
1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2897980, IEEE
Transactions on Circuits and Systems for Video Technology

Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained 
from the IEEE by sending an email to pubs-permissions@ieee.org. 

  
Abstract— Real-time detection of inshore ships plays an 

essential role in the efficient monitoring and management of 
maritime traffic and transportation for port management. 
Current ship detection methods which are mainly based on 
remote sensing images or radar images hardly meet real-time 
requirement due to timeliness of image acquisition. In this paper, 
we propose to use visual images captured by an on-land 
surveillance camera network to achieve real-time detection. 
However, due to the complex background of visual images and 
the diversity of ship categories, the existing convolution neural 
network (CNN) based methods are either inaccurate or slow. To 
achieve high detection accuracy and real-time performance 
simultaneously, we propose a saliency-aware CNN framework for 
ship detection, comprising comprehensive ship discriminative 
features, such as deep feature, saliency map and coastline prior. 
This model uses CNN to predict the category and the position of 
ships, and uses the global contrast based salient region detection 
to correct the location. We also extract coastline information and 
respectively incorporate it into CNN and saliency detection to 
obtain more accurate ship locations. We implement our model on 
Darknet under CUDA 8.0 and CUDNN V5 and use a real-world 
visual image dataset for training and evaluation. The 
experimental results show that our model outperforms 
representative counterparts (Faster R-CNN, SSD, and YOLOv2) 
in terms of accuracy and speed. 
 

Index Terms—Ship Detection, Saliency Detection, Coastline 
Extraction, Object Location, CNN. 
 

I. INTRODUCTION 
Ship detection is of great value in many application fields, 

such as ocean surveillance, port management, and navigation 
safety. In the field of port management, ship detection can 
monitor and assist in the management of maritime traffic and 
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transportation. As for marine surveillance, ship detection plays 
a strong supervisory role in fisheries dumping of pollutants 
and illegal smuggling. In the navigation safety, ship detection 
can judge whether there are abnormal sailing behaviors such 
as landing or stagnation, so as to ensure the safety on the coast 
and at sea. Real-time detection of ships is also very important 
and has the ability to proactively alert. The real-time detection 
system can be connected with other systems, especially the 
emergency dispatch system, which is helpful for responding to 
abnormal behaviors and emergencies in time to avoid possible 
adverse consequences. It can also be integrated with 
space-time systems to process and analyze previous 
surveillance videos in real time and make timely decisions. 
According to the image generation source, images based ship 
target detection methods are roughly classified into three 
categories: radar images [1], remote sensing images, and 
visual images. The acquisition and preprocessing of radar 
images and remote sensing images always takes time and 
cannot be detected in real time. Compared with other 
categories, visual images are generally obtained more easily 
from continuous monitoring video, and so they can be used as 
real-time detection. However, because the background of 
visual images is more complicated and less clear, there exists 
severe interference for foreground detection. Therefore, 
accurate ship object detection from surveillance video faces 
huge challenges. 

There appear some ship detection methods based on visual 
images [2]-[5]. They usually use ship features, such as the 
contextual information of the image, the temporal-spatial 
information of the ship, and the geographical environment 
prior (e.g., coastline). In recent few years, convolutional 
neural network (CNN) has achieved great success in natural 
image classification [6]-[8] and object detection [9]-[15]. In 
contrast to traditional methods using manual pre-defined 
features, CNN based methods are able to automatically 
represent and extract discriminative and robust features for 
object detection. However, there are special difficulties for 
ship detection task in the marine environment. First, due to 
waves and floating objects, the background is very 
complicated so that ships are easily mixed with them and even 
visually overlap the nearshore buildings. Second, the ships 
vary in categories and sizes, which range from dozens to 
hundreds pixels in size and may cross or occlude with each 
other. Finally, because marine climate and lighting conditions 
are variable, low visibility weather such as clouds and fog 
often degrade the acquired video quality. Therefore, CNN 
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             (a) ore carrier                   (b) bulk cargo carrier          (c) general cargo ship          (d) container ship            (e) fishing boat            (f) passenger ship  

Fig. 1. The ship category in our used ship dataset. 

approaches to regular object detection often fail to provide 
satisfactory ship detection performance. 

Recently, some researchers have used CNN for ship 
detection in remote sensing images. Li et al. [16] pioneers to 
introduce CNN into ship detection of remote sensing images. 
They propose a novel parallelogram image cropping (PIC) 
method to generate parallelogram samples, each of which only 
contains single ship or dock. Lin et al. [17] propose to divide 
the detection among the network layers at different depths to 
combine the advantages of deep network used for location and 
shallow network used for detecting. However, different from 
the top-down perspective of the remote sensing images, most 
of the visual images are in frontal perspectives. In addition, for 
detection task from the continuous video, they must sacrifice 
accuracy to guarantee real-time performance. 

