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Abstract—Erasure coding is widely used in distributed storage systems (DSSs) to efficiently achieve fault tolerance. However, when
the original data need to be updated, erasure coding must update every encoded block, resulting in long update time and high
bandwidth consumption. Exiting solutions are mainly focused on coding schemes to minimize the size of transmitted update
information, while ignoring more efficient utilization of bandwidth among update racks. In this paper, we propose a parallel Cross-rack
Pipelining Update scheme (CPU), which divides the update information into small-size units and transmits these units in parallel along
with an update pipeline path among multiple racks. The performance of CPU is mainly determined by slice size and update path. More
slices bring finer-grained parallel transmissions over cross-rack links, but also introduces more overheads. An update path that
traverses all racks with large-bandwidth links provide short update time. We formulate the proposed pipelining update scheme as an
optimization problem, based on a new theoretical pipelining update model. We prove the optimization problem is NP-hard and develop
a heuristic algorithm to solve it based on the features of practical DSSs and our implementations, including Big chunk and Small
overhead. Specifically, we determine the best update path first by solving a max-min problem and then decide the slice size. We further
simplify the slice size selection by offline learning a range of interesting (RoI), in which all slice sizes provide similar performance. We
implement CPU and conduct experiments on Amazon EC2 under a variety of scenarios. The results show that CPU can reduce the
average update time by 48.2%, compared with the state-of-the-art update schemes.
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1 INTRODUCTION

D ISTRIBUTED Storage System (DSSs) are the basics of
many data-based applications [1], [2], [3], e.g., video

streaming, data analysis, which require a stable and reliable
data environment. However, DSSs suffer from highly dy-
namic storage nodes due to many unforeseen factors, such
as node failure, link breaking, and disk malfunction [4],
[5], [6], [7]. Replication and erasure coding are two mostly
adopted solutions [8] to provide fault tolerance. In repli-
cation, multiple copies of the data are stored on different
servers. However, erasure coding divides the original data
into a set of fixed-size unit, called data chunks, and encodes
data chunks into additional redundant chunks called parity
chunks, such that any subset of a sufficient number of data
and parity chunks can reconstruct the lost chunks due to
failure. Compared with replication, erasure coding can save
an order of magnitude of storage space under the same data
reliability [9], [10], [11], [12], [13]. Moreover, although in-
troducing higher network overhead (almost 8%) compared
to replication, erasure coding improves the performance of
data-intensive applications (up to 25% better than repli-
cation) [14]. These benefits motivate many enterprises to
adopt erasure coding, e.g., Google [33], Facebook [34], and
Microsoft [36].
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However, erasure coding consumes higher network traf-
fic and takes longer time to complete the update process
for maintaining the consistency between data and parity
chunks. Specifically, to finish an update, replication only
needs overwrite the replica by transmitting the modified
data. While, erasure coding needs update both the data
chunks and related parity chunks, involving data transmis-
sion and computation for updating parity chunks. We argue
that data update is intensive for many real-world systems
[17], [18], [19] [52]. For example, the update traffic occupies
nearly 50% of the low-latency workloads in Yahoo’s DSS
and keeps growing [17]. Meanwhile, trace analysis in [52]
illustrates that more than 90% writes are updates. Thus,
improving the update efficiency is a critical issue of erasure
coding.

Our insight is that we can exploit the idle bandwidth
between parity nodes that store parity chunks to improve
the update efficiency of erasure coding. Traditionally, the
update process is performed on a star structure [16], which
means that the data node with an update computes the
update information and transmits it to all the related parity
nodes respectively. The data node will be burdened with the
data computation and transmission under the star scheme
when updates are intensive. However, the links between
parity nodes remains idle. Although a tree update [24] is
proposed to mitigate the load on data nodes and exploit the
idle links between parity nodes by organizing the transmis-
sion of update data in a tree structure, there is still significant
space left to reduce the update time further by utilizing the
idle links more efficiently.

Moreover, the bandwidth between racks is much scarcer
(about 5-20x lower [25] [26]) than the inner-rack bandwidth.
Moreover, for geo-distributed storage systems (Geo-DSSs),
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in which nodes are located in multiple geographical regions,
the cross-region bandwidth is also much smaller than the
inner-region bandwidth [27]. Thus, in this paper, we pro-
pose a cross-rack (cross-region) pipelining update scheme
for erasure-coded DSSs, called CPU. The main idea of CPU
is to pipeline the update information in smaller slices along
a path. The update path composes of the data rack (the
rack with the data node to be updated represented as the
source of an update path) and dependent parity racks (the
racks with the parity nodes to be updated within the same
stripe of the data node). Through this method, the burden on
the data rack can be released, and the bandwidth resources
between parity racks are fully utilized.

Based on our implementations (§5), the update time
of CPU mainly comes from network transmission. We
formulate the optimization problem of the pipelining up-
date model. And we further prove that the problem is an
NP-hard problem. To address the problem, we propose a
heuristic algorithm based on the two observations: 1) DSSs
encapsulate the data into large chunk (default 64MB for
Hadoop.1 [31] and QFS [32]) to reduce the metadata size; 2)
The traffic overhead to transfer a slice is small (less than 200
bytes) in CPU. These observations indicate that the chunk
can be divided into thousands of slices before introducing
significant traffic overhead.

Thus, as stated in §4-E, the performance of CPU is
mainly bottlenecked by the worst link in the update path
when exploiting enough parallelisms. CPU can first find a
path with max-minimum link bandwidth to do pipelining
update. However, the computation for finding the optimal
path is time-consuming because it is still NP-hard problem,
which will increase the update time in CPU. To achieve a
good balance between accuracy and computation, we adopt
tabu search algorithm to obtain the update path.

Given the update path, the slice size selection can be
obtained because it is a concave problem. For simplification,
instead of obtaining the optimal slice size, which is related
to the bandwidth distribution of links in the update path,
we can select a slice size as default size from the RoI, where
CPU performs almost same as the slice size changes. We
can obtain RoI under the worst case that bandwidths of all
the links in the found path are same because it still ensures
the good performance of CPU due to Big chunk and Small
overhead. Thus, the RoI can be profiled offline before deploy-
ing CPU on practical DSSs under homogeneous bandwidth
distribution.

