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Abstract Glioblastoma multiforme (GBM) is a malignant brain cancer with a ten-
dency to both migrate and proliferate. We propose modeling GBMwith heterogeneity
in cell phenotypes using a random differential equation version of the reaction–
diffusion equation, where the parameters describing diffusion (D) and proliferation
(ρ) are random variables. We investigate the ability to perform the inverse problem to
recover the probability distributions of D and ρ using the Prohorovmetric, for a variety
of probability distribution functions.We test the ability to perform the inverse problem
for noisy synthetic data. We then examine the predicted effect of treatment, specifi-
cally, chemotherapy, when assuming such a heterogeneous population and compare
with predictions from a homogeneous cell population model.
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1 Introduction

The current biological understanding of cancer is that tumors are comprised of a geno-
typically diverse population of cells with plastic phenotypes and that treatment acts as
an evolutionary pressure, selecting for therapy resistant subpopulations. Glibolastoma
multiforme (GBM) is an aggressive, inherently heterogeneous brain tumor for which
treatment is minimally effective: mean survival time with treatment is 12–15months
Norden and Wen (2006), nearly all GBM tumors recur Wen and Kesari (2008), and it
has a five-year survival rate of approximately 5% Gallego (2015). GBM is known for
exhibiting both strong migratory and proliferative characteristics.

The simplest spatial model that can be used to describe the spread of GBM
is the reaction–diffusion equation (Eq. (1)) (Murray 2003; Swanson et al. 2000).
Although this model is clinically relevant (Baldock et al. 2014; Jackson et al. 2015),
it’s major drawback is that it assumes isotropic diffusion, which does not describe
the majority of tumor shapes. Therefore, it is imperative to include some method of
accounting for anisotropy in tumor growth models. Methods of incorporating spatial
dependence include using spatially-dependent piece-wise constant diffusion, diffusion
tensor imaging, and assuming heterogeneous cell sub-populations of the tumor that
exhibit different behavior. The presence of this phenotypic heterogeneity is the basis
of the so called “go or grow” hypothesis Hatzikirou et al. (2012), and the estimation
of such heterogeneity from spatiotemporal data is the aim of our investigation in this
work.

We propose to perform an inverse problem to estimate the diffusion coefficient D,
and growth rateρ in the reaction–diffusion equation as distributions of a randomdiffer-
ential equation rather than as point estimates for a deterministic differential equation.
Differential equations with random parameters have been studied previously (Soong
and Chuang 1973; Soong 1973), including applications to biologically-relevant sit-
uations (Chu et al. 2009; Hall and Gandar 1995). However, much of the previous
literature concerns forward solutions of the random differential equation. Here, we
are interested mainly in the recovery of the distributions of the random variables
via the inverse problem. The inverse problem is performed using the Prohorov met-
ric framework which has been developed and tested in other biological scenarios
with phenotypic heterogeneity (Banks et al. 1998, 2017), and which makes no prior
assumption of the underlying probability distribution of the parameters. We test our
framework by generating simulated data for a reaction–diffusion tumor growth model
with heterogenous sub-populations and attempt to recover the underlying probability
distributions for the parameters describing the heterogeneity. Specifically, we gener-
ate data for the reaction–diffusion equation as a random differential equation, using
a variety of distributions such as normal, lognormal, and bigaussian (corresponding
to the “go or grow” hypothesis) to describe the growth rate (ρ) and the diffusion (D)
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parameters. We then use the Prohorov metric framework to estimate, i.e., attempt to
recover, the distributions for ρ and D. We examine the cases where only one param-
eter is estimated as a distribution and then proceed by estimating in the case where
both ρ and D are distributed parameters. We introduce observation noise into the
solutions to determine how this perturbs the estimated distributions. We then model
the effect of chemotherapy and compare predicted tumor burden using our random
differential equation (i.e., a heterogeneous cell population) with predictions made by
the reaction–diffusion equation.

We discuss the current status of GBM mathematical models and the importance
of modeling tumor heterogeneity in Sect. 2. In Sect. 3 we introduce the Prohorov
metric framework and it’s use to estimate parameter distributions. We follow with our
results for synthetically generated data in Sect. 4, including the case where we recover
both one and two parameter distributions. This is followed by discussing the ability
to perform the inverse problem with noisy synthetically generated data in Sect. 5. We
then carry out a comparison of drug treatment predictions with our model versus the
standard homogeneous population model in Sect. 6. We conclude in Sect. 7 with a
discussion of future applications of this framework.

2 Mathematical modeling background

The normalized reaction–diffusion equation

∂c(t, x)
∂t

= D
∂2c(t, x)

∂x2
+ ρc(t, x)(1 − c(t, x)) (1)

is frequently used as a parsimonious model for GBM growth and diffusion, where
c(t, x) represents the cell density at time t and spatial location x , D is the diffusion
coefficient, and ρ is the intrinsic growth rate. However, its simplistic formulation
results in isotropic diffusion, which does not oftenmatch in vivoGBMgrowth. Several
methods of altering Eq. (1) have been developed to obtain anisotropic diffusion.

Onemethod is incorporating spatially-dependent diffusion via a piecewise constant
function (i.e., D = D(x)), where, for example, the diffusion constant differs spatially
depending on the tissue type, either grey or white matter (Swanson et al. 2000, 2003).
This allows the shape of the tumor to travel along white matter tracts at a faster rate.
However, one must know the spatial distribution of grey and white matter within the
brain, or approximate the distribution with a human brain atlas, to inform the diffusion
function.

