ)

∂θκθ

⎞
⎠ .

and V (t j ;θθθ) as defined above. We use our optimized estimates θ̂̂θ̂θ from Eq. (13).
From this distribution, we can obtain standard errors and 95% confidence intervals
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Table 2 Fixed parameter values
for the model

Parameter Value

a1 3 days

c3 8 days

h2 10

h3 2

to quantify the uncertainty in the estimation of each parameter. Standard errors for

each parameter i are given by SE(θ̂i ) =
√

	̂N
ii . These standard errors (Banks and Tran

2009) are then used to create a 95% confidence interval around each parameter as
[θ̂i − 1.96SE(θ̂i ), θ̂i + 1.96SE(θ̂i )].

In order to determine the correct statistical error model, in terms of which value of γ
to use, we look towards finite differencing of the data as previously described in Banks
et al. (2015). The advantage of this method is that we are able to examine pseudo-error
residuals with respect to time and do not introduce bias associated with model error.
We examine the second-order differencing of the data (the so-called pseudo-errors
discussed in Banks et al. (2015)

ε̂i = 1√
6

(yi+1 − 2yi + yi−1) (17)

From this estimation of measurement errors, we then can define our modified pseudo-
errors by:

η = ε̂i

|yi − ε̂i |γ . (18)

Here, γ = 0 corresponds to vector ordinary least squares and γ �= 0 represents
generalized least squares. We separate our replicate data into size classes 1 and 2 and
calculated the modified residuals using Eq. (18) for various values of γ .

Figure 2 depicts the modified residuals for each replicate for both the size class 1
and 2 populations. The best statistical model is chosen for plots where the distribution
of points appears random. We note that for size class 1, the juveniles, a value of
γ = 0.5 appears to be the most random. We reject γ = 0 for size class 1 because
the magnitude of the residuals appear to be correlated with time. For size class 2, the
adult population, however, γ = 0 is sufficiently random. We note that other works
have incorporated varying γ values for certain classes of observables (Baraldi et al.
2014; Banks et al. 2016).

We only optimize over a subset of our parameter space. The fixed parameters for
the model are given in Table 2. The parameters in the hill function describing the
density-dependent death rate (Eq. 4) for size class 1 include the age at which the
density dependent falls to 0 for 8-day-old daphnids (c3) very steeply (h2). For the
parameters in the density-dependent fecundity rate (Eq. 5), only h3, the power of the
hill function, is fixed.
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Fig. 2 (Color figure online) Modified residuals calculated by Eq. (18). Each column represents either size
class 1 (left) or size class two (right). Each row represents results for a constant value of γ , including γ = 0
(top row), γ = 0.5 (middle row), and γ = 1 (bottom row)

Parameters K , r , and M0 describe how individual daphnids contribute to the pop-
ulation biomass, i.e., total length M(t), as described in Eq. (3). The information for
these parameters is given in Table 1. The various parts of the table describe the values
on the control, medium, and low food settings described in Sect. 3.1, as well as the
r , K , and M0 values previously measured in Adoteye et al. (2015b). Due to the small
variances, all daphnids within a simulation will use the same r , K , and M0 parameters
from Table 1.

The parameters that are optimized via the above vector generalized least-squares
framework are τ , the time delay for the effect of density on fecundity, L , the exponent
relating daphnid length to biomass, q, the half-maximum for the effect of density
on fecundity, and c1, the slope of the linear relationship between density-dependent
mortality and total mass, M(t). Additionally, we repeated the optimizations for all
various food levels.

The model equations are solved numerically in MATLAB using the hpde pack-
age (Shampine 2005). In order to perform the optimization, we will need an initial
guess for MATLAB’s lsqnonlin. We use direct search (Finkel and Kelley 2004), a
non-gradient-based algorithm, in order to obtain a suitable initial guess. Direct search
requires upper and lower limits for the parameters, which we choose to be 10−10 and
1000, respectively. The optimization is performed until parameter values change by
less than 0.1%.
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3.3 Cross-Validation

Previous work indicated that τ > 6 provided the best fit to population data (Adoteye
et al. 2015b). Here, we perform a cross-validation over our two replicates to determine
the best value of our hyper-parameters, τ and L to use in our optimization. We allow
τ to vary in integer values from 6 to 24 and L to vary in integer values from 1 to 3.
Integer values were chosen because of the prohibitive computational costs associated
with a finer grid.

