
  

  

Abstract— We propose a model for in vitro glioblastoma 
multiforme brain tumor growth, which uses density-dependent 
diffusion to capture both the proliferative and migratory 
behavior of the cancer cells. The model is compared to well-
known experimental data and is analyzed for the existence of 
traveling wave solutions. 

I. INTRODUCTION 

Glioblastoma multiforme is a deadly form of brain cancer 
with a very short mean survival time from detection – less 
than 15 months (Norden and Wen [4]). Glioblastoma cancer 
cells exhibit excessive amounts of proliferation as well as 
migration. It is difficult to effectively treat these tumors, as 
surgical resection is able to remove the core of the tumor but 
not the migratory cells. This results in a challenging task to 
mathematically model all aspects of glioblastoma growth. 

Many models of glioblastoma growth include reaction-
diffusion equations which accurately capture the proliferating 
core, such as the early efforts by Tracqui et al. [9] and 
Swanson et al. [8]. (See also the review paper by Martirosyan 
et al. [3] and references therein.) These models have also 
been modified to include spatially dependent diffusion to 
model more heavily the migratory behavior of the tumor. 

Another approach for modeling glioblastoma growth is to 
separate the glioblastoma cells into two separate populations: 
the proliferating core cells and the migratory cells, such as in 
Stein et al. [6]. Their model was based off of observations 
from in vitro glioblastoma tumor spheroid spreading. In 
addition to the standard reaction-diffusion terms in the 
equation for migratory cells, the model includes a radially 
biased motility term corresponding to convection to account 
for the situation where cells detect the location of the tumor 
core and actively move away from it. 

We derived a single equation model in Stepien et al. [7] 
that captures both the migratory and core tumor 
characteristics as accurately as the dual-equation approach. 
We analyzed the existence of traveling wave solutions and 
corroborated the minimum wave speed with simulations. We 
performed a sensitivity analysis on the parameters in the 
model to detect how variations in parameters affect the 
numerical simulation and optimized the parameters according 
to the experimental data of Stein et al. [6] to validate the 
model. 
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II. RESULTS 

A. Traveling wave speed analysis 
A traveling wave solution of (2)–(3) is a solution of the 

form u(x,t) = w(x−kt), where k ≥0 is the speed of the traveling 
wave and the function w(z) is defined on the interval (−∞,∞) 
and satisfies the boundary conditions w→1 as z→−∞ and 
w→0 as z→∞. In Stepien et al. [7], we showed that a 
solution to the boundary value problem that results from 
substituting the traveling wave ansatz exists via phase plane 
analysis. This solution exists as long as the speed of the 
traveling wave is greater than or equal to the minimum wave 
speed 

 kmin = 2 D1g +ν.  (1) 

Simulations showed that this minimum wave speed is the 
observed speed of the traveling wave in some cases, and in 
other cases the observed speed is faster than the minimum 
wave speed kmin (Stepien et al. [7]). In particular, when D2=0, 
we found that the observed speed equals the minimum wave 
speed kmin, but when D2≠0, the observed speed appears to 
depend on other parameters besides D1, g, and ν. The 
nonlinear diffusion can be considered as contributing 
convection with a “velocity” –Dʹ(u)∂u/∂x, but the minimum 
wave speed kmin is calculated after linearizing which could be 
the reason for the differences between the speeds. 

B. Parameter Sensitivity and Estimation 
To show that the proposed model is viable, we compared 

numerical simulations with experimental data. The numerical 
simulations were run over a large spatial domain and 
boundary conditions specify that there are no tumor cells at 
the boundaries, in other words, u(x,t)=0 when x=±1 cm. The 
initial tumor radius is 210 µm and the maximum cell density 
umax=4.2×108 cells/cm3 (Stein et al. [6]). For the initial 
condition, we assume that the cell density is 95% of umax for 
the initial core tumor radius of 210 µm and zero elsewhere. 
Details of the numerical method can be found in Stepien et al. 
[7]. 

