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TRAVELING WAVES OF A GO-OR-GROW MODEL
OF GLIOMA GROWTH∗
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Abstract. Glioblastoma multiforme is a deadly brain cancer in which tumor cells excessively
proliferate and migrate. The first mathematical models of the spread of gliomas featured reaction-
diffusion equations, and later an idea emerged through experimental study called the “Go or Grow”
hypothesis in which glioma cells have a dichotomous behavior: a cell either primarily proliferates or
primarily migrates. We analytically investigate an extreme form of the “Go or Grow” hypothesis
where tumor cell motility and cell proliferation are considered as separate processes. Different so-
lution types are examined via approximate solution of traveling wave equations, and we determine
conditions for various wave front forms.
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1. Introduction. In this paper, we study the speed and shape of traveling wave
solutions of

∂M

∂t
= D∇2M︸ ︷︷ ︸

diffusion

+ ΦM (M,P )︸ ︷︷ ︸
net growth/death

+λP→M (T )P − λM→P (T )M︸ ︷︷ ︸
transitions between M and P

,(1a)

∂P

∂t
= ΦP (M,P )︸ ︷︷ ︸

net growth/death

−λP→M (T )P + λM→P (T )M︸ ︷︷ ︸
transitions between M and P

,(1b)

where M(x, t) and P (x, t) are variables representing the density of two subpopula-
tions such that T = M + P is the total population density and members of one
subpopulation may transition into becoming a member of the other subpopulation.

This system of equations describes the spreading of glioblastoma multiforme
(GBM), a deadly brain cancer which is characterized by extremely diffusive and
proliferative behavior (Norden and Wen [21]). Mathematical modeling of this can-
cer began in the 1990s with a focus on describing the spreading of cancer cells via
reaction-diffusion equations (see the review paper by Martirosyan et al. [19] and the
references therein); however, later an idea emerged through experimental study that
glioblastoma cells had a dichotomous behavior: either an individual cell prolifer-
ates rapidly and migrates slowly, or the cell migrates rapidly and proliferates slowly
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TRAVELING WAVES OF GLIOMA GROWTH 1779

(Giese et al. [8, 9, 10], Godlewski et al. [11]). Generally, cells that proliferate rapidly
are located in the central core of the tumor, and cells that migrate rapidly are located
at the peripheral edges of the tumor. The transformation of a cell from one popula-
tion to the other is triggered by a phenotypic switch, which could be due to a variety
of mechanisms. This idea was termed the “Go or Grow” hypothesis (Hatzikirou
et al. [12]).

In our previous work, we have investigated the applicability of a single-equation
reaction-diffusion equation model (Rutter et al. [24]) and a single-equation density-
dependent diffusion model (Stepien et al. [31]) to experimental data as well as analyzed
the existence of traveling wave solutions in the latter paper. Stepien et al. [31] and
others such as Scribner and Fathallah-Shaykh [26] have shown that incorporating more
complex dynamics into a single equation model can result in behavior characteristic
of GBM invasion. Here, we analytically investigate an extreme form of the “Go or
Grow” hypothesis in which there is no proliferation term for the migrating cells and no
diffusion for the proliferating cells, which is based in part on the tumor cord growth
model of Thalhauser et al. [32] and in part on biological findings that glioma cells
generally migrate in fast bursts followed by rest periods in which they proliferate
(Farin et al. [6]), as well as inspired by the many glioma growth differential equation
models that incorporate the “Go or Grow” hypothesis (e.g. Chauviere et al. [4], Gerlee
and Nelander [7], Mart́ınez-González et al. [18], Pham et al. [22], Saut et al. [25], Stein
et al. [30]).

To study the specific case of glioma growth from the general form of the model
(1), let M be the density of migrating cells and P be the density of proliferating cells.
We specify the net growth/death functions as

ΦM (M,P ) = −µM,(2a)

ΦP (M,P ) = g

(
1− T

Tmax

)
P(2b)

and transition functions as

λP→M (T ) = εk
Tn

Tn +Kn
M

,(3a)

λM→P (T ) = k
Kn
P

Tn +Kn
P

,(3b)

resulting in the final form of the model that we analyze in this paper,

∂M

∂t
= D∇2M + εk

Tn

Tn +Kn
M

P − k Kn
P

Tn +Kn
P

M − µM,(4a)

∂P

∂t
= g

(
1− T

Tmax

)
P − εk Tn

Tn +Kn
M

P + k
Kn
P

Tn +Kn
P

M.(4b)

Taking the spatial domain to be infinite, appropriate boundary conditions are
∇M(R, t) = ∇P (R, t) = 0 as radius R → ∞, and an appropriate initial condition is
one that has a finite density of cells for both M and P and compact support. It is
assumed that all the parameters (D, ε, k, KM , KP , µ, g, Tmax) are positive.

In section 2 we analyze the speed of traveling waves of the system (4), and in
section 3 we analyze the shape of traveling waves of the system before summarizing
our results in section 4.
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1780 TRACY L. STEPIEN, ERICA M. RUTTER, AND YANG KUANG

2. Traveling wave and its speed. A traveling wave solution of (4) is a solution
of the form

M(x, t) = U(ξ), P (x, t) = V (ξ), ξ = r · x− ct,(5)

where c ≥ 0 is the speed of the traveling wave, r is the propagating direction, and
functions U and V are defined on the interval (−∞,+∞). For convenience, define

T (x, t) = W (ξ),(6)

since T = M + P is the total cell density, and so W = U + V . Substitution of forms
(5)–(6) into (4) gives the following system of ordinary differential equations:

cU ′ + rDU ′′ + εk
(U + V )n

(U + V )n +Kn
M

V − k Kn
P

(U + V )n +Kn
P

U − µU = 0,(7a)

cV ′ + g

(
1− U + V

Tmax

)
V − εk (U + V )n

(U + V )n +Kn
M

V + k
Kn
P

(U + V )n +Kn
P

U = 0,(7b)

where r = |r|2 and the prime ′ denotes differentiation with respect to ξ.
We begin with considering the speed c of the traveling wave solutions satisfying

(7). Substituting the ansatz

U(ξ) = Ûe−θξ, V (ξ) = V̂ e−θξ(8)

into (7) we obtain

− cθÛ + rDθ2Û + εk
(Û + V̂ )ne−nθξ

(Û + V̂ )ne−nθξ +Kn
M

V̂
(9a)

− k Kn
P

(Û + V̂ )ne−nθξ +Kn
P

Û − µÛ = 0,

− cθV̂ + g

(
1− (Û + V̂ )e−θξ

Tmax

)
V̂ − εk (Û + V̂ )ne−nθξ

(Û + V̂ )ne−nθξ +Kn
M

V̂

(9b)

+ k
Kn
P

(Û + V̂ )ne−nθξ +Kn
P

Û = 0.