If we look over our entire data domain D = {d1, d2}, where each di is our replicate
data, our best fit for a given value of τ is generated by the parameters θ̂ = (q̂, ĉ1) that
minimize the residual sum of squares (RSS) and has a value Rfit:

Rfit(τ, L) = min
θ

[RSS(D, θ, τ , L)] (19)

θ̂ (τ , L) = argmin
θ

[RSS(D, θ, τ , L)] (20)

Sincewe have two replicates of data, we can independently determine the parameter
optimizations on each data set:

θ̂i (τ , L) = argmin
θ

[RSS(di , θ, τ , L)] (21)

With these new optimized parameters θ̂i , we compute RSS(D, θ̂i , τ , L) which repre-
sents the error generated over the full domain D using the parameter estimate θ̂i for a
specific value of our hyper-parameters τ and L . We then generate:

Ri (τ , L) = −N

2
ln(2π) + ln(RSS(D, θ̂i , τ , L) − 1) (22)

where N is the total number of observation points in D. Once these are computed
for each replicate, our cross-validation score for a value of τ is the average of these
quantities:

RCrossVal(τ , L) = 1

2

2∑
i=1

Ri (τ , L) (23)

The value of the hyper-parameters τ and L that maximize Eq. (23) will be used in our
simulations.

4 Results

4.1 Cross-Validation

Figure 3 displays the result for the cross-validation scores (Eq. 23) for integer values
of τ , the density-dependent fecundity delay parameter, ranging from 6 days to 24
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Fig. 3 (Color figure online) Cross-validation scores using the two replicates for various integer values
of τ , the fecundity delay parameter and L , the exponent relating daphnid length to biomass. The upper
left-hand corner represents the Adoteye et al. (2015b) food values of r , K and M0, the lower left-hand
corner represents the control food values of r , K and M0, the upper right corner is for the medium food
values of r , K and M0, and the lower right corner contains the results for the low food values ofr , K and
M0. For each food level, either τ = 17 with L = 1 or τ = 12 with L = 2 provides the best cross-validation
score

days and L , the exponent relating daphnid length to biomass, ranging from 1 to 3.
The four subfigures represent differing r and K values for the Adoteye et al. (2015b)
length experiment (upper left), control food group (lower left), the medium food group
(upper right) and the low food group (lower right). We found that L equal to 1 (with
τ = 12−14) or 2 (with τ = 17−18) results in a maximal cross-validation score. This
means that, in terms of generalizability, either combination of parameters is sufficient.
We set L = 2 in order for biological feasibility, since daphnid length is related to
biomass with an exponent value of 2–3 (de Roos et al. 1990). This then corresponds
to a τ value of 12–14, depending on which r and K food values we are using.

4.2 Model Selection

In order to determine which food level to use, we examine the ability of each food
level to fit the current data. We turn to the Akaike Information Criteria (AIC) score
(Akaike 1974; Burnham and Anderson 2002), an unbiased measure of how well a
model fits data. The AIC score, under a least-squares framework (Banks and Joyner
2017), is given by:
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Table 3 Akaike weights for the
two replicates over the four
classes of food. Higher Akaike
weights imply a better fit of the
model to the data

Food group Replicate 1 Replicate 2

Adoteye et al. (2015b) Food 0.5929 0.2618

Control food 0.1362 0.2543

Medium food 0.2558 0.2090

Low food 0.0151 0.2749

AIC = Nb ln

(
RSS

N
b

)
+ Nb(1 + ln(2π)) + 2(κθ + 1) (24)

where N represents the number of data observations, b represents the number of
observables, in this case size class 1 and size class 2, κθ is the number of parameters
being estimated, and RSS is the residual sum of squares. A lower AIC score implies
higher accuracy (better model fit).

The AIC scores need to be corrected when there are few data points as compared
to parameters being estimated. Since, for our data sets and parameters, N

κθ
< 40, we

will instead use the AICC which is given by:

AICC = AIC + 2
p̃(b + κθ + 1)

N − (b + κθ + 1)
(25)

where p̃ represents the total number of free parameters in the mathematical and sta-
tistical models. In our case, p̃ = κθ + 2, since we estimate σ 2

0i in our statistical error
model.

