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Abstract. Obtaining large amounts of annotated biomedical data to
train convolutional neural networks (CNNs) for image segmentation is
expensive. We propose a method that requires only a few segmentation
examples to accurately train a semi-automated segmentation algorithm.
Our algorithm, a convolutional neural network method for boundary
optimization (CoMBO), can be used to rapidly outline object boundaries
using orders of magnitude less annotation than full segmentation masks,
i.e., only a few pixels per image. We found that CoMBO is significantly
more accurate than state-of-the-art machine learning methods such as
Mask R-CNN. We also show how we can use CoMBO predictions, when
CoMBO is trained on just 3 images, to rapidly create large amounts of
accurate training data for Mask R-CNN. Our few-shot method is demon-
strated on ISBI cell tracking challenge datasets.

Keywords: Biomedical image segmentation · Few shot learning ·
Convolutional neural network

1 Introduction

Convolutional neural networks (CNNs) have recently been used to automate
the segmentation of biomedical images [3], enabling an increase in the speed
and accuracy of diagnosis, histology, and cell image analysis. However, creating
segmentation training data for CNNs is a time intensive process requiring expert
human annotation by clinicians or scientists. Thus, there is a need for methods
to reduce the annotation burden by (1) drastically decreasing the amount of data
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required to accurately train CNNs for segmentation, or (2) semi-automating the
segmentation process while requiring minimal expert annotation. Recently, a
novel method was proposed for using CNNs to improve segmentation accuracy
by optimizing the task of tracing the boundary of objects in biomedical images
[9]. This work found that using CNNs for optimizing boundary tracing accuracy
better ensured contiguity of segmented regions and resulted in hyper-accurate
cell segmentations. A unique aspect of the boundary optimization method is that
the number of training examples obtained from a training image and its mask
is equal to the number of pixels on the boundary of any object in the image.
This is because the input to the CNN for boundary optimization is a small patch
of the training image centered around any pixel on the boundary of an object,
and the output is the prediction of the relative pixel displacements of the next
m pixels in the trace (see Fig. 1, right panel). Thereby, a single segmentation
training example can potentially yield hundreds or thousands (depending on the
image size) of training examples for the task of boundary optimization. In this
work, we investigated whether this property of boundary optimization could be
leveraged to create accurate CNN-based segmentation methods for tasks (1) and
(2) above with using only a few training images.

Contributions:

– We show that our Convolutional neural network method for boundary
optimization (CoMBO) can be used to accurately segment biomedical images
using just 3 training examples. To make predictions, this method requires an
extremely minimal amount of human annotation, i.e., a single pixel per object.

– Provide a comparison of CoMBO with Mask R-CNN [3] and U-net [8].
– We show that CoMBO predictions can be used to rapidly create accurate
training data for Mask R-CNN. The Mask R-CNN model trained on CoMBO
predictions is just as accurate as a Mask R-CNN model trained on human
annotations.

Related Work (Few-Shot Learning): Our work is related to the task of
training a method for image segmentation with only a few training examples,
i.e., few-shot learning. Unlike the task of one or few-shot image classification,
the concept of one or few-shot image segmentation is relatively new [2,5,6,10].
Importantly, many previous methods for few-shot segmentation have been devel-
oped with a large margin of error and for multiple classes, since the focus has
not been on biomedical imaging. Shaban et al. [10] created the first one-shot
semantic segmentation network. Many few-shot segmentation techniques rely on
using pre-trained networks [2,6], which may not be as applicable to medical
imaging datasets. Other few-shot techniques consider multi-class segmentation,
thus leveraging the existence of multiple images (one per class). Michaelis et al.
[5] created a one-shot segmentation algorithm in clutter, but their method is
best suited towards an instance where there is only one target in the image to
segment, while there may be many targets to segment in a biomedical image.
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2 Methods

In contrast to previous few-shot segmentation learning approaches, our method
does not use transfer learning or pre-training. By formulating the learning task as
a boundary optimization task, we naturally create many image-label pairs upon
which to train a CNN for our algorithm. Our method modifies a previously
developed CNN-based algorithm for object tracing described in [9].