Then linearizing ahead of the wave front (about U = V = 0, when ξ → ∞) to
leading order gives (

−cθ + rDθ2 − k − µ
)
Û = 0,(10a)

cθV̂ = gV̂ + kÛ .(10b)

Solving (10a) for c, we obtain the dispersion relation

c = rDθ − k + µ

θ
.(11)

The derivative of (11) with respect to θ is positive, which implies that c as a function
of θ is always increasing and therefore does not have any local minima. Thus the
dispersion relation does not give a condition for the minimum wave speed.
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TRAVELING WAVES OF GLIOMA GROWTH 1781

Solving (10b) for c, we obtain

c =
1

θ

(
g + k

Û

V̂

)
.(12)

Since the density of migrating calls M and proliferating cells P is nonnegative, then
by (8), both Û and V̂ must be nonnegative. Substituting expression (12) for c into

(10a) and using the fact that Û
V̂
≥ 0,

rDθ2 = g + k

(
Û

V̂
+ 1

)
+ µ ≥ g + k + µ,(13)

which implies that the minimum value that θ can attain is

θmin =

√
g + k + µ

rD
.(14)

Hence, substituting θmin into the dispersion relation (11) gives the minimum wave
speed

c ≥ cmin = g

√
rD

g + k + µ
.(15)

Thus, the range of wave speeds for equation (4) is satisfied by (15).
To compare the analytical wave speed (15) with the numerically observed wave

speed, we ran simulations using the MATLAB function pdepe over a substantially
large spatial domain (x ∈ [−20, 20]) and time domain (t ∈ [0, 50]). The MATLAB
function polyfit was used to fit the slope of the spatial position of the tracking density
0.1×Tmax as time increased, starting at t = 25 to ensure the traveling wave solutions
were established. The calculation was performed separately for the migrating cells,
the proliferating cells, and the total number of cells, and it was found that the wave
speeds were equal for almost all cell populations, supporting the assumption in (5).
For small values of k and g, we noticed a underestimation of the wave speed for the
migrating cells. This may be due to the choice of our tracking density in polyfit,
as these parameter choices may result in very low cell density levels for the migrating
population.

The results of these calculations are presented in Figure 1. The minimum wave
speed cmin (15) is represented by the red dashed line. The numerically observed
wave speed for the migrating population is given by blue plusses, the numerically
observed wave speed for the proliferating population is given by green triangles, and
the numerically observed wave speed for the total population is in black asterisks.
Our results indicate that the numerically observed wave speed is generally greater
than or equal to the analytical minimum wave speed. There are a few data points
for very small k values that fall below the analytical wave speed range, in particular
for the migrating population. This may also be related to the choice of the tracking
density in polyfit. Unlike other numerical wave speed calculations, our calculations
lie slightly above the analytical wave speed. This may be due to the linearization
process eliminating higher-order terms which may influence the wave speed.
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Fig. 1. Comparison of the analytical and numerical wave speeds. The red dashed line represents
the analytical wave speed (15). The blue plusses represent the numerically observed migrating wave
speed, green triangles represent the numerically observed proliferating wave speed, and black asterisks
represent the numerically observed total wave speed. The base parameters are D = 5× 10−4, g = 1,
k = 1, µ = 0.005, Km = Kp = 0.5, and ε = 1.

3. Approximate traveling wave. Besides the wave speed of traveling wave
solutions of (4), we are also interested in the shape of the traveling waves. Here we
use a method developed by Canosa [2] that has been used to analyze other models
of cancer growth (Sherratt [27], Sherratt and Chaplain [28], Zhu et al. [36], Quinn
and Sinkala [23], Zhu and Ou [35]) and other types of cell migration such as in
wound healing and embryonic development (Dale et al. [5], Newgreen et al. [20],
Simpson et al. [29], Landman et al. [14], Cai et al. [1], Trewenack and Landman [33]).
This method gives a good approximation to the solution of the dimensionless Fisher–
Kolmogorov equation ut = uxx+u(1−u), and here we examine the agreement between
the approximation of (4) that we obtain using the method of Canosa [2] to numerical
simulations.

To obtain an approximation of the traveling wave solution via the method of
Canosa [2], we rescale the traveling wave coordinate by writing z = − 1

c ξ. With this
change of variables, system (7) becomes

−dU
dz

+
rD

c2
d2U

dz2
+ εk

(U + V )n

(U + V )n +Kn
M

V − k Kn
P

(U + V )n +Kn
P

U − µU = 0,(16a)

−dV
dz

+ g

(
1− U + V

Tmax

)
V − εk (U + V )n

(U + V )n +Kn
M

V + k
Kn
P

(U + V )n +Kn
P

U = 0.(16b)

Take δ = 1
c2 to be a perturbation parameter, and consider a sufficiently large wave

speed such that c ≥ cmin (15). Biologically, we expect the transition rate k and the
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TRAVELING WAVES OF GLIOMA GROWTH 1783

death rate µ to be small, so cmin = O(
√
Dg). Since GBM is highly proliferative and

infiltrative such that cancer cells can disperse widely throughout the brain, cmin may
be large during certain stages of cancer. For example, taking units of speed as mm/y,
GBM patient velocity data as reported in Wang et al. [34] supports the assumption
that δ is small.