To address the ship detection under seashore surveillance 
video conditions, we develop a novel saliency-aware CNN 
framework, which is built on the YOLOv2 pipeline. 
Essentially, our proposed ship detection model follows a 
classification and localization driven coarse-to-fine idea. It 
first uses CNN to predict the ship class and the rough position. 
However, because the onshore buildings and ships are similar 
in color and appearance, YOLOv2 often judges ashore 
buildings either as the target ships or as part of the nearshore 
ships, which results in detection confusion, including false 
detection (false positive) or inaccurate localization and size of 
the actual ship region. In a further examination, inaccurate 
location and size will reduce the confidence score of bounding 
box, which in turn leads to missed ships (i.e., low recall rate) 
because YOLOv2 tends to discard low scoring candidates. To 
this end, considering that the coast surveillance image contains 
sea areas and land areas, but ships only appear in the sea area, 
we extract coastline features and incorporate them into CNN 
to improve the robustness and efficiency of the ship detection. 
More specifically, only cells (by YOLOv2) at sea are 
produced and the classification is further examined, but 
excluding onshore cells. Furthermore, since ships differ much 
from water in terms of visual saliency, we further incorporate 
saliency detection technique to refine a more accurate location. 
Owning to the improved localization, the missed ship 
suffering from low confidence score is accordingly recalled. 
At last, as for ship detection in continuous video, because the 
position of the ship in the video frame is spatially coherent, we 
use temporal continuity to set the initial observation position 
of each frame instead of re-traversing the entire video frame. 
Extensive validations on real-world coast surveillance video 

datasets (as shown in Fig. 1) from Hengqin Island in Zhuhai in 
China show the proposed model’s capability in terms of 
detection accuracy and speed [18]. 

The main contributions of this paper are highlighted as 
follows:  

1) To the best of our knowledge, we are the first to 
introduce CNN into ship detection in surveillance video.  

2) Based on the YOLOv2 pipeline, we propose a 
saliency-aware CNN framework to improve the accuracy and 
robustness of ship detection under complex seashore 
surveillance conditions, where the ship’s category and location 
are first predicted by CNN and then are refined with saliency 
detection.  

3) We propose coastline segmentation to reduce the 
inspection range and further improve the detection efficiency.  

The rest of the paper is organized as follows. In Section II, 
we introduce the related work of ship detection. In Section III, 
we give detailed explanations of our proposed model. Section 
IV illustrates experimental results and comparisons against 
other state-of-the-art methods. Section V draws a conclusion. 

II. RELATED WORK 

A. Ship Detection 
Some methods using hand-crafted features are widely 

studied for ship detection. W. Krüger et al. [2] first use color 
segmentation and edge detection to detect the sea level feature, 
and then use the image registration and subtraction to separate 
the ship from the water. Bao et al. [3] detect ship with the 
contextual information and the ship space-time information. 
They manually determine the mean and variance threshold for 
each category, and then based on contextual information 
analyze the regional-level movement of the ship and its 
corresponding local context for detection. Chen et al. [4] 
proposed a new method based on mean shift and the peak of 
grayscale for ship automatic detection and tracking, but it 
needs to be optimized in real time. Zhang et al. [5] detect the 
horizon line by exploiting the characteristics of discrete cosine 
transform (DCT) blocks and extract the sea-surface 
background regions below the horizon. They simply remove 
the background to obtain ship targets and the results are 
unreliable. These features leverage human attention 
mechanisms to obtain the saliency of the ship in the entire 
image with respective features designed for different ship 
conditions, but they are not suitable for detecting diverse 
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category of ships in our scenario. 
 

B. Convolutional Neural Network 
Convolutional neural network (CNN) has been successfully 

applied to object detection [9]-[15]. In recent years, the 
development of deep learning has been driven by the regional 
proposal method and the regional proposal-based CNN 
(R-CNN) [9]. R-CNN is the first network to use the CNN 
feature for classification. In order to improve efficiency, R. 
Girshick further proposed Fast R-CNN based on R-CNN [10]. 
Fast R-CNN maps the proposal region to the feature map of 
the last convolutional layer of CNN. In this way, an image 
needs to be extracted only once which greatly increases speed. 
Based on Fast R-CNN, R. Girshick also proposed the Faster 
R-CNN [11], which is composed of Region Proposal Network 
(RPN) and Fast R-CNN. Two models share the features and 
the RPN module tells the Fast R-CNN module where to look.  