A second method of introducing anisotropic diffusion is to use diffusion weighted
imaging (DWI), a neurological imaging technique usingMagnetic Resonance Imaging
(MRI). These data can be collected concurrently with T2-weighted or T1-weighted
images used for diagnostic purposes. Diffusion weighted images, from 6 or more
directions, can be used to create a diffusion tensorWestin et al. (2002). The eigenvalues
of these tensors describe the anisotropic diffusion of water. One lingering question
is how to use this information, which describes water diffusion, to inform cellular
diffusion. Multiple methods have been proposed (Bondiau et al. 2008; Clatz et al.
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2005; Jbabdi et al. 2005; Konukoglu et al. 2007; Painter and Hillen 2013), however
this remains an area of active research. Recent work showed superior fits in nine out of
ten patient cases as compared to the standard reaction–diffusion equation Swan et al.
(2017). Although this may be the most biologically accurate model, DWI data is not
always available, although some work has been performed using a human brain atlas
(Bondiau et al. 2008; Konukoglu et al. 2010).

In vitro experimental work showed that the reaction–diffusion equation was insuf-
ficient to describe cell migratory patterns Stein et al. (2007). This led to the hypothesis
that two distinct phenotypes are present in GBM: a proliferative population with a low
diffusion rate and a migratory population that does not reproduce as much. This “go
or grow” hypothesis has been present in many forms of biology, yet remains unproven
Garay et al. (2013). However, there is experimental evidence that GBM cells move
in a bursting fashion Farin et al. (2006). Hatzikirou et al. (2012) introduced the con-
cept of “go or grow” to mathematical modeling of GBM, theorizing that phenotypic
switching between the two phenotypes was induced by hypoxia, rather than random
mutation Onishi et al. (2011). Modeling hypoxia-induced phenotypic switching has
been shown to replicate histologic patterns of pseudopalisades present in human GBM
Martínez-González et al. (2012). Recent work shows that one equation describing a
population with phenotypic plasticity affected by cell density was sufficient to fit
in vitro experimental data without assuming separate subpopulations Stepien et al.
(2015).

The commonality between the previously mentioned mathematical models is their
ability to include a non-constant diffusion rate. In this work, we assume theremay exist
heterogeneous subpopulations of cells which behave differently from one another, but
that we are only able to observe the aggregate (total) population data. We propose to
describe GBM cell phenotypic heterogeneity by using parameter distributions for the
parameters ρ and D. The random differential equation governing diffusion and growth
is:

∂c(t, x,DDD,ρρρ)

∂t
= ∇ · (DDD∇c(t, x,DDD,ρρρ))+ ρρρc(t, x,DDD,ρρρ)(1 − c(t, x,DDD,ρρρ)) (2)

We assume that the parameters DDD and ρρρ are random variables defined on a probability
space, denoted by Ω . In this case, we assume Ω to be a compact set and defined by
Ω = ΩDDD × Ωρρρ . The distribution of the parameters is given by P(DDD,ρρρ), and c(t, x)
represents the aggregate population observable (which is defined as the expectation
over subpopulations c(t, x,DDD,ρρρ):

c(t, x) = E [c(t, x, ·, ·), P] =
∫

Ω
c(t, x,DDD,ρρρ)dP(DDD,ρρρ) (3)

The random differential Eq. (2) is sufficiently flexible tomodel the classic reaction–
diffusion equation (assuming a point distribution of DDD and ρρρ) and a “go or grow” type
equation (assuming, for example, a bi-gaussian distribution of DDD and ρρρ).
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3 Prohorov metric

An inverse problem framework relying on the Prohorov metric, called the Prohorov
Metric Framework (PMF) was developed and discussed in (Banks 2012; Banks et al.
2014, 2012). Here, we describe how this framework can be utilized for estimating the
continuous probability measure P(DDD,ρρρ) as a finite-dimensional approximation using
aggregate population data. Previous authors have used the Prohorov metric to esti-
mate parameter distributions for mathematical models in a wide range of applications.
These include estimating the distribution of individual growth rates for size-structured
population models (first order hyperbolic partial differential equations) using aggre-
gate or population level data. For example, efforts have involved mosquitofish (Banks
et al. 1988; Banks and Davis 2008; Banks and Fitzpatrick 1991; Banks et al. 1998) and
shrimp populations (Banks et al. 2009a, b, 2010). Such problems involve equations
modeling the number of individuals v(t, ξ ; g) at time t and size ξ for a given subpop-
ulation of mosquitofish or shrimp with growth rate g, however, the observable data are
aggregate measurements of the total population level. These type of aggregate data
are common in ecological studies with catch and release measurements Banks and
Kunisch (1989), where one samples at different times from the same population but the
change in the structured variable, e.g., size, for each individual is not tracked over time.
More recently these techniques have been used in determining heterogeneous ampli-
fication rates in protein aggregate formation in structured population models Banks
et al. (2017). In this instance, a first order system of partial differential equations is
used with the PMF to model dynamics of a structured variable, i.e., prion aggregates
per cell, within a population of cells. Such type of problems are also typical in exper-
iments where the organism or population member being studied is sacrificed in the
process of making a single observation (e.g., certain physiologically based pharma-
cokinetic (PBPK) modeling Banks and Potter (2004) and whole organism transport
models Banks and Kunisch (1989)). In these cases one may still have longitudinal
models for individuals as in the mosquitofish problem, but no individual level data
are available. In more complex systems involving second order hyperbolic systems,
the PMF has been used with Maxwell systems for complex polarization models of
heterogeneous materials (Banks et al. 2002; Banks and Gibson 2006). Second order
hyperbolic systems are also the focus of the shear wave propagations studies in (Banks
et al. 2002, 2013a, b; Banks and Pinter 2005). In our efforts here we propose use of
the PMF techniques for estimation of random variables representing rates governing
a reaction–diffusion system.