We implement a CPU prototype that can be deployed
in distributed environments and applicable for general era-
sure codes, including Reed-Solomon codes [30] and Local
Reconstruction Codes [36]. RS codes are implemented as an
example in CPU. The experiments on Amazon EC2 under
various parameter settings show that CPU can significantly
improve the update efficiency over star update and tree
update, e.g., reducing the update time by 67% and 48.2%
under three parity racks and 64MB chunk compared with
the two update schemes, respectively. The contributions of
this work can be summarized as follows:

• We propose a rack-aware pipelining update tech-
nique to guide the transmission of update informa-
tion in slices along a path to distribute update traffic

and fully utilize bandwidths across racks.
• We formulate the optimization problem based on

pipelining update model, and prove the problem is
NP-hard.

• We propose a heuristic algorithm to solve the prob-
lem through determining the update first through
tabu search algorithm and then obtaining the slice
size based on the given update path. RoI is further
proposed to simply the slice size selection.

• We implement a CPU prototype and conduct exper-
iments on Amazon EC2 under various parameter
settings to evaluate the update efficiency of CPU.

2 BACKGROUND

Erasure coding: In this paper, we mainly focus on Reed-
Solomon (RS) codes, which are deployed in today’s DSSs
[33], [34], [35]. The source node divides the data object into
fixed-size units called chunks and sends them to the nodes
after encoding operations. Each node in the system could
reconstruct the required data by accessing data from the
nodes. Specifically, an erasure code is typically configured
with two integer parameters (n, k), where k < n. For every
k original chunks called data chunks, it encodes them into
n− k coded chunks called parity chunks. The set of n coded
chunks is called a stripe, which are distributed across n
storage nodes to tolerate any n − k node failure, and any
k out of n coded chunks can be decoded to the original k
uncoded chunks. A large-scale storage system stores data
of multiple stripes, all of which are independently encoded.
All additions and multiplications of practical erasure codes
are based on Galois Field arithmetic over w-bit units called
words. Each chunk is partitioned into multiple w-bit words,
and words at the same offset of each chunk within a stripe
are encoded together.

Hierarchy of DSSs: The two-level hierarchical archi-
tecture of DSSs is showed in Figure 1. Specifically, the
minimum storage devices to provide storage space for a
DSS are nodes, which are located in different racks. The
communication among the nodes in the same rack is via a
top-of-rack (ToR) switch, while multiple racks are connected
by the core switches that collectively form the core network.

Existing erasure-coded DSSs distribute each stripe across
n nodes in n distinct racks [33] [34] [36]. For some parameter
m < n, m is the number of racks, recent studies [37] [38]
propose to store each stripe in n nodes that reside inm racks
to minimize the cross rack traffic during failure repair and
update at the expense of reduced rack-level fault tolerance.
For example, if all the n−k parity chunks of a stripe are stored
in one parity rack, the updates can be completed with only
one cross-rack data transmission from the data racks, while
the DSS can only tolerant one rack failure. Thus, we consider
the situation that the DSSs place parity chunks in a stripe to
m 6 n racks, in which any updates will cause cross-rack
traffic. The constrained bandwidths between racks are the
main reason that weakens the performance of a DDS [37]
[38] [41] [50]. In this paper, we study how to exploit the
cross-rack bandwidth more efficiently to speed up update
in DSSs.

Parity Updates: Most practical erasure codes are linear
codes, where each parity chunk could be represented by
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Fig. 1. The storage hierarchy of DSSs.

the linear combination of the k data chunks with Equation
(1). βij is the coefficient for pj from di. Since the encoding
and update operation between stripes are independent with
each other, we discuss the update process within a stripe.

pj =
k∑

i=1

βij · di, 1 ≤ j 6 n− k (1)

From Equation (1), we can also efficiently update a parity
chunk for any update of a data chunk. Specifically, if a data
chunk di, 1 ≤ i ≤ k, is modified to d′i, each parity chunk pj
(where 1 ≤ j ≤ n− k) can be updated into p′j as follows:

p′j = pj + βij(d
′
i − di) (2)

Based on equation (2), we can find that the new parity
chunk could be updated by accessing the delta of the data
chunk (d′i-di), called data-delta chunk, without accessing the
other unchanged data chunks within the same stripe. The
volume of a data-delta chunk is the same as the size of
a data chunk. This type of parity updates is called delta-
based update. Specifically, the update processes consist of
two steps: First, the data node with an update overwrites
the original data chunk di with the updated data chunk d′i,
and computes and sends the data-delta chunk to all related
parity nodes; Then, each parity node gets the updated
parity chunk p′j by combining the data-delta chunk with
the original parity chunk pj according to equation (2).

3 MOTIVATION

In this section, we use a simple example to show the
limitations of the existing update schemes and the potential
performance the proposed pipelining scheme can provide.
A DSS example system is shown in figure 2(a). The numbers
on the edges denote the seconds for a data-delta chunk
transmission between storage nodes.

For star update [16], a data node with an update is
responsible for sending a data-delta chunk to each related
parity node PN1, PN2, ..., PNn−k. Figure 2(b) shows the
star update for n − k = 4. Since the data node can only
communicate with one parity node at one time, which
means the data transmissions between the data node and
parity nodes are done in sequence, an update process in star
structure will take 18s. In general, for star update, an update
takesR timeslots. In addition, the data nodes need send four
data-delta chunks, which will burden the data node with
update traffic, so as to bottleneck the update time under
limited link resource. However, the links between parity
nodes are always idle during the update process.