The accuracy of the R-CNN framework is getting higher 
and higher, especially the Faster R-CNN. The bottleneck of 
the R-CNN framework is that it cannot fully utilize the context 
information of the local object in the entire image after 
transforming the decomposition problem into the classification 
problem of the image local area. Therefore, J. Redmon and R. 
Girshick [15] proposed the YOLO (You Only Look Once) 
network together. The idea is handling object detection 
problem as regression problem, separating object locations 
and categories from space. The detection speed of the network 
is very fast and can achieve real-time video processing, but the 
accuracy is not high enough. J. Redmon [19] used a series of 
methods to improve YOLO and proposed YOLOv2, which 
improves the accuracy and maintains the speed. However, the 
accuracy still cannot meet the requirements. Qi [20] proposed 
a novel paradigm of deep network to explore various scales of 
spatial contexts adjusted to pixels at different locations. This 
model constructs multiple layers of memory cells, whose 
outputs are hierarchically gated on different scales before 
recursively feeding to higher layers. Then the pixel labels at 
different locations are decided based on the spatial contexts of 
the customized scales. Compared with the general object 
detection algorithm, it can make full use of the context 
information to obtain a good pixel-level detection effect. 
Nevertheless, the required dataset must be fully labeled on 
individual pixel level, which does not meet the situation of our 
ship dataset. In the view of the above discussion, we follow 
the YOLOv2 framework to construct our ship detection 
pipeline. 

C. Saliency Detection 
Salient object detection can help people quickly locate target 

region of interest in an image. It has been widely used as a 
preprocess step in many computer vision tasks such as 
super-pixel segmentation [21]-[24], object recognition 
[25]-[27], image retrieval [28]-[30], etc.  

Inspired by these works, many researchers began to harness 
saliency information in ship detection. Bi [31] extracted 
salient candidate regions across the entire detection scene 

using a bottom-up visual attention mechanism. Then 
appearance and neighborhood similarity features are combined 
to discriminate the selected salient regions. Jiang [32] used the 
salient corner features at ship bow to precisely detect in-shore 
ships and separate multiple docked targets. Lin [33] 
implemented a task partitioning model similar to the attention 
model in FCN [34] network. With deep path for 
attention/saliency maps and the shallow path for detection, the 
integrated FCN can detect ships robustly and simply. 

The above works have all proved that adding salient 
information to ship detection problem can effectively improve 
the detection performance in optical remote sensing images. 
However, few studies have introduced this idea into ship 
detection in natural images. Walther [35] proposed a 
biologically plausible model for forming and attending 
proto-objects in natural scenes. But this method is hardly 
generalized to other computer vision tasks, such as image 
segmentation and object detection. Achanta [36] adopted a 
frequency-tuned approach to compute full resolution saliency 
maps with well-defined boundaries, which uses an 
image-dependent adaptive threshold to binarize the generated 
saliency map. Rahtu [37] firstly generated saliency maps using 
a statistical framework and local feature contrast in 
illumination, color, and motion information, and then 
segmented the salient object with a conditional random field. 
Goferman [38] detected context-aware saliency maps based on 
four principles observed in the psychological literatures. The 
approach was evaluated in two applications where the context 
of the dominant objects is just as essential as the objects 
themselves. Cheng [39] proposed a method that considers both 
appearance similarity and spatial distribution of image pixels, 
which produces perceptually accurate salient region detection. 
For more detailed literature discussion of some state-of-the-art 
saliency detection algorithms, we refer readers to [40] and 
[41].  

In this paper, we adopted a regional contrast-based saliency 
extraction algorithm [42] which simultaneously evaluates 
global contrast differences and spatial coherence. We 
compared the improvements of this algorithm with previously 
mentioned methods [36]-[39] on the final ship detection 
results. And experimental results showed that regional 
contrast-based method can achieve better recall and precision 
rates and more accurate location. 

 

III. PROPOSED METHOD 
Our proposed model is shown in Fig. 2. Our model mainly 

consists of CNN and saliency detection, both combined with 
coastline features. The former is used to predict the category 
and preliminary position of the ship, and the latter is used to 
determine the exact position. The model first resizes the input 
image to a fixed size and passes it to CNN to extract feature 
maps, where CNN learns from extracted coastline features to 
exclude onshore feature maps. On the final feature map, we 
examine the spatial relationship between each cell and the 
coastline, and only generate a bounding box for the sea part. 
Then, the corresponding grids of the remaining feature maps 
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Fig. 2. The proposed ship detection pipeline. We first input the image into a convolutional neural network and generate anchor boxes combined with coastline 
feature. Then we use saliency detection which uses the spatial relationship and color space to produce more accurate ship location in combination with coastline 
feature. 

 
                               (a)                                                                                                    (b) 

Fig. 3. Feature map of whole image. (a) The original image. (b) The 13x13 feature map. 

generate several anchor boxes of different sizes and output the 
most likely box category and the position to be corrected. 
Finally, we use the salient region detection of the proposals to 
rectify the ship localization generated by CNN. Because the 
color information of the house is also very salient, we attempt 
to combine coastline with saliency to reduce the impact of 
onshore houses on saliency detection. We intersect the 
coastline with the detection box and only perform saliency 
detection on the offshore part. The detection result takes the 
outer rectangle as the position of the ship.  

In the practical application of ship detection in video, we 
can further leverage temporal continuity to set the initial 
inspection position for individual frames. We estimate the 
ship's moving displacement between adjacent frames based on 
the speed, heading, and interframe interval and then determine 
the approximate location of the ship in the next frame. 