Two different methods for approximating the probability measure P(DDD,ρρρ) are
using either delta functions or spline functions. Although using spline functions are
known to yield more accurate convergence in the probability density function (PDF)
and cumulative distribution function (CDF), delta functions are able to better approx-
imate CDFs that have discontinuous derivatives. Therefore, we illustrate use of both
approximations, since we do not wish to make any assumptions about, or restrictions
on, the CDF.

Suppose that the aggregate spatiotemporal data we want to model is given by v j i ,
representing the data at time j and spatial location i , where j = 1, . . . , Nt and
i = 1, . . . , Nx . Then, we estimate:
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P̂ = argmin
PM (Ω)

Nt ,Nx∑

j,i=1

(v j i − v(t j , xi ; P))2 (4)

where M represents the number of elements used in the approximation (explained in
the sections below). This becomes:

P̂ = argmin
PM (Ω)

∑

j,i

(
v j i −

∫

Ω
c(t j , xi ;DDD,ρρρ)dP(DDD,ρρρ)

)2

(5)

where c is the numerical solution. Previous experimental data Stein et al. (2007)
suggests that it is not unreasonable to assume that data can be collected radially at
spatial increments of 40 microns, daily. This is the basis for describing the data in
the form of v j i . Two methods are used to approximate the probability measure P:
a discrete approximation based on delta functions, and a continuous approximation
using spline basis functions.

3.1 Discrete approximation

One-Parameter Approximation We first describe how to estimate one parameter as a
distribution using the delta function approximation. Essentially, we define a discrete
mesh for a parameter, in this case ρ, over M nodes, such that ρρρM = {∆ρl , l =
1, . . . ,M}. Thus, Eq. (5) simplifies to:

P̂ = argmin
R

∑

j,i

[

v j i −
(

∑

l

c(t j , xi ; D, ρl)w
M
l

)]2

(6)

where the numbers wM
l ≥ 0 are weights describing a discrete probability density

function, i.e., such that
∑M

l=1w
M
l = 1. We will refer to a discrete approximation with

M nodes as DEL(M).
Similarly, if we wish to estimate only the parameter D as a distribution, we define

a mesh for D over M nodes, such that DDDM = {∆Dl , l = 1, . . . ,M}. We would then
solve:

P̂ = argmin
R

∑

j,i

[

v j i −
(

∑

l

c(t j , xi ; Dl , ρ)w
M
l

)]2

(7)

under the assumption
∑M

l=1w
M
l = 1.

The number of nodes, M , can greatly influence the convergence of the approxi-
mating CDFs. By incorporating too few nodes, we may not adequately recover the
CDF, but by incorporating too many nodes, we may introduce numerical instability
and over-fitting. Therefore, we simulate our results for many choices of M .
Two-Parameter Estimations We next describe how to estimate the two parameters
ρ and D as distributions. We make the assumption of independence between the
distributions of the random variables ρρρ and DDD.

123



Estimating intratumoral heterogeneity… 2005

Similar to the one-parameter case, we generate a uniform mesh for ρ and D over
the total number of nodes. Therefore we have DDDMD = {∆Dl , l = 1, . . . ,MD}, and
ρρρMρ = {∆ρk , k = 1, . . . ,Mρ}. We do not require MD = Mρ . We then independently
find the weights for each parameter by minimizing:

P̂ = argmin
R

∑

j,i

⎡

⎣v j i −

⎛

⎝
∑

l,k

c(t j , xi ; Dl , ρk)w
MD
l w

Mρ

k

⎞

⎠

⎤

⎦
2

(8)

under the assumption
∑MD

l=1 w
MD
l = 1 and

∑Mρ

k=1w
Mρ

k = 1. We refer to a discrete
approximation of two variables as DEL(MD,Mρ).

3.2 Spline-based approximations

An alternative method to using delta functions involves using spline basis functions
to approximate a probability density function. Similar to the discrete approximations,
we choose a certain number of nodes, but we also choose the number of integrative
nodes – that is, the number of nodes we use to approximate the integral. The splines
are “hat functions” defined as:

sl(ξ) =

⎧
⎪⎨

⎪⎩

ξ−ξl−1
ξl−ξl−1

if ξ ∈ [ξl−1, ξl ]
ξl+1−ξ
ξl+1−ξl

if ξ ∈ [ξl , ξl+1]
0 otherwise

(9)

One-Parameter Approximation We first describe how to estimate one parameter as a
continuous distribution. Essentially, we generate amesh for a random variable describ-
ing the parameter, in this caseρρρ, overM nodes, such thatρρρM = {sl(ρρρ), l = 1, . . . ,M}.
Thus Eq. (5) simplifies to:

P̂ = argmin
R

∑

j,i

[

v j i −
(

∑

l

al

∫

Ωρ

c(t j , xi ; D,ρρρ)sl(ρρρ)dρ

)]2

(10)

where pl = alsl(ρρρ) represents the probability density. Therefore, we require that∑M
l=1 al

∫
Ωρ

sl(ρρρ)dρ = 1. The sl(ρρρ) are calculated as in Eq. (9). In order to calculate
the integral, we use the composite trapezoid rule using Q quadrature nodes. We will
refer to a spline approximation with M nodes and Q quadrature nodes as SPL(M,Q).