The input to the CNN is a 64× 64 patch of an image with a previously
‘traced’ boundary overlaid (Fig. 1, left panel). The CNN itself consists of three
repeating blocks, each of which has 3 3× 3 convolutional layers followed by a
max-pooling layer. The final layer is an 8× 8 convolutional layer. The number
of filters for each repeating block is 32, 64, and 128, while the final layer has
60 filters. The output of the CNN is the next predicted 30 pixel horizontal
and vertical displacements of the boundary relative to the center of the image
(Fig. 1, middle). These horizontal and vertical displacements are then overlaid
on the image as the cell boundary (Fig. 1, right panel cyan). A key modification
we make to the algorithm in [9] is that we use the predicted displacements to
move the trace multiple steps instead of one step at a time. This has resulted in
higher accuracies, since the algorithm can ‘skip’ over problematic areas, while
also speeding up forward passes by an order of magnitude. We do this by using a
Bresenham line to connect the predicted pixel locations, thus ensuring a smooth
outline of a cell. The number of steps to trace at each iteration is treated as a
hyper-parameter selected using the validation data.

Fig. 1. Schematic of the tracing algorithm. Weak annotation shown as a red dot. The
CNN takes as input the black patch, returns the next m predicted pixel locations,
which are overlaid on the image in cyan. (Color figure online)

To trace an object in an image, we first choose an initial trace location
(Fig. 1, left panel, red dot). In previous work [9] this initialization point was
determined via output from other convolutional neural networks (U-Net). Due
to the inaccuracies of such estimations in the few-shot setting, we instead utilize
weak annotations provided by the user, namely a single pixel on the boundary of
each object. Although annotating full segmentations for each object is laborious,
clicking on an initial starting location for each object in an image is relatively
quick and simple: for a dataset with approximately 25–30 objects per image, we
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were able to provide starting locations for approximately 12 images in 8min.
Once the initialization is begun, we pass the 64 × 64 image patch around the
starting location through the CNN.

The forward pass on an image consists of (i) choosing an initial location (weak
annotation by the user), (ii) iteratively using the CNN to trace the outline of the
object, and (iii) stopping the iteration when the trace is greater than a certain
length and the final pixel predictions are within a small distance to the initial
pixel location.

One natural question arising from this algorithm is what happens for non-
ideal tracing patterns? There are two such possible cases: either the CNN predicts
a trace in the direction it just came from, or the trace deviates far from the true
object boundary. We generate training data to always train counter-clockwise to
ensure that traces do not go back in the direction they came from. We use a large
patch size and, more importantly, predict the next thirty pixel displacements.
By predicting multiple steps ahead, we can ‘skip’ areas in which the tracing
algorithm might go awry. By including an adequate level of image context via a
large patch size, the true boundary location is usually included in the image patch
being passed to the CNN and the prediction can direct the trace back toward
the boundary. We have not experienced a trace going off-course, but we include
Supplementary Figure S1 which shows that the CNN predicts a trajectory that
recovers from an initial pixel location off the boundary.

3 Experiments

Data: We evaluated our methodology on two grayscale light microscopy image
data sets from the ISBI cell tracking benchmarks [4,11]: (1) GFP-GOWT1 mouse
stem cells (Fluo-N2DH-GOWT1), and (2) Glioblastoma-astrocytoma U373 cells
(PhC-C2DH-U373). From each data set, we used k images for training, 1 image
for validation, and tested on the remaining images. Images from these datasets
were prepared by zero-padding with 32 pixels (to ensure 64× 64 patches for the
CNN could be generated at the edge of the image). We found that this simplifies
the algorithm in [9], which used symmetric padding, by helping to keep the trace
away from the padded region when it reaches the edge of an image. Only images
that had corresponding masks were used for training, validation, and testing
(8 images for the GFP-GOWT1 dataset and 34 images for the U373 dataset).
We performed 5-fold cross-validation for all experiments. In order to reduce
stochasticity associated with initial pixel locations for the traces, the results
from CoMBO are reported as the mean of 10 random initial locations for each
object boundary. We perform the following series of augmentations at random
to produce 48 augmented images per training image: up-down flips, left-right
flips, rotations between −45◦ and 75◦, shears between −10◦ and 30◦, Gaussian
blurring, and additive Gaussian noise.