 

A. YOLOv2 Based Classification 
YOLOv2 integrates bounding box generation, feature 

extraction, target classification and target position into 
convolutional neural network. It directly extracts bounding 
boxes from the image, and predicts the position and 
probability of ship through the entire image feature. It 
converts ship detection problems into regression problems, 
which is truly end-to-end detection. So, we use YOLOv2 to 
predict classification of ship in images. 

YOLOv2 resizes the input image to 416x416 and the 
downsampling rate is 32, so finally the feature map covers 13 
× 13 cells. As shown in Fig. 3 (b), many cells are on the shore, 
which actually have nothing to do with the ship detection task. 
The coastline is a very useful feature that distinguishes 
between sea and land. Therefore, we can take advantages of 
coastline prior to exclude unnecessary generation of onshore 
cells, for reducing both computational burden and the 
interference of onshore buildings to ship detection.  

 
1) Coastline Extraction 

We first use the Canny operator to detect edges in the image. 
Then we use Hough transform to obtain all line segments 
based on the edges. Suffering from the complex coast 
background, Hough transform used for extracting line 
segments usually produces multiple segments rather than 
unique one. Considering that the generated line segments are 
mostly concentrated near the coastline and are relatively 
random, we need to figure out the accurate coastline. We find 
that the slope  in the coastline does not exceed 0.15 and the 
intercept  does not exceed 800 from the origin in the upper 
left corner of the image (1920x1080). Therefore, we calculate 

 and  of all generated line segments, and then exclude some 
outliers that impossibly form a reasonable coastline based on 
this observation. 

Through the above steps, we have excluded the outliers, and 
then we are to fit a line segment (from the remaining segments)
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(a)                             (b) 

Fig. 4. Extraction results of the coastline. (a) All detected segments. (b) The final coastline which is up 30 pixels. 
 

 
(a)                             (b) 

Fig. 5. Coastline feature in generating feature map. (a) The original feature map. (b) The feature map combined with coastline. 
 

that is closest to the true coastline. Due to the difference in 
position and slope of the remaining segments, they unevenly 
contribute to the resulting coastline. To do this, we need to 
establish a judgment criterion to find the most valuable line 
segment to fit the final coastline. The position of the line is 
determined by the slope and intercept, which also make 
differences on the position, and so we consider the following 
discriminant function: 

 
                         (1) 

 
where  denotes the -th segment, and  denotes the cost 
function.  and  represent the slope and intercept of the -th 
segment after normalization, and  indicates the weight 
parameter.  

Then we arrange the line segments from small to large 
according to the cost function. Because too small values in 
cost function have a negative impact on the resulted coastline, 
we only use the first fraction of  as effective line segments 
for generating the coastline. We set the average  and  of 
these line segments as the slope and intercept of the extracted 
coastline. We will move the coastline up 30 pixels, 
considering that the ship may intersect the coastline. As a 
concrete example, the coastline extraction results are shown in 
Fig. 4. 

 
2) Bounding Box Regression with Coastline 

After the coastline is extracted, we input the coastline feature 
into CNN together with the image, which are jointly used to 
conduct bounding box regression and classification by 
YOLOv2.During the classification, both in training and testing, 
coastline features can assist YOLOv2’s decision-making to 
reduce detection time and improve accuracy. Based on  
coastline feature, we use Eq. (2) to determine whether the cell 

is on the shore or not. If the cell satisfies Eq. (2), we mark it as 
ashore cell for which we do not generate bounding boxes to 
reduce the wrong ship classification, like the shown example 
in Fig. 5. 

 

                (2) 

 
where  and  denote the coastline parameters (slope and 
intercept) transformed into the feature map.  and  are the 
numbers of the cells, from 1 to 13. We need to resize the 
coastline along with the image and get the coastline 
parameters on the feature map. Since the final feature map size 
is 13x13, the transformation of k and b obeys 
 

                          (3) 

 and  refer to the slope and intercept of coastline in original 
image and  and  denote the width and height of original 
image, respectively. 

 During training stage, each of cells on the sea predicts 5 
detected bounding boxes with their confidence score for 
containing a specific category of ship. In order to get better 
and more representative prior boxes, YOLOv2 uses the 
IoU-based K-means clustering method to train bounding boxes, 
which can automatically find the width and height of 5 boxes 
more properly.  

The IoU represents the overlap ratio of the resulted 
bounding box to the ground truth. 

 
                    (4) 
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                                         (a)                                                                                    (b)                                                                                (c) 

Fig. 6. Examples on bounding boxes of the missed ships. (a) The bounding box is larger than the ship (the IoU is 0.466).  
(b)The bounding box contains a portion of the ship (the IoU is 0.397). (c) The bounding box is smaller than the ship (the IoU is 0.462).

 

 
     (a)                                                                                                   (b) 

Fig. 7. Salient detection result of an image. (a) The original image. (b) The salient result of the entire image. 
 

 denotes the ground truth of box,  denotes the 
detected bounding box and  represents the area 
operator. 