We are interested in determining whether there really is improvement in one model
versus the other. To do this, we can calculate the probability of the correct model
(Wagenmakers and Farrell 2004) using Akaike weights (Burnham and Anderson
2002).

In order to compute the Akaike weights, we need to determine the difference
between the best AICC score:

i (AICC ) = AICCi − minAICC (26)

The Akaike weights are computed using this measure of AICC differences as:

wi (AICC ) = exp
[− 1

2i (AICC )
]

∑K
k=1 exp

[− 1
2k(AICC )

] (27)

Note that
∑K

k=1 wk(AICC ) = 1, since the Akaike weights represent the probability
that model i is the correct model. Therefore, the model with the higher Akaike weight
is considered to be the better model (Wagenmakers and Farrell 2004).

Table 3 contains the resulting Akaike weights for the four food groups with
L = 2 and the resulting τ value which minimized the cross-validation scores.
It is apparent that there is no favored model for replicate 2, since the Akaike
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weights are approximately the same. For replicate 1, there is not a strong favoritism
for any specific food group; however, it appears that the Adoteye et al. (2015b)
values of r , K , and M0 generate a slightly better fit. For the remainder of sim-
ulations, unless otherwise stated, the hyper-parameters are L = 2, τ = 12, and
using r , K , and M0 from the Adoteye et al. (2015b) food group. We note that a τ

value of 12 has several biological interpretations, e.g., it is possible that changes
in biomass take approximately four molt cycles to have an effect on fecundity.
Alternatively, the delay may correspond to the approximate juvenile maturation
time (McCauley et al. 2008). Further experimental work is needed to test these
hypotheses.

Why do we not observe large differences in accuracy between models based on
different food groups? Previous papers have argued that food quantity strongly influ-
ences growth, survival, and fecundity (de Roos et al. 1990; Ananthasubramaniam
et al. 2011; Kooijman and Metz 1984). In contrast to the previous work (de Roos
et al. 1990; Ananthasubramaniam et al. 2011; Kooijman and Metz 1984), the cen-
tral focus of our efforts presented here is to determine a model that accurately fits
population-level data from a density-dependent experimental scenario, where presum-
ably higher population densities result in lower food quantity. Our findings seem to
suggest that assuming a density-independent daphnid growth rate provides an approx-
imation that results in accurate fits to population-level data. We note that the effect
of density on survival and fecundity is modeled by Eqs. (4) and (5) and is esti-
mated through parameters c1 and q, respectively. Since M(t) only appears in Eqs. (4)
and (5), it is possible that estimating c1 and q can compensate for differences in
food group parameters, which only affect M(t). Further experimental work should
be done to measure food quantity, e.g,. algae content, in the microcosms in order
to better estimate the relationship between daphnid biomass, growth, survival, and
fecundity.

4.3 SPM Parameter Estimation and Uncertainty

Figure 4 displays the density-dependent SPM fit to the data for replicate 1 with
optimized parameters. The fits are broken up into each size class as well as the total
population. On the left side are the total population numbers at each day for each
class and on the right is a surface representing dynamics of age, time, and population
number. The data are shown with open circles and the model fit in a solid black line.
The model solution for replicate one appears to fit each size class as well as the total
population.

A similar plot for replicate 2 is shown in Fig. 5. We can see that in replicate 2,
the optimized fit does not appear as accurate, especially with size class one during
the early portion of the simulation. During this time, we can see that there is a sharp
increase in size class one, which is even higher than the similar increase in replicate
1. Size class two, however, does appear to have an accurate fit.

The resulting parameters, their confidence intervals, and standard errors are in
Table 4, separated into the first replicate (top) and second replicate (bottom). All
parameters have nonnegative confidence intervals, which we require for biological
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Fig. 4 (Color figure online) Density-dependent SPM fit to data for replicate 1. Daphnids separated into
size class one (top), size class 2 (middle) and total population (bottom). On the left, the total number of
daphnids in each size class per day, on the right a surface representing age, time and population number

relevance. The standard errors are relatively small. Although the optimized param-
eter q for replicate 2 is outside the range of the 95% confidence interval generated
in replicate 1, the optimized parameter q for replicate 1 is inside the range of the
95% confidence interval generated in replicate 2. The parameter c1 for each repli-
cate remains outside of the others’ confidence interval. Additional replicates would
be useful in determining which set of parameters is more descriptive of population
dynamics.