Substituting into the previous equation the regular perturbation expansions

U(ξ; δ) =

∞∑
r=0

Urδ
r, V (ξ; δ) =

∞∑
r=0

Vrδ
r,(17)

we investigate the lowest order terms U0 and V0 which satisfy

dU

dz
= εk

(U + V )n

(U + V )n +Kn
M

V − k Kn
P

(U + V )n +Kn
P

U − µU,(18a)

dV

dz
= g

(
1− U + V

Tmax

)
V − εk (U + V )n

(U + V )n +Kn
M

V + k
Kn
P

(U + V )n +Kn
P

U,(18b)

where the subscripts on U0 and V0 have been omitted for notational simplicity.
It is more convenient to rewrite the system as one in W (6) and V , which is

dW

dz
= g

(
1− W

Tmax

)
V − µ(W − V ),(19a)

dV

dz
= g

(
1− W

Tmax

)
V − εk Wn

Wn +Kn
M

V + k
Kn
P

Wn +Kn
P

(W − V ).(19b)

We look for a solution with (W,V ) = (0, 0) (which is an equilibrium point of (19))
as z → −∞, since this corresponds to x → ∞, ahead of the wave. In subsection 3.1
we examine the stability of this equilibrium point and the nullclines of the system, in
subsection 3.2 we construct a positively invariant region Ω, in subsection 3.3 we show
that no periodic orbits exist in Ω, in subsection 3.4 we show that there is nonempty
intersection between the solution that tends to (0, 0) as z → −∞ and Ω, and in
subsection 3.5 we examine the interior fixed points in Ω. These steps will lead to the
conclusion of the existence of a heteroclinic orbit corresponding to the approximate
traveling wave under certain conditions.

3.1. Equilibrium point at origin and nullclines. The components of the
Jacobian are

J11(W,V ) = − g

Tmax
V − µ,(20a)

J12(W,V ) = g

(
1− W

Tmax

)
+ µ,(20b)

J21(W,V ) = − g

Tmax
V − εkV

[
(Wn +Kn

M )nWn−1 − nWn

(Wn +Kn
M )2

]
(20c)

+ k

[
Kn
P

Wn +Kn
P

+ (W − V )
Kn
P

(Wn +Kn
P )2

nWn−1

]
,

J22(W,V ) = g

(
1− W

Tmax

)
− εk Wn

Wn +Kn
M

− k Kn
P

Wn +Kn
P

,(20d)

and thus at the equilibrium point (W,V ) = (0, 0), the Jacobian is

(21) J(0, 0) =

(
−µ g + µ

k g − k

)
.
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The eigenvalues of J(0, 0) are

λ+ = g > 0, λ− = −(k + µ) < 0,(22)

implying that the equilibrium point (0, 0) is a saddle. The corresponding eigenvec-
tors are

v+ =

(
1

1

)
, v− =

(
−(g+µ)

k

1

)
,(23)

and thus a traveling wave solution will correspond to the trajectory leaving (0, 0)
along the v+ eigenvector.

The W -nullcline is

V (W ) =
µW

g
(

1− W
Tmax

)
+ µ

,(24)

and since its derivative is

V ′(W ) =
µ(g + µ)(

g
(

1− W
Tmax

)
+ µ

)2 > 0,(25)

then the W -nullcline is a strictly increasing function. Furthermore, V (0) = 0, and
there is a vertical asymptote at W = Tmax(1 + µ

g ) > Tmax.
The V -nullcline is

V (W ) =
−k Kn

P

Wn+Kn
P
W

g
(

1− W
Tmax

)
− εk Wn

Wn+Kn
M
− k Kn

P

Wn+Kn
P

.(26)

We conjecture that the V -nullcline is a strictly decreasing function for g ≥ εk; see
Figure 2.

3.2. Positively invariant region. If we extend the linearized eigenvector v+

(23) as a line and consider the region Ω bound by that line, the horizontal W -axis,
and the line W = Tmax, as illustrated in Figure 3, we claim that the unstable manifold
of the saddle at (0, 0) is trapped within the region Ω.

Fig. 2. Plot of the V -nullcline for various values of g. Other parameter values are n = 1,
Tmax = 1, ε = 1, k = 0.5, µ = 0.25, KP = 0.25, KM = 0.5.
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TRAVELING WAVES OF GLIOMA GROWTH 1785

Fig. 3. Positively invariant region Ω shaded in gray as described in subsection 3.2. The dashed
lines correspond to the linearized eigenvector v+ (23), line V = 0, and line W = Tmax. The vector
field of a typical system is shown with arrows.

Lemma 1. Let Ω be the open region bounded by the lines {(W,V ) : V = 0},
{(W,V ) : W = Tmax}, and {(W,V ) : V = W}. Ω is positively invariant.

Proof. Along the line {(W,V ) : V = 0}, we have

dW

dt
= −µW < 0,(27a)

dV

dt
=

kKn
PW

Wn +Kn
P

> 0,(27b)

so the flow is up and to the left across the line.
Along the line {(W,V ) : W = Tmax}, we have

dW

dt
= −µ (Tmax − V ) < 0 if V < Tmax,(28a)

dV

dt
= k

Kn
P

Tnmax +Kn
P

(Tmax − V )− εk Tnmax

Tnmax +Kn
M

V,(28b)

so the flow is to the left across the line.
Along the line {(W,V ) : V = W} which has slope 1, the slope of the vector field is

1−
εk V n

V n+Kn
M

gW
(

1− W
Tmax

) < 1 if W < Tmax,(29)

and since

dW

dt
= gW

(
1− W

Tmax

)
> 0 if W < Tmax,(30a)

dV

dt
= gW

(
1− W

Tmax

)
− εk Wn+1

Wn +Kn
M

,(30b)

the flow is to the right and at a slope less than 1, so it crosses the line to the inside
of the triangular region.

The corner (W,V ) = (0, 0) is an equilibrium point, so the flow cannot leave
through it. At the corner (W,V ) = (Tmax, Tmax), the flow is directly downward, and
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at the corner (W,V ) = (Tmax, 0), the flow is up and to the left. Thus, since the flow
points inward on the boundary of Ω and all trajectories are confined, Ω is positively
invariant.

3.3. No periodic orbits. To rule out the existence of periodic orbits within
the positively invariant region Ω, we invoke Dulac’s criterion. Let f1(W,V ) be the
right-hand side of (19a) and f2(W,V ) be the right-hand side of (19b).

Theorem 2 (Dulac’s criterion). Let B(W,V ) be C1 on a simply connected region

Ω ⊂ R2. If ∂(Bf1)
∂W + ∂(Bf2)

∂V is not identically zero and does not change sign in Ω, then
(19) has no closed orbits lying entirely in Ω.