Evaluation Metrics: Several metrics are used to assess the accuracy of our
segmentations, since recent work showed that altering evaluation metrics can
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vastly change how algorithms are ranked [7]. To evaluate the accuracy of both the
semantic segmentation and predicted cell morphology we calculated the Jaccard
score, Dice Similarity Coefficient, Hausdorff distance, and mean surface distance
(MSD).

Baseline: We compare the performance of our approach to Mask R-CNN, a
well known method for instance segmentation [3]. Although Mask R-CNN is not
formulated specifically for few-shot learning, we use it as a baseline comparison
because there are not many other published few-shot segmentation algorithms.
Moreover, Mask R-CNN is one of the best-performing benchmark segmentation
algorithms. To make Mask R-CNN more adept at the few-shot segmentation
task, we start training Mask R-CNN from weights that were pre-trained on
imagenet [1]. We fine-tuned Mask R-CNN for each dataset and k-shot experiment
for 400 epochs.

4 Results

We consider few-shot learning on 1, 3, and 5 training images. For each of these
sets, an additional image is used for validation. We compare results with a pre-
trained Mask R-CNN fine-tuned on the same number of images. Figure 2 displays
the median (± standard deviation) of the Jaccard scores and mean surface dis-
tances (MSD) for the GFP-GOWT1 dataset and the U373 dataset.

For the GFP-GOWT1 dataset, we found that CoMBO performs significantly
better for all k-shot experiments in both Jaccard score and MSD. Further-
more, we observe lower standard deviations in the CoMBO model, implying
that CoMBO was much less sensitive to the choice of training data. CoMBO was
especially better at predicting accurate cell morphology in the few-shot setting,
as reflected in the MSD and Hausdorff metrics. The evaluation metrics (Jaccard,
Dice, MSD, and Hausdorff Distance) are reported for the GFP-GOWT1 dataset
in Supplementary Table S1.

For the U373 data, we found that CoMBO was significantly better than Mask
R-CNN using just 3 images for training (Fig. 2, right). Moreover, the CoMBO
algorithm appears to reach convergence in Jaccard scores (and MSD) with only
5 images, i.e., training on more images did not appear to improve segmentation
accuracy.

Since CoMBO is a semi-automated method, we investigated whether it could
be used to rapidly generate data that was accurate enough to train Mask R-CNN.
If CoMBO predictions are accurate enough for this purpose, then it would show
that it could be used to effectively take the human out of the loop, eliminating the
need for any human annotation. To test this, we used the 3-shot trained CoMBO
that had the median Jaccard score for the U373 dataset to predict masks for the
remaining images (approximately 30 images). We note that this would require
minimal human annotation for each image, i.e., one pixel on the boundary of
each object to initialize the predicted trace. We then generated masks from the
CoMBO traces and used these data to train Mask R-CNN. We found that Mask
R-CNN trained on data from CoMBO traces was able to achieve similar accuracy
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Fig. 2. Median Jaccard scores (top) and mean surface distances (bot-
tom) for the GFP-GOWT1 dataset (left) and the U373 dataset (right).
Blue=CoMBO, Red = Mask R-CNN, and the dashed black line represents Mask
R-CNN retrained on images traced by CoMBO. Error bars denote standard deviation,
outliers (*) were removed from standard deviation calculations. (Color figure online)

as using ground-truth masks (Fig. 2, right). These results suggest that CoMBO
can be used to quickly and accurately annotate large datasets for fully automated
machine learning methods. Figure 3 displays an example segmentation from the
U373 testing set for 3-shot Mask R-CNN (left), 3-shot CoMBO (middle), and the
Mask R-CNN trained on CoMBO-generated trainined data (right). This example
shows how using the predicted masks from the 3-shot CoMBO to train Mask
R-CNN is able to fix the false positives and improve both the Jaccard score and
MSD.