Tree update [24] constructs an update tree (the data node
as the root and parity nodes as the children) to organize
the transmission of update data. Figure 2(c) shows how
T-Update completes an update with n − k = 4. At the
beginning, the DN0 sends a data-delta chunk to PN1.
Second, DN0 sends a data-delta chunk to PN2, at the
same time, PN1 forwards the received chunk to PN3 after
receiving the whole data-delta chunk. Finally, PN2 forwards
the received chunk to PN4. Thus, the tree update reduces
the update time to 11s. Overall, tree update only takes
log2 d(R+ 1)e timeslots. Although T-Update improves the
update efficiency, the bandwidths among data nodes and
parity nodes still remain unexploited fully due to that the
links among the nodes with a deeper position in the update
tree remain unutilized more time. Although tree update
reduces the number of transferred data-delta chunks in the
data node to 2, the data node still need send more than one
data-delta chunk.

Besides, to tolerate rack failures, DSSs often distribute
the chunks in a stripe to distinct racks [10] [29] [36]. It
is inevitable to generate cross-rack traffic for updating the
parity chunks. However, the network bandwidth in modern
DSSs is shared among many other application workloads
[28]. Meanwhile, the cross-rack links of modern DSSs are
oversubscribed [40]. So, bandwidth, especially for the cross-
rack (cross-region) bandwidth, left for update tasks is lim-
ited in DSSs. Therefore, utilizing the limited bandwidth
fully is critical for improving the update efficiency.

These motivate us to design a new update scheme that
fully utilizes available cross-rack bandwidth resource to
reduce update time. In this paper, we design the CPU to par-
allel the update process for erasure coding, which pipelines
the update data in slices. Figure 2(c) shows the update with
CPU in the path (DR0 → PN1 → PN2 → PN3 → PN4).
To be simple, we slice the data-delta chunks into three
slices. Through this method, an update only takes 7.3s. The
update time can be further reduced by chopping the data-
delta chunks into more slices. Ideally, CPU can reduce the
update time to only 1 + R−1

g timeslots. However, more
slices mean more overheads. With different update path,
the time for an update in CPU varies (e.g., 10.3s in the path
DR0 → PN2 → PN3 → PN4 → PN1). Thus, slice size
selection and update path selection are the key issues for
CPU to obtain better performance. Besides, only one data-
delta chunk is transferred between racks, which achieves a
good traffic balance among updated racks.

4 THE DESIGN OF CPU
In this section, we first introduce the design of CPU,
and demonstrate how CPU improves the update efficiency.
Then, we formulate the optimization problem based on the
pipelining update model, and propose a heuristic algorithm
to solve the problem based on the features of DSSs and
our implementations. The notations used in this paper are
illustrated in Table I.

4.1 Pipelining update model

CPU decomposes a data-delta chunk into a set of slices S1,
S2, ..., Ss, and pipelines the slices along a selected path
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Fig. 2. Example for star update, tree update, and pipelining update with a
data node DN0 and four related parity nodes (PN1, PN2, PN3, PN4).
The update time for each scheme is 18s, 11s, 7.3s, respectively.

TABLE 1
Notations of the parameters

Notation Representation

(n, k) k is the number of data chunks, and
n is the total number of chunks in a stripe

l Chunk size
c Slice size
g Number of slices
m Number of racks within a stripe
R Number of parity racks within a stripe
di Original data chunks
d′i Updated data chunks
pj Original parity chunks
p′j Updated parity chunks
bij Bandwidth between rack i and rack j
T` Total transmission time
βij Coefficient for pj from di

DR0
The source rack with a data node
to be updated in the update path

PRr
The r-th parity racks with related parity
nodes to be updated in the update path

DR0→PR1→...→PRn−k. To speed up the update process,
we take racks as the receiving unit in the path instead of
storage nodes due to cross-rack transmission consuming
more time than inner-rack transmission. To further improve
the update efficiency, CPU adopts tabu search based path
selection algorithm to find a good update path because the
links in a practical DSS own different bandwidth [4] [15].
The update process is triggered by a data node located in a
data rack, where the original data chunk di is modified to d′i.
The update data is delta-data chunks (di−d′i) calculated and
sent by the data node. In each parity rack, the parity node
receiving slices from the other rack, called gateway node, first
forwards the slices to the next rack in the update path,

then sends the slices to other related parity nodes within
the same rack. And, each parity node does the read and
write operations in chunk level, but encoding in slice level,
which are parallel with the update data transmission via
multi-thread. To sum up, the performance of CPU mainly
comes from the following three features: 1) CPU achieves a
good balance in bandwidth usage (e.g., each link in the path
only need to transfer one data-delta chunk for an update),
which mitigates the bottleneck caused by the link with the
intensive update traffic; 2) CPU parallels transmission and
encoding of the update data by pipelining the update data in
slice level; 3) CPU further shortens the update time through
selecting a good update path.

4.2 Problem analysis

Let Tupt be the time to finish an update, which includes
network transmission time (Ttrans), computation and disk
I/O (Tcompu io), and protocol overhead (Tpro head). Protocol
overhead mainly comes from TCP connection establish-
ment.

Tupt = Ttrans + Tcompu io + Tpro head (3)

In general, the overhead of computation and disk I/O
is less than the time of network transmission and can be
executed in parallel with network transmission via multi-
thread [28], which is implemented in CPU (§5). Thus, we
can neglect the overhead coming from computation and
disk I/O. The overhead of slicing comes from additional
traffic (traffic overhead) and protocol overhead. Specifically,
more additional traffic coming from the header of a slice
(e.g., chunk ID, slice ID, etc.) as the slice size decreases.
Besides, more slices will issue more TCP connection so as
to increase the protocol overhead. Through keeping the TCP
connection alive while transmitting slices from a same delta-
data chunk, the protocol overhead can be mitigated, which
is also implemented in §5.

Therefore, the key issue of CPU is to minimize the the
network transmission time by choosing the slice size and
update path carefully.

4.3 Problem formulation

Assume parity chunks within a stripe are allocated to
R ≤ m distinct racks. When a data chunk di gets modified,
the related parity racks {R1, R2, ..., RR} need to receive data-
delta chunks from the data rack to keep data consistency.
The chunk size and slice size are denoted as l and c respec-
tively. Thus, the slice number of a chunk is g = dl/ce. Figure
3 shows the timeline of the pipelining update. PRr means
the r-th parity rack in the update path for a stripe, which
could be any parity rack. For different stripes, the set and
number of parity racks may be different due to a random
distribution of data chunks and parity chunks.

