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ABSTRACT
Reinforcement learning has been widely studied for controlling
Heating, Ventilation, and Air conditioning (HVAC) systems. Most of
the existing works are focused on Model-Free Reinforcement Learn-
ing (MFRL), which learns an agent by extensively trial-and-error
interaction with a real building. However, one of the fundamental
problems with MFRL is the very large amount of training data
required to converge to acceptable performance. Although simula-
tion models have been used to generate sufficient training data to
accelerate the training process, MFRL needs a high-fidelity building
model for simulation, which is also hard to calibrate. As a result,
Model-Based Reinforcement Learning (MBRL) has been used for
HVAC control. While MBRL schemes can achieve excellent sample
efficiency (i.e. less training data), they often lag behind model-free
approaches in terms of asymptotic control performance (i.e. high
energy savings while meeting occupants’ thermal comfort).

In this paper, we conduct a set of experiments to analyze the
limitations of current MBRL-based HVAC control methods, in terms
of model uncertainty and controller effectiveness. Using the lessons
learned, we develop MB2C, a novel MBRL-based HVAC control
system that can achieve high control performance with excellent
sample efficiency. MB2C learns the building dynamics by employ-
ing an ensemble of environment-conditioned neural networks. It
then applies a new control method, Model Predictive Path Integral
(MPPI), for HVAC control. It produces candidate action sequences
by using an importance sampling weighted algorithm that scales
better to high state and action dimensions of multi-zone buildings.
We evaluate MB2C using EnergyPlus simulations in a five-zone
office building. The results show that MB2C can achieve 8.23% more
energy savings compared to the state-of-the-art MBRL solution
while maintaining similar thermal comfort. MB2C can reduce the
training data set by an order of magnitude (10.52×) while achieving
comparable performance to MFRL approaches.
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1 INTRODUCTION
Buildings account for 40% of energy usage in the US and 50% of
that energy goes to Heating, Ventilation, and Air Conditioning
(HVAC) [1]. Rule-based Control (RBC) is widely used to set actuators
(e.g., heating or cooling temperature, and fan speed) in HVAC
systems [2]. One of the main advantages is that they are easy to
understand. However, RBC “rules” are usually set some if-then rules
using many times static thresholds based on the rule-of-thumb rules
and the experience of engineers and facility managers. They have
two fundamental problems: first, they do not scale well with the
problem size, as the buildings become larger and more complex,
rules must be added; second, they do not handle incomplete or
incorrect information verywell, an occurrence common in buildings
in practice; and finally, they do not necessarily provide a guarantee
of optimal control.

Model Predictive Control (MPC) has been widely studied to
address these drawbacks by finding optimal control actions based
on an analytical building model [3, 4]. Normally, an optimization
problem is formulated with the building model and some con-
straints, and analytic gradient computation is used to optimize over
actions and building states simultaneously. However, this often
requires convexification of the cost function and first or second-
order approximations of building dynamics [5] in order to solve the
optimization problem fast and to scale well. As a result, the models
used in current solutions are simplified to deal with the parameter-
fitting data requirement and computational complexity [3, 4].

Reinforcement Learning (RL) has been widely studied for HVAC
control [6–9]. Current solutions mainly adopt Model-Free Rein-
forcement Learning (MFRL), which learns an optimal HVAC control
policy by trial-and-error interactions with a real building. However,
MFRL requires a large amount of interactions to converge, e.g.,
in our experiments, it requires 500,000 timesteps (5200 days) to
achieve a high control performance. Although a simulated building
model can be used to accelerate the training process, it needs a high-
fidelity model, which is hard to calibrate [6, 7]. Recently, Model-
Based Reinforcement Learning (MBRL) has been tested for HVAC
control to achieve high data efficiency [10]. The HVAC system
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dynamics is first learned using a neural network based on historical
HVAC data. Based on the learned building dynamics model, an
MPC controller tries to find the optimal control action by using a
Random Shooting (RS) method [10]. For controlling a single-zone
HVAC system, an MBRL-based approach saves approximately 10×
training time of the MFRL approach, while achieving comparable
performance [10]. However, most of the commercial buildings are
multi-zone buildings [11]. In addition to the above scheme not being
suitable for multi-zone HVAC systems, MBRL often lags behind
the MFRL schemes in terms of control performance (high energy
saving while meeting the thermal comfort of occupants).

