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Abstract. Glioblastoma multiforme is an aggressive brain cancer that is ex-

tremely fatal. It is characterized by both proliferation and large amounts of
migration, which contributes to the difficulty of treatment. Previous models

of this type of cancer growth often include two separate equations to model
proliferation or migration. We propose a single equation which uses density-

dependent diffusion to capture the behavior of both proliferation and migration.

We analyze the model to determine the existence of traveling wave solutions.
To prove the viability of the density-dependent diffusion function chosen, we

compare our model with well-known in vitro experimental data.

1. Introduction. Glioblastoma multiforme is a malignant form of brain cancer
with an especially grim prognosis—mean survival time from detection is less than
15 months (Norden and Wen [20]). Glioblastoma are characterized not only by
intense proliferation, but also by excessive migration. This leads to an inability
to effectively treat the tumors, as surgical resection is able to remove the core of
the tumor, but not the migratory cells. This erratic behavior makes modeling all
aspects of glioblastoma growth difficult.

Early models of glioblastoma growth include reaction-diffusion equations which
are able to accurately capture the proliferating tumor core. Tracqui et al. [30]
formulated the earliest reaction-diffusion model to describe glioblastoma growth
and diffusion, also with therapeutic intervention. Swanson et al. [29] continued
with these reaction-diffusion models, accounting for a spatially dependent diffusion
model in an attempt to model more heavily the migratory behavior of the tumor
cells.

A landmark mathematical model introduced by Stein et al. [27] advocated for
the separation of glioblastoma cells into two separate populations: the proliferating
core cells and the migratory cells. Their model was based off of observations from in
vitro experiments involving the spreading of two human astrocytoma cell lines that
form tumor spheroids. In addition to the standard reaction-diffusion terms in the
equation for migratory cells, the Stein et al. [27] model includes a radially biased
motility term corresponding to convection to account for the situation where cells
detect the location of the tumor core and actively move away from it. Our goal is
to formulate a single equation which captures both the migratory and core tumor
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characteristics as accurately as the dual-equation approach, by using a density-
dependent diffusion term.

One of the fundamental questions with in vitro tumor growth is how fast is the
tumor growing? Can we estimate how far the tumor will spread after a certain
amount of time? We want to quantify tumor spread, not just computationally, but
also analytically. To this end, we will need to analyze the traveling wave solutions.

Traveling wave solutions have been studied in models of glioblastoma growth
with multiple cell populations and constant diffusion, such as in Pérez-Garćıa et
al. [23] and Harko and Mak [8]. Traveling wave solutions also arise in density-
dependent reaction-diffusion equations, and numerous density-dependent diffusion
functions have been studied by, for example, Atkinson et al. [2], Murray [18], Witel-
ski [31], Sánchez-Garduño and Maini [24], Harris [9], Pedersen [22], Maini et al. [13],
Sánchez-Garduño et al. [25], Ngamsaad and Khompurngson [19], and Kengne et
al. [11]. More generally, traveling wave solutions for convective-reaction-diffusion
equations were studied in Malaguti et al. [14, 15, 16] and Gilding and Kersner [7].
Minimal speeds for various diffusion and convective terms were estimated.

In this article, we study a nondegenerate convective-reaction-diffusion equation
model of glioblastoma tumor growth. The existence of traveling waves is analyzed
and the minimum wave speed is corroborated by simulations. We perform a sensitiv-
ity analysis on the parameters in the model to detect how variations in parameters
effect the numerical solution. Lastly, we optimize the parameters in order to vali-
date the model with in vitro experimental data. We show that this single equation
model fits the data as well as the previously posed two-equation model of Stein et
al. [27].

2. Model formulation. Multiple mathematical models have attempted to explain
and predict the proliferation and migration of the glioblastoma tumor cells in vitro
and in vivo with varying success (see the review paper by Martirosyan et al. [17]
and references therein). The growth and diffusion of malignant glioma are governed
by many processes including, but not limited to, random diffusion, chemotaxis,
haptotaxis, cell-cell adhesion, cell-cell signaling, and microenvironmental cues such
as oxygen and glucose. Our proposed model is a variation on the in vitro mathe-
matical model of Stein et al. [27]. We briefly discuss the original experiment and
mathematical model and then the reasoning behind our alterations.

