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Abstract. Advanced prostate cancer is often treated by androgen deprivation

therapy, which is initially effective but gives rise to fatal treatment-resistant
cancer. Intermittent androgen deprivation therapy improves the quality of life

of patients and may delay resistance towards treatment. Immunotherapy al-
ters the bodies immune system to help fight cancer and has proven effective

in certain types of cancer. We propose a model incorporating androgen depri-

vation therapy (intermittent and continual) in conjunction with dendritic cell
vaccine immunotherapy. Simulations are run to determine the sensitivity of

cancer growth to dendritic cell vaccine therapy administration schedule. We

consider the limiting case where dendritic cells are administered continuously
and perform analysis on the full model and the limiting cases of the model to

determine necessary conditions for global stability of cancer eradication.

1. Introduction. Prostate cancer is one of the most ubiquitous cancers in males in
the United States, with an expected one in six men diagnosed in their lifetime [23].
The prostate requires androgens, especially testosterone and 5α-dihydrotestosteron
(DHT) to function and continue proliferation. The current treatment protocol is
to suppress androgen, which should lead to inhibited growth of cancer cells as well.
However, although the initial response rates to therapy are excellent, eventually
androgen independent prostate cancer arises and is most often fatal [33].

Recent research and clinical trials have begun to question whether the efficacy
and comfort of this treatment could be increased by intermittent androgen depriva-
tion (IAD) therapy [6,22,28,37]. Intermittent androgen deprivation therapy works
by administering androgen deprivation therapy until the patient reaches a certain
threshold of prostate specific antigen (PSA), which is a biomarker of the disease.
Upon reaching this threshold, the patient is removed from therapy until their PSA
levels rise above a second threshold, when they are once again put on androgen
deprivation therapy. This treatment still results in overall androgen suppression
and may improve the quality of life of the individual patient, lessening the un-
pleasant side effects of androgen deprivation therapy [5, 18]. Although it has often
been proposed that intermittent androgen deprivation therapy may increase time
to androgen independent relapse, this statement remains unproven in clinical trials,
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including meta-studies [2,5,39,43]. Of course, there are studies which suggest that
only certain patient groups may benefit from intermittent androgen deprivation
therapy, but determining those groups remains a work in progress [25, 44]. Adding
to the confusion is the fact that there is no consensus in the medical community
on the duration or intervals of the treatment [10]. Some have concluded that the
findings determining that intermittent androgen deprivation therapy is non-inferior
to continual androgen deprivation therapy are inconclusive due to flawed or incon-
sistent studies [17,34].

Immunotherapy treatments use the body’s immune system to fight against cancer
by enhancing or repressing an immune response in the patient. Dendritic cells
are the strongest of the antigen-presenting cells, meaning they ingest antigens and
present the antigen material to naive and memory T cells in the system. These T
cells then target the specific antigen for removal. Dendritic cell vaccines are created
by extracting dendritic cells from the patient, loading the cells with antigens and
re-injecting the dendritic cells into the patient. The target antigen in this case is
PAP (Prostatic acid phosphatase), which has been used in clinical trials [3, 9, 40].
The dendritic cells then serve to activate the T cells into an immune response
against PAP. Dendritic cell vaccines have been suggested as a method to improve
the efficacy of hormone therapy treatment of advanced prostate cancer. In fact,
Provenge is an FDA-approved dendritic cell vaccine for advanced prostate cancer
which has been shown to extend the life of patients [4, 11].

An emerging field among mathematical oncology is determining optimal dosing
strategies in order to manage cancer. Metronomic therapy, or the use of much lower
dosages of medication more frequently, has been mathematically investigated as a
possible alternative to large dosage strategies [29, 30]. There are many advantages
towards this type of approach: lowering cytotoxicity, lowering costs, and increasing
time until treatment resistance. This strategy aims to manage cancer, rather than
eradicate it.

This research examines the effect of varying the frequency in which the patient
receives dendritic cell vaccines on long term behavior of prostate cancer. We exam-
ine not only the case of discrete injections, but also consider a continuous injection,
as through an intravenous (IV) therapy. We perform analysis on the model to de-
termine biologically realistic parameter values which could result in stable condition
of the disease or the elimination of the prostate cancer, and analytical results are
corroborated with simulations. The parameters which do not have existing litera-
ture values, or are patient-specific, are thoroughly investigated with simulations to
determine what changes to dendritic cell vaccine therapy must be implemented to
delay the onset of androgen independent prostate cancer. Additionally, we exam-
ine the quasi-steady state system and perform a full analysis of the steady states,
determining what conditions are necessary to generate global stability.

2. Model formulation. There have been many mathematical models that discuss
the evolution and treatment of prostate cancer using androgen deprivation therapy.
In 2004, Jackson [20] formulated a partial differential equation model which featured
both androgen independent and androgen dependent cancer cells. This model ex-
hibited the effects of androgen independent relapse consistent with experimental
data [20]. Ideta et. al [19] formulated a mathematical model comprised of ordinary
differential equations designed to determine prostate cancer growth while on inter-
mittent androgen therapy. Their model featured androgen concentration, androgen
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independent, and androgen dependent cancer cells, with a term to model the mu-
tation rate from androgen dependent to androgen independent in the absence of
androgen.

Many have extended upon the model proposed by Ideta et. al. Hirata et. al [15]
extended their model to include two sub-classes of androgen independent cancer
cells: a subpopulation whose mutation to androgen independent was reversible, and
a subpopulation who’s mutation to androgen independent was irreversible. From
this model, they have investigated how to optimize patient treatment protocols
[14, 16]. Additionally, they were able to use the model to classify patients and
determine whether intermittent androgen deprivation therapy would be more or
less effective for each type of patient [13]. Most recently, they have analyzed their
model to find conditions for existence non-trivial periodic orbits for one of the types
of patients [12].