To overcome these limitations, this paper presents MB2C, a novel
MBRL-based HVAC control approach that can achieve both the
data/sample efficiency of MBRL and the control performance of
MFRL. The design goal of MB2C is to meet the thermal comfort
requirements of the occupants while saving as much energy as
possible. The energy consumed by a building HVAC system and
the thermal comfort of occupants are determined by a set of factors,
including current state of all zones, the outdoor weather and the
control actions we are about to take (e.g. temperature setpoints).
In a multi-zone building, the control actions can be represented
as a vector 𝐴𝑠 , which is a combination of control actions for all
thermal zones. MB2C finds the best 𝐴𝑠 from all possible action
combinations 𝐴𝑎𝑙𝑙 for each control cycle. The best A𝑠 maintains
the thermal comfort in its acceptable range for the entire control
interval with the lowest energy consumption. MB2C is mainly
composed of two parts: (a) a building dynamics model, and (b) an
HVAC control algorithm.

Our building dynamicsmodel employs an ensemble of environment-
conditioned neural networks. We use a neural network model that
takes the current state of the building and the action to perform as
input, and outputs a prediction of the next state of the building. To
capture model uncertainty, we design a novel weighted ensemble
learning algorithm that aggregates the results of multiple building
dynamics models by dynamically adjusting the weight of each
model according to their accuracy. We also adopt an environment-
conditioned neural network architecture by separating the action-
depended state items (e.g., zone temperature) and the environment-
related state items (e.g., outside temperature), since the latter cannot
be actuated by control actions.

Based on a learned building dynamics model, a flexible way to
solve the control optimization problem is a shooting method that
samples stochastic action trajectories for a number of incoming
time-steps [12]. An action trajectory is a set of actions for incoming
𝐻 time-steps. Every time, 𝐻 time-steps are evaluated, but only the
first action will be executed at the next time-step. For example,
RS has been used in the latest MBRL-based HVAC control solu-
tion [10], which entails sampling candidate actions from a uniform
distribution. However, RS is insufficient to find the best action tra-
jectory, because randomly-shot action trajectories may not include
it. We adopt Model Predictive Path Integral (MPPI) control method,
which has shown promising performance in robotics control [13].
MPPI derives an optimal control action as the first action of a
noise-weighted average over sampled control action trajectories
by changing the initial control input and variance of the sampling
distribution. We customize MPPI control for building HVAC control
under the MBRL-based framework with the best parameter setting.

We implement MB2C in Tensorflow, an open-source machine
learning library in Python, with a 3-layer neural network as the
building dynamics model and an MPPI-based control algorithm. We
study the performance of MB2C and compare it with benchmark
methods by controlling a building of five thermal zones.We conduct
a variety of simulations in EnergyPlus for evaluation. Extensive
simulations reveal that MB2C outperforms the latest model-based
DRL method by 8.23% in total energy consumption of the building,
without scarifying thermal comfort. Compared with the model-free
DRL approach, we reduce the training convergence time by 10.52×,
more than an order of magnitude improvement.

2 RELATEDWORK
Model Predictive Control for HVAC. MPC solves an optimal
control problem iteratively over a receding time horizon. [3] pro-
posed anMPC approach for HVAC control, which minimizes energy
use while satisfying occupant comfort constraints. A very recent
MPC work, OFFICE [4], proposed a novel MPC framework that
optimally manages the trade-off between energy cost and quality of
comfort to the building users, by including input data from where
users are (and will be), what users want, how zones react to changes
in a data-driven manner, and current and forecast weather data.
However, MPC control works well for low-order system dynamics,
and its control variables must be carefully set for different buildings.