In Stein et al. [27], two human astrocytoma U87 cell lines are implanted into
gels—one with a wild-type receptor (EGFRwt) and one with an over expression of
the epidermal growth factor receptor gene (∆EGFR). The resulting spheroids were
left to grow over 7 days and imaged every day. We show a summary of the results of
the experiment for the invasive and proliferating cell radii on days 0, 1, 3, and 7 in
Figure 1. The tumor core radius was measured to be where pixels had an intensity
of < 0.12 and the invasive radius as the half-maximum for the image averaged over
the azimuthal angle.

The mathematical model proposed by Stein et al. [27] describes the movement
of the invasive, or migratory, cells (ui) for the EGFRwt cell line and the ∆EGFR
cell line based on the experiment described above. The radius of the tumor core,
consisting of the less mobile cells, is modeled as increasing at a constant rate based
on the in vitro experimental data. The model of Stein et al. [27] assumes that the
tumor cells leave the tumor core and become invasive cells to invade the collagen
gel. The behavior of invasive cells is described by the model in a way that can
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Day 0 Day 1 Day 3 Day 7

Figure 1. The radius of the core proliferating (black) and migra-
tory (red dashed) cells for the experiment for EGFRwt strain from
Stein et al. [27] on days 0, 1, 3, and 7. The domain is a 3 mm by
3 mm square.

be quantitatively compared to the experimental measurements. The invasive cell
population is governed by the following ad hoc partial differential equation

∂ui(r, t)

∂t
= D∇2ui︸ ︷︷ ︸

diffusion

+ gui

(
1− ui

umax

)
︸ ︷︷ ︸

logistic growth

− νi∇r·ui︸ ︷︷ ︸
taxis

+ sδ(r −R(t))︸ ︷︷ ︸
shed cells from core

, (1)

where ui represents the invasive cells of the tumor at radius r and time t (Stein et
al. [27]). The forces acting upon the invasive cell population are random diffusion,
logistical growth, taxis, and cells being shed from the core of the tumor. Taxis
refers to the active biased motility of invasive cells away from the tumor core which
Stein et al. [27] attributes to possibly chemotaxis or haptotaxis. This taxis term
was found to be more necessary for the highly invasive EGFRwt strain compared
to the less invasive ∆EGFR strain.

As the core of the tumor increases, cells are shed from the front of the expanding
core to become invasive cells. Parameter D is the diffusion constant, g is the growth
rate, umax is the carrying capacity, νi is the degree at which cells migrate away from
the core, s is the amount of cells shed per day, and δ is the Dirac delta function.
The radius of the tumor core is modeled by R(t) = R0 + νct, where R0 is the initial
radius of the tumor core and νc is the constant velocity at which the tumor core
radius increases.

The experimental data in Stein et al. [27] suggests that the invasive cell radius
also spreads at a constant velocity. However, the assumption that the tumor core
radius increases at a constant rate and the existence of the Dirac delta function in
equation (1) is rather artificial and makes traveling wave analysis of the invasive
cells very difficult. We therefore extend the model of Stein et al. [27] to alleviate
some of these issues.

We build our model from a similar base. We keep the logistic growth term, as we
know that the tumor cells grow in number, and logistic growth is sensible. We also
keep the taxis term, since it is apparent that glioblastoma tumor cells do migrate
away from the tumor core (Stein et al. [28]). Since we are trying to model the tumor
core in addition to the invasive cells, we do not need to consider the cell shedding
term. Although many current cancer cell migration models are based on reaction-
diffusion equations, most of those models consider diffusion to be constant or as
a function of space. Some cell migration models have included density-dependent
diffusion, such as the wound healing model of Cai et al. [4].
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Figure 2. The density-dependent diffusion function D(u∗), where
u∗ = u

umax
, from Equation (3) for D1 = 0.5, D2 = 0.4, and various

a and n. As u∗ increases, D(u∗) decreases from its maximum D1

to its minimum D1 −D2.