Tanaka et. al [41] extended the Ideta et. al model by incorporating stochasticity,
for more realistic PSA level data. Portz et. al [37] introduced cell quotas to model
how dependent the androgen dependent and androgen independent cancer cells are
on androgen concentration. This model has been furthered by other researchers
and compared to previous models [8, 32].

Immunotherapy has also been formulated by mathematicians. Kirschner and
Panetta [24] established a model which quantified the anti-tumor immune response
using populations of T cells, IL2, and tumor cells. Their model also allowed for
incorporation of therapy. In the context of prostate cancer, Kronik et. al [26] for-
mulated a mathematical model which investigated the response of prostate cancer
to dendritic cell vaccines, corroborated with patient data. However, they only con-
sidered one type of tumor cell population and did not account for hormonal therapy.

There has been little work in investigating the combination of dendritic cell vac-
cines with any type of androgen deprivation therapy. Portz and Kuang [27, 36]
examined immunotherapy in conjunction with IAD for prostate cancer which com-
bined the Ideta et. al model [19] with the Kirschner and Panetta [24] model. Their
system of 6 equations included androgen independent cells, androgen dependent
cells, androgen, cytokines (IL-2), activated T cells, and dendritic cells. Recently,
Peng et. al [35] used a 10-dimensional ordinary differential equation model to inves-
tigate how androgen deprivation therapy combines with immunotherapy, including
dendritic cell vaccines. They were able to determine how to synergistically combine
ADT with immunotherapy and fit their model with mouse data. However, their
model did not take into account intermittent androgen deprivation therapy.

Our model is based on the Portz and Kuang [27,36] model described above with
some appropriate modifications. Their results showed that adding dendritic cell
vaccines resulted in an increase in time to androgen independent relapse. However,
the study did not consider how the dynamics of dosage amounts and frequencies
for the dendritic cell vaccines might influence the outcome of the treatment. It
has been hypothesized in a mathematical model that changing the dosages and
frequency of administration of the dendritic cell vaccine may drastically alter the
time to androgen independent relapse [26].

Our mathematical model is a population-style model of the interaction between
androgen dependent cancer cells (X1), androgen independent cancer cells (X2),
activated T cells (T ), concentration of cytokine IL-2 (IL), concentration of androgen
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(A), and number of dendritic cells (D).

dX1

dt
= r1(A,X1, X2)X1︸ ︷︷ ︸

growth and death

− m1(A)X1︸ ︷︷ ︸
mutation to AI

+ m2(A)X2︸ ︷︷ ︸
mutation from AI

−X1 f1(X1, X2, T )︸ ︷︷ ︸
death by T cell

, (1)

dX2

dt
= r2(X1, X2)X2︸ ︷︷ ︸

growth and death

+ m1(A)X1︸ ︷︷ ︸
mutation from AD

− m2(A)X2︸ ︷︷ ︸
mutation to AD

−X2 f2(X1, X2, T )︸ ︷︷ ︸
death by T cell

, (2)

dT

dt
=

eD

g +D︸ ︷︷ ︸
activation of T cell by DC

− µT︸︷︷︸
death

+ Tf3(IL, T )︸ ︷︷ ︸
activation of T cell by cytokines

, (3)

dIL
dt

= Tf4(X1, X2)︸ ︷︷ ︸
secretion by tumor

− ωIL︸︷︷︸
degradation

, (4)

dA

dt
= γ(a0 −A)︸ ︷︷ ︸

homeostasis of androgen

− γa0u(t)︸ ︷︷ ︸
depletion of androgen if on therapy

, (5)

dD

dt
= − cD︸︷︷︸

death

. (6)

The androgen dependent cancer cells (AD) are governed by their proliferation
and death (given by r1(A,X1, X2)), their mutation to androgen independent cancer
cells (AI), the mutation from androgen independent cells, and the number killed by
T cells. The AI cancer cells are also governed by proliferation and death, indepen-
dent of androgen, their mutation from AD cells, their mutation to AD cells, and
the number killed by the T cells. The T cell counts are determined by the number
activated by the dendritic cells, their natural death, and clonal expansion. The
concentration of cytokines is determined by their production by stimulated T cells
and a clearance rate. The concentration of androgen in the blood is described by
homeostasis term and deprivation therapy term. The dendritic cells are governed
by their death rate.

The modeling of the intermittent androgen deprivation therapy is governed by
the u(t). Note that if u(t) = 1, we are modeling the ‘on-treatment’ portion of the
therapy, and when u(t) = 0, we model the ‘off-treatment’ therapy. Below are the
detailed equations:

y(t) = c1X1 + c2X2, (7)

u(t) =

{
0→ 1 if y(t) > L1 and dy

dt > 0,

1→ 0 if y(t) < L0 and dy
dt < 0.

(8)

In this case, y(t) represents the serum PSA level. When the PSA level decreases
below a certain threshold, L0, the androgen deprivation therapy begins. When the
PSA level increases above another threshold level, L1, the ‘on-treatment’ therapy
starts. Note that L0 < L1.

Although our model is similar to the Portz and Kuang model, we include three
major changes which allow for a more realistic model. Firstly, we change the growth
and death functions. The original model incorporated an exponential growth rate
for the androgen independent cell population, which is very unrealistic. We modified
this growth function to be logistic. Similarly, we change the growth and death for the
androgen dependent cell population. We assume that the lack of androgen affects
the androgen dependent cell population in two ways: lack of androgen lowers the
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growth rate, and the lack of androgen actively kills the cell population. This is
a realistic assumption which has been used in other prostate cancer models with
great success [7,21]. We note that when androgen is at its homeostatic level, a0, the
growth rate of androgen dependent cells is at its highest. As the levels of androgen
decrease, the growth rate of androgen dependent cells also decreases, and the death
due to lack of androgen increases. When androgen is at its lowest value, 0, there is
no growth of androgen dependent cells, and the highest death rate due to lack of
androgen happens.

r1(A,X1, X2) = r1A

(
1− X1 +X2

K

)
− d1
a0

(a0 −A),

r2(X1, X2) = r2

(
1− X1 +X2

K

)
.