Few-shot segmentation results for the U373 dataset are shown in Table 1 for
all four accuracy metrics we considered. At all k-shot levels, CoMBO performed
significantly better in the Hausdorff distance and MSD metrics. Mask R-CNN
had a higher Jaccard and Dice scores for 1-shot segmentation. However, CoMBO
had significantly higher Jaccard and Dice scores when trained on 3 and 5 images,
and on the full dataset. Similar results for the GFP-GOWT1 dataset are reported
in Supplementary Table S1.
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Fig. 3. An example image from the U373 test set for the 3-shot Mask R-CNN (left), 3-
shot CoMBO (middle) and Mask R-CNN trained on CoMBO-generated images (right).
Green=Ground Truth, Blue=Mask R-CNN, Red=CoMBO. Orange arrows highlight
areas in which CoMBO is more accurate. The 3-shot Mask R-CNN had difficulty accu-
rately segmenting cells, both by having false positive cells and inaccurately segmenting
the leftmost cell. (Color figure online)

Table 1. Performance of algorithms on the testing set averaged over five train/val/test
data splits for CoMBO and Mask R-CNN for the U373 dataset. Bold denotes the best
score within each k-shot experiment.

k-shot Method Jaccard score
mean (std)

Dice
coefficient
mean (std)

Mean surface
distance mean
(std)

Hausdorff
distance
mean (std)

1-shot Mask 0.8192 0.8986 7.3651 137.3790

R-CNN (0.01796) (.01780) (0.4886) (11.9108)

CoMBO 0.7866 0.8754 3.4096 36.0004

(.05795) (.03905) (1.1970) (12.0755)

3-shot Mask 0.8434 0.9135 5.2904 97.1921

R-CNN (0.007609) (0.01078) (1.7850) (48.9499)

CoMBO 0.8679 0.9276 1.9130 25.0281

(0.01906) (0.01172) (0.4637) (5.7986)

5-shot Mask 0.8451 0.9140 4.7925 81.9223

R-CNN (0.01645) (0.003871) (2.4530) (60.8722)

CoMBO 0.8745 0.9313 1.9041 24.0791

(0.02126) (0.01369) (0.3538) (5.7986)

Full Mask 0.86278 0.9246 2.6368 30.1077

R-CNN (0.01924) (0.01430) (1.6806) (18.8510)

CoMBO 0.8914 0.9416 1.5586 18.5223

(0.01831) (0.01057) (0.2866) (2.0231)

Retrained 0.8685 0.9294 1.7458 14.0817

Mask R-CNN
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5 Discussion

We found that our CoMBO algorithm for image segmentation is able to achieve
accurate segmentations with 3 or fewer training images. We speculate that
CoMBO is able to achieve high accuracy with a few training images because
it transforms a small training data set, i.e., a few image/segmentation pairs,
into thousands of training examples for a boundary optimization CNN task. It
does so at the cost of requiring minimal user input, i.e., clicking a single pixel
on the boundary of each object in an image. However, we also found that the
predicted segmentations from CoMBO were accurate enough to create training
data for Mask R-CNN [3], a fully automated segmentation method. The accu-
racy of Mask R-CNN trained on CoMBO data matched the use of ground-truth
data.

Future work will include extending CoMBO to multi-class segmentation and
also augmenting this method to handle instance segmentation, perhaps by using
Mask R-CNN predictions as an additional channel for each patch input to the
CNN. Using other few-shot algorithms to determine a starting location along
the cell boundary would also enable a fully-automated few-shot segmentation
learning approach.
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2018. LNCS, vol. 11073, pp. 686–694. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00937-3 78

10. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic
segmentation. arXiv preprint arXiv:1709.03410 (2017)

11. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Meth-
ods 14, 1141 (2017). https://doi.org/10.1038/nmeth.4473


	Additional Workshop Editors
	Preface
	Organization
	MIL3ID 2019 Preface
	Organization
	Contents
	DART 2019
	Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation
	1 Introduction
	2 Methodology
	3 Experiments and Results
	3.1 Dataset
	3.2 Quantitative Evaluation
	3.3 Qualitative Evaluation
	3.4 Feature Map Inspection

	4 Discussion
	References

	Temporal Consistency Objectives Regularize the Learning of Disentangled Representations
	1 Introduction
	2 Related Works
	2.1 Learning Good Representations with Temporal Conditioning
	2.2 Spatial Decomposition Network (SDNet)