We would also like to examine the residuals for each replicate with respect to time
and model value. This will help to insure that the statistical model chosen, of γ = 0.5
for size class 1 and γ = 0 for size class 2, is correct. Figure 6 displays the residuals
for both replicate one (left) and replicate two (right). Within each subfigure, the left
panels show residuals against time and the right panels show residuals against model
value. The top figures represent size class one and the bottom figures represent size
class two. The residuals for all cases appear to be evenly distributed, indicating that
the choice of statistical error model is correct.
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Fig. 5 (Color figure online) Density-dependent SPM fit to data for replicate 2. Daphnids separated into
size class one (top), size class 2 (middle) and total population (bottom). On the left, the total number of
daphnids in each size class per day, on the right a surface representing age, time and population number

Table 4 Optimal parameters, confidence intervals, and standard errors for replicates 1 and 2

Parameter Estimate (Rep1) 95% CI (Rep1) SE (Rep1)

q 156.8398 (106.7968, 206.8827) 25.6630

c1 0.0185 (0.0168, 0.0202) 8.6934e−4

Parameter Estimate (Rep2) 95% CI (Rep2) SE (Rep2)

q 245.0448 (108.8946, 381.1950) 69.8206

c1 0.0243 (0.0223, 0.0263) 0.0010

4.4 Sensitivity Analysis

We perform a local sensitivity analysis for the parameters for each replicate and each
size class as well as the full population size. Figure 7 displays the results of this sensi-
tivity analysis. Replicate one is shown in black, and replicate two is shown in red. The
vertical dashed line is the time at which the daphnia population reaches its peak dur-
ing the experiments and occurs at the same time for both replicates. Sensitivities were
calculated using the complex-step method (Martins et al. 2000) and were corroborated
with the finite differencing.
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Fig. 6 (Color figure online) Residual plots for replicate one (left) and replicate two (right) for each class
size and against time and model value. Residuals appear random, implying the statistical error model is
sufficient

The left panels of Fig. 7 display the sensitivity of the solutions with respect to q,
which is present in the density-dependent fecundity rate (Eq. 5). Increasing q leads to
higher fecundity rates and, thus, higher population levels for all size classes. Since q is
heavily involved in the fecundity rate, it is sensible that there are slight oscillations in
the sensitivities, since the daphnia give birth every third day, meaning that those days
may be more sensitive to changes in parameter q. We varied our adjoint step size to
ensure that the sensitivities converged and the oscillations were not due to numerical
instability.

The right panels in Fig. 7 portrays the sensitivity of the solutions with respect to c1.
The parameter c1 is the linear relationship between density-dependent mortality and
biomass, M(t) (Eq. 4). For the total population size, we see that increasing c1 results
in lower population levels, which is sensible, as it increases the density-dependent
death rate. However, the dynamics are very different depending on whether we are
looking at size class 1 or size class 2. For size class 1, increasing c1 results in lower
size class 1 populations for approximately the first 30 days of the experiment, after
which increasing c1 results in higher size class 1 populations. This is also somewhat
intuitive since populations of size class 1s are very large in the first 30 days, meaning
that the biomass is quite large, which increases the death rate. However, in later times,
population levels are low, which means that increasing c1 may not be enough to
overcome the small values of M(t).

In general, the sensitivities for replicate 1 and replicate 2 have similar overall shapes,
although replicate 2 tends to show more oscillatory behavior. We hypothesize the
oscillations, mostly present in size class 1, are related to the movement of individuals
from size class 1 to size class 2 (when they reach 3 days old) and to the delay in the
fecundity term in Eq. (5).