The network transmission of an update is finished on the
condition that the last parity rack in the path receives all the
slices. Thus, the network transmission time for a pipelining
update under path ` is defined as (4):

Ttrans(`) =
R−1∑
r=1

tr + TR (4)
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Fig. 3. Timeline of pipelining update. The slice receiving interval of r-th
parity rack is determined by the worst link of the present r links in the
pipelining line. For example, the slice receiving interval of third parity
rack is the time for the link between DR0 and PR1 to send a slice since
the link is the worst of the present three links in the pipelining line.

Tr means the duration for r-th parity racks (PRr) to receive
all the slices of a chunk from the prior rack (PRr−1). tr
denotes the time for the prior rack to send a slice to the r-th
rack in the path.

In pipelining update, each parity rack can only forward
the slice to the next parity rack when it receives the whole
slice from the prior rack. So, the receiving interval of slices
for the last parity rack is the time for the worst link in
the path to transmit a slice, denoted as tmax. Then, the
duration from the first slice sent by the PRR−1 to the last
slice received by the PRR can be expressed as follows:

TR = (g − 1)tmax + tR, tmax = max{t1, t2, ..., tR} (5)

From the equations (4)(5), we can draw equation (6):

Ttrans(`) = (g − 1) · tmax +
R∑

r=1

tr (6)

Recall that:
g = dl/ce (7)

tr =
α+ c

br
,∀r ∈ [1, R] (8)

br means the bandwidth between the r-th parity rack
and related prior rack. α denotes the header size of a slice.

Substitute (7), (8) in (6):

Ttrans(`, c) = (

⌈
l

c

⌉
− 1) · α+ c

bmin
+

R∑
r=1

α+ c

br
,

bmin = min{b1, b2, ..., bR}
(9)

Therefore, the optimization problem is formulated as
follow:

P : min
(`,c)

Ttrans(`, c) (10a)

s.t. c = aw, a ∈ {1, 2, ..., l/w}, (10b)
` ∈ L. (10c)

The constraints in the formulation above can be ex-
plained as follows: constraint (10b) implies that the slice
size must be a positive integral multiple of the word size
to achieve in-time computation in slice level, and cannot
exceed the size of a chunk. In (10c), ` means a pipelining
update path, which must contain all the related parity racks
and starts from the updated data chunks. The set of all path
is denoted as L, the size of which is R!.

4.4 Problem complexity
Proposition: The problem P is a NP-hard problem.

Proof : Let V = {v0, v1, ..., vR} be a set of racks, v0
denotes the data rack, {v1, ..., vR} denote the parity racks
within the same stripe as the data rack, A = {(i, j) : i, j ∈
V, i 6= j} be the edge set, dij be the link weight (the time
to transmit a slice from rack i to rack j ) associated with
edge (i, j) ∈ A, and di0 = 0 due to a transmitted slice need
not return the data rack. Thus, the problem is to find a path
in the asymmetric graph G = (V,A) that visits each rack
once to minimize the total transmission time, which can
be reduced to an asymmetric traveling salesman problem
(aTSP) when we set c = l. Note that the aTSP is a well-
known NP-complete problem. Consequently, the decision
problem of P is NP-hard.

A naive approach for the problem is to perform a brute-
force search on all possible candidate paths under all possi-
ble slice size. However, there is a total ofR! permutations for
each slice size, and the brute-force search becomes compu-
tationally expensive even for moderate sizes of R because of
large selection set for slice size. Since the link weights vary
over time, the path selection and slice selection should be
done quickly on-the-fly based the measured link weights.

4.5 Heuristic algorithm
In high level, the heuristic algorithm works by determining
the update path first, and then calculating the slice size
based on the selected update path. We begin with the
features of today’s DSS and CPU, which are the basis of
the heuristic algorithm.

Big chunk: DSSs encapsulate the data into large chunk
to reduce the metadata size. For HDFS, the default chunk
size for Hadoop.1 and Hadoop.2 is 64MB and 128MB, re-
spectively. Moreover, For QFS, 64MB is the default chunk
size.

Small overhead: In the implementation of CPU, the over-
head to transfer a slice is no more than 200 bytes.

Assume that the traffic overhead introduced by slicing is
negligible compared with slice size when slice size is larger
than clow. Thus, we can rewrite equation (6) as follow:

Ttrans(`, g) = T ′max +
1

g
(

R∑
r=1

T ′r − T ′max), g ∈ [1,

⌈
l

clow

⌉
]

(11)

T ′r means the time for r-th parity rack in the path `
to receive a delta-data chunk from the prior rack. T ′max

means the time for the worst link in the path ` to transfer
a delta-data chunk. Thus, before the slice size reaches the
clow, more slices mean less update time. Due to Big chunk
and Small overhead, in order to exploit enough parallelisms,



IEEE TRANSACTIONS ON CLOUD COMPUTING 6

the number of slice is greater than the number of parity
chunks in practical DSSs before the slice size toughing
clow. For instance, splitting a 64MB chunk into over 2000
slices only introduces 6‰traffic overhead. Thus, based on
equation (11), we can draw that the performance of update
pipelining is mainly bottlenecked by the link with the min-
imum available bandwidth in the update path. The path
selection problem can be converted to a max-min problem.
Specifically, we should find a path consisting of R+ 1 racks
with a fixed start point (data rack) that owns the maximum-
minimum link bandwidth compared with all possible paths.