	3 Proposed Approach
	3.1 Spatial Decomposition and Transformation Network (SDTNet)
	3.2 Transformer Design
	3.3 Cost Function and Training

	4 Experiments and Discussion
	4.1 Data and Preprocessing
	4.2 Results

	5 Conclusion
	References

	Multi-layer Domain Adaptation for Deep Convolutional Networks
	1 Introduction
	2 Methods
	2.1 Gradient Reversal Layer Based Domain Adaptation
	2.2 Wasserstein Distance Based Domain Adaptation

	3 Experimental Results
	3.1 Implementation Details
	3.2 Effect of Layer-Wise Domain Adaptation on Small Networks
	3.3 Effect of Model Complexity on Domain Adaptation
	3.4 Domain Adaptation for Feature Regularization

	4 Conclusions
	References

	Intramodality Domain Adaptation Using Self Ensembling and Adversarial Training
	1 Introduction
	2 Methodology
	2.1 Overview of the Proposed Model
	2.2 Adversarial Training
	2.3 Self Ensembling and Mean Teacher
	2.4 Objective Function
	2.5 Model Architecture

	3 Datasets
	4 Experiments and Results
	4.1 Spinal Cord Cross Institutional Domain Adaptation
	4.2 Brain Tumor Segmentation Using Domain Adaptation

	5 Conclusion
	References

	Learning Interpretable Disentangled Representations Using Adversarial VAEs
	1 Introduction
	2 Methodology
	3 Experiments
	4 Discussion
	References

	Synthesising Images and Labels Between MR Sequence Types with CycleGAN
	1 Introduction
	2 Method
	3 Segmentation
	4 Results
	5 Conclusion
	References

	Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Discussion
	References

	Cross-Modality Knowledge Transfer for Prostate Segmentation from CT Scans
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Synthetic CT Network: CycleGAN
	2.3 Segmentation Network: 2.5D Res-U-Net

	3 Results
	4 Discussion and Concluding Remarks
	References

	A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection
	1 Introduction
	2 Dataset
	3 Method
	3.1 Pre-processing
	3.2 Nodule Candidate Detection
	3.3 False Positive Reduction
	3.4 Implementation

	4 Results and Discussions
	5 Conclusion
	References

	Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images
	1 Introduction
	2 Method
	2.1 Harmonization
	2.2 Targeted Feature Dropout

	3 Experiments and Results
	3.1 Datasets
	3.2 Configuration Details
	3.3 Segmentation Results
	3.4 Conclusion

	References

	Improving Pathological Structure Segmentation via Transfer Learning Across Diseases
	1 Introduction
	2 Methodology
	3 Experiments and Results
	3.1 Data Description and Preprocessing
	3.2 Model Implementation Details
	3.3 Experiments
	3.4 Results

	4 Conclusions
	References

	Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions
	1 Introduction
	2 Methods
	2.1 Image-to-Image Translation
	2.2 Lesion Detection Model
	2.3 Evaluation Metrics

	3 Experiments and Results
	3.1 Generating Virtual Indigocarmine Image
	3.2 The Effect of VIC Translation in the Lesion Detection
	3.3 Augmentation Effect of VIC Images

	4 Discussion
	5 Conclusion
	References

	MIL3ID 2019
	Self-supervised Learning of Inverse Problem Solvers in Medical Imaging
	1 Introduction
	2 Methods
	2.1 Prior-Based Solvers
	2.2 Supervised Learning for Inverse Problems
	2.3 Self-supervised Learning

	3 Problem Setup
	4 Experiments and Discussion
	5 Conclusion and Future Work
	References

	Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-Propagation
	1 Introduction
	2 Method
	2.1 Sagittal Slice Segmentation via Self-training
	2.2 Slice-Propagated Segmentation

	3 Experimental Setup and Results
	4 Conclusion
	References

	A Cascade Attention Network for Liver Lesion Classification in Weakly-Labeled Multi-phase CT Images
	Abstract
	1 Introduction
	2 Methodology
	2.1 Dual-Attention Dilated Residual Network (DADRN)
	2.1.1 Channel Attention Block (CAB)
	2.1.2 Spatial Attention Block (SAB)
	2.1.3 Class-Specific Lesion Localization