The base parameters chosen for the parameter sensitivity 
analysis were D1=10-4 cm2/day, D2=9.99×10-5 cm2/day, a=0.1 
cells/cm2, n=1, g=0.5/day, and ν=0.01cm/day. To test the 
sensitivity of one parameter, all the other parameters were 
held constant and the parameter in question was varied over a 
physiologically relevant range. The results of this analysis are 
shown in Fig. 1, and it is apparent that while some 
parameters are more sensitive than others (D1, g, and ν), all 
parameters are sensitive and we must take care when we 
estimate optimal parameters. 
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Figure 1.  Parameter sensitivity analysis showing the error calculated when 

comparing the experimental data and numerical simlations. 

To estimate optimal parameters that result in numerical 
simulations that best match the experimental data, we used 
the MATLAB program fminsearch. Various initial 
parameter guesses were used as input to ensure parameter 
values were optimal, and the optimized parameters found are 
given in Table 1. 

TABLE I.  OPTIMIZED PARAMETER VALUES 

Parameter Optimized Value Units 

D1 5.5408×10-6 cm2/day 

D2 5.3910×10-6 cm2/day 

a 0.021188 cells/cm3 

n 1.2848 dimensionless 

g 0.49120 /day 

ν 4.6801×10-5 cm/day 
 

Fig. 2 shows the numerical simulation with parameters 
from Table 1 compared to the experimental data and model 
of Stein et al. [6]. Our model is successful in capturing the 
behavior of both the tumor core cells and the migratory cells 
and is more accurate than the model of Stein et al. [6]; in 
fact, our total error is approximately one-half that of the 
model of Stein et al. [6]. 

 
Figure 2.  Numerical simulation of the density-dependent diffusion model 
(2)–(3) and optimized parameters as given in Table 1 (blue) compared to 

experimental data from Stein et al. [6] (black) and their numerical 
simluations (red). 

III. QUICK GUIDE TO THE METHODS 

The in vitro experiments of Stein et al. [6] involved 
implanting two human astrocytoma U87 cell lines into gels—
one with a wild-type receptor (EGFRwt) and one with an 
overexpression of the epidermal growth factor gene 
(ΔEGFR). The tumor spheroids were left to grow over 7 days 
and imaged every day. In the same study, Stein et al. [6] also 
developed a mathematical model that assumes the tumor cells 
leave the tumor core and become invasive cells to invade the 
collagen gel. The mathematical model that we developed in 
Stepien et al. [7] is based off of this model of Stein et al. [6]. 

A. Equations 
In Stepien et al. [7], we consider a density-dependent 

convective-reaction-diffusion equation, 
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where u(x,t) is the density of tumor cells, umax is the carrying 
capacity, g is the growth rate, ν is the degree at which cells 
migrate away from the tumor core, and D(u*) is the density-
dependent diffusion function where u*=u/umax. The 
experimental work from Stein et al. [6] suggests that the 
diffusion is large for areas where the cell density is small (the 
migrating tumor cells), but diffusion is small where the cell 
density is large (the proliferating tumor cells). Thus, to 
capture this behavior we set 

 D(u*) = D1 −
D2 (u*)

n

an + (u*)n
.  (3) 

For biologically relevant parameters we assume that D1, D2, 
g, a, and ν are all positive, n>1, and D2≤D1 to avoid 
“negative” diffusion, which is a problem both biologically 
and numerically. The parameter n governs how steeply the 
density-dependent diffusion function decreases and the 
parameter a governs the u* value at which the transition is 
occurring at half maximal rate. D1 and D2 govern the range of 
the function. 

B.  Type of settings in which these methods are useful 
We used this mathematical model to study in vitro 

glioblastoma growth, but future studies could be used to 
study in vivo data. The model would then need to include 
brain geometry. This model could be extended to include 
more complex behavior such as tumor cell necrosis, brain 
tissue type differentiation, and mass effect. Instead of 
density-dependent diffusion, it may be appropriate to 
implement anisotropy through diffusion tensor imaging 
(Jbabdi et al. [2], Bondiau et al. [1], Painter and Hillen [5]) or 
to consider a non-local diffusion with proliferating and 
dispersing cell groups in which dispersing cells convert 
proliferating cells into dispersing ones. 
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