We consider a density-dependent convective-reaction-diffusion equation, which
implies that the amount of random diffusion depends on how many cells are present.
Our governing equation for the tumor cells u(x, t) is thus

∂u

∂t
= ∇ ·

(
D

(
u

umax

)
∇u
)

︸ ︷︷ ︸
density-dependent diffusion

+ gu

(
1− u

umax

)
︸ ︷︷ ︸

logistic growth

− sgn(x)νi∇ · u︸ ︷︷ ︸
taxis

, (2)

where we consider the equation in Cartesian coordinates but assume there is radial
symmetry. Parameters g and νi are as in equation (1), but now they are in relation
to the entire tumor cell population instead of just the invasive cell population.

There are many functions that could serve as the density-dependent diffusion
D(u∗), where u∗ = u

umax
. Experimental work from Stein et al. [27] suggests that

diffusion is large for areas where the cell density is small (the migrating tumor
cells), but diffusion is small where the cell density is large (the proliferating tumor
cells). This relation could possibly be explained by cell–cell adhesion (Armstrong
et al. [1]). To capture this behavior, we set

D(u∗) = D1 −
D2(u∗)n

an + (u∗)n
. (3)

For biologically relevant parameters, we assume that D1, D2, g, a, and νi are all
positive, n > 1, and D2 ≤ D1 to avoid “negative” diffusion, which is a problem
both biologically and numerically. See Figure 2 for an illustration of the density-
dependent diffusion function (3) for various a and n. The parameter n governs how
steeply the function decreases and the parameter a governs the u∗ value at which
the transition is occurring at half maximal rate. D1 and D2 govern the range of the
function.
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As we consider the biology of tumor growth, we recall that glioblastoma tumor
cells must be considered as two differing populations. The proliferative cells are
assumed to remain somewhat stationary and diffuse slowly but grow in population
quickly. On the other hand, the migrating cells diffuse very quickly, traveling very
far in a short amount of time, but do not grow in population as quickly. Since the
proliferating cells are the tumor core cells, they occur when cell density is very high,
and the migrating cells are where the cell density is very low. For our application,
we choose D2 ≤ D1, which allows diffusion to be small for proliferating cells and
larger for migrating cells.

3. Traveling wave speed analysis. In this section we analyze the existence of
traveling wave solutions of (2) using phase plane analysis.

Rewriting (2) in one-dimensional Cartesian coordinates, the governing equation
is

∂u

∂t
= D

(
u

umax

)
∂2u

∂x2
+

1

umax
D′
(

u

umax

)(
∂u

∂x

)2

− νi
∂u

∂x
+ gu

(
1− u

umax

)
. (4)

Rescale by writing

t∗ = gt, x∗ = x
√
g, u∗ =

u

umax
, (5)

set

v =
νi√
g
, (6)

and, omitting the asterisks and dividing through by gumax for simplicity, the equa-
tion (4) becomes

∂u

∂t
= D(u)

∂2u

∂x2
+D′(u)

(
∂u

∂x

)2

− v ∂u
∂x

+ u (1− u) . (7)

A traveling wave solution of (7) is a solution of the form

u(x, t) = w(x− kt), (8)

where k ≥ 0 is the speed of the traveling wave and the function w(z) is defined on
the interval (−∞,∞) and satisfies the boundary conditions

lim
z→−∞

w(z) = 1, lim
z→∞

w(z) = 0. (9)

Substituting ansatz (8) into (7) results in the second-order ordinary differential
equation

w′′(z) +
1

D(w(z))

(
(k − v)w′(z) +D′(w(z))(w′(z))2 + w(z)(1− w(z))

)
= 0, (10)

which we may write in this form because the function D as in equation (3) is always
positive.