(9)

The second major change considers the mutation functions. The original model
assumed that AD cells mutated to AI cells in an androgen-depleted environment.
However, they did not consider the option that AI cells might mutate back to AD
cells in an androgen-rich environment. We include this second mutation term in
our model. If A = a0, we note that there would be no mutation from AD to AI
cell population, as we are at the homeostatic androgen levels. As we decrease the
level of androgen, we increase the rate at which AD to AI mutations occur, until
we reach A = 0, which gives the largest mutation rate m1. For mutation from
AI to AD, we assume a similar, but opposite function. When we have low levels
of androgen, we assume that there is no mutation from AI to AD. However, as
we increase through androgen levels, the mutation rate from AI to AD increases
accordingly. The mutation rate functions are listed below.

m1(A) = m1

(
1− A

a0

)
,

m2(A) = m2

(
A

A+ k4

)
.

(10)

The third major change we consider is using a generic class of functions for the
four immune system interactions. As the immune system is extremely complicated
with many interacting cells, there is not much data to help form a hypothesis on
how these various components of the immune system interact together. In order
to combat this, we consider functions that are generic, but we do want some basic
properties for these functions. Specifically, we assume the following.

(A1): f1(X1, X2, 0) = f2(X1, X2, 0) = f3(0, T ) = f4(0, 0) = 0.

(A2):
∂f1
∂X1

≤ 0,
∂f2
∂X2

≤ 0, and
∂f1
∂T
≥ 0,

∂f2
∂T
≥ 0.

(A3):
∂f3
∂IL

≥ 0,
∂f4
∂Xi

≥ 0, i = 1, 2.

3. Simulations and observations. There are many potential functions which
could be excellent candidates for our fi, but a logical choice would be a Holling
Type II function. It is reasonable to assume that after a large enough presence of
cancer cells, the death rate would approach a maximum death rate. It is not sensible
to use a linear function which would assume the death rate is proportional to the
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number of cancer cells. The functions that we propose and use for simulations are:

f1(X1, X2, T ) =
e1T

g1 +X1 +X2
,

f2(X1, X2, T ) =
e2T

g2 +X1 +X2
,

f3(IL, T ) =
e3IL
g3 + IL

,

f4(X1, X2) =
e4(X1 +X2)

g4 +X1 +X2
.

(11)

Explanations for the various parameters and their chosen values , as well as their
respective sources are displayed in Table 1.

As we were unable to find a literature estimate on what the carrying capacity
of the tumor cells would be, we decided to estimate with a brief calculation. The
mean weight of a male prostate is 11 grams (7-16 grams) and the average human
cell has a mass of 1 ng. Thus, we can conjecture that the carrying capacity is on
the order of 10 billion cells.

In previous iterations of the immunotherapy mathematical model, hypothetical
vaccines were administered every 30 days consisting of 0.3 million dendritic cells.
In order to preserve the correct dosage, when the length between vaccinations was
altered, the dosage was also altered accordingly. For the discrete case, variances
from daily vaccinations to vaccinations separated by 120 days were considered.
Simulations are extended to 4000 days to be able to determine long-term behavior of
the prostate cancer. A continuous dose of dendritic cell vaccines was also considered,
as if constantly administered through an IV. All simulations have the same initial
conditions with initial AD count of 15 million cells, AI count of 0.1 million cells, 0
activated T cells, 0 concentration of cytokines (ng/mL) , 30 nmol/mL concentration
of androgen, 0 dendritic cells. We have set the threshold to turn off treatment L0

as 5 and the threshold to begin treatment L1 as 15 ng
mL .

Once graphical results are obtained, it is advantageous to determine numerically
and analytically whether the more successful dendritic cell vaccination timings have
an overall effect.

3.1. Discrete case. For all numerics, we consider that e1 = e2, which means that
T cells are able to kill AD and AI cancer cells equivalently. We begin by keeping
e1 = e2, the effectiveness with which the T-cells eliminate cancer cells steady at
a value of 0.75, which is reasonable within the range given in Table 1. We run a
series of simulations, out to 4000 days, varying only the dosage level and frequency
of the dendritic cell vaccine. The vaccination frequencies are varied from daily
vaccinations to 120 days between each injection, and the dosages are varied from
0.01 to 1.20 million cells, respectively.

Figure 1 displays the PSA levels, androgen dependent (X1) and androgen inde-
pendent (X2) cell densities versus time in days. We can see from the graph that
the androgen suppression is triggered when the level reaches about 15 ng

mL , and is
discontinued when the level reaches about 5 ng

mL . As can be seen, the PSA levels
eventually skyrocket, indicating rise of androgen independent cancer. When the
PSA levels grow drastically, it is clear that androgen suppression therapy is no
longer effective. The effect is clear in the corresponding AD and AI graphs: the
AD cancer cells are eliminated in the infrequent injections, which gives rise to the
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P Biological Meaning Value Source
r1 AD cell proliferation rate 0.025/day [1]
d1 AD cell death rate 0.064/day [1]
K cancer cell carrying capacity 11 billion
k4 AI to AD mutation half-saturation 1.7
r2 AI net cell growth rate 0.006/day [1]

m1
maximum mutation rate 0.00005/day [19]

from AD to AI

m2
maximum mutation rate 0.00015/day [37]

from AI to AD
a0 base level androgen concentration 30 ng/ml [19]