During testing stage, each of cells directly generates 5 
bounding boxes according to the model. YOLOv2 treats the 
bounding box with a confidence probability above a certain 
threshold as the valid detection. The boxes which do not 
satisfy the threshold are directly discarded. Because several 
regressed bounding boxes may correspond to the same target, 
NMS (Non-Maximum Suppression) [43] is further used to 
find the most suitable bounding box. 

The labeled bounding boxes are used for ground truth in 
training. But unlike bounding boxes, the coastlines are not 
used as ground truth during the training of YOLOv2. They are 
thus only extracted online by our proposed method, both in 
training and testing phases.  

  

B. Salient Region Detection based Location 
Suffering from complex onshore backgrounds (e.g., similar 

color and appearance between ashore buildings and nearshore 
ships), YOLOv2 often judges the ashore building either as the 
target ship or as part of the nearshore ship. The former leads to 
false detection (false positive) while the latter results in 
inaccurate localization and size of the actual ship region. In 
other words, for the latter, the resulting bounding box does not 
match the actual area of the ship, which further leads to 
missing detection due to the scoring mechanism of YOLOv2. 

The rule for YOLOv2 to determine whether the bounding 
box is available according to its confidence score. When the 
confidence score of the bounding box is larger than the 
threshold (typically 0.24), YOLOv2 then calculates its IoU 
value. Only those with IoU greater than the IoU threshold 
(usually 0.5) are considered usable. In other words, when the 
bounding box is considered unavailable, its corresponding 
object will be missed. Experimentally, we do observe that the 

missing detection occurs due to the low IoU, with some 
examples shown in Fig. 6. In Fig. 6, some of the bounding 
boxes are much larger than the ship (with the IoU value being 
0.466), others are smaller (with the IoU value being  0.462), 
and some contain only a portion of the ship (with the IoU 
value being  0.397). In all of these cases, their IoU values are 
less than 0.5, so they are abandoned. The reason for these 
problems is that the localization of YOLOv2 is not very 
accurate due to the interference of the complex ashore 
backgrounds. If we can improve the location, the missed ships 
will be detected correctly or the recall rate will be increased.  

Salient object detection can help people quickly locate 
target region of interest in an image. So we thus combine the 
saliency features to rectify the preliminary location generated 
by YOLOv2. Due to the complexity of the image, we still get 
poor results when we input the entire image in saliency 
extraction, as shown in Fig. 7. Instead, we use the bounding 
boxes as the target detection range. Additionally, we do not 
intend to perform saliency detection on all boxes, but instead 
choose those that are expected to be corrected. If the IoU is 
too low, which means that the box intersects with the boat 
very little, we think this is a completely wrong box, without 
further correction value. Therefore, we set a low threshold for 
the IoU and choose those boxes whose IoU values fall 
between lower limit and 0.5 for further re-examination using 
saliency detection. With the help of preliminary location given 
by YOLOv2, we will expand the box slightly and adaptively 
to contain the complete ship as much as possible for the 
saliency detection in all conditions. 

We perform salient region detection based on global 
contrast. The idea of using region based contrast (RC) [42] to 
produce saliency maps comes from a common sense that 
saliency of a region mainly depends on its contrast to its 
nearby regions. RC first segments the input image into regions 
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(a)                             (b) 

Fig. 8. Coastline feature in salient region. (a) The salient region combined with coastline. (b) The original salient region. 
 

       (a)                                                                                        (b) 
Fig. 9. Saliency detection result of a bounding box. (a) The salient region. (b) The location of the ship. 

  

 
                                         (a)                                                                                    (b)                                                                                (c) 

Fig. 10 mproved bounding boxes of missed ships by saliency. (a) The IoU of the box is increased to 0.610.  
(b) The IoU of the box is increased to 0.533. (c) The IoU of the box is increased to 0.698.  

 

through a graph-based super-pixel segmentation algorithm 
[44]. Then, the saliency value of each region  is computed as 
follows: 

 

           (5) 
 

where  is a spatial prior weighting term;  is the 
spatial Euclidean distance between centroids of two regions   
and , and  adjusts the influence of spatial distance weights; 

 is the weight of region  which is measured by the 
number of pixels in . 

The color distance between two regions  is defined 
as follows: 

 
       (6) 

 
where  is the probability of the -th color  among all 

 colors in the -th region , = {1, 2}. It plays as a 
weighting role in the distance computation to emphasize the 
color differences between dominant colors. 

In saliency detection, because the information of the ashore 
buildings is also salient, we manage to make use of the 
coastline features to reduce the impact of the houses, making 
the saliency area consistent with the real ship area. We process 
the bounding boxes which intersect the coastline and if the 
pixels satisfy Eq. (7), we mark them as ashore pixels and set 
them to 0.  