If we set

(31) B(W,V ) =
1

V
,

then

(32)
∂(Bf1)

∂W
+
∂(Bf2)

∂V
= −kK

n
PTmaxW + (Wn +Kn

P )(gV + µTmax)V

Tmax(Wn +Kn
P )V 2

< 0,

so the expression is of one sign within the positively invariant region Ω, and therefore
there are no periodic orbits within the closed positively invariant region Ω.

3.4. Nonempty intersection. The linearized eigenvector of the unstable man-
ifold v+ (23) coincides with the line {(W,V ) : V = W}, which is part of the boundary
of the positively invariant region Ω. Since trajectories that leave the point (0, 0) in the
region Ω have the tangent vector v+ at (0, 0), and since the flow is to the right across
the line {(W,V ) : V = W}, trajectories leaving (0, 0) must leave tangentially to the
right of v+. Therefore, the unstable manifold of the saddle at (0, 0) has nonempty
intersection with Ω.

The unstable manifold of the saddle (0, 0) thus remains in Ω for all time, and
hence the ω-limit set of the corresponding orbit is also contained in Ω. Thus far, we
have not shown how many equilibrium points are in the interior of Ω, but there will
be a heteroclinic orbit that connects the equilibrium point (0, 0) with some interior
equilibrium point, corresponding with the approximate traveling wave solution. The
behavior of the dynamical system and which equilibrium point is in the ω-limit set
will determine the shape of the approximate traveling wave profile.

3.5. Interior equilibrium points. One may verify that the only equilibrium
point on the boundary of the positively invariant triangular region ∂Ω is (W,V ) =
(0, 0). Recall that this equilibrium point is a saddle and the linearized eigenvector
corresponding to the unstable manifold v+ intersects Ω̄ while the linearized eigenvec-
tor corresponding to the stable manifold v− does not intersect Ω̄ (subsections 3.1 and
3.2). Thus, since there are no periodic orbits (subsection 3.3), there must be at least
one interior equilibrium point, as any trajectory that enters Ω cannot leave Ω.

In the subsections below we examine the cases when n varies to determine the
number of interior equilibrium points as well as which equilibrium point is in the ω-
limit set of the heteroclinic orbit corresponding with the approximate traveling wave
solution.
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3.5.1. Case: n = 0. If we set n = 0, then system (19) becomes

dW

dz
= g

(
1− W

Tmax

)
V − µ(W − V ),(33a)

dV

dz
= g

(
1− W

Tmax

)
V − 1

2
εkV +

1

2
k(W − V ).(33b)

It is straightforward to calculate the equilibrium points of this system, which are
(W,V ) = (0, 0) and

(34) (W,V ) =

(
Tmax

g(k + 2µ)− εkµ
g(k + 2µ)

, Tmax
g(k + 2µ)− εkµ
g(k + εk + 2µ)

)
.

At the origin, the Jacobian matrix when n = 0 is

(35) J(0, 0) =

(
−µ g + µ
1
2k g − 1

2εk −
1
2k

)
,

and thus to still have a saddle at the origin the determinant of J(0, 0) must be negative,
or equivalently,

(36) εkµ < g(k + 2µ).

For a nonzero equilibrium point (W ∗, V ∗) to be in Ω, then the following condition
must hold:

(37) 0 < V ∗ < W ∗ < Tmax.

Condition (37) for equilibrium point (34) is in fact equivalent to condition (36), under
the assumption that all parameters are positive.

If condition (36) is satisfied, then there is one interior equilibrium point (34). The
determinant of the Jacobian at this equilibrium point, detJ = 1

2 (g(k + 2µ)− εkµ),
is positive under condition (36), and the trace,

(38) trJ = −
(

(g + µ)(k + 2µ)

k + kε+ 2µ
+
k(k + kε+ 2µ)

2(k + 2µ)

)
,

is negative, so the equilibrium point is an attractor.
The shape of the traveling wave profile is dependent on what kind of attractor the

equilibrium point (34) is. In particular, if (tr J)2−4 detJ < 0, then the attractor is a
stable spiral (Figure 4(a)), and the resulting traveling wave profiles have a prominent
bump at the wave front. Oscillations behind the wave fronts decay quickly numerically
for all the stable spiral cases we studied, and thus in the region near the wave front,
the first bump is the feature that stands out the most. If instead (tr J)2−4 detJ > 0,
then the attractor is a stable node (Figure 4(b)), and the resulting traveling wave
profiles are monotonic and do not have a bump.

The density of the proliferating and migrating cells in the center of the tumor
core (as z →∞) are given by the equilibrium point (34); in particular,

V
z→∞−−−→ Tmax

g(k + 2µ)− εkµ
g(k + εk + 2µ)

,(39a)

U = W − V z→∞−−−→ Tmax

(
g(k + 2µ)− εkµ

g(k + 2µ)
− g(k + 2µ)− εkµ

g(k + εk + 2µ)

)
.(39b)
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Fig. 4. (Left) Phase portrait of the system (19) with n = 0 such that condition (36) is satisfied.
The dark gray dashed lines represent the boundaries of the positively invariant region Ω (cf. Fig-
ure 3), the black dotted curve is the V -nullcline, the light gray dash-dotted curve is the W -nullcline,
and the black solid curve is the unstable manifold of the saddle (0, 0). (Right) The corresponding
traveling wave profile of the solution trajectory in traveling wave coordinate z (analytical profiles: V ,
U , W ; numerical profiles: P , M , T ). Parameters Tmax = 1, ε = 1, k = 0.5, µ = 0.25, KP = 0.25,
KM = 0.5, and (a) g = 2, (b) g = 0.3.

For all the cases we describe within subsection 3.5, we illustratively compare the
traveling wave profile that we obtain from the phase portrait analysis (“analytical”)
to the traveling wave profile that we obtain with a numerical simulation with the
same parameter values and an arbitrary, but numerically tractable, value of D (“nu-
merical”) in the right-side panels in the figures. The numerical simulation is scaled
by a factor of 1

c , where c is the numerically calculated wave speed, so that both the
analytical and numerical traveling wave profiles have z as the independent variable.