γ
androgen clearance 0.08/day [19]
and production rate

ω cytokine clearance rate 10/day [38]
µ T cell death rate 0.03//day [24]
c dendritic cell death rate 0.14/day [31]
e1 max rate T cells kill AD cancer cells 0-1/day [24]

g1
AD cancer cell saturation level 10 x 109 cells [24]

for T cell kill rate
e2 max rate T cells kill AI cancer cells 0-1/day [24]

g2
AI cancer cell saturation level 10 x 109 cells [24]

for T cell kill rate
e T cell max activation rate 20 x 106 cells/day [24]

g
DC saturation level 400 x 106 cells [40]
for T cell activation

e3 max clonal expansion rate 0.1245/day [24]

g3
IL-2 saturation level 1000 ng/ml [24]

for T cell clonal expansion
e4 max rate T cells produce IL-2 5 x 10−6 ng/ml/cell/day [24]

g4
cancer cell saturation level 10 x 109 cells [24]

for T cell stimulation
D1 DC vaccine dosage 300 x 106 cells [40]
c1 AD cell PSA level correlation 1 x 10−9 ng/ml/cell [19]
c2 AI cell PSA level correlation 1 x 10−9 ng/ml/cell [19]

Table 1. Values of parameters (P), explanations, and cited
sources of every parameter used in this mathematical model.

more fatal androgen independent cancer. This is exhibited through the AI count,
which skyrockets in the infrequent injection case. The rapid increase of AI cells
indicates that the more fatal androgen resistant prostate cancer has begun. From
these graphs, it is apparent that more frequent injections of the dendritic cell vac-
cine can help the effectiveness of the intermittent hormone therapy, delaying the
rise of androgen independent cancer.

We can see that by increasing the frequency of the injections, but keeping the to-
tal dosage identical, there are vast improvements in the survival time of the patient.
In order to quantify this relationship, we perform numerical analysis to determine
the lowest value of e1 required for the solution to produce a limit cycle. A limit
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Figure 1. PSA serum concentration, androgen dependent (AD),
and androgen independent (AI) cell concentrations for various den-
dritic cell vaccine injection times with an e1 = e2 of 0.75. More
frequent injections result delay of the rise of fatal androgen inde-
pendent cancer.

cycle in this case would represent a stable disease equilibrium, where the cancer is
indefinitely responsive to IAD treatment. Recall that e1, e2 represent the cytotoxi-
city of the T-cells, a measure of how efficient a T cells is at killing the tumor cells.
The biological range, as stated in 1 ranges from 0-1, cancer cells killed per day. A
summary of the limit cyclical behavior is charted in figure 2.

We immediately notice that as vaccine timing is shortened, the minimal value
of e1 necessary to exhibit a stable disease state also decreases. We recall that e1
could be a patient-specific parameter, as it is the maximum rate that T cells kill
cancer cells per day. Thus, for those with weaker immune systems, more frequent
injections could be much more effective. We note that for cases where the vaccine
timing is greater than 30 days, even with values of maximal e1 = 1, there is no stable
disease state. Therefore, infrequent large doses of vaccine are much less effective at
stabilizing the disease. Additionally, we can examine the shape of the limit cycles:
as we increase the frequency of the dosage, we notice that the limit cycles are much
smoother.

3.2. Continuous case. We have shown that, even for total amount of vaccine be-
ing constant, more frequent dendritic cell vaccine administrations are more effective
than infrequent administrations. If we consider the limiting case of this behavior,
we arrive at the case of a continual injection, as if the patient is always connected
to the vaccine through an IV system. In order to accommodate for the continual in-
jection, we slightly modify the equation (6) representing the dendritic cell numbers
to: dD

dt = v − cD, where v is the continual injection rate.
The simulation begins in this case with an initial injection of 0.04 billion dendritic

cells, which is then kept constant throughout the duration of the simulation. For this
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Figure 2. Limit cycle solutions for androgen dependent X1, and
androgen independent X2 cancer cells. The minimal value of e1
required to produce limit cycle behavior is noted above each solu-
tion. As vaccine timing decreases, minimal e1 necessary to have
stable disease state decreases.

continuous case, a variety of values of e1 were considered, to determine if continuous
vaccinations may help eliminate cancer. Figure 3 displays the PSA concentration
for the different cases. We can see that contrary to the discrete case, it is apparent
that even at lower values of e1 = 0.25, the cancer is manageable. In fact, we even
see elimination of cancer for very large values of e1, for e1 > 0.75.

In order to clearly see if the cancer is manageable for lower values of e1 we turn
to the cell counts for AD and AI cancer cells. Figure 3 displays these counts for
the continual dendritic cell vaccinations. It is apparent for the duration of the
simulation, AI cells only become dominant for the e1 values of 0 and 0.25. This
implies that androgen independent cancer is avoidable for a larger range of e1 values
than in the discrete case. This means that despite a weaker auto-immune response,
it may be possible to suppress the growth of androgen independent cancer cells.
Additionally, the treatment cycle lengths are very different depending on the e1
value: as we increase through our e1 value, we see that the length of ‘off-treatment’
is much longer, resulting in more comfort for the patient.