Algorithm 1: Tabu Search based Path Selection
Input: The data rack ID D with updated chunks; The

set of related parity racks ℵ; The set of link
weights between each rack W ;

Output: The optimal path `∗;
1 Function TSPS(ℵ, D,W )
2 Initialization: generate a starting current update path `

randomly, tabu table tabu[], w∗ = w(`),`∗ = `.
3 for iteration < MaxItera do
4 Generate the set N(`) of K neighbors of current

update path through swap operations, and
calculate the maximum link weight for each
neighbor to annotate every neighbor;

5 Sort the elements in N(`) in ascending order based
the corresponding annotation.

6 for i = 1 to K do
7 `′ = Ni(`);
8 if tabu[`′] == 0 then
9 if w(`′) < w(`∗) then

10 Update w∗, `∗;

11 Update tabu[];
12 ` = `′;
13 break;

14 if tabu[`′] > 0 and w(`′) < w(`∗) then
15 Update w∗, `∗, tabu[];
16 ` = `′;
17 breaks

18 return `∗;
19 EndFunction

Tabu search based path selection: To construct an
update path, we should define a metric to identify the con-
dition of links in the path. The two commonly used metric
is the available bandwidth [4] [28] and network distance
[24] (the number of hops between two racks). However, the
network distance cannot always reflect the condition of each
link due to the link-sharing among other applications. Thus,
we associate a weight, the inverse of the link bandwidth,
for each link between two racks, such that higher weight
implies longer transmission time. The intuition here is that
network conditions are reasonably stable on short timescales
and usually do not change drastically during a short horizon
[39], [40]. The weight can be obtained by periodic mea-
surements on link utilization [40]. Since selecting a path
with min-max link weight is time-consuming when the
searching set is large, we propose a path search algorithm
based on Tabu Search, called TSPS, which can escape the
local optimum trap with acceptable complexity. Besides, the
running time of TSPS is stable. The key elements of Tabu

Search demonstrated as follows.

• Evaluation function: The maximum link weight w(`)
of the solution `.

• Move operator: To generate a set of neighbors for the
current solution (path) `, we use swap as the move
operator. A swap(i, j), i 6= 0, j 6= 0 move means
that exchange the i-th rack with the j-th rack in the
current solution `. As such, the neighborhood N(`)
of a solution ` includes all possible solutions that can
be obtained by applying the swap operator to `, the
size of which is R(R−1)

2 (Line 4).
• Tabu table: To escape a local optimum trap, the

table maintains a list of solution points that must be
avoided, and updated based on tabu tenure. The tabu
tenure defines the duration of the recorded solution.

• Neighbor selection strategy: If the `′ is the optimal
solution in the neighbors and not in the tabu table,
this algorithm designates the solution obtained as
the new current solution (Line 8-13). However, such
a move, leading to a solution with a better result
compared with the recorded best solution, is allowed
even if it exists in the tabu table (Line 14-17). And,
the new best solution is recorded if it improves on
the previous best (Line 15).

• Aspiration criterion: A move leading to promising
solutions is allowed even if it is in the tabu table
(Line 14).

• Stop criterion: The tabu search stops if a specified
number of iterations has elapsed in total (Line 3).

Slice size selection: We first relax the slice size and
slice number to continuous value c̃ and l/c̃. Thus, given
the selected update path, finding the optimal slice size is a
concave problem. Based on equation (9), we have

∂Ttrans(`, c̃)

∂c̃
= − lα

bminc̃2
− 1

bmin
+

R∑
r=1

1

br
. (12)

Then, the optimal slice size

c̃∗ =

√
lα∑R

r=1
bmin

br
− 1

. (13)

Based on constraint (10b), the slice size must be a multiple
of word. Thus, the practical slice size is obtained based on
the equation (14).

c∗ =


⌈
c̃∗

w

⌉
w, c̃∗ mod w > w

2⌊
c̃∗

w

⌋
w, c̃∗ mod w < w

2

(14)

Simplification for slice size: To further accelerate the
update process, a simple way to do slice size selection is
further proposed for practical DSSs. When slice size is larger
than clow, the network transmission time decreases as the
slice size decreases. However, for every update path, the
optimal update time cannot be less than T ′max. Then,

Ttrans(`, g)

T ∗trans(`)
≤ 1 +

R− 1

g
(15)

Thus, the network transmission time exceeds no more
than (R−1)/g of the optimal network transmission time. To
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save storage cost, the number of parity chunks in a stripe is
less than 10 for most practical DSSs (e.g., by default, RS(6,3)
for HDFS). Due to Big Chunk and Small overhead, the delta-
data chunk can be divided into over thousands of slices
without enrolling significant traffic overhead. Moreover, the
gain from an additional parallel transmission decreases as
the number of slices increase (∂Ttrans

∂g ∝ − 1
g2 ). Thus, there

must be an RoI as illustrated in slice size analysis in §6,
where the update time of CPU only has little deviation
compared with the optimal update time. Although RoI is
different for different update paths given by TSPS, we
can adopt the RoI obtained under the worst case that all
link bandwidths in the found update path equal to the
bandwidth of the worst link as the default value, which
bounds the worst performance of CPU. As shown in equa-
tion (12), although the RoI is obtained under the worst case,
the performance of CPU can be still promised because the
number of slices is greater than the number of parity racks.
Therefore. instead of finding the optimal slice size, we can
choose a slice size in the RoI as the default size with little
degradation on the performance of CPU. The RoI can be
obtained based on the deviation value we set, the number
of parity racks, and chunk size before deploying CPU on
practical DSSs, which is one time running.

4.6 Discussion
Reliability: CPU keeps reliability for following reasons.
Before an update process, the path selection algorithm can
essentially exclude the links with high loss possibility and
failure links, because the algorithm tries to find a path
with maximum minimum link. During an update process,
although the selected path exists packet loss, the lost pack-
ets can also be successfully transmitted due to the re-
transmission scheme of TCP. In the worst case that a link
failure happens during an update process, CPU can solve it
through the combination of ACK messages from the parity
nodes and update timer timeout (UTT). Receiving an ACK
message from a parity node means the parity node has
finished the parity chunk update. After an UTT, if there is
no ACK from parity nodes, CPU inserts the selected update
path into the tabu table and reruns TSPS to get a new path to
do update. Moreover, if the data node receives several ACKs
but not all after an UTT, CPU just re-transmits the missing
parity chunks to the corresponding parity nodes.