A similar formulation is used for the diffusion coefficient. We partition D over
M nodes, such that DDDM = {sl(DDD), l = 1, . . . ,M}. We then find the probability
distribution by minimizing the following:
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P̂ = argmin
R

∑

j,i

[

v j i −
(

∑

l

al

∫

ΩD

c(t j , xi ;DDD, ρ)sl(DDD)dD

)]2

(11)

Two-Parameter Approximation As in the discrete case, we assume that ρρρ and DDD
are independent random variables. Because of this assumption, we can individu-
ally estimate the distributions. We generate a uniform mesh for ρ and D over the
total number of nodes. Therefore we have DDDMD = {sl(DDD), l = 1, . . . ,MD}, and
ρρρMρ = {sk(ρρρ), k = 1, . . . ,Mρ}. As in the discrete case, we do not require MD = Mρ .
We then minimize:

P̂ = argmin
R

∑

j,i

[

v j i −
∑

l

al

∫

Ωρ

(
∑

k

bk

∫

ΩD

c(t j , xi ;DDD,ρρρ)sl(DDD)dD

)

sk(ρρρ)dρ

]2

(12)
We require that

∑MD
l=1 al

∫
ΩD

sl(DDD)dD = 1 and
∑Mρ

k=1 bk
∫
Ωρ

sk(ρρρ)dρ = 1. As with
the 1D case, we perform the approximation of each of the integrals using the com-
posite trapezoid rule with QD and Qρ quadrature nodes, respectively. The number
of quadrature nodes QD and Qρ do not need to be the same. We will refer to this
approximation as SPL(MD,Mρ, QD, Qρ).

3.3 Convergence and consistency theory

The Prohorovmetric represents the weak* convergence of measures when the space of
probability measures P(Ω) is imbedded in C∗(Ω), the dual of the space of bounded
continuous functions onΩ .We discuss briefly the convergence and consistency theory
here, assuming that we are only estimating DDD as a distribution, but we note the theory
extends to two parameters. We assume a family of permissible probability functions
for our diffusion and growth rates on P(Ω) as defined for Eq. (2). Thus we attempt
to perform the following estimation in a least-squares framework

P̂ = argmin
P∈P(Ω)

∑

j,i

(v j i − c(t j , xi ; P))2 (13)

to obtain a best fit for a nominal or “true” parameter P0. To illustrate for our special
1-D case, we let Ω = ΩDDD be the continuum of values on [0, Dmax]. This implies that
the family of probability functions P(Ω) is a compact metric space in the Prohorov
metric. The minimizer function used in Eq. (13) is continuous in P , and therefore
there exists a (not necessarily unique) minimizer P̂ .

In order to approximate this minimizer, we replace the infinite dimensional opti-
mization problem by a sequence of finite-dimensional optimization problems with
Dirac distributions. Thus, we set ΩM = {∆Dk , k = 1, . . . ,M}, where M represents
the number of nodes, or elements, used in the approximation. Our family of approxi-
mating probability functions becomes
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PM (ΩM ) =
{
PM =

M∑

k=1

wk∆Dk |wk ≥ 0 and
M∑

k=1

wk = 1
}
,

where ∆Dk represents the Dirac delta function at the point Dk and wk are the weights
and/or probabilities. Again it has been previously proven (Banks 2012; Banks et al.
2014) that there exists a minimizer for the discrete approximation problem

P̂M = argmin
P∈PM (ΩM )

Nt ,Nx∑

j,i=1

(v j i − c(t j , xi ; P))2. (14)

There are a number of questions that arise immediately in the class of problems we
have defined. Perhaps the most obvious are questions of convergence (what happens
as M → ∞ in the Dirac or spline approximations?) and consistency (what happens
as N = (Nt , Nx ) → ∞?) These questions have been successfully investigated both
theoretically ((Banks et al. 2014; Banks and Pinter 2005) and the references therein)
and computationally ((Banks and Davis 2007, 2008) and the references). A further
issue involves the partial differential equation approximations cÑ to the solution c of
Eq. (2). Again, the necessary convergence issues have been successfully addressed in
Banks et al. (2014); Banks and Kunisch (1989). In summary we can assert that the
approximations P̂M

N ,Ñ
converge to a true distribution P0 as the number of elements

used in the approximations increase (i.e., M, N , Ñ → ∞).

4 Results for distributed parameters

In the following section we describe results showing the Prohorovmetric can correctly
estimate parameter distributions for both DDD and ρρρ individually, as well as estimating
a joint distribution for DDD and ρρρ. Our goal is to ensure that we can adequately recover
these parameter distributions.

Within each distribution, we use both the delta function approximations as well
as the spline approximations. We also investigate the number of nodes necessary to
generate a good fit.
Generation of Synthetic Data. To first prove the viability of recovering parameter
distributions, we generate synthetic data by solving the RDE (Eq. (2)) for a variety
of different parameter distributions. To ensure a strong connection to the biological
processes, we examine a wide family of biologically-relevant distributions such as
normal, lognormal, bigaussian, point, and two point.

Table 1 displays the associated informationwith the parameter distributions for both
DDD and ρρρ. The synthetic data were generated by finely meshing over each parameter,
D ∈ [0, 2e − 4] and ρ ∈ [0, 2], and then creating the probability density function
(pdf). For discrete probability distributions (point, 2 point), a probabilitymass function
(pmf) was created. We then solved the following:
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Table 1 Information for the various parameter distributions of DDD and ρρρ. When applicable, values are
reported as mean (standard deviation)

Distribution name DDD ρρρ

Gaussian 1e−4 (2e−5) 1 (0.25)

Bigaussian [5e−5 (5e−6), 1.25e−4 (1e−5)] [0.25 (0.05), 1.25 (0.2)]

Point 1e−4 1

Two-point [1e−5, 1.5e−4] [0.5, 1.5]

Lognormal −10.6484 (0.3782) −0.5 (0.3)

∂c(t, x, Dl , ρk)

∂t
= Dl

∂2c
∂x2

+ ρkc(1 − c) (15)

We then weight this solution to calculate our synthetic data:

v j i =
∑

l,k

c(t j , xi , Dl , ρk)p(Dl , ρk) (16)

where p(Dl , ρk) represents the probability (pdf) of D = Dl and ρ = ρk . We finely
mesh over DDD and ρρρ.
Numerical Setup. We use MATLAB’s built-in pde solver, pdepe to solve the partial
differential equations. We perform the minimization (Eq. (5)) using constrained opti-
mization (fmincon), requiring that all probabilities are non-negative and that the sum
ofprobabilities equal 1:

∑M
k=1wk = 1 in the discrete case and

∑M
k=1 ak

∫
Ωρ

sk(ρρρ)dρ =
1 in the spline case.