Since we see a full range of behavior as we increase through e1, we take a closer
look at a bifurcation diagram for the parameter. The resulting bifurcation diagram
is shown in Figure 4. We can see that during most biologically relevant parameter
values of e1, which is a range of 0-1, we have cyclical behavior. At the smallest
range of e1 = 0, we have stability of carrying capacity equilibrium. However,
once we increase past e1 = 0, we can see that we have stable cyclical behavior.
As observed in Figure 3, as we increase through e1 we continue observing stable
disease cycles. Finally, for higher values of e1, we notice that the cycles collapse
into a single steady state solution, which is stable. As we continue increasing e1
past this point, the steady state approaches zero, which represents the eradication
of the disease. We note that in examining the solutions for small values of e1, the
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Figure 3. PSA serum level, AD cell density, and AI cell density
for continual dendritic cell vaccinations, with an injection rate 0.04
billion cells for various values of e1. It is apparent that in this
continuous case, a wider range of e1 is able to suppress the growth
of cancer and elongate the cycles of IAD.

graph appears to be zigzagging. We believe this may be due to the model dynamics
having a long transition time before approaching the limiting periodic state. We
also have interesting dynamics at e1 = 0.24, where we seem to approach a steady
state, before the solution switches back into cyclical behavior.

4. Basic properties of the system. Although numerically studying the behav-
ior of equations is useful, further information can be gathered by analysis of the
equations themselves. It is also a metric to ensure that the behavior of the solu-
tions have biological meaning. In order to analyze our equations, we assume that
we are in fact continuously suppressing the androgen, instead of intermittent sup-
pression. This assumption will lead to the following change of equation governing
the concentration of androgen:

dX1

dt
= r1(A,X1, X2)X1 −m1(A)X1 +m2(A)X2 −X1f1(X1, X2, T ), (12)

dX2

dt
= r2(X1, X2)X2 +m1(A)X1 −m2(A)X2 −X2f2(X1, X2, T ), (13)

dT

dt
=

eD

g +D
− µT + Tf3(IL, T ), (14)

dIL
dt

= Tf4(X1, X2)− ωIL, (15)

dA

dt
= −γA, (16)

dD

dt
= v − cD. (17)
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Figure 4. Birfurcation digram for parameter e1, a measure of
cytotoxicity of T-cells. Maximum PSA level in black, minimum
PSA level in green. Carrying capacity is stable only for e1 = 0.
Immediately after, we have a Hopf bifurcaton and limit cycles,
until we reach e1 ≈ 0.66, after which the disease-free steady state
is stable.

Proposition 1. Solutions of (12)-(17) that start positive remain positive.

Proof. Solutions for D and A are explicitly solvable, whose solutions are positive.
If solutions do not remain positive there must be some time t1 > 0 such that
X1(t1) = 0, X2(t1) = 0, T (t1) = 0 or IL(t1) = 0. We examine the first case
where X1(t1) = 0. Then X ′1(t) ≥ −m1(A)X1, ∀ t ∈ [0, t1], or more specifically,
X1(t1) ≥ X1(0)e−m1(A)t1 > 0, which is a contradiction. Similar arguments can be
extended to the remaining variables, ensuring positivity of all solutions.

We now examine the equations in detail to determine equilibrium points and their
respective stabilities. We hope that this will give us as sense of biological meaning.
What values must biological parameters exhibit in order for prostate cancer to be
eliminated?

Proposition 2. The model system (12)-(17) has a disease-free equilibrium E∗0 =
(0, 0, ev

µ(cg+v) , 0, 0,
v
c ) with growth functions (9), mutation functions (10), and generic

functions. E∗0 is unstable if r2 > f2(0, 0, T ∗0 ), where T ∗0 = ev
µ(cg+v) , and locally

asymptotically stable if r2 ≤ f2(0, 0, T ∗0 ). When r2 > f2(0, 0, T ∗0 ), a positive en-
demic equilibrium E∗ = (X∗1 , X

∗
2 , T

∗, I∗L, A
∗, D∗) emerges, stability unknown.
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Proof. All variables except X2 are easily solved and have only one steady state.
For X2, we can either have X∗2 = 0, which exists always, or an X2 that solves
g(X2) := r2 − r2X2

K − f2(0, X2, T
∗) = 0. We examine this quantity in more detail

by calculating its sign at X2 = 0:

g(0) = r2 − f2(0, 0, T ∗0 )

where T ∗0 = ev
µ(cg+v) is the corresponding T ∗ value when X∗2 = 0. Next we calculate

the sign as X2 → K, its maximum possible value:

g(K) = −f2(0,K, T ∗K) < 0

Thus, if r2 − f2(0, 0, T ∗0 ) < 0, there is no biologically relevant X2 value that solves
g(X∗2 ) = 0, since the function f2 is monotonically decreasing in X2. Therefore,
there is only the trivial, disease-free equilibrium E∗0 = (0, 0, ev

µ(cg+v) , 0, 0,
v
c ) in our

domain.
On the other hand, if r2 − f2(0, 0, T ∗0 ) > 0 then, by the Intermediate Value

Theorem, there must be some X∗2 ∈ (0,K) which solves g(X∗2 ) = 0, giving us an
endemic equilibrium E∗1 = (0, X∗2 , T

∗
1 , I
∗
L1, 0,

v
c ), representing androgen independent

relapse.
Now that the equilibria have been found, we now turn to finding the eigenvalues

of the Jacobian to determine stability. We examine the disease-free equilibrium E∗0 ,
which generates the following matrix:

a1,1 0 0 0 0 0

m1 r2 − f2(0, 0, T ∗0 ) 0 0 0 0

0 0 −µ T ∗0
∂
∂IL

f3(0, T ∗0 ) 0 ceg
cg+v

T ∗0
∂
∂X1

f4(0, 0) T ∗0
∂
∂X2

f4(0, 0) 0 −ω 0 0

0 0 0 0 −γ 0

0 0 0 0 0 −c


where a1,1 = −d1a0 −m1 − f1(0, 0, T ∗0 ). This Jacobian results in the following set
of eigenvalues: (−d1a0 −m1 − f1(0, 0, T ∗0 ), r2 − f2(0, 0, T ∗0 ),−µ,−ω,−γ,−c). Since
we know that all parameters are non-negative, and assuming that all parameters
are in fact positive, we can see that all eigenvalues except one are guaranteed to be
negative. Only r2 − f2(0, 0, T ∗0 ) has the possibility to be negative, positive, or zero.
If r2 − f2(0, 0, T ∗0 ) < 0, we in fact have the cancer-free equilibrium to be stable.
Otherwise if r2 > f2(0, 0, T ∗0 ), the cancer-free equilibrium is unstable.