Computation Overhead: The computation overhead in-
troduced by pipelining mainly comes from the disk I/O and
pipelining keeping. For star update and tree update, the
read-write operation is done in chunk level, and commu-
nication session between two storage servers is terminated
once a delta-data chunk is received. However, as stated
in §5, CPU reduces the disk I/O to one read-write for
an update on each parity node by buffering the received
slices and writing them into local disks only when receiving
all slices of a delta-data chunk. Therefore, the disk I/O
overhead in CPU is equivalent to that in star update and
tree update. Moreover, each storage server in an update
path only keeps the TCP connection alive before the next
storage server receiving all the slices of a delta-data chunk.
Even though CPU keeps the communication session a little
longer due to the traffic overhead, it is negligible when the
slice size locates in the RoI.

Client Coordinator

Data node Parity node Parity node Parity node

Parity node

Parity node

1

2

2 2 2 23

3 3 3

4

4

Control flow
Data flow between racks

Data flow in racks

Fig. 4. CPU architecture.

Resource Competition: Pipelining update will consume
the bandwidth resources between parity racks, which may
slow down the data transmission of other applications run-
ning there. However, the goal of CPU is trying to fully utilize
the available network resource to speed up the update
process. Besides, the path selection algorithm will filter the
busy links occupied by other applications, which extremely
mitigates the influence on ongoing traffic.

5 IMPLEMENTATION

System architecture: We implemented a prototype of CPU
to realize pipelining update. Figure 4 shows the architecture
of CPU, which compromises of a client, a coordinator, and
multiple storage nodes located in distinct racks. The coor-
dinator manages the metadata information of every stored
chunk, such as the chunk ID, the stripe that the chunk
belongs to, the data node where the chunk is stored, and
the ID of related parity node. It also collects the bandwidth
between racks, and schedules the update procedure. When
an update is triggered by the client, it first sends a request
to the coordinator (step 1). Then, the coordinator uses the
updated chunk ID to identify the locations of (n− k) parity
chunks within the stripe, and feeds back the control message
to the client and the leading storage node selected randomly
of each related rack for scheduling the update data flows
(step2). Once the leading storage node receives a slice from
other parity rack, it first forwards the received slice to the
next parity rack in the main pipelining path if it is not the
end of the pipelining (step3). Then, the slice is pipelined to
the parity nodes in the same rack if there are more than one
parity node (step4). Due to the abundant bandwidth in a
rack, the pipelining path in a rack is also randomly selected.

Implementation details: The CPU prototype is imple-
mented in C on Linux. We achieve the erasure coding
operations with the Jerasure Library v1.2 [51]. Instead of
establishing a TCP connection for each slice, every two
adjacent racks in the update path keep the connection alive
before receiving all slices of a data-delta chunk to eliminate
the overhead from connection establishment. To speed up
the performance, we parallel computation and disk I/O
with slice transmission via multiple threads. To reduce the
computation loads on storage servers caused by disk I/O,
a storage server executes coding operations in slice level
but disk I/O in chunk level. Specifically, once receiving
a slice, CPU computes and overwrites the slice with the
corresponding buffered parity chunk reading from local
file system immediately, but overwrites the buffered parity
chunk into local file system only when all the slices for
the parity chunk are received. Since there may be a new
update (identified by the chunk ID in slices) arrives before
the current updates on the parity chunk complete, CPU uses
a flag to indicate whether all the on-going updates on a
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Fig. 5. Overall performance of CPU.

TABLE 2
Measured bandwidth among regions (Mb/s)

Bandwidth California Ohio Oregon Canada
California 998.2 183.0 259.2 47.15

Ohio 91.55 999.0 72.1 153.0
Oregon 201.0 69.3 997.8 78.9
Canada 69.5 162.5 71.9 998.4

parity chunk are finished or not, and does write operations
based on the flag. We also implement star update and tree
update in the same environments to evaluate CPU.

6 EVALUATION

6.1 Experiment Setup

To demonstrate the performance of CPU, we choose tree
update and star update as baselines. The two baselines are
also implemented into rack-aware update architecture to
compare them equivalently. We design two test scenarios
(homogeneous environment and heterogeneous environ-
ment) and deploy them on Amazon EC2. All the instances
are t2.micro type with 2.5GHz 1vCPU, 1GB RAM, 1Gb/s
bandwidth and run 64-bit Ubuntu 16.04 LTS.

Heterogeneous environment: To illustrate how CPU
performs in a heterogeneous environment and the impact
of update path selection on CPU, we evaluate CPU in the
heterogeneous network environment by creating a set of
Amazon instances across different regions, namely Cali-
fornia, Ohio, Oregon, and Canada. During running our
experiments, we periodically obtain the inter-regions and
cross-region bandwidth across four regions using iperf. One
of the measured results is presented in Table 2, in which
each number is the measured bandwidth (in Mb/s) from
the row region to the column region. It shows that cross-
region bandwidth is much more scarce than inner-region
bandwidth. We deploy RS(12,9) and create three different
instances to store three chunks of each stripe in each region.
Additional two instances are created as the coordinator and
client. Since the data transmission between different regions
is slow, we set chunk size as 32MB to save the experiment
time.

Homogeneous environment: For different available
bandwidth distributions among the storage nodes, the per-
formance of the three update schemes may vary and be hard
to evaluate. To be fair, we further compare CPU with the two
baselines in the homogeneous network environment under
different parameter settings. The instances of the scenario
are created in the same region (e.g., Ohio-2b in North Amer-
ica). The bandwidths among instances in private networks
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Fig. 6. Gain from pipelining.

California Ohio Oregon Canada
Update data rack location

0

2

4

6

8

10

Up
da

te
 ti

m
e 

(s
)

CPU+tabu
CPU+random

CPU+worst
Tree

Fig. 7. The impact of path selection.

are stable. Thus, we transfer the update data using private
network address of instances, which make the traffic go
through the private network instead of the public Internet.

Evaluation metrics: Update time denotes the duration
from the start of the update to the end. The less update time,
the faster the update is. All the update times of experiments
are average results over 10 runs.