3.5.2. Case: n→∞. If we take n → ∞, then the transition functions (3)
become approximated by Heaviside functions H, and system (19) becomes

dW

dz
= g

(
1− W

Tmax

)
V − µ(W − V ),(40a)

dV

dz
= g

(
1− W

Tmax

)
V − εkH(W −KM )V + kH(KP −W )(W − V ).(40b)

Depending on the relation between KP and KM , the interval [0, Tmax] will be
split into two or three subintervals where a different system of ordinary differential
equations governs the behavior within each subinterval. A solution trajectory of (40) is
a piecewise trajectory formed by piecing the solution trajectories in each subinterval
together. The three subcases where KP < KM , KP > KM , and KP = KM are
discussed below.
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3.5.2.1. Subcase: KP < KM . If KP < KM , (40b) can be rewritten as

(41)
dV

dz
= g

(
1− W

Tmax

)
V +


k(W − V ), W ∈ [0,KP ),

0, W ∈ [KP ,KM ),

−εkV, W ∈ [KM , Tmax].

First subinterval [0,KP ). For the equations defined in the first subinterval, the
equilibrium points are (0, 0) and (Tmax, Tmax). The Jacobian J(0, 0) is as given in
(21), so the origin is a saddle, and the eigenvalues of the Jacobian J(Tmax, Tmax) are
−g and −(k + µ), so (Tmax, Tmax) is an attractor.

The slope of the vector field along the line {(W,V ) : V = W} is 1, which is
the same as the slope of the line. Since the unstable manifold of the saddle at (0, 0)
corresponds with the linearized eigenvector v+ (23), which has a slope of 1, then the
solution trajectory leaving (0, 0) along the unstable manifold travels along the line
{(W,V ) : V = W} in the first interval from (0, 0) to (KP ,KP ).

Second subinterval [KP ,KM ). For the equations defined in the second subinterval,
the equilibrium points are (0, 0) and (Tmax, Tmax), and the slope of the vector field
along the line {(W,V ) : V = W} is 1, the same as the slope of the line, which is
the same result as in the first subinterval. Though the Jacobian J(0, 0) is different
for the equations defined in the second interval compared to the first subinterval, the
eigenpair (λ+,v+) (22)–(23) is the same, and the origin is still a saddle. Furthermore,
(Tmax, Tmax) is still an attractor. Thus the solution trajectory in the second interval
starts from (KP ,KP ) and ends at (KM ,KM ) along the line {(W,V ) : V = W}.

Third subinterval [KM , Tmax]. For the equations defined in the third subinterval,
the equilibrium points are (W,V ) = (0, 0) and

(W,V ) =

(
Tmax

(
1− εk

g

)
, Tmax

µ(g − εk)

g(µ+ εk)

)
.(42)

The Jacobian matrix at (0, 0) is now

(43) J(0, 0) =

(
−µ g + µ

0 g − εk

)
,

so the eigenvalues are λ− = −µ and λ∗ = g − εk, which means that the origin may
be a saddle or an attractor depending on the sign of g − εk.

If g ≤ εk, then the equilibrium point (42) is not in quadrant I or it is the origin. In
this case, the origin is the only equilibrium point of the system, and it is an attractor.
Hence, starting the solution trajectory at (KM ,KM ) in the third subinterval, it will
tend toward (0, 0), but upon reentering the second subinterval the trajectory will then
tend toward (Tmax, Tmax), but upon reentering the third subinterval the trajectory will
then tend toward (0, 0), and so on, so that the solution trajectory will oscillate about
the line W = KM . Hence there will be an attracting “equilibrium point” with W -
coordinate KM inside Ω. Figure 5(a) illustrates this case which has traveling wave
profiles that oscillate significantly behind the wave front.

If g > εk, then the equilibrium point (42) is in quadrant I, and the Jacobian
matrix at the nonzero equilibrium point (42) is

(44)

(
−µ(g+µ)
εk+µ εk + µ

−µ(g−εk)
εk+µ 0

)
;
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Fig. 5. (Left) Phase portrait of the system (19) with n → ∞ and condition KP < KM . The
colors and styles of the curves are as described in Figure 4. The gray shaded region denotes the
interval [KP ,KM ). (Right) The corresponding traveling wave profile of the solution trajectory in
traveling wave coordinate z (analytical profiles: V , U , W ; numerical profiles: P , M , T ). Parameters
Tmax = 1, ε = 1, k = 0.5, KP = 0.25, KM = 0.5, and (a) g = 0.25, µ = 0.25; (b) g = 2, µ = 0.25;
(c) g = 2, µ = 4.

thus the determinant is µ(g − εk) > 0, and the trace is −µ(g + µ)/(εk + µ) < 0, so
the equilibrium point (42) is an attractor.

If the W -coordinate of the nonzero equilibrium point (42) is in the first or second
subinterval, then the solution trajectory reenters the second subinterval, and the
behavior of the system is similar to the case when g ≤ εk (Figure 5(a)).

If the W -coordinate of the nonzero equilibrium point (42) is in the third subin-
terval, then to determine what type of attractor the equilibrium point is, we examine
the sign of (tr J)2 − 4 detJ . There is a stable spiral (Figure 5(b)) if

g − εk > µ

4

(
g + µ

εk + µ

)2

,(45)

and the resulting traveling wave profiles have a prominent bump at the wave front.
There is a stable node (Figure 5(c)) if

g − εk < µ

4

(
g + µ

εk + µ

)2

(46)

and the resulting traveling wave profiles are monotonic and do not have a bump.
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3.5.2.2. Subcase: KP > KM . If instead we consider KP > KM , then (40b)
can be rewritten as

(47)
dV

dz
= g

(
1− W

Tmax

)
V +


k(W − V ), W ∈ [0,KM ),

−εkV + k(W − V ), W ∈ [KM ,KP ),

−εkV, W ∈ [KP , Tmax].

The equations in the first and third subintervals are the same as in the previous
subcase (41) while the equation in the second subinterval is different. Therefore, in
the first subinterval we have the same result as in the first subinterval in subsection
3.5.2.1. In particular, the trajectory leaving the saddle at (0, 0) will coincide with the
line {(W,V ) : V = W} for the entire subinterval, and the trajectory will be picked up
going into the second subinterval at the point (W,V ) = (KM ,KM ).