5 Discussion and Conclusions

We proposed a continuously structured population model that included both density-
dependent and density-independent growth, fecundity, and mortality for Daphnia
magna populations. The model that we proposed was used to fit longitudinal experi-
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Fig. 7 (Color figure online) Sensitivity analysis for each parameter for each size class and total populations.
Replicate one is shown in black, and replicate 2 is shown in red. The vertical dashed line represents the
time at which the population reaches its maximum in the experiments

mental data of population dynamics of D. magna. We performed an individual study
of 84 daphnids at three different food levels to determine the effect of food quantity
on major axis length. We discovered that the growth rate of the various food restric-
tion groups was not significantly different; however, the carrying capacity, i.e., adult
daphnid size, was significantly different. The model was fit to data using a generalized
least-squares framework. We also generated parameter estimates and their associated
confidence intervals. For the two parameters that were estimated, we performed local
sensitivity analysis to further understand the effect of changing their values.

In addition to our current model, we also proposed a slight variation in the density-
dependent death term, changing the linear relationship between biomass and density-
dependent death rate to a hill function. This results in changing Eq. (4) to

μdep(a, M(t)) = 1 + c1M(t)h1

ch12 + M(t)h1

ch23
ch23 + ah2

. (28)

where c2 and h1 are optimized along with q and c1. This change allows further range
of flexibility in how the density-dependent death rate depends on the total biomass,
M(t). We performed the same optimization as outlined above including calculating
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Table 5 SE values for various data collection schedules for Replicate 1 and Replicate 2 for the optimized
parameters

Collection schedule Replicate 1 Replicate 1 Replicate 2 Replicate 2
(# time points) SE q(156.8398) SE c1(0.0185) SE q(245.0448) SE c1(0.0243)

M–F weekly (67) 13.3679 5.1441e−04 39.8505 5.3772e−04

M/W/F weekly (40) 17.0327 6.5928e−04 50.7035 6.9229e−04

Tu/Th weekly (27) 21.5716 8.2271e−04 64.4546 8.5388e−04

M/F weekly (26) 21.0434 8.0096e−04 64.5870 8.4383−04

Weekly (14) 28.9971 0.0011 92.3124 0.00102

Our schedule (25) 25.6630 8.6934e−04 69.8206 0.0010

the cross-validation score, model selection, optimizing parameters, and determining
confidence intervals. Our results indicate that this model may be over-parameterized
since c1, c2, and h1 had large standard errors and their confidence intervals included
negative numbers. AIC scores indicated that the 4-parameter model did not fit the data
better than the 2-parameter model. Full results of this analysis can be found in Rutter
et al. (2016).

There are still several avenues that can be explored with this information. Although
we did not notice much improvement by incorporating the various food levels, we note
that, during longitudinal experiments, food is not at a constant level. Future experi-
mental work will include measurements of algae concentration, so we can incorporate
a dynamic carrying capacity dependent on food availability. These measurements will
also allow us to model the algae concentrations.

Although we showed that our model could accurately fit population-level data, we
would be interested in determining whether or not our model is sufficient for predic-
tion. Future work includes evaluating the model’s ability to predict future daphnid
populations and comparing to current state-of-the-art daphnid population models.

Data collection for this experiment was labor intensive, and we hypothesized
whether we could have obtained a similar quality fit with less frequent data collection.
To this end, we simulated plausible data collection schedules including reducing the
total number of data points to examine which points were most important to deter-
mining parameter estimates. Our results suggest that such frequent data collection is
unnecessary but that consistent collection of data may be more important in reducing
standard errors (SEs). We examined the standard errors for weekday data collections
(M–F every week), 3x a week collection (M/W/F every week), 2x a week collec-
tion (M/F or T/T every week) and once weekly collection. SEs were calculated using
methods described in Sect. 3.2. The SEs for all of these alternative schedules, with
the exception of once weekly, were lower than the SE obtained with our collection
schedule (M/W/F for first 3 weeks, thereafter weekly), even though, in some cases,
the total number of data points collected was similar (Table 5).

Recent work has shown that perturbing biological systems away from equilibrium
result in a large increase in data information content (Baraldi et al. 2014). By perturbing
the system in an experimentally controlled manner, we may be able to decrease the
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standard errors and uncertainties in parameter estimates (Adoteye et al. 2015c). Due
to the large normalized standard errors present in our 4-parameter model, as well as
the non-overlapping confidence intervals in our 2-parameter model, it may be possible
to design optimal perturbations in our experimental procedure that would lower our
standard errors. Future work will include an in-depth analysis of optimal design of
our experiments for this purpose.
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