Rewriting (10) as a system of first-order ordinary differential equations by setting
y := dw/dz,

w′ = y, (11a)

y′ =
−1

D(w)

(
(k − v)y +D′(w)y2 + w(1− w)

)
. (11b)

This system has two equilibrium points, (w, y) = (0, 0) and (w, y) = (1, 0).
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The Jacobian matrix evaluated at (1, 0) is

J(1, 0) =

(
0 1
1

D(1)
−(k−v)
D(1)

)
, (12)

from which we have det J(1, 0) = −1
D(1) < 0, and thus (1, 0) is a saddle equilibrium

point.
The Jacobian matrix evaluated at (0, 0) is

J(0, 0) =

(
0 1
−1
D(0)

−(k−v)
D(0)

)
, (13)

from which we have det J(0, 0) = 1
D(0) > 0 and assuming that k > v, then

tr J(0, 0) = −(k−v)
D(0) < 0 and (0, 0) is a stable node or spiral. Since a stable spi-

ral cannot result in physiologically relevant solutions, we obtain the condition

k ≥ kmin = 2
√
D1 + v, (14)

which in terms of the original dimensional equation (4) is

k ≥ kmin = 2
√
D1g + νi. (15)

We will prove the following main result.

Theorem 3.1. There exists a traveling wave solution (8) of the partial differential
equation (7) with boundary conditions u(x, t) → 1 as x → −∞ and u(x, t) → 0 as
x→∞ with 0 < u(x, t) < 1, whose orbit connects the steady states u ≡ 0 and u ≡ 1
if and only if (14) is satisfied.

To do so, we need to construct a positively invariant region in which to trap the
unstable manifold of the saddle point. Figure 3 illustrates a positively invariant
trapping region and the heteroclinic orbit connecting the two equilibrium points for
a set of physiologically relevant parameters.

Since the horizontal (w′ = 0) nullcline is the horizontal axis {y = 0}, the flow
across this line (when w ∈ (0, 1)) is perpendicular in the negative y direction. Define
the line

T1 = {(w, y) : 0 ≤ w ≤ 1, y = 0}. (16)

Next, consider the line that corresponds to the eigenvector corresponding to the
more negative eigenvalue of the linearized system at (0, 0), i.e.,

y(w) = α0w, (17)

where we define

α0 =
1

2D(0)

(
−(k − v)−

√
(k − v)2 − 4D(0)

)
. (18)

Note that α0 < 0.

Lemma 3.2. The flow at any point along the line y(w) = α0w, for w ∈ (0, 1],
crosses that line in the positive y direction for k sufficiently small.

Proof. The normal vector to the graph of (w,α0w) pointing in the positive y direc-
tion is (−α0, 1). Restricting the vector field to points along the line y(w) = α0w
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Figure 3. Phase Portrait of the system (11) with parameter val-
ues (37). The solid green curve is the unstable manifold, the
dashed blue curve is T1 (16) the vertical nullcline, the dotted or-
ange line is T2 (28) corresponding to the eigenvector of linearized
system at (0, 0), and the dash-dotted purple line is T3 (30). Ar-
rows show direction of flow. The nondimensional wave speed
k = 2

√
D1 + v = 2

√
D1 + νi/

√
g ≈ 0.0047746.

results in the system

w′ = α0w, (19a)

y′ =
−1

D(w)

(
(k − v)α0w +D′(w)α2

0w
2 + w(1− w)

)
. (19b)

We choose k such that the inner product (−α0, 1) · (w′, y′) ≥ 0 along the graph
of (w,α0w), and thus

− α2
0w −

1

D(w)

(
(k − v)α0w +D′(w)α2

0w
2 + w(1− w)

)
≥ 0, (20)

which can be rearranged as

− α0w

D(w)

(
α0D(w) + (k − v) +D′(w)α0w +

1− w
α0

)
≥ 0. (21)

Since α0 < 0 and D(w) > 0 for w ∈ (0, 1], then − α0w
D(w) > 0 and the inequality

becomes

α0D(w) + (k − v) +D′(w)α0w +
1− w
α0

≥ 0. (22)

Since (22) must hold for all w ∈ [0, 1], then we obtain the condition

k ≥ v − max
w∈[0,1]

{
d

dw

(
D(w)(α0w)

)
− w(1− w)