Second subinterval [KM ,KP ). For the equations defined in the second subinterval,
the equilibrium points are (W,V ) = (0, 0) and

(48) (W,V ) =

(
Tmax

g(k + µ)− εkµ
g(k + µ)

, Tmax
g(k + µ)− εkµ
g(k + εk + µ)

)
.

If g(k + µ) ≤ εkµ, then the nonzero equilibrium point (48) is not in quadrant I
or coincides with the origin in the case of equality. Thus the only equilibrium point
in quadrant I in this case is (0, 0). The Jacobian matrix at (0, 0) is

(49) J(0, 0) =

(
−µ g + µ

k g − εk − k

)
,

which has determinant εkµ − g(k + µ) ≥ 0 and trace g − (εk + k + µ). The trace is
nonpositive, since all the parameters are positive, and starting with the assumption
g(k + µ) ≤ εkµ,

(50) g(k + µ) ≤ εkµ ≤ εkµ+ εk2 + k2 + 2kµ+ µ2 = (εk + k + µ)(k + µ),

and then dividing by k+ µ (which is positive) implies that g ≤ εk+ k+ µ. Therefore
the origin is an attractor. The trajectory that starts in the second subinterval at the
point (W,V ) = (KM ,KM ) gets drawn back into the first subinterval and will oscillate
about the line W = KM , similar to the case in subsection 3.5.2.1 when g ≤ εk.
Figure 6 illustrates this case where there is an attracting “equilibrium point” with
W -coordinate KM inside Ω.

If g(k + µ) > εkµ, the origin is a saddle since the determinant of the Jacobian
matrix J(0, 0) is negative. Also, the nonzero equilibrium point (48) is in Ω since
the condition in (37) is satisfied with the assumption that all of the parameters are
positive. The Jacobian matrix at the nonzero equilibrium point (48) is

(51)

 −(g+µ)(k+µ)
k+εk+µ

µ(k+εk+µ)
k+µ

−(g−k−εk)(k+µ)
k+εk+µ

−k(k+εk+µ)
k+µ

 ,

which has the determinant g(k + µ)− εkµ > 0 and trace

(52) − k3(1 + ε2) + k2(3 + 2ε)µ+ 3kµ2 + µ3 + g(k + µ)2

(k + µ)(k + εk + µ)
< 0,
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Fig. 6. (Left) Phase portrait of the system (19) with n → ∞ and conditions KP > KM

and g(k + µ) ≤ εkµ. The colors and styles of the curves are as described in Figure 4. The gray
shaded region denotes the interval [KM ,KP ). (Right) The corresponding traveling wave profile of the
solution trajectory in traveling wave coordinate z (analytical profiles: V , U , W ; numerical profiles:
P , M , T ). Parameters Tmax = 1, ε = 1, k = 0.5, µ = 0.25, KP = 0.5, KM = 0.25 and g = 0.15.

implying that the nonzero equilibrium point (48) is an attractor. The type of attractor
depends on the sign of (tr J)2 − 4 detJ , which will result in different behavior in the
solution trajectory. Furthermore, the solution trajectory behavior depends on which
subinterval the nonzero equilibrium point (48) is in.

If the W -coordinate of the nonzero equilibrium point (48) is in the first subinterval
[0,KM ), then the solution trajectory is drawn back into the first subinterval and will
oscillate significantly about the line W = KM , similar to the behavior seen in Figure 6.

If the W -coordinate of the nonzero equilibrium point (48) is in the second subin-
terval [KM ,KP ), and the attractor is a stable spiral (Figure 7(a)), then the resulting
traveling wave profiles have a prominent bump at the wave front. If the attractor is
a stable node (Figure 7(b)), then the traveling wave profiles also have a prominent
bump at the wave front when the solution trajectory quickly changes paths when
entering the second subinterval [KM ,KP ).

If the W -coordinate of the nonzero equilibrium point (48) is in the third subin-
terval [KP , Tmax], then the solution trajectory enters the third subinterval, and we
must examine the dynamical system there.

Third subinterval [KP , Tmax]. Since the equation for dV
dz in the third subinterval

in this subsection (47) and the previous subsection (41) is the same, all of the analysis
for the third subinterval in subsection 3.5.2.1 is relevant.

To travel from the second subinterval into the third subinterval along a solution
trajectory, recall that the following two inequalities must hold:

g(k + µ) > εkµ, KP < Tmax
g(k + µ)− εkµ

g(k + µ)
.(53)

For the trajectory to stay in the third subinterval, recall from subsection 3.5.2.1 that
these two inequalities must hold:

g > εk, KP < Tmax

(
1− εk

g

)
.(54)

In fact, if both inequalities in (54) hold, then both inequalities in (53) hold, assuming
that all the parameters are positive.

In the situation where the solution trajectory enters the third subinterval but the
W -coordinate of the nonzero equilibrium point (42) is not in the third subinterval,
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Fig. 7. (Left) Phase portrait of the system (19) with n → ∞ and conditions KP > KM

and g(k + µ) > εkµ. The colors and styles of the curves are as described in Figure 4. The gray
shaded region denotes the interval [KM ,KP ). (Right) The corresponding traveling wave profile of the
solution trajectory in traveling wave coordinate z (analytical profiles: V , U , W ; numerical profiles:
P , M , T ). Parameters Tmax = 1, k = 0.5, µ = 0.25, KM = 0.25, and (a) g = 10, ε = 9, KP = 0.9;
(b) g = 0.25, ε = 1, KP = 0.5.

then the trajectory will oscillate significantly around the vertical line W = KP , similar
to the behavior in Figures 5(a) and 6.

If the solution trajectory enters the third subinterval and the W -coordinate of
the nonzero equilibrium point (42) is in the third subinterval, then the equilibrium
point is a stable spiral if condition (45) holds. The phase portraits and wave profiles
in this case when KP > KM (Figure 8(a)) are very similar to when KP < KM in the
previous subsection (Figure 5(b)) for the otherwise same set of parameter values. The
main difference is that the slope of the solution trajectory in the second subinterval is
less steep when KP > KM , resulting in a less steep slope in the traveling wave profile
fronts.