 
                            (7) 

where and  denote the coastline parameters (slope and 
intercept).  and  are the horizontal and vertical coordinates 
of the pixel, respectively. We detect the processed boxes and 
produce the result which is not affected by the buildings and 
more robust,  as shown in Fig. 8. In Fig. 9, we then take the 
outer rectangle of the salient region as the ultimate location of 
the ship.  

Finally, to especially confirm the role of saliency 
refinement, we further show the corresponding improved 
counterparts on bounding boxes in Fig. 6, as shown in Fig. 10. 
Accordingly, their IoU values are promoted to 0.610, 0.533 
and 0.698 from original 0.466, 0.397 and 0.462, respectively. 
Since the improved IoU values are all above the IoU threshold 
0.5, the bounding boxes will be considered valid and the 
associated ships will be recalled.  

IV. EXPERIMENTAL RESULTS 
To prove the effectiveness of our proposed method, we 

designed experiments and evaluated our method quantitatively 
on our own ship data set. Subjective and objective results are 
reported in this section. 

 
A. Dataset 

We use our own new large ship dataset called SeaShips. 
The dataset currently consists of 11126 images and covers 6 
common ship categories (ore carrier, bulk cargo carrier, 
general cargo ship, container ship, fishing boat, and passenger 
ship). All the images are from about 5400 real-world video 
segments, which are acquired by 156 monitoring cameras in 
the coastline video surveillance system deployed on Hengqin 



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2897980, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

Island in Zhuhai in China. They are carefully selected to 
mostly cover all possible imaging variations, e.g., different 
scales, hull parts, illumination, viewpoints, backgrounds, and 
occlusions. All images are annotated with ship category labels 
and high-precision bounding boxes. 
B. Test Environment 

We conduct experiments based on learning platform 
Darknet in Windows 10. All our experiments are performed 
on a workstation with TitanX GPU cards under CUDA 8.0 and 
CUDNN V5. Our testing uses only one card. 

Our network structure is modified from darknet19. To train 
the hyper-parameters, the mini-batch size is set to 16. The 
base learning rate is 0.0001 when iteration number is low than 
20k and steps to 0.00001 when iteration number is low than 
26k. The poly learning rate policy is adopted with power 0.9 
together with the maximum iteration number 26k. Momentum 
is 0.9 and weight decay is 0.0001. Data augmentation contains 
random mirror and rand resizing is between 0.5 and 2. 

During the coastline extraction, we use the grid search 
method to determine the final  and . In all candidate 
parameters, the best performing parameters are the final result 
by looping through each possibility of the parameters.  is set 
to 0.1, 0.3, 0.5, 0.7, 0.9 and  is set to 1, 1/3, 1/5, 1/7, 1/9. The 
final results show that only when  is equal to 0.3 and  is 
equal to 1/3, the coastline is completely correct. Because the 
average width of all bounding boxes of ships in training set is 
in 30 pixels,  we move the coastline up 30 pixels. 
C. Evaluation Indicators 

There are some typical quantitative indicators for evaluating 
an object detection model, which are briefly described below. 
 
1) Average Precision 

Given an IoU threshold, there are two indicators called 
recall and precision. We manually marked the ground truth of 
ships, whose total number is defined as NP. If the bounding 
box has an IoU overlapping with the ground truth over 0.5, we 
mark these as true positive (TP). Each bounding box can only 
match one ground truth. Therefore, false detections of the 
same ground truth are defined as false positives (FP). So, 
recall and precision follow: 

 
                                (8) 

 
                             (9) 

 
For each category, we can draw a precision-recall curve 

according to recall and precision values. AP is the area 
surrounded by the curve. 

 
                             (10) 

 
2) Mean Average Precision 
  denotes the average values of  of each class . 
 

                               (11) 
 

where  is the number of classes that need to be detected. 
 

3) Frame Per Second(FPS) 
In addition to evaluate the accuracy, we also consider the 

model speed as one of the evaluation criteria. FPS indicates 
the number of image frames that models detect in one second. 
We use this indicator to measure the model speed. 
  
D. Results and analysis 
 
1) Comparison with Other Detection Methods 

We compare our method with other detection methods, such 
as Fast R-CNN [10], Faster R-CNN [11], SSD [14], and 
YOLOv2 [19]. For the Fast R-CNN algorithm, we choose the 
VGG training detection model. For Faster R-CNN, we set a 
convolutional neural network that has been pre-trained on 
ImageNet as pre-trained model, then use ZF net [45] (5 
convolutional layers and 3 fully connected layers) and VGG16 
net [46] (13 convolutional layers and 3 fully connected layers) 
to retrain the detection model. For SSD, we use the MobileNet 
[47] and VGG16 net [46] to retrain the detection model. For 
YOLO v2, we use our pre-trained weights to retrain the 
detection model while using some common data enhancement 
methods to increase the amount of data and improve model 
robustness such as hue, saturation, and exposure shifts. Our 
own method uses the parameters described above for training. 
All experiments were performed on four Titan Xp. We 
recorded the results of each model according to the previous 
evaluation indicators, as shown in Table I. Fig. 11 shows AP 
performance for each ship with the IoU threshold set to 0.5. 