6.2 Overall Performance

Figure 5 shows the update time and the standard deviations
of CPU compared with the two baselines in the heteroge-
neous scenario. Since the bandwidth distribution between
data racks and dependent parity racks for updates triggered
in distinct regions is different, the time for updates initiated
in different regions varies. However, CPU achieves time-
saving over star update and tree update in all regions where
the updates are started. CPU reduces update time by 50.1%-
66.7% and 32.2%-65.6% compared with star update and tree
update, respectively.

6.3 Performance Gain Decomposition

This part demonstrates where the performance gain of CPU
come from, including pipelining, parallelism, and path se-
lection. The setting of the experiments in this part is three
parity chunks distributed in three distinct parity racks.

Pipelining: We set the slice size to the chunk size
for CPU, and compare the performance of CPU with star
update in the homogeneous scenario to show the gain from
pipelining. Figure 6 shows the update time of CPU and star
update scheme with the variation of chunk size. Although
there is no parallelism in transmission, CPU still performs
better than star update, especially for large chunk size (e.g.,
larger than 32M). Compared with star update, pipelining
update can release the burden on data racks, which will lag
the update process when the resource of data racks is up to
the limit.

Parallelism-slice size: RoI is obtained in the homoge-
neous scenario because CPU profiles the RoI under the worst
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Fig. 8. The update time comparison between CPU, Tree update, and Star update with the variation of slice size.

case. Figure 8(a-c) shows the parity chunks update time
versus the slice size for CPU with chunk size 16MB, 32MB,
and 64MB, respectively. When slice size is larger than 512KB,
the average update time of CPU for all chunk sizes decreases
significantly as the slice size decreases. Before the slice size
exceeds 512KB, the performance of CPU remains almost the
same as the slice size decreases. Until the slice size reaches
4KB, the average update of CPU increases gradually as
the slice size decreases. The phenomenon results from the
two reason:1) the incremental gain CPU from an additional
parallel transmission becomes smaller as the number of
slice increases; 2) the additional traffic introduced by slicing
becomes significant when slice size is less than a certain
value (e.g., 4KB), but remains neglectable when slice size is
larger than that value. The overlapped RoI (4KB 512KB) for
the different chunks (16MB, 32MB, and 64MB) is showed
in Figure 8(d), in which CPU achieves almost the same
performance. Although the RoI for the DSSs with different
settings (chunk size, number of parity racks) varies, we can
obtain the RoIs for different settings by one time running
before deploying CPU on piratical DSSs. Thus, we can select
a slice size from this range as the default slice size with little
degradation on the performance of CPU. We choose 64KB,
in the following experiments, as the default slice size, with
which CPU can reduce the average update time by 67% and
48.2% for 64MB chunk size compared with star update and
tree update schemes, respectively.

Path selection: To illustrate how a good update path
improves the performance of CPU, the experiment is done in
the heterogeneous scenario. Figure 7 shows the average up-
date time and standard deviations of pipelining update with
different path selection algorithms. We consider selecting
update path randomly (labeled as CPU+random), and select-
ing update path with tabu algorithm (labeled as CPU+tabu,
and used in previous experiments). We also show the worst
case of pipelining update (labeled as CPU+worst), and tree-
update for comparison. The results of star update are not
shown, whose update time is worse than that of tree-update
and very large. CPU+tabu can reduce the update time by
15.0%-45.4% compared with PU+random. Meanwhile, the
update time of CPU+random suffers from a larger standard
deviation. Besides, for some worst cases, the performance
of pipelining update is even worse than tree update (e.g.,
update process started in Canada). Thus, selecting an op-
timal or near-optimal update path can improve the perfor-
mance of CPU significantly. Note that path selection with
the proposed algorithm can be done less than 3.5ms (§6-E),
which is neglectable compared with the update time in our

evaluation.

6.4 Different Parameters
To further demonstrate the efficiency of CPU, we further
conduct some experiments with different parameter set-
tings, like the number of parity racks, chunk size, and
multiple update requests.

Number of parity racks: The experiment is done with
64MB chunk size. Figure 9 shows the average update time
versus the number of parity racks. The average update
time of star update and tree-update both increases with the
increase of parity racks since more updated parity racks
involve larger transmitted update traffic. However, since
slicing can parallel the transmission of update data, the
average update time of CPU remains almost unchanged as
the number of parity changes, which approximately equals
to the time of transmitting a delta-data chunk (64MB here).
As the number of parity racks increases from 1 to 4, CPU
reduces the update time by 6.0%-75.7% compared with star
update, and 6.0%-66.2% compared with tree update.

Size of Chunk: The experiment is done with three parity
racks. Figure 10 shows the average update time versus the
chunk size. The average update time for all three update
schemes increases as chunk size increase since larger chunk
size means more update data to be transmitted. However,
CPU performs better than star update and tree update under
all chunk size because it can partition a chunk into slices for
better bandwidth utilization. Compared with star update
and tree update, CPU reduces the average update time by
no less than 62.3% and 48.2%, respectively.

Multiple updates: There are two cases of multiple up-
dates: multiple updates within a stripe, and multiple up-
dates in different stripes. The two types of experiments are
conducted under 32MB chunk size and three parity racks.
Figure 11 shows the update time versus the number of
data nodes to be updated within a stripe concurrently. With
more data nodes participating in the update, the average
update time increases for all three update schemes, since
all the updated data nodes correspond to the same three
parity racks. Thus, more updated data nodes within a stripe
not only bring more update traffic but also increase the
resource competition on the parity racks, including network
bandwidth and computation resource. Figure 12 shows the
average update time versus the number of stripes to be
updated concurrently. With more stripes participating in
the update, the average update time increases for all three
update schemes, since more stripes bring more storage
nodes to be updated and more update traffic, increasing
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the resource competition, especially the network bandwidth
competition. Nevertheless, CPU outperforms the two base-
lines and keeps almost same performance as the number of
updates increases, which benefits from the efficient utiliza-
tion of bandwidths among racks and good update traffic
balance among racks (only one data-delta chunk transferred
between two racks).

TABLE 3
Performance of TSPS with different locations.