If condition (46) holds instead, then the nonzero equilibrium point in the third
subinterval is a stable node. Similarly to systems with a stable spiral, the phase
portraits when KP > KM (Figure 8(b)) are very similar to when KP < KM in the
previous subsection (Figure 5(c)) for the otherwise same set of parameter values. It
is also the case that the slope of the solution trajectory in the second subinterval is
less steep when KP > KM , resulting in a less steep slope in the traveling wave profile
fronts.

3.5.2.3. Subcase: KP = KM . If KP = KM , then (40b) can be rewritten as

(55)
dV

dz
= g

(
1− W

Tmax

)
V +

{
k(W − V ), W ∈ [0,KP ),

−εkV, W ∈ [KP , Tmax].

The equation in the first subinterval is the same as in the first subinterval in
the previous two subcases ((41) and (47)), and the equation in the second subinterval
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Fig. 8. (Left) Phase portrait of the system (19) with n → ∞ and conditions KP > KM and
(54). The colors and styles of the curves are as described in Figure 4. The gray shaded region
denotes the interval [KM ,KP ). (Right) The corresponding traveling wave profile of the solution
trajectory in traveling wave coordinate z (analytical profiles: V , U , W ; numerical profiles: P , M ,
T ). Parameters Tmax = 1, ε = 1, k = 0.5, KP = 0.5, KM = 0.25, and (a) g = 2, µ = 0.25
(cf. Figure 5(b)); (b) g = 2, µ = 4 (cf. Figure 5(c)).

is the same as in the third subinterval in the previous two subcases ((41) and
(47)). Therefore, a solution trajectory of the system with KP = KM follows the
behavior of the previous two subcases, where the middle subinterval is not included.
Representative phase portraits and traveling wave profiles would look most similar to
Figure 5.

3.5.3. Case: 1 ≤ n <∞. If we set 1 ≤ n < ∞, then we have the general
system (19). The origin (W,V ) = (0, 0) is one equilibrium point, and the other
equilibrium points are such that

V =
µW

g
(

1− W
Tmax

)
+ µ

(56)

and W satisfies a polynomial equation

AW 2n+1 +BW 2n + CWn+1 +DWn + EW + F = 0,(57)

where

A = gµ,(58a)

B = µTmax(εk − g),(58b)

C = g ((k + µ)Kn
P + µKn

M ) ,(58c)

D = Tmax (εkµKn
P − g ((k + µ)Kn

P + µKn
M )) ,(58d)
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E = gKn
PK

n
M (k + µ),(58e)

F = −TmaxgK
n
PK

n
M (k + µ).(58f)

Since all of the parameters are positive, then coefficients A,C,E > 0 and F < 0. From
Descartes’ rule of signs, there is at least one positive root. To examine the possible
roots of (57), we perturb the system from µ = 0.

When µ = 0, the nonzero equilibrium point is

(W,V ) =

(
Tmax,

Kn
PTmax(Kn

M + Tnmax)

Kn
MK

n
P + Tnmax ((1 + ε)Kn

P + εTnmax)

)
.(59)

The Jacobian matrix at this nonzero equilibrium point is lower triangular and has
two negative eigenvalues

−
(

kKn
P

Kn
P + Tnmax

+
kTnmaxε

Kn
M + Tnmax

)
, − gKn

P (Kn
M + Tnmax)

Kn
MK

n
P + Tnmax ((1 + ε)Kn

P + εTnmax)
(60)

and is thus a stable node. One of the linearized eigenvectors is [0, 1]
ᵀ
, and the slope

of the other eigenvector determines whether the wave profile will have a prominent
bump (slope < 0) (Figure 9(a)) or will be monotonic (slope ≥ 0).

We observe that the solutions of the polynomial equation (57) are W = Tmax,
which corresponds with the W -coordinate of the equilibrium point (59), and W =
(−Kn

M )1/n, which is either negative or imaginary depending on whether n is odd
or even. Since we require W ≥ 0 for physically relevant solutions, we only investi-
gate perturbations from the nonnegative real root W = Tmax. In other words, we
investigate how the equilibrium point (59) moves as µ increases.

Substituting the regular perturbation expansion

(61) W (µ) =

∞∑
r=0

Wrµ
r

into polynomial (57) results in a power series in µ. Requiring each term to vanish,
the first three coefficients of the series (61) are

W0 = Tmax,(62a)

W1 = −εT
n+1
max (KP + Tnmax)

gKP (KM + Tnmax)
,(62b)

W2 = εTn+1
max (KP + Tnmax)

[
g(KM + Tnmax)2(KP + Tnmax)(62c)

+ nεkTnmax(T 2n
max +KM (KP + 2Tnmax))

]/
g2kK2

P (KM + Tnmax)3.

Assuming the perturbation µ is small, the coefficient that determines whether W (µ)
increases or decreases is W1. Thus since W1 is negative, W (µ) decreases as µ increases.

Considering (56) as a function of µ, the partial derivative

∂V

∂µ
=

g
(

1− W
Tmax

)
W(

g
(

1− W
Tmax

)
+ µ

)2 > 0,(63)

implying that the V -coordinate of the nonnegative equilibrium point (56) increases as
µ increases. Furthermore, as µ→∞, the V -coordinate of the nonnegative equilibrium
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Fig. 9. (Left) Phase portrait of the system (19) with n = 1. The colors and styles of the
curves are as described in Figure 4. (Right) The corresponding traveling wave profile of the solution
trajectory in traveling wave coordinate z (analytical profiles: V , U , W ; numerical profiles: P , M ,
T ). Parameters Tmax = 1, k = 0.5, KP = 0.25, KM = 0.5, and (a) g = 1, µ = 0, ε = 1; (b) g = 1,
µ = 20, ε = 1; (c) g = 1, µ = 0.25, ε = 1; (d) g = 1, µ = 0.25, ε = 2.5; (e) g = 0.25, µ = 0.25, ε = 1.
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point (56) tends to W in the limit (Figure 9(b)). Thus the nonnegative equilibrium
point defined by (56)–(57) is in the positively invariant region Ω for µ > 0. Further-
more from the perturbation analysis, there are no other interior equilibrium points
that arise.