As can be seen from Table I, Fast R-CNN is much worse in 
mAP performance than others by a large margin. The 
performance of the Faster R-CNN series is significantly better 
than YOLOv2 and SSD. On average, Faster R-CNN's mAP is 
14.52% higher than YOLOv2 and 11.12% higher than SSD. 
Our approach significantly improves the performance of 
YOLOv2, narrows the gap with Faster R-CNN, and performs 
better than the Faster R-CNN on general cargo ships. 

Our proposed model is based on YOLOv2, and the mAP of 
each category in our model has a good improvement. Among 
the six categories of ship, ore and container ships can achieve 
better results. Because these two categories of ships are 
mainly used to transport cargo such as ore and containers, and 
these goods have very distinct features that are distinguished 
from other ships. In contrast, the performance of fishing ships 
is worse than other categories. The main reason is that fishing 
boats are generally small, occupying only 70x130 pixels in a 
1920x1080 image. Detectors usually have poor detection 
results of small targets. After many forward convolutions 
layers, the feature of the small targets becomes blurred, even 
worse in the YOLOv2 series. 

We use saliency detection to increase 5% on the basis of 
YOLOv2. For fishing boats, we have increased from 73.3% to 
78.3%, which almost achieves the mAP of the SSD method. 
Although there are still gaps compared with other categories, 
the results are still good. For the passenger ships, our method 
has increased by up to 10%. We hold that the color feature of 
the passenger ships is generally very salient, so the 
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TABLE I 
DETECTION RESULTS OF DIFFERENT DETECTORS ON THE SEASHIP DATASET 

Model mAP ore 
carrier 

bulk cargo 
carrier 

general cargo 
ship 

container 
ship 

  fishing 
boat 

  passenger 
ship   FPS (Titan Xp) 

 0.710 0.771 0.713 0.771 0.868 0.617 0.522 0.5 

 0.892 0.905 0.900 0.908 0.909 0.857 0.871 15

 0.901 0.894 0.903 0.907 0.909 0.888 0.906 6 

SSD 0.794 0.750 0.767 0.877 0.907 0.718 0.744 7 

YOLOv2 0.830 0.849 0.850 0.881 0.888 0.733 0.781 83 

Ours 0.874 0.881 0.876 0.917 0.903 0.783 0.886 49 

 means Fast R-CNN.  means Faster R-CNN.  

 
Fig. 11. Precision-recall curves for each detector on six ship categories. 
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                               (a)                                                                                                    (b) 

Fig. 12. Ship detection results. (a) The original YOLOv2. (b) Our proposed method. 

performance of the saliency detection is particularly good and 
the accuracy is higher. For general cargo ships which perform 
well on the original method, our method has also improved 
notably over the Faster R-CNN. 

In terms of speed, Detector FPS of 24 is considered to be 
real-time detector in object detection. In terms of real-time 
performance, the detection speed of the YOLOv2 is much 
better than other methods, and the FPS reaches 83, but the 
detection effect is not good. Since the SSD and the Faster 
R-CNN use the end-to-end training method, the detection 
effect is better, but the FPS is respectively 7 and 15, lower 
than the requirement. Our method gives FPS of 49, which not 
only guarantees the real-time performance, but also increases 
the accuracy by 5% against YOLOv2. 

As shown examples in Fig. 12, we can see the visual 
improvement of our proposed method against YOLOv2. 
Specifically, when ships intersect, the bounding box of 
YOLOv2 is much larger than the ship, but our method can 
predict a more accurate box. When the ship is small, YOLOv2 
is prone to misdetection, but our method remains good. When 
the ship is similar to the background, YOLOv2 can easily 
detect the background as a ship by mistake, but our method 
can eliminate false detection.  
 
2) Comparison with Other Saliency Detection Methods 
We combined other saliency detection methods with YOLOv2 
and compared them with our method. These methods include 

FT [36], SEG [37], CA [38], and GC [39]. All experiments use 
the same dataset and are performed on four Titan Xp. We 
recorded the results of each model based on previous 
assessment indicators, shown in Table II. Fig. 13 shows AP 
performance where the IoU threshold for each ship is set to 
0.5. 