To ensure that the amount of data necessary to recover the distributions are rea-
sonable, we discretize the time as t = 1, 2, . . . 20 days (i.e., experimental data are
collected once per day). We solve the pde on a fine spatial structure, but we assume
data are collected every 40 microns (as previously mentioned), so our comparison
occurs at these nodes.

For each of these cases, we need to quantify the necessary hyperparameters (nodes,
quadrature nodes) that generate the best fit. This inverse problem requires us to consider
each node as a separate parameter that we are estimating. Therefore, we need to assess
model fit versus number of parameters used. We will use the Akaike Information
Criteria (AIC) Akaike (1974) in order to compare the various models. In the context
of least-squares framework, the AIC Banks and Joyner (2017) is given by:

AIC = Nν ln
(
RSS
Nν

)
+ Nν(1+ ln(2π))+ 2(p + 1) (17)

where N is the number of data points, ν is the number of observables, RSS represents
the residual sumof squares between our solution c(t, x) and the synthetically generated
solution, and p is the number of parameters (i.e., nodes) being estimated. Note that
the number of quadrature nodes in the spline case are not considered free parameters
since these are not estimated during the inverse problem.
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Fig. 1 AIC scores with respect to number of nodes for approximating DDD using discrete approximations
(left) and spline approximations (right). Dashed lines represent 100 quadrature nodes, while solid lines are
50 quadrature nodes

4.1 Estimating DDD

We assume that we already know the value of ρ and are only estimating the distribu-
tion for DDD. Figure 1 depicts the AIC scores versus number of nodes for the discrete
approximation (left) and spline approximation (right). For the spline approximations,
solid lines represent 50 quadrature nodes, while the dashed lines are 100 quadrature
nodes. For the spline approximations, it appears that 30 nodes is ideal for estimating
the parameter distribution for DDD. For the discrete approximations, it appears that more
nodes are needed to ensure a good fit. Since the various parameter distributions use
different data for estimation, we cannot compare the AIC scores from one distribution
to the next.

Althoughwe cannot compare theAIC scores between distributions,we can compare
the AIC scores for the same distribution (i.e., we can compare the normal discrete
approximation of DDD with the normal spline approximations forDDD). We can see that the
discrete approximation appears to perform better for almost all distributions. There
also appears to be little difference between using a spline approximation with 50
quadrature nodes and using a spline approximation with 100 quadrature nodes.

4.2 Estimating ρρρ

TheAIC scoreswith respect to number of nodes for estimatingρρρ are shown in Figure 2.
For the discrete approximation, it appears that fewer than 20 nodes does not provide a
good approximation, however, increasing the number of nodes past 30 does not appear
to provide much benefit. Therefore, due to the computational costs associated with
increasing the number of nodes, we would choose to estimate ρρρ with 30 nodes. For
the spline approximation, it appears that 20 nodes is sufficient to provide (in general)
an accurate solution.

We see that, especially for the discrete distributions (point and twopoint) the discrete
approximation performs better than the spline approximations. The spline approxima-
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Fig. 2 AIC scores with respect to number of nodes for approximating ρρρ using discrete approximations
(left) and spline approximations (right). Dashed lines represent 100 quadrature nodes, while solid lines are
50 quadrature nodes

tions with 50 quadrature nodes and 100 quadrature nodes are essentially the same in
most cases, corroborating what we found for estimates of DDD in the previous section.

4.3 Estimating DDD and ρρρ

We extend the optimization problem to estimate both DDD andρρρ as distributions for both
the discrete case and the continuous case. We focus on two representative examples
(DDD is bigaussian and ρρρ is normal and vice versa). See Table 1 for the exact values
of the distributions. We present the AIC score surfaces for the discrete case and the
spline cases in Figure 3 . The optimal number of nodes for a bigaussian and normal
distribution for DDD and ρρρ, respectively, using a discrete approximation is 30 (for both
DDD and ρρρ), while the optimal number of nodes for the continuous case is 10 for ρρρ

and 20 for DDD. We note in this case the minimum AIC score occurs using the discrete
approximation rather than the continuous spline approximation. For the case when DDD
normal and ρρρ is bigaussian, the optimal number of nodes in the discrete case is 40 for
ρρρ and 20 for DDD, while the optimal number of nodes for the continuous case is 30 for
ρρρ and 10 for DDD. In this case, the minimal AIC score is comparable for the spline and
discrete approximations.

Figure 4 exhibits the best fits determined by AIC scores when DDD is normally dis-
tributed and ρρρ is bigaussian (Fig. 4, left), and when DDD is bigaussian and ρρρ is normally
distributed (Fig. 4, right). The top panel reveals the estimated probability density func-
tions, the middle panel has the cumulative density functions, and the bottom panel
depicts the solutions to the RDE. We found that the solutions to the RDE match for
both choices of joint distributions for ρρρ and DDD. Similarly, the fits for the cdf and pdf
appear to match well. Note that the axis scale for the probability density functions
are different for the discrete node approximation. This is because we are not guaran-
teed convergence in pdf for the discrete node approximation, rather we are guaranteed
convergence in cdf for the discrete node approximation.
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Fig. 3 Representative examples of the AIC scores with respect to number of nodes for approximating
DDD and ρρρ using discrete approximations (left) and spline approximations (right) for the case where DDD is
bigaussian and ρρρ in normal (top) and the case when DDD is normal and ρρρ is bigaussian (bottom)

For the case where DDD is bigaussian and ρρρ is normally distributed (Fig. 4, left),
we found that the pdf and cdf agree best with the true distributions when using the
discrete node approximation. The discrete approximation also had much lower AIC
scores than the spline approximations. In the case where DDD is normally distributed
and ρρρ is bigaussian (Fig. 4, right), both the spline approximations and the discrete
approximations estimate the pdf and cdf well. This is unsurprising because the AIC
scores were very similar between the discrete node approximation and the spline
approximation. We hypothesize that the reason that the case where DDD is bigaussian
and ρρρ is normally distributed is not well explained by the spline nodes is that the grid
choices over the nodes (10, 20, 30, 40, 50) only allowed choices which either overfit
the wide peak or underfit the narrow peak.