α0w

}
. (23)

However, since α0 depends on k, substitute (18) into (23), and after tedious algebraic
manipulation the inequality becomes

k ≤ v + min
w∈[0,1]

{
D(w) + wD′(w)−D1(1− w)√

w(D(w) + wD′(w)−D1)

}
. (24)
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Consider the function

h(w) =
D(w) + wD′(w)−D1(1− w)√

w(D(w) + wD′(w)−D1)
. (25)

The minimum of h(w) is attained in the interior of the domain [0, 1] if h′(w) = 0
for some w ∈ (0, 1). This means that either (i) D1(1 +w)− d

dw (wD(w)) = 0 or (ii)

D1 −D(w) +w d
dw (wD′(w)) = 0. In case (i), this means that the diffusion function

must be of the form D(w) = D1(1 +w) + C1

w , where C1 is an arbitrary constant. In

case (ii), the diffusion function must be of the form D(w) = D1+C1
w2−1
w +iC2

w2−1
2 ,

where C1 and C2 are arbitrary constants. Since our diffusion function (3) is of
neither of these forms, the minimum cannot be attained in the interior of [0, 1] and
must be attained at either of the endpoints w = 0 or w = 1.

Since h(w) tends to infinity as w → 0 (assuming that parameter n > 1), then
the minimum occurs at w = 1, and thus if the condition

k ≤ v +
D(1) +D′(1)√

D(1) +D′(1)−D1

= v +
(a+ 1)2D1 + (1 + a+ an)D2

(a+ 1)
√

(1 + a+ an)D2

(26)

is satisfied, then the lemma holds.

Since

2
√
D1 ≤

(a+ 1)2D1 + (1 + a+ an)D2

(a+ 1)
√

(1 + a+ an)D2

, (27)

the flow across the line

T2 = {(w, y) : 0 ≤ w ≤ 1, y = α0w} (28)

is in the positive y direction for at least the minimum wave speed k. For larger
speeds, the nonlinearities of the system require that T2 be nonlinear such that

k ≤ v − max
w∈[0,1]

{
d

dw

(
D(w)f(w)

)
− w(1− w)

f(w)

}
, (29)

is satisfied for some function f where f(0) = 0 and f(w) ≤ 0 for w ∈ (0, 1]. The
minimum wave speed is determined by taking the infimum on the set of functions
f (Sánchez-Garduño et al. [25]).

Also due to the nonlinearities of the system and the behavior of the system
near (1, 0), it is difficult to use the eigenvector of the linearized system at (1, 0) as
a portion of the boundary of the trapping region, as is standard for the Fisher–
Kolmogorov equation (Chicone [5]). Instead, define

T3 = {(w, y) : w = 1, α0 ≤ y ≤ 0}. (30)

The flow across this line is in the negative w direction. Thus, if we define the
triangle T defined by the boundaries T1, T2, and T3, then T is a positively invariant
set.

We now prove our main result.

Proof of Theorem 3.1. We first show that the unstable manifold of the saddle point
(w, y) = (1, 0) has nonempty intersection with T for all time.

The vertical (y′ = 0) nullclines are the solutions to the quadratic equation

D′(w)y2 + (k − v)y + w(1− w) = 0, (31)
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which are

y+(w) =
1

2D′(w)

(
− (k − v) +

√
(k − v)2 − 4D′(w)w(1− w)

)
, (32a)

y−(w) =
1

2D′(w)

(
− (k − v)−

√
(k − v)2 − 4D′(w)w(1− w)

)
. (32b)

Since k > v, the slope of the y+ nullcline at w = 1 is

y′+(1) =
1

k − v
> 0, (33)

and the eigenvector of the linearized system corresponding to the positive eigenvalue
at the saddle point (1, 0) is

~η =

1,
1

2

−(k − v)

D(1)
+

√(
k − v
D(1)

)2

+
4

D(1)

T

. (34)

All trajectories that leave the point (1, 0) in the region R = {(w, y) : 0 ≤ w ≤
1, y ≤ 0} have the tangent vector ~η at (1, 0). Comparing the slope of eigenvector
~η and the slope of the y+ nullcline at the point (1, 0), we find that the slope of ~η is
less than the slope of y+. Therefore, trajectories leaving point (1, 0) leave above y+.
Since the flow across the nullcline y+ is perpendicular in the negative w direction,
and y+ is contained in T near w = 1, the unstable manifold of the saddle at (1, 0)
has nonempty intersection with T .