Recall from subsection 3.1 that the origin is a saddle, and by reasoning at the be-
ginning of subsection 3.5, the nonnegative equilibrium point defined by (56)–(57) is an
attractor. Variations in the shape of the traveling wave profile thus depend on the type
of attractor that the equilibrium point is. In general, if the nonnegative equilibrium
point is a stable spiral, the wave profile will have a prominent bump (Figure 9(c),(d))
and if it is a stable node, the wave profile will be monotonic (Figure 9(e)). The density
of the proliferating and migrating cells in the center of the tumor core (as z →∞) is
given by the nonnegative equilibrium point, and thus we can find cases where there
are more proliferating cells in the center (Figure 9(c),(e)) or more migrating cells in
the center (Figure 9(d)).

4. Discussion. We analyzed the speed and shape of traveling wave solutions
of a mathematical model of GBM growth in which tumor cell motility and cell pro-
liferation are considered as separate processes. The model is based on the “Go or
Grow” hypothesis in which an individual cell is either primarily migrating or pri-
marily proliferating, and a phenotypic switch is responsible for the transformation
of a cell from one population to the other. We examined an extreme form of this
hypothesis where the migrating cells do not proliferate at all and the proliferating
cells do not migrate at all, resulting in a two-equation system of partial differential
equations.

In general, establishing the existence of traveling wave solutions in a nonmono-
tone and nonlinear population reaction–diffusion based model is nontrivial. Based
on extensive simulation results, Lewis and van den Driessche [16] conjectured that
their competition model involving fertile and a sterile insect populations may admit
traveling waves with speed highly dependent on the sterile population density. Specif-
ically, they found that if the sterile population density is sufficiently low, the traveling
wave advances, and when the sterile density exceeds a threshold, the wave reverses
direction.

In a multipopulation model, the “linear determinacy” conjecture equates full non-
linear model spread rates with the spread rates computed from linearized systems with
the linearization carried out around the leading edge of the invasion (Castillo-Chavez
et al. [3]). Lewis et al. [15] derived a set of sufficient conditions for linear determinacy
in spatially explicit two-species competition models. These conditions can be inter-
preted as requiring sufficiently large dispersal of the invader relative to dispersal of
the out-competed resident and sufficiently weak interactions between the resident and
the invader. When these conditions are not satisfied, spread rate may exceed linearly
determined predictions.

We determined a minimum wave speed (15) for traveling wave solutions, and the
numerically observed wave speed was in general greater than or equal to the minimum
wave speed. The parameter k appeared to have the largest effect on the difference
in the analytic versus numerical wave speeds. Oftentimes in simpler equations that
give rise to traveling waves (such as the Fisher–Kolmogorov equation), the minimum
wave speed and the numerically observed wave speed coincide, so it may be due to the
nonlinearities of the transition functions that the speeds do not coincide for the model
presented here. It could also be due to the two-equation nature of the model, as it has
been previously shown that a cooperative system may have the numerically observed
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wave speed exceeding the analytic minimum speed due to the changing interacting
species (Li et al. [17, Example 4.1]). Similar situations can also be found for integro-
differential equation cooperative systems (Hu et al. [13]). Since the minimum wave
speed (15) was found after linearization of the system (7) and does not contain all of
the parameters that are included in the model (4), further study should be done to
investigate whether a more accurate expression can be found for the minimum wave
speed. Furthermore, an interesting future direction is to determine what features
of the kinetics in the model system are required in order to have a minimum wave
speed or no minimum wave speed, noting that our system is neither cooperative or
competitive. There are also opportunities of extending our approach to the study of
species invasion, resistance strain development in disease, and cancer progression with
treatment, for example.

To investigate the shape of the traveling wave fronts, we adapted the method
of Canosa [2] to obtain an approximation of the traveling wave solution. Canosa’s
method involves finding an asymptotic expansion for large wave speed, which we
expect to hold under certain stages of GBM. We investigated the conditions under
which simulations of equations (16) and (18) match well. Figure 10 displays the
simulations for U(z) and V (z) for various wave speeds. For small values of the wave
speed, c, (left; c = 0.01), it is apparent that the simulations do not agree. For
larger values of wave speed (right; c = 0.05) we can see that the approximation is
valid. While studying the resulting approximate system (19), we found a positively
invariant region in which no periodic orbits exist and in which the unstable manifold
of the saddle (0, 0) has nonempty intersection. One conjecture that has yet to be
proven pertains to the monotonicity of the V -nullcline (26).

Depending on the value of parameters n, KP , and KM , we explored different
results regarding the number and location of interior equilibrium points within the
positively invariant region. Conditions were found that determined whether an inte-
rior equilibrium point was a stable spiral, which results in traveling wave profiles that
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Fig. 10. Comparison of equations (16) and (18) for various wave speeds, c. On the left, a
small wave speed for which the approximation is not accurate. On the right, a large wave speed
for which there is good agreement between the equations.The base parameters are the same as those
from Figure 1: D = 5× 10−4, g = 1, k = 1, µ = 0.005, Km = Kp = 0.5, and ε = 1.
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have a prominent bump at the wave front, or a stable node, which results in traveling
wave profiles that are monotonic. We visually compared the traveling wave profiles
that were obtained from the approximate traveling wave solution with numerical sim-
ulations (Figures 4 to 9, right-side panel), and found that overall there was very good
agreement.

Biologically, the results of this study imply that the parameter values play a large
role in determining which cell population has a larger density within the tumor core
and whether there is a clumping of certain cells near the moving boundary. When
there is a stable spiral in the dynamical system, this corresponds to a higher density
of cells near the moving boundary as opposed to a little further behind the wave front.
When there is a stable node in the dynamical system, the density of cells near the
moving boundary is the same as the density of cells in the tumor core.

While all the possibilities for different wave front shapes in the cases when n = 0
and n → ∞ have been fully explored, the case when 1 ≤ n < ∞ presents problems
in the ease of writing down explicit analytical expressions for categorizing wave front
shapes. However, setting µ = 0 and then perturbing from the resulting system gives
the conclusion that there is only one equilibrium point in the positively invariant
region that corresponds with the density of cells in the center of the tumor core.
Classification of this equilibrium point determines the shape of the traveling wave
front, as described two paragraphs back. Further study includes determining whether
the different profile shapes are seen biologically and if they are stable.
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