As we see in Table II, our method is basically the best for 
each category of ships. The IoU values have been improved by 
saliency detection, indicating that the saliency detection has 
refined the location, with the refinement from 70.69% to 
74.53%. For FT [36], SEG [37] and CA [38], in addition to 
fishing boats and passenger ships with salient colors and 
features, the mAP values of other categories of ships are 
basically the same as those of the YOLOv2, indicating that 
these three methods make little improvement of detection and 
cannot meet the demand at all. FT [36] is mainly based on 
local features for detection, without considering global 
features. It tends to produce small salient objects other than 
the main ship body, so that the outer rectangle has a large error. 
The advantage of  SEG [37] is that the feature between the 
video sequences can be used for saliency detection, but mainly 
based on local features, so the effect is also not good. CA [38] 
combines global features and local features, but it not only 
extracts the salient region, but also extracts the background 
information. In fact, it is not suitable for our dataset because 
our salient region generally occupies the main part of 
bounding box. GC [39] considers both global uniformity and
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TABLE II 
DETECTION RESULTS OF DIFFERENT SALIENCY METHODS ON THE SEASHIP DATASET 

Model IoU mAP  ore 
carrier 

 bulk cargo 
carrier 

 general cargo 
ship 

container 
ship 

fishing 
boat 

passenger 
ship 

   FPS (Titan 
Xp) 

YOLOv2+FT[36] 0.7133 0.835 0.840 0.850 0.880 0.888 0.768 0.781 1.5 

YOLOv2+SEG[37] 0.7217 0.841 0.840 0.850 0.881 0.888 0.735 0.853 3 

YOLOv2+CA[38] 0.7162 0.839 0.841 0.857 0.880 0.888 0.742 0.828 0.3 

YOLOv2+GC[39] 0.7309 0.862 0.872 0.870 0.902 0.907 0.781 0.888 40 

YOLOv2 0.7069 0.830 0.849 0.850 0.881 0.888 0.733 0.781 83 

Ours 0.7453 0.874 0.881 0.876 0.917 0.903 0.783 0.886 49 

 

 
Fig. 13. Precision-recall curves for each salient method with YOLOv2 on six ship categories. 
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TABLE III 
DETECTION RESULTS WITH OR WITHOUT COASTLINE ON THE SEASHIP DATASET 

Model mAP ore 
carrier 

bulk cargo 
carrier 

general 
cargo ship 

container 
ship 

fishing 
boat 

passenge
r ship 

FPS (Titan 
Xp) 

without 
coastline 0.862 0.872 0.857 0.870 0.902 0.781 0.888 54 

with coastline 0.874 0.881 0.876 0.917 0.903 0.783 0.886 49 

 
TABLE IV 

DETECTION RESULTS OF DIFFERENT SHIP DETECTION METHODS 

Model mAP ore 
carrier 

bulk cargo 
carrier 

general 
cargo ship 

container 
ship 

fishing 
boat 

passenge
r ship 

FPS (Titan 
Xp) 

Ours 0.874 0.881 0.876 0.917 0.904 0.783 0.886 49 

Zhang’s[5] 0.487 0.414 0.432 0.387 0.462 0.583 0.502 2 

 
Fig. 14. The typical results of our proposed method (right) and Zhang’s method [5] (left).

color distribution, so the improvement of detection is almost 
the same as ours. Nevertheless, its FPS is 40, which is lower 
than ours. 
 
3) Comparison with or without Coastline  

In the process of generating the anchor boxes, the number 
of boxes can be reduced by using the coastline feature, which 
can save the detection time. Coastline feature can also be used 
to remove disturbances from shore houses and improve 
accuracy during saliency detection. We conducted 
experiments to compare the results of the models with or 
without coastline feature. The results are shown in Table III. 
After adding coastline feature, mAP increases by 1%, and the 
biggest increase is from the general cargo ship, which is 5%. 
We think that the color of the general cargo ship's bow is 
usually white and there are several rows of windows on it, 
which are very similar to the shore house. Thus, it is easy to 
falsely detect the house as part of ship. The FPS of model 

without coastline is 5 higher than the FPS of our method, 
which is due to the fact that the time required to generate the 
coastline exceeds the time saved by reducing the amount of 
anchor generation. 

 
4) Comparison with other ship detection methods 

Since there are no public source codes or executables for 
ship detection, we compare the proposed algorithm with 
Zhang et al. [5]. Because the method cannot detect the 
category of ship, we separately detect the images of different 
categories. The results are shown in Table IV. As can be seen 
from the table, our method is far better than comparison 
method for each category. Among six categories of ship, the 
result for fishing boat is relatively best for the comparison 
method, which is possibly due to the fact that the fishing boat 
does not intersect with the coastline, thus less affected by 
ashore background. Some typical detection results are shown 
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in the Fig.14, where the buoy is mistaken as ship by the 
comparison method. At the same time, its FPS is much lower 
than ours, which confirms that our approach is comparably 
effective and fast under complex environments. 

V. CONCLUSION 
In this paper, in order to realize the real-time detection of 

ships in many application fields, we propose method based on 
convolution neural network and saliency detection. Our 
method generates the bounding boxes based on YOLOv2 and 
proposes saliency detection to predict the location of the ships 
in the bounding boxes.  When the probability of bounding 
boxes is low, we use salient features to predict more accurate 
location in combination with the coastline feature. We train 
the model on the real-world ship dataset built by our own and 
compare it with other methods. Experimental results prove 
that our method is able to simultaneously result in high 
accuracy and fast speed against typical CNN based methods. 

In the future, we will apply the detection model to achieve 
multi-target tracking of ships.  
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