One question of interest is what are the spatiotemporal dynamics of the distribution
of the relative subpopulations. Figure 5 shows the subpopulations in the case where
diffusion is bigaussian and growth is normally distributed (Fig. 5, left) and the case
where diffusion is normally distributed and growth is bigaussian (Fig. 5, right). In these
simulations, we used discrete approximations for the parameter distributions, based
on our findings above that this was more accurate than using spline approximations.

Subpopulations for the DDD bigaussian and ρρρ normally distributed were calculated
by splitting the computed probability density function for DDD into two halves and inde-
pendently simulating their solutions. “Slow-diffusing” represents those cells with the
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Fig. 4 Fits using the optimal number of nodes (determined by AIC scores) when ρρρ is bigaussian and
DDD is normally distributed (left) and when DDD is bigaussian and ρρρ is normally distributed (right). The top
panels display the pdf comparisons for the actual distribution (black), the spline approximation (red) and
the discrete approximation (blue). The axis scale for the discrete approximation in the top panel is on the
right side of the plot. The middle panel depicts the cdf comparisons. The bottom panel reveals the solutions
of the RDE

smaller half of the pdf (the first part of the bigaussian) and “Fast-diffusing” represents
the second half of the pdf. Similar computations were carried out for the case where ρρρ

is bigaussian and DDD is normally distributed. As can be seen in Figure 5, these subpop-
ulations exhibit different behavior that is not recovered by assuming static parameters
ρ and D, shown in magenta. The reaction–diffusion solution was obtained by estimat-
ing the parameters D and ρ for Eq. (1) to the synthetic data using fmincon under the
same computation setup defined for the RDE inverse problem. Especially in the case
where ρ is bigaussian (Fig. 5, right), there is a large difference in the solutions when
assuming a reaction–diffusion type model. When comparing the parameter results
between the basic reaction–diffusion and our methodology, the parameters found by
the reaction–diffusion equation did not correspond to the mean of the distribution.
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Fig. 5 Spatiotemporal distributions for cell subpopulations in the case where DDD bigaussian andρρρ normally
distributed (left), and the case where DDD normally distributed and ρρρ bigaussian (right)

4.4 Computational cost

Here we detail the computational costs associated with estimating the parameter
distributions of D and ρ using the Prohorov metric framework. Essentially, the com-
putational method can be considered in two separate parts: the computation of the
solution for c(t, x, Dl , ρk) and the optimization to find the weights wl , wk (in the
discrete case) or al , ak (in the spline case).

To performourmethodology,we precompute the solutions to c(t, x, Dl , ρk). Essen-
tially, we are computing c(t, x) for each of the node values. This requires MD × Mρ

computations of c(t, x) (in the discrete case) and QD×Qρ computations of c(t, x) (in
the spline case). This portion of the computation can easily be parallelized to decrease
computational cost.

In the second portion, we use the computed solutions to find the weights wl , wk
(in the discrete case) or al , ak (in the spline case). For the discrete case, typical times
to find the wl and wk ranged from 10 seconds (for MD = 10 and Mρ =10) to 40
minutes (for MD = 50 and Mρ=50) using a 2.5GHz processor with 16GB RAM. For
the spline case, typical times to find al and ak ranged from 14 minutes (for MD = 10
and Mρ=10, with QD = 50 and Qρ=50) to 7 hours (for MD = 50 and Mρ=50, with
QD = 100 and Qρ=50). In comparison, performing the optimization assuming static
parameters D and ρ took 2 minutes.

For a full spreadsheet detailing the computational costs associated with the full set
of computations for the preceding sections results (assuming D is bigaussian and ρ is
normally distributed), please see the supplementary material.
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5 Noisy data

We repeat the work performed in Sect. 4, except assuming the data (exact solution) are
noisy. To generate these noisy data, we perturb the system under the assumption of a
proportional error model. The proportional error model assumes that the noise level is
proportional to the size of the model solution, which commonly occurs in biological
scenarios in general (see (Banks et al. 2017; Adoteye et al. 2015) for examples). In
order to generate these errors, we modify Eq. (16) to incorporate noise:

v̄ j i = v j i + ϵ j iv j i ; (18)

where the residuals ϵ j i are distributed as ϵ ∼ 0.05N (0, 1).
In order to perform the inverse problem, we use a generalized least squares frame-

work. The generalized least squares framework assumes a proportional error model:

C(t j , xi ) = E[c(t j , xi ;DDD,ρρρ)] + E[c(t j , xi ;DDD,ρρρ)]γ ϵ j i (19)

where ϵi j is assumed to be independent and identically distributed with mean 0. We
then estimate the parameter distributions by performing:

P̂ = argmin
PM (Ω)

∑

j,i

w j i

(
v̄ j i −

∫

Ω
c(t j , xi ;DDD,ρρρ)dP(DDD,ρρρ)

)2

(20)

where wi j are weights for the least-squares calculation and M represents the number
of elements used in approximating DDD and ρρρ.

Althoughwe aremainly concerned in this paper with themathematicalmodel rather
than the statistical error models, we mention that similar convergence and consistency
results discussed inSect. 3.3 can be considered in the context of bothBanks et al. (2014)
an uncertain mathematical model (assumed a major question here) and a statistical
model (assumed here as in Eq. (20)).