Thus, the unstable manifold of the saddle at (1, 0) remains in the region T for all
time, and furthermore, the ω-limit set of the corresponding orbit is also in T . Since
w′ = y ≤ 0 within T , by the Poincaré–Bendixson theorem, there are no periodic
orbits or equilibrium points in the interior of T . The ω-limit set must be contained
in the boundary of T , and therefore, the ω-limit set is (0, 0).

Hence, there exists a heteroclinic orbit connecting the equilibrium points (w, y) =
(0, 0) and (w, y) = (1, 0) as long as the condition (14) is satisfied, which implies that
a traveling wave solution exists.

Thus, we should expect in our numerical simulations that the wave speed of the
invasive cells is constant and satisfies condition (15).

4. Computational results. In order to show that the proposed model is viable,
we compare numerical simulations with experimental data and the traveling wave
analysis. A sensitivity analysis as well as a parameter optimization to fit the exper-
imental data is performed. Finally, the simulated wave speed is compared with the
minimum wave speed (15) derived in the previous section.

Experimental data provided in Stein et al. [27] includes the density profile of cells
on day 3 and the invasive radius of the cells measured from days 1 through 7 for both
the U87WT and U87∆EGFR cell lines. The data was obtained via GRABIT [6], a
MATLAB program which extracts data points from an image file. We concentrate
on the U87WT cell line because we want to show our model is effective even for the
strongest migratory cells. All simulations are performed with the U87WT cell line
in mind and are compared to the U87WT data.

The numerical simulations are run over a large spatial domain and boundary
conditions specify that there are no tumor cells at the boundaries, in other words,
u(x, t) = 0 when x = ±1 cm. This ensures that the tumor can freely move within
the domain. Stein et al. [27] does not model the tumor core cells in the invasive cell
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Figure 4. Numerical solution of the density-dependent diffusion
glioblastoma model (2) with diffusion function (3) and optimized
parameter values (37) compared to experimental data from Stein
et al. [27] and their simulations. The density profile is from day 3
of the experimental data.

equation (1), and the initial cell density for their simulations was zero. However,
our model (2) contains all tumor cells. From Stein et al. [27], the initial core tumor
radius is 210µm and the maximum cell density is umax = 4.2 × 108 cells/cm3, and
thus we assume that initially the cell density is 95% of umax for the initial core
tumor radius of 210µm and zero elsewhere.

The governing equation (2) is discretized using the Crank-Nicolson method for
the density-dependent diffusion term and first-order forward differencing for the
advection and logistic growth terms. For the advection term on the left hand
side, first-order backward differencing is used. A limited spatio-temporal study was
conducted to determine the largest possible spatial step and time steps which would
still produce accurate results. Our method was compared with results from the
MATLAB program pdepe [26] to ensure the solutions were accurate. See Figure 4
for a typical simulation that is compared to the experimental data and model of
Stein et al. [27].

The governing equation (2) with diffusion function (3) has six parameters that
are unknowns: D1, D2, a, n, g, and νi. Estimated ranges for some of these pa-
rameters can be obtained from Stein et al. [27]. In particular, the migratory
diffusion (diffusion when the density u is small), D1, is estimated to be on the
order of 10−4 cm2/day. The growth rate g ∈ (0, 1)/day and the taxis constant
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νi ∈ (0, 0.02) cm/day. However, for a and n, there is no precedent to compare with.
We perform a sensitivity study to determine if the model error is insensitive to
any of the changing parameters. If we are able to determine that a parameter is
insensitive, we will be able to fix its value and not include it as a free variable for
parameter optimization.