We would like to understand biologically what this means. We write our stability
condition as r2 < f2(0, 0, T ∗0 ) : this means the maximal growth rate of androgen
independent cells is less than the death rate of androgen independent cells due
to T cells. We observe that since these functions are monotone, in the case of
strictly monotone function, we can invert f2 to find an equivalent condition that
involves T ∗0 . Recalling that T ∗0 = ev

µ(cg+v) , this means we can solve for an explicit

solution involving v, our critical dosage parameter. Theoretically, if the remaining
parameters could be measured for a patient, a critical dosage could be calculated.
We note that if given patient specific parameters such as their individual T cell
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efficiencies, we are able to calculate a necessary dose level to stabilize the disease-
free equilibrium. In the context of our proposed simulation functions fi, given in
(11), our condition for stability becomes v > cgg2r2µ

e2e−g2r2µ , which is indeed a critical

dosage value.

5. Global analysis of limiting system. As the full system is difficult to perform
analysis on, we consider the limiting systems by performing a quasi-steady state
approximation. This can give insight into the biology. We begin by assuming
quasi-steady states for androgen, cytokines, and dendritic cells. This is a reasonable
assumption, since the time scales at which these processes occur is much shorter
than that of the populations of cancer cells growing. Then, we use the results of
Thieme [42] to examine the asymptotic behavior of the limiting system. We consider
the system when androgen deprivation therapy is continual (A = 0). We will
examine the case where androgen deprivation therapy is continually on thoroughly
and determine necessary conditions of fi(X1, X2, T ) to obtain global stability of
eradication of prostate cancer and conditions for global stability of the diseased
steady state.

We examine the case where androgen deprivation therapy is turned on (A = 0).
We let IL, D, and A go to quasi-steady state. We end up with the following set of
equations:

dX1

dt
= −d1a0X1 −m1X1 −X1f1(X1, X2, T ), (18)

dX2

dt
= r2X2

(
1− X1 +X2

K

)
+m1X1 −X2f2(X1, X2, T ), (19)

dT

dt
=

eD

g +D
− µT + Tf3(IL, T ), (20)

IL =
Tf4(X1, X2)

ω
, (21)

A = 0, (22)

D =
v

c
. (23)

Note that:

dX1

dt
= X1 [−d1a0 −m1 − f1(X1, X2, T )]

≤ X1 [−d1a0 −m1]

≤ −aX1.

(24)

It is apparent that lim
t→∞

X1(t) = 0. Thus we can reduce the system to:

dX2

dt
= r2X2

(
1− X2

K

)
−X2f2(0, X2, T ),

dT

dt
=

eD

g +D
− µT + Tf3(IL, T ),

(25)

which is defined on the subdomain Ω̄ = {(X2, T ) : X2 ≥ 0, T ≥ 0} and is the
limiting system of (18)-(23).

Before we begin the analysis of the system, we would like to ensure that the
behavior of the quasi-steady state system is analogous to the full system. We must
quantify what dynamics are preserved and eliminated by simplifying the system.
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Figure 5. Comparisons of the full system and quasi-steady state
system for various values of e1: 0, 0.15, 0.25, and 0.65, assuming
androgen deprivation therapy is constantly on. These values of
e1 show many differing dynamics. The quasi-steady state system
closely approximates the full system in every case, but shows slight
differences in the case of e1 = 0.15

We run the system with the same parameters for the full system and for the reduced
system. Figure 5 shows the comparison. We can see that by examining the quasi-
steady state system we do lose some of the dynamics in certain cases, like when
e1 = 0.15. For all other values of e1, however, we note that the quasi steady-
sate system very closely resembles the full system, meaning that our results for the
quasi-steady state system may be extended to the full system. We also note that
our expected outcome – that X1 goes to zero, is exhibited in all of the figures.

Theorem 5.1. The disease-free steady state of (18)-(23) is globally asymptotically
stable under the following conditions:

i) µ > f3(IL, T ),
ii) r2 < f2(0, 0, T ∗0 ),

iii) µ2(cg+v)
ev > ∂

∂T f3(0, T ∗0 ).

To prove this theorem, we break down the result into several propositions for
simplicity. We will begin with positivity and boundedness, move to local asymptotic
stability, and end with conditions necessary for global asymptotic stability.

Proposition 3. If µ > f3(IL, T ) then solutions of (18)-(23) remain positive and
bounded.
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Proof. We begin with the proof for positivity, examining T first. We note that since
we are assuming that T (t0) ≥ 0, in order for T (t) < 0 for some t, we would require
that dT

dt < 0 when T = 0. However, dT
dt |T=0 = eD

g+D > 0 since all parameters are

positive. For X2, since we are assuming that X2(t0) ≥ 0, in order for X2(t) < 0
for some t, we would require that dX2

dt < 0 when X2 = 0. However, dX2

dt |X2=0 =
m1X1 > 0 since we have already proved that X1 stays positive and all parameters
are positive.

We have already proven that solutions remain nonnegative, so we now look to
boundedness. We begin with T :

dT

dt
=

eD

g +D
+ T (f3(IL, T )− µ)

≤ c− ḡT
(26)

where ḡ = min[µ− f3(IL, T )] > 0 by assumption. This implies that T is bounded.
We look towards the boundedness of X2 now. We immediately see that X2 is

bounded above by K.