We must perform an iterative algorithm in order to update the weights with the
updated solution. We present the iterative algorithm for the discrete approximation
case:

1. Initialize weights w0
j i = 1. Set iteration number, iter = 0.

2. Estimate parameters in Eq. (20):

p̂iter = argmin
p∈R

∑

j,i

witer
j i

⎛

⎝v̄ j i −
∑

l,k

c(t j , xi ;DDDMD ,ρρρMρ , p)

⎞

⎠
2

(21)

where DDDMD and ρρρMρ are defined as in previous sections (DDDMD = {∆Dl , l =
1, . . . ,MD}, and ρρρMρ = {∆ρk , k = 1, . . . ,Mρ}), and p = [pD, pρ], where pD
and pρ are vectors of the estimated probability densities of DDD and ρρρ respectively
(meshed over DDDMD and ρρρMρ ).
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3. Determine the weights. Since many of the data points that we are estimating are
essentially zero (i.e., no tumor cell density), we use a truncated version of our
function as a weight, as introduced in Banks et al. (2011), to avoid numerical
instability:

witer+1
j i =

{
0, c(t j , xi ;DDDMD ,ρρρMρ , piter) < C∗
1

c(t j ,xi ;DDDMD ,ρρρMρ , p̂iter)2
, c(t j , xi ;DDDMD ,ρρρMρ , p̂iter) ≥ C∗ (22)

4. Repeat steps 2-3 for at least 10 iterations (iter=10) and until we obtain convergence
defined as:

1
(MD + Mρ)

MD+Mρ∑

index=1

| p̂iterindex − p̂iter−1
index |

p̂iterindex
< δ (23)

In our simulations, we discovered that C∗ = 1e− 4 still resulted in converged results.
We adaptively changed our choice of δ: we initially set δ = 0.1, however, if the
number of iterations increased to greater than 200, we set δ = 0.5. In the case of the
spline approximations, we only alter Eq. (21) to the spline approximations defined in
Sect. 3.2.
Estimating DDD and ρρρ. We examine only the ability of estimating the distributions for
DDD and ρρρ jointly with the assumption that if we are able to recover both distributions
at the same time, we would be able to recover the distributions independently.

Figure 6 exhibits the pdf, cdf, and best-fit solutions for the noisy case where DDD is
bigaussian and ρρρ is normally distributed (Fig. 6, left). The AIC scores, calculated as
in Sect. 4, revealed that the discrete approximation with 10 nodes in ρρρ and 20 nodes
in DDD resulted in the best approximation. The optimal AIC score for the spline case
occurred with 10 nodes in ρρρ and 20 nodes in DDD with 100 quadrature nodes in each
ρρρ and DDD. The RDE solutions using estimated parameters appear to match the noisy
solution well and both the pdf and cdfs appear to match the true distributions. We note
that (results not shown), in the case of spline approximations, if we choose to use a
larger number of nodes, we quickly introduce numerical instability.

Figure 6 also portrays the pdf, cdf, andbest-fit solutions for the noisy casewhereDDD is
normally distributed andρρρ is bigaussian (Fig. 6, right). The AIC scores determined the
best fit occurs when there are 10 nodes in DDD and 20 nodes inρρρ for both the discrete and
spline case. For the spline approximations, quadrature nodes of 100 for both QD and
Qρ resulted in the best fit.We see that, in this case, the exact pdfs are not fully recovered
(there are someoscillations in the secondmode of the bigaussian).However, the overall
behavior, and specifically the means of each mode, are accurate. We hypothesize that,
in order to fit the mode of the bigaussian with small variance, we need a larger number
of nodes, but that this increased number of nodes overfits the portion of the bigaussian
with wide variance. We were able to show better agreement between the estimated
and true distributions when choosing 16 nodes for ρρρ (results not shown). This, in
conjunction with similar results in the previous section implies for a multi-modal
distribution with differing variances, the number of nodes and discretization mesh
may need to be adaptive, i.e., non-uniform. The investigation of using an adaptive
mesh for performing the parameter distribution estimation is left for future work.
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Fig. 6 Fits using the optimal number of nodes (determined by AIC scores) when DDD is bigaussian and ρρρ
is normally distributed (left) and the case where ρρρ is bigaussian and DDD is normally distributed (right) for
solutions which have added noise. The top panels display the pdf comparisons for the actual solution, the
spline approximation and the discrete approximation. In the middle, we compare the cdfs. On the bottom
we present the solutions of the RDE

In comparison, we also fit the noisy data assuming the basic reaction–diffusion
equation. As found in the previous section, the estimated parameters D and ρ did not
correspond to the mean of the distribution.

6 Effect of drug administration

Although we are not able to directly compare our methods with classical parameter
estimation techniques, we instead propose to compare the ability of the two meth-
ods performance in an important clinical application: treatment. In this section, we
compare the predicted total tumor size under Eq. (1) as compared with the various
distributed parameter solutions, i.e., using random differential equations. Mathemat-
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Fig. 7 Simulations of log-kill chemotherapy treatment (Eq. (24)) for the case where DDD is bigaussian and
ρρρ is normal (left) and the case where DDD is normally distributed and ρρρ is bigaussian for varying values of r
(right). The reaction–diffusion equation (Eq. (1)), shown in blue solid line with pluses, vastly overestimates
the efficacy of chemotherapy treatment. TheRDEmodel (red dashes) with parameter distributions estimated
from noisy data almost exactly match the true solution

ical models are often used to predict the change in growth of gliomas in response to
treatment such as chemotherapy Powathil et al. (2007), radiotherapy Rockne et al.
(2010), resection Swanson et al. (2003), viraltherapy Rioja et al. (2016), or combi-
nations of the above (Hathout et al. 2016; Tian et al. 2009). However, most of these
models assume a homogeneous population of tumor cells with static values of D and
ρ. It is known that chemotherapy selectively targets proliferative tumor cells, i.e., cells
with larger values of ρ. Popular methods of mathematically incorporating chemother-
apy response includes the log-kill hypothesis Skipper (1964) and the Norton-Simon
hypothesis (Norton and Simon 1977, 1986), among others Kohandel et al. (2006).