The error function that we aim to minimize is based on the χ2 error function
used in Stein et al. [27] but modified to account for the experimental data that was
made available and uses relative errors for each point. The modified error function
that takes into account both how fast the tumor is spreading, by measuring the
invasive radius at each day, and also the density of cells by comparing the spatial
profile of cells on day 3 is

err =
1

(N +M)− q − 1

[
N∑
t=1

|rdata(t)− rsimulation(t)|
rdata(t)

+

M∑
i=1

|udata(3, xi)− usimulation(3, xi)|
udata(3, xi)

]
, (35)

where N is the total number of days for which there is invasive radius data, so
N = 7, M is the total number of cell density data points at day 3, so M = 17,
and q is the number of parameters being optimized which, in this case, q = 6.
The first sum in (35) compares the invasive radii of the experimental data, rdata(t),
and the simulation, rsimulation(t). The second sum compares the cell density at
day 3 at experimental data point xi for the data, udata(3, xi), and the simulation,
usimulation(3, xi). We use relative errors because the data covers many different
orders of magnitude: the cell density is on the order of 107–108 cells/cm3 and the
invasive radius is on the order of 0.01 cm.

4.1. Parameter sensitivity. The parameter sensitivity analysis was performed
for the six parameters D1, D2, a, n, g, and νi such that each was in a physiologically
relevant range. The set of base parameters chosen that result in a reasonable match
to the data were

D1 = 10−4 cm2/day, D2 = 9.99× 10−5 cm2/day, a = 0.1 cells/cm
2
,

n = 1, g = 0.5/day, νi = 0.01 cm/day. (36)

These base parameters are not chosen for their excellent fit to the data, rather they
are chosen in order to have error that is not too large and to allow for variations to
still remain in biologically relevant ranges. To test the sensitivity of one parameter,
all the other parameters were held constant and the parameter in question was
varied. The results of this sensitivity test is shown in Figure 5.

It is apparent that some parameters are much more sensitive than others, in
particular, D1, g, and νi appear to generate the most sensitivity. The results of this
sensitivity analysis inform us that all parameters are sensitive and we must take
care when we perform our optimization.

4.2. Parameter estimation. The parameters are optimized via the MATLAB
program fminsearch [12] by minimizing equation (35). Various initial parameter
guesses were used as input to ensure parameter values were optimal. The optimized
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(36) using error function (35) (vertical axis).

parameters found are

D1 = 5.5408× 10−6, cm2/day, D2 = 5.3910× 10−6, cm2/day,

a = 0.021188 cells/cm3, n = 1.2848,

g = 0.49120/day, νi = 4.6801× 10−5 cm/day. (37)

Though D1 + D2 is very close to 0, it is still the case that |D1| > |D2| as nec-
essary. To determine the comparable error to the Stein et al. [27] simulations that
use invasive cells as a separate population, we use GRABIT [6] to obtain the simu-
lation data points. Figure 4 shows the results of our simulation with the optimized
parameters compared to the Stein et al. [27] simulations and the experimental data.

In the top left panel of Figure 4, the cell density is plotted on the entire domain
and it indicates that the model is successful in capturing the behavior of both the
tumor core cells and the migratory cells. In the top right panel, the cell density is
plotted on a smaller domain and further verifies that our model with one population
is relatively as accurate as the model of Stein et al. [27] with the separated invasive
cell population and proliferating cell population. In fact, our total error is approx-
imately one-half that of Stein et al. [27] (0.21 compared to 0.45). Even though
the simulated invasive radius (in the bottom panel) does not appear to match the
experimental data as well, overall there is good agreement between our simulations
and the experimental data.