Proposition 4. The limiting system (25) contains two equilibria: the disease-free
equilibrium and a negative equilibrium, under assumption ii): r2 < f2(0, 0, T ∗0 ). The
disease-free equilibrium is locally asymptotically stable under assumption ii) and iii):
g+D
eD > ∂

∂T f3(0, T ∗0 ).

Proof. There are two possible equilibria of the system. Following the proof from
Proposition 2: if r2 < f2(0, 0, T ∗0 ), only the disease-free equilibrium exists, E∗0 =
(0, T ∗0 ). The local stability of the disease-free steady state E∗0 = (0, ev

µ(cg+v) ) is

exhibited in the Jacobian:
r2 − f2(0, 0, T ∗0 ) 0

T ∗0
∂
∂X2

f3(0, T ∗0 ) −µ+ T ∗0
∂
∂T f3(0, T ∗0 )


and the eigenvalues are given by λ1 = r2 − f2(0, 0, T ∗0 ) < 0 as given by the as-
sumptions, and λ2 = −µ + T ∗0

∂
∂T f3(0, T ∗0 ) < 0 (by condition iii), so we have local

asymptotic stability.

We are now ready to prove the main result for global asymptotic stability.

Proof of Theorem 5.1. Since solutions to the system are positive and bounded, we
immediately see that there can be no limit cycles around our non-negative equilib-
rium, since our only equilibrium is on the boundary. By Poincare-Bendixson, all
solutions tend towards the disease-free steady state, so E∗0 is globally asymptotically
stable.

We can interpret two of these conditions for the global stability in terms of
biology. We can see that the condition r2 < f2(0, 0, T ∗0 ) can be interpreted as
the maximal intrinsic growth rate of the cancer cells must be less than the death
rate due to the T cells. Recall that this was the condition for local stability of
the full system, so we are unsurprised to see the same condition again. Similarly,
µ > f3(IL, T ) means that we want the death rate of the T cells to be greater than
the production of T cells due to IL. Now that we have examined the conditions
for global stability for the disease-free equilibrium, we also want to explore the
dynamics for the equilibrium that is not disease-free.
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Theorem 5.2. The diseased steady state of (18)-(23) is globally asymptotically
stable under the following conditions:

i) µ > f3(IL, T ),
ii) r2 > f2(0, 0, T ∗0 ),

iii) µ− f3(IL, T ) > −X2
∂
∂X2

f2(X1, X2, T ) + T ∂
∂T f3(IL, T )− r2X2

K ∀X2, T ≥ 0.

To prove this theorem, we break down the result into several propositions for
simplicity. We will begin with positivity and boundedness, move to local asymptotic
stability, followed by eliminating limit cycles, and end with conditions necessary for
global asymptotic stability.

Proposition 5. If condition i) is satisfied, then solutions of (18)-(23) remain pos-
itive and bounded.

Proof. Positivity and boundedness have already been proven in Proposition 3, and
the results hold for current conditions, as long as we assume condition i).

Proposition 6. The limiting system (25) contains two equilibria: the disease-free
equilibrium, E∗0 , and a secondary equilibrium, E∗1 . The secondary equilibrium is
positive (assuming condition ii)). The disease-free equilibrium is a saddle point
(under conditions ii) and iii)).

Proof. The existence of the equilibria follow from Proposition 2, so we know that
under condition ii), if r2 > f2(0, T ∗0 ), we will have two biologically relevant equilibria:
E∗0 = (0, T ∗0 ) = (0, ev

µ(cg+v) ) and E∗1 = (X∗2 , T
∗
1 ).

The local stability of the disease-free steady state E∗0 is exhibited in the Jacobian:
r2 − f2(0, T ∗0 ) 0

T ∗0
∂
∂X2

f3(0, T ∗0 ) −µ+ T ∗0
∂
∂T f3(0, T ∗0 )


and the eigenvalues are given by λ1 = r2 − f2(0, T ∗0 ) > 0 by condition ii) and
λ2 = −µ+ T ∗0

∂
∂T f3(0, T ∗0 ) < 0, by condition iii). Thus, the disease-free equilibrium

is a saddle point.
Now we examine the Jacobian of the diseased equilibrium:

− r2X
∗
2

K −X∗2 ∂
∂X2

f2(X∗2 , T
∗
1 ) −X∗2 ∂

∂T f2(X∗2 , T
∗
1 )

T ∗1
∂
∂X2

f3(I∗L, T
∗
1 ) −µ+ T ∗1

∂
∂T f3(I∗L, T

∗
1 ) + f3(I∗L, T

∗
1 )

 .

Thus, the trace is given by

τ = −r2X
∗
2

K
−X∗2

∂

∂X2
f2(X∗2 , T

∗
1 )− µ+ T ∗1

∂

∂T
f3(I∗L, T

∗
1 ) + f3(I∗L, T

∗
1 ) (27)

and the determinant is given by

∆ =

(
−r2X

∗
2

K
−X∗2

∂

∂X2
f2(X∗2 , T

∗
1 )

)(
−µ+ f3(IL,

∗ T ∗1 ) + T ∗1
∂

∂T
f3(I∗L, T

∗
1 )

)
+

(
X∗2

∂

∂T
f2(X∗2 , T

∗
1 )T ∗1

∂

∂X2
f3(I∗L, T

∗
1 )

)
.

(28)
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In order for E∗1 to be stable we require τ < 0,∆ > 0. Notice that τ < 0 is given
by assuming condition iii). However, we have no idea about the sign of ∆. Given
our information of τ < 0, we know that E∗1 is either a saddle point or a stable
node/spiral.

Proposition 7. The limiting system (25) has no limit cycles as long as condition
iii) is satisfied.