	2.2 Multi-channel Dilated Residual Network (MCDRN)

	3 Experimental Results
	3.1 Materials
	3.2 Performance Analysis of the Proposed Method
	3.2.1 Comparison Between DADRN and Other Attention-Based Models
	3.2.2 Ablation Study of the Proposed Cascade Attention Network
	3.2.3 Comparison with State-of-the-Art Lesion Classification Models


	4 Conclusions
	Acknowledgements
	References

	CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 3DSE Network
	2.3 Aggregated Cross Entropy

	3 Results
	4 Conclusion
	References

	Active Learning Technique for Multimodal Brain Tumor Segmentation Using Limited Labeled Images
	1 Introduction
	2 Methodology
	2.1 Model Architecture
	2.2 Query Strategies
	2.3 Training Process

	3 Data and Experiments
	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Semi-supervised Learning of Fetal Anatomy from Ultrasound
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Dataset
	3.2 Evaluation

	4 Results
	5 Discussion
	6 Conclusion
	References

	Multi-modal Segmentation with Missing MR Sequences Using Pre-trained Fusion Networks
	1 Introduction
	1.1 Contribution

	2 Methodology
	2.1 Network Architecture
	2.2 Data and Preprocessing
	2.3 Training and Evaluation
	2.4 Visualizing Shared Representations

	3 Results
	3.1 t-SNE Visualizations

	4 Discussion and Conclusion
	References

	More Unlabelled Data or Label More Data? A Study on Semi-supervised Laparoscopic Image Segmentation
	1 Introduction
	2 Method
	2.1 Supervised Segmentation Network Architecture
	2.2 Semi-supervised Mean Teacher Training

	3 Experiment
	3.1 Data Set
	3.2 Network Implementation and Training
	3.3 Evaluation

	4 Result
	5 Conclusion
	References

	Few-Shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Deep Triplet Networks
	2.3 Triplet Loss with Online Hard-Mining
	2.4 Pipeline for Image Classification with Deep Triplet Networks

	3 Experiments
	3.1 Hyperparameter Search
	3.2 Few-Shot Learning
	3.3 Robustness Against Noise
	3.4 Investigation of Uncertainty Measures

	4 Conclusions
	References

	A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation
	1 Introduction
	2 Methods
	3 Experiments
	4 Results
	5 Discussion
	References

	Transfer Learning from Partial Annotations for Whole Brain Segmentation
	1 Introduction
	2 Method
	2.1 Pre-training with Partial Annotations
	2.2 Joint Training with Full Annotations

	3 Experiments and Results
	3.1 Datasets
	3.2 Preprocessing and Training
	3.3 Results

	4 Conclusion
	References

	Learning to Segment Skin Lesions from Noisy Annotations
	1 Introduction
	2 Methodology
	3 Experiments and Discussion
	4 Conclusion
	References

	A Weakly Supervised Method for Instance Segmentation of Biological Cells
	1 Introduction
	2 Segmentation Method
	3 Experiments and Results
	4 Conclusions
	References

	Towards Practical Unsupervised Anomaly Detection on Retinal Images
	1 Introduction
	2 Methods
	2.1 Task Definition
	2.2 Transfer Learning for Anomaly Detection
	2.3 Baselines

	3 Experiments
	3.1 Datasets
	3.2 Training and Evaluation
	3.3 Novelty Detection Setting
	3.4 Utilizing Small Numbers of Labeled Anomalies to Improve Performance
	3.5 Anomaly Detection Setting

	4 Discussion and Conclusion
	References

	Fine Tuning U-Net for Ultrasound Image Segmentation: Which Layers?
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Analysis
	2.3 Performance Metrics

	3 Results
	4 Discussion and Conclusions
	References

	Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance
	1 Introduction
	2 Method
	2.1 Dense Attention Gate (DAG)
	2.2 Geodesic Distance
	2.3 Network Architecture of Multi-task Learning

	3 Experiments and Results
	3.1 Datasets and Training
	3.2 Training and Testing Within the Same Dataset
	3.3 Training and Testing in Different Datasets

	4 Conclusion
	References

	Author Index