Location OPT(s) TSPS of CPU

Best(s) AVG(s) Gap PCT of best

1 14.55 14.55 15.08 3.6% 34%
2 14.55 14.55 15.09 3.7% 36%
3 15.17 15.17 15.86 4.5% 22%
4 15.17 15.17 15.94 5.1% 32%
5 14.99 14.99 15.27 1.9% 65%
6 14.55 14.55 15.38 5.7% 38%
7 14.55 14.55 15.54 6.8% 22%
8 14.71 14.71 15.69 6.7% 36%
9 14.55 14.55 15.31 5.2% 21%

10 14.55 14.55 15.22 4.6% 26%
11 14.55 14.55 15.22 4.6% 32%

6.5 Efficiency of TSPS
Since the number of parity chunks of a stripe in most
practical DSSs is less than 10, we evaluate the time for TSPS
to find an update path consisting of 11 storage nodes on
the Amazon EC2 t2.micro instance. We initiate 11 t2.micro
instances in 11 distinct regions on Amazon EC2 and obtain
the bandwidth distribution among these instances by iperf.
Table 3 shows the performance of TSPS over 1000 runs with
the variation of location where an update is triggered. The
numbers in the table denote the maximum link weight (the
time to send 1Gb data) of the found path. Although the
brute-force search can find the optimal update path, it takes
over 350ms. However, 1) TSPS reduces the search time to
less than 3.5ms under 100 iterations only with less than 7%
deviation from the optimal solution for all locations, and 2)
over 20% solutions found by TSPS hit the optimal solution.

7 RELATED WORK

Erasure codes: There are many kinds of erasure codes
applied in storage systems, e.g., RS codes [42], fountain
codes (also known as rateless erasure codes [43], [44], [45]),
regenerating codes ( also called network coding [48], [49]
and etc.. To improve reliability and reduce storage overhead,
most today’s storage systems adopt erasure codes to store

the data, including RS codes [33], [34], [35] and fountain
codes [46]. However, the most commonly used erasure
codes for storage are RS codes. Thus, in this paper, we
mainly target at RS code based storage systems. However,
coming with the benefit of coding, it suffers from the high
overhead in repair bandwidth. Thus, the regenerating codes
are proposed to reduce the repair bandwidth significantly
[11], [47]. With these erasure codes, erasure-coded storage
systems have been practical and popular.

Update in erasure codes: Researches of the update on
erasure coding have attracted many attentions. Based on
these works, we mainly classify the update methods into
two categories: reducing update traffic, and refining update
transmission structure.

To reduce update traffic, existing works mainly focus
on proposing new parity update scheme, designing new
update-friendly codes, and grouping update. A class of
parity updates [52], [53], [54], called the delta-based ap-
proaches, eliminate redundant network traffic by only trans-
ferring a parity delta which is of the same size as the
modified data range, on which most update schemes are
built. Designing a new class of codes or refining existed
erasure coding scheme to improve the update-efficiency is
another encouraging method [20], [21], [22], [23]. Mehrabi
etc. [20] propose a class of locally repairable codes (LRCs)
with small update complexity, which can achieve the lower
bound on the update complexity associated with one chunk
update. Ankit etc. [21] establish the existence of the codes
which require only logarithmic updates when data changes.
TIP-code [22], based on XOR code, uses three independent
parities to offer optimal update complexity.

Since there will be multiple updates within a stripe,
the update traffic can be reduced by grouping, also called
logged-based update, which selects a data node to accumu-
late and merge the delta-data chunks within a stripe, and
send the merged delta-data chunk to related parity nodes
after a given time [50] [52]. Although grouping update
can reduce update traffic, it will result in parity chunks
inconsistency, which may degrade the repair performance
because the repair operations must be executed after the
old parity chunks are updated with the merged delta-data
chunk [24]. Thus, we focus on optimizing delta-based in-
place update, which means all the data chunks and the
related parity chunks are updated at the same time, to
support the data access and data repair well.

Besides, scheduling the computation and transmission
flow of the update data carefully could also improve the
update efficiency of erasure coding significantly. Tradition-
ally, the update process is performed on a star structure [16],
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which means that the data node with an update computes
the update data and transmits it to all the related parity
nodes, respectively. The data node would be burdened with
the data computation and transmission under intensive
updates with star update. To mitigate the load on data
nodes and exploit the idle links between parity nodes, T-
Update [24] organizes update data to be transmitted along
a tree, which reduces the update time by 27% compared
with star update. However, T-update still cannot fully utilize
the bandwidth between parity nodes. Pipelining technique
is what we adopt to further improve the bandwidth uti-
lization for update in erasure codes, which also is applied
in other situations, e.g., repair in erasure codes [28], write
in replication-based HDFS [55]. Beside the different appli-
cations of pipelinig, we also have some unique designs,
which are slice size adaptation and path selection algorithm.
However, both replication-based HDFS and repair pipelinig
select fixed slice size and there is no path selection algo-
rithm in [55]. Besides, the path selection algorithm in repair
pipelining is based on brute force search, which eliminates
the search of infeasible paths. Although this algorithm can
find the optimal pipelining path, its performance highly
depends on the bandwidth distribution, the worst case of
which is unacceptable equaling the performance of brute
force search.

8 CONCLUSION

In this paper, we propose a cross-rack-aware update mech-
anism for erasure-coded storage to improve the update
efficiency of erasure coding, called CPU. It pipelines update
data in smaller units along a path consisting of data rack
(source) and related parity racks to alleviate the burden on
the data rack and utilize the bandwidths between parity
racks fully. The optimization problem based on the pro-
posed pipelining update model is NP-hard. Based on Big
chunk and Small overhead, a heuristic algorithm is proposed
to solve it by determining the best update path first through
solving a max-min problem and then deciding the slice
size. RoI is further proposed to simply the slice selection.
To evaluate the performance, we have implemented a CPU
prototype and done a series of experiments on Amazon EC2.
The results have demonstrated that CPU can improve the
update efficiency of erasure coding significantly compared
with star update and tree update schemes, especially for
more parity racks, which can reduce the update time to
almost the time of transmitting one delta-data chunk.
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