Proof. We will be using the Dulac criterion to establish that there are no periodic
orbits within. Using h(X2, T ) = 1

X2
, we can see that

∆ =
∂

∂X2

[
1

X2

(
r2X2

(
1− X2

K

)
−X2f2(X2, T )

)]
+

∂

∂T

[
1

X2

(
eD

g +D
− µT + Tf3(IL, T )

)]
=

∂

∂X2

[
r2 −

r2X2

K
− f2(X2, T )

]
+

∂

∂T

[
eD

X2(g +D)
− µT

X2
+
T (f3(IL, T ))

X2

]
= −r2

K
− ∂

∂X2
f2(X2, T )− µ

X2
+
f3(IL, T )

X2
+

T

X2

∂

∂T
f3(IL, T )

To ensure that there are no periodic orbits, we must prove that this quantity ∆
does not change sign. We begin by re-writing this condition:

X2∆ = −r2X2

K
−X2

∂

∂X2
f2(0, X2, T )− µ+ f3(IL, T ) + T

∂

∂T
f3(IL, T ). (29)

We know that for X2, T ≥ 0, ∆ < 0 by condition iii). Thus, the Dulac criterion has
ensured that we will have no periodic orbits in our domain.

We are now ready to prove the main result for global asymptotic stability.

Proof of Theorem 5.2. By Proposition 7, we can see that there are no limit cycles
present. Solutions are positive and bounded, and the model system has two fixed
points, one of which is a saddle point. By the Poincare-Bendixson theorem, we know
that there are three possibilities: all solutions tends to a fixed point, all solutions
tend to a periodic orbit, or there is a homoclinic or heteroclinic orbit which connects
our two fixed points. We have ruled out periodic orbits by Dulac criterion using
condition iii).

Now we must show there is no homoclinic or heteroclinic orbits connecting our
fixed points.

In order to show there is no heteroclinic orbit connecting the two fixed points,
we look towards the stable manifold of the saddle point. Looking back towards our
Jacobian, we can clearly see that the stable manifold is given by the T -axis(

X2

T

)
=

(
0
1

)
. (30)

Due to assumption ii), we notice that near the disease free steady state E∗0 , we have
dX2(t)/dt > 0. These observations preclude the existence of a heteroclinic orbit
connecting E∗0 and E∗1 .

The fact that dX2(t)/dt > 0 near E∗0 also implies that there is no homoclinic
orbit originating from E∗0 . There can not be any homoclinic orbits originating from
E∗1 if it is stable. The Dulac criteria also rules out homoclinic orbits originating
from E∗1 if it is a saddle.



1018 ERICA M. RUTTER AND YANG KUANG

By Poincare-Bendixson Theorem, the only option remaining is that all solutions
of (25) converge to E∗1 . Thus, E∗1 is globally asymptotically stable.

6. Conclusion. Current treatment options for late-stage prostate cancer are sub-
optimal in terms of survival and quality of life. By examining a model of intermittent
hormone therapy coupled with dendritic cell vaccines, we are able to prolong both
the life and quality of life of the patient. We found that, keeping total yearly dosages
the same, more frequent injections are conducive to managing prostate cancer for
a longer period of time. We extrapolate this idea to the extreme by modifying the
model to include a ‘continual’ dosage, as if administered through an intravenous
fluid.

In our model, there are several parameters which are patient specific, or do not
have accepted literature values. We examined the effect of varying values of e1, the
killing T-cell efficiency. Predictably, increasing e1 led from androgen independent
relapse, to stable limit cyclical behavior, and when increased enough, total eradi-
cation of the disease. This parameter measures how effective dendritic cell vaccine
therapy will be - if e1 is small, the therapy will be negligible. e1 also acts to elon-
gate the cycle times for a stable cyclical disease, which means increased time for
the period when the patient is not undergoing androgen deprivation therapy. We
performed bifurcation analysis on parameter e1 to examine the various behaviors
that exist in the system. As our simulations only considered the case where e1 = e2,
we could also investigate how the dynamics change when we allow these values to
be different.

Additionally, for mathematical analysis, we simplify the model to have contin-
uous androgen suppression, in order to determine the effect of continual dosages.
We notice there are two possible equilibria – cancer-free equilibrium and an andro-
gen independent (fatal) cancer equilibrium. If our continual dosage is less than a
determined critical value, the cancer-free equilibrium exists, but it is unstable. If
our continual dosage is higher than that critical value, the cancer-free equilibrium
is stable and a cancerous equilibrium is born (stability unknown). These findings
have biological significance. In previous papers it has been determined that for a
30-day vaccine, it is necessary for a large values of e1 to ensure cancer-free progres-
sion [36]. In this analysis, we could have smaller values of e1 that still result in stable
disease-free equilibrium. For patients with less effective immune systems (lower e1
values), it is possible to eradicate cancer with higher presence of dendritic cells. As
dendritic cell vaccines are not known to have an adverse effect on the human body,
it is possible that for patients with weakened immune systems, a tailored dose could
be administered.

We further examined the limiting cases of behavior for this system, by allowing
several parameters to go to quasi-steady state. We were able to determine require-
ments for global stability – or the guarantee of elimination of prostate cancer in
some cases. Additionally, we were able to determine further conditions for the
global stability of the endemic equilibrium.

Despite the insights that this model has afforded us, there is still much to be
done. Future work may include comparing the model with available patient data.
This will allow us to determine the efficacy of this model at predicting behavior of
the prostate cancer. We will also be able to explore the patient-specific parameters
and the effect these have on final outcome. Additionally, we would like to be able to
compare our model with other patient-data validated models. Mathematically, the
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local stability of the endemic equilibrium of the full system should also be studied
in detail.
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