Wemodel treatment assuming a variation on the log-kill hypothesis, which assumes
that the number of cells killed by chemotherapy is proportional to the total number of
cells. This is modeled by the following equation:

∂c(t, x)
∂t

= DDD
∂2c(t, x)

∂x2
+ ρρρc(t, x)(1 − c(t, x)) − r

ρρρ

ρ̄
c(t, x) (24)

where ρ̄ is the mean value of ρρρ, and r is the coefficient regarding the drug treatment
strength (it is assumed that treatment is administered at a constant rate for simplicity).
This is an extension of the log-kill hypothesis Skipper (1964), which simplifies to
the original log-kill hypothesis for the basic reaction–diffusion model, Eq. (1), when
ρρρ = ρ̄. We keep the death due to drug administration constant, as previously modeled
in Swanson et al. (2002), for simplicity.

We integrate this solution over space to obtain the total tumor burden (tumor size)
as a function of time. We wish to see how predictions of tumor burden differ when
assuming homogeneous populations if the population is inherently heterogeneous
(modeled as the ‘exact solution’ calculated over the finelymeshed D andρ as described
in Sect. 4). We also use the solutions and parameters generated by the noisy solutions
computed in Sect. 5, although we note that the conclusions drawn from this noisy data
set also hold for the noise-free data.
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Figure 7 exhibits the comparison between the predicted tumor burdenwith respect to
time for both the RDEmodel (Eq. (24)), in red dashed lines with circles, the RDmodel
(Eq. (1)), in blue solid lines with plusses, and the “exact solution” (described above),
shown in black solid line, which mostly overlaps the RDE solution. These simulations
of tumor burden are for the case where DDD is bigaussian and ρρρ is normal (Fig. 7, left)
and the case where DDD is normally distributed and ρρρ is bigaussian (Fig. 7, right) for
varying values of the chemotherapy-induced death rate, r . We observed that when
tumor heterogeneity is modeled by parameter distributions we defined, the reaction–
diffusion equation will always underestimate the remaining tumor burden size. In
fact, in the case where r = 0.4, the reaction–diffusion equation would predict tumor
shrinkage while the heterogeneous model accurately predicts slight tumor growth.

7 Discussion and conclusions

We introduced a reaction diffusion model for GBM growth that assume the growth
and diffusion parameters are random variables. We investigated the ability to recover
distributions for tumor diffusion and growth parameters using an extension of the
reaction–diffusion equation to random differential equations. Under assumptions of
noise up to a value of 5%, we were still able to obtain accurate recovery of vari-
ous combinations of parameter distributions for diffusion and growth. In addition, we
investigated the sensitivity of tumor burden with respect to drug administration when
modeling homogeneous and heterogeneous populations. We found that we overesti-
mate the efficacy of chemotherapy treatment if we assume a homogeneous population
when tumors are actually composed of heterogeneous cell subpopulations with distri-
butions of diffusion and growth. One advantage our method has over classical methods
is that our assumption that the parameters are random variables with some underlying
distribution does not preclude the existence of point estimates. Thus, ourmethod is able
to not only estimate parameter distributions, but also point estimates of parameters.

This initial work has raisedmany questions which subsequent work should address.
Initially, thismethod should be extended to perform simulations in 2D and 3D in space.
Efforts on other more complicated applications of the Prohorov metric framework
(Banks et al. 2012; Sirlanci et al. 2018, 2017; Sirlanci and Rosen 2018) including
spatially varying coefficient transport problems (as studied in the context of GBM in
Engwer et al. (2015); Painter andHillen (2013); Swan et al. (2017)) have demonstrated
the feasibility of greatly expanding the efforts introduced here to include more general
and more detailed models of GBM growth.

In addition to mathematical questions, a key interest in future work will be to
determine how effectively the Prohorov metric framework performs when estimating
parameter distributions from in vitro and in vivo experimental data. This will allow
us to validate the application of this estimation framework to realistic spatiotemporal
experimental data from heterogeneous tumors. An initial attempt to use in vitro data
(from Stein et al. (2007)) was unsuccessful due to the lack of information content in
the dataset (for full details, see Supplementary Material 2).

Mathematically, we should quantify how much information is needed in order to
recover the parameter distributions. Sinceweare, in effect, estimatingmanyparameters
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to describe a joint distribution (instead of just 2 parameters for the constant-coefficient
reaction–diffusion equation), it is imperative that we understand how much data is
necessary to avoid the issue of parameter identifiability (which is a known issue in esti-
mating parameters for the reaction–diffusion equation using only one type of imaging
data Rutter et al. (2017)). Quantifying the uncertainty for the distributions estimated
using the Prohorov metric framework remains to be investigated. Approaches involv-
ing bootstrapping or polynomial chaos may prove useful in estimating the uncertainty
of the parameter distributions.

Our assumption of independence between the parameter distributions should be
relaxed in future work. A “go or grow” type distribution assumes that one cell phe-
notype exhibits slow growth and high diffusion and another cell phenotype with fast
growth and low diffusion. Modeling this scenario with random differential equations
would rely on assuming dependence between the parameter distributions for the dif-
fusion and growth rates. In future work, we will extend the estimation framework
described here to allow for estimation of the joint probability density function of DDD
and ρρρ without assumptions about parameter independence.
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