4.3. Wave speed comparison. Now that we have shown that our model can
be utilized, we compare the analytic minimum wave speed (15) to the wave speed
observed in the simulations. To measure the wave speed of tumor spread accurately,
we increase the run-time of the simulation to 200 days and enlarge the spatial
domain to more so mimic an infinite domain, as is used in the traveling wave
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analysis. The results of this simulation are shown in Figure 6. The leading edge of
the tumor maintains a constant shape and ultimately moves at a constant rate. To
estimate the wave speed, we ignore the first few days of the simulation so that the
tumor core stably reaches maximum cell density, and then measure the x location
where the cell density is last over 2 × 108 cells/cm3. This is tracked against time,
and the MATLAB program polyfit is used to estimate the slope of the curve for a
linear fit. Using the optimized parameters (37), the minimum wave speed (15) is
kmin ≈ 0.003346 cm/day and the simulated wave speed k = 0.02255 cm/day. While
often the observed simulated wave speed is approximately equal to the analytic
minimum wave speed, here the simulated wave speed is on the order of 10 times
larger than the minimum wave speed.

5. Discussion and further directions. We derived a density-dependent diffu-
sion model for in vitro glioblastoma tumor growth that was validated by existing
experimental data from Stein et al. [27]. We accurately modeled both the prolifer-
ating tumor core as well as the invading migratory cells using only one equation.
This model has the potential to simplify glioblastoma tumor modeling—with only
one equation the analysis is simpler and simulations can be faster. The existence
of traveling waves for this model was studied using phase plane analysis and was
corroborated by simulations. We performed a sensitivity analysis and parameter
optimization to ensure the model describes the behavior of the tumor.

The governing equation has density-dependent diffusion, logistic growth, and
taxis which could possibly be due to chemotaxis or haptotaxis. The chosen density-
dependent diffusion function (3) ensures that when the cell density is large, random
diffusion is small, and when the cell density is small, random diffusion is large, which
could possibly be explained by cell–cell adhesion. This behavior matches how the
migratory cells move further away from the tumor core at a large speed, while
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the core remains proliferating and slowly expanding. The logistic term describes
the growth of the total number of cells. Taxis describes the active and directed
movement of the invasive cells from the tumor core.

A sensitivity analysis indicated that all parameters largely influenced the nu-
merical solutions. We performed a parameter optimization on all six parameters
and showed that the error for the best fit was less than the error generated by the
two-population model of Stein et al. [27]. This implies that monotone decreasing
density-dependent diffusion may better explain the behavior of tumor spheroid cell
migration as opposed to cell shedding of the tumor core.

Through wave speed analysis we were able to determine a minimum wave speed
and conditions necessary for the existence of traveling wave solutions. Numeri-
cal simulations indicated that the observable wave speed is much larger than the
analytic minimum wave speed. We conjecture that for monotone decreasing density-
dependent diffusion functions, the traveling wave solution with minimum wave speed
is unstable.

Furthermore, the observable wave speed appears to depend on other parameters
besides D1, g, and νi. Figure 7 indicates that there is a linear relation between
parameter D2 and the observed wave speed, and parameter n also affects the wave
speed while a does not affect it as much (results not shown). We also note that when
D2 = 0, the observable wave speed equals the analytic minimum wave speed, as
expected. A possible explanation for the difference between the analytic and numer-
ical wave speeds could be that nonlinear diffusion can be considered as contributing
convection with a “velocity” −D′(u)∂u∂x (in one dimension) but the analytic mini-
mum wave speed was obtained after linearizing the system (11). Further work can
be done to investigate finding an expression for the observable wave speed.

Future studies of glioblastoma growth will focus on comparing this model to in
vivo data. The model will need to be extended to include brain geometry, and
furthermore, comparing the model to in vivo data instead of in vitro data may
result in the need to extend the equations to describe more complex behavior such
as tumor cell necrosis, brain tissue type differentiation, and mass effect. Instead
of density-dependent diffusion, it may be more appropriate to implement anistropy
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through diffusion tensor imaging (DTI) such as in the models of Jbabdi et al. [10],
Bondiau et al. [3], and Painter and Hillen [21], depending on the availability of
experimental data. Another direction is to consider a non-local reaction-diffusion
equation instead of density-dependent diffusion with proliferating and dispersing
cell groups in which dispersing cells convert proliferating cells into dispersing ones.
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R. Guillevin and H. Benali, Simulation of anisotropic growth of low-grade gliomas using

diffusion tensor imaging, Magnetic Resonance in Medicine, 54 (2005), 616–624.
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