Model-free DRL for HVAC control. Reinforcement Learning
has been applied to many areas [14–20]. In particular, MFRL tech-
niques have demonstrated the potential optimal HVAC controls.
In MFRL schemes, the agent learns the policy by extensively trial-
and-error interaction with the environment. [9] leveraged RL to
calculate thermostat set-points to balance between occupant com-
fort and energy efficiency. [7] implemented and deployed a DRL-
based control method for radiant heating systems in a real-life office
building. A holistic building control accounting for HVAC, lighting,
window opening and blind inclination was studied using branching
dueling Q-network (BDQ) in [6]. However, practical application of
RL was limited by its sample complexity, i.e. the long training time
required to learn control strategies, especially for tasks associated
with a large state-action space. Gnu-RL [21] adopted a differentiable
MPC policy, which encodes domain knowledge on planning and
system dynamics, making it both data-efficient and interpretive.
However, they assumed that dynamics of a water-based radiant
heating system can be locally linearized. The assumption worked
for the problems they considered, but it may not extrapolate to
more complex problems like ours.

Model-based DRL for HVAC control. To reduce sample com-
plexity, researchers have adopted model-based deep reinforcement
learning for HVAC control [10]. In this work, they proposed an
MBRL approach that learns the system dynamics using a neural
network. Then, they adopt MPC using the learned system dynamics
to perform control with RSmethod. MBRLmethodworks well when
the action and state dimension is low, like single-zone building.
They often cannot achieve the final performance as model-free
method when they are applied to high state and action dimensions
of multi-zone buildings.
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Figure 1: Convergence time and the
achieved reward.
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Figure 2: Uncertainty of the building dy-
namics model.
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Figure 3: Random shooting in themodel-
based DRL method.

3 MOTIVATION
To understand the performance of a state-of-the-artMBRLmethod [10],
we perform a set of simulations in EnergyPlus for a building with
five zones. All system settings are the same as [10], except the state
and action dimension is higher for the five-zone building, i.e. a multi-
zone building instead of a single zone. We also implement a simple
MFRL-based method, Proximal Policy Optimization (PPO) [22],
for comparison in this preliminary evaluation. Thermal comfort
is measured by PMV [23], which should be controlled within the
range (-0.7∼0.7). The simulations are conducted with weather data
for the month of January. The building is 463 𝑚2 in Fresno CA.
It has windows in all four facades and glass doors in south and
north facades. The south-facing glass is shaded by overhangs. For
our 5-zone building, the state dimension is 37, including indoor air
temperature, humidity, PMV, energy consumption for each zone
and related outdoor environmental parameters; and the action
dimension is 10, including cooling and heating set points for each
zone.

Experiment results. Figure 1 shows the energy-saving perfor-
mance of model-based and model-free DRL control method with
50×104 time-steps of training data. The reward means the energy-
saving performance under the reasonable thermal comfort that is
defined in Section 4.2.4. We evaluate the accumulated reward every
2976 time-steps (one month). The performance of the rule-based
method is a straight line, because its reward does not change as the
weather data and building environment are deterministic.

From Figure 1, we can see that model-based DRL and PPO
method need 7.5×104 and 23.75×104 time-steps to behave better
performance than rule-based method. For converge time, the model-
based method needs 11.5×104 and the PPO method needs 50×104

time-steps. The model-based method is 4.38× more data-efficient
than PPOmethod. However, in the long run, the model-free method
eventually outperforms the model-based method. It’s easy to see
that the model-free method is a trial and error method and the
performance increases when using more training data. However,
in this case, our model-based method cannot achieve the same
performance as model-free method as the training data increases.
The model-based method performs well when the action and state
dimension is low (e.g., 9 in [10]). However, both the building dynam-
ics model and the control method may not be efficient when the
state and action dimension is high, like 47 in our 5-zone building.

Challenge 1 - Model Uncertainty. Neural network models
may have epistemic uncertainty, due to the lack of sufficient data to
uniquely model the underlying system [24–27]. In an MBRL-based

HVAC control system, a building dynamics model predicts the next
state of the building, given the current state (e.g. current zone
temperature) and a control action (e.g. actuators’ temperature set-
points). Even a small bias of the building dynamics model may
significantly impact the decision of the controller [25, 26]. We
conduct an experiment to study this uncertainty of the existing
building dynamics model. We use 8000 historical data points to
train the model, and 2000 data points for testing.

Figure 2 shows the predictive zone temperature as a function of
the action performed. The x-axis shows the temperature differential
between the supply temperature (action) and the zone temperature
at time 𝑡 , and the y-axis shows the temperature differential between
the zone temperature after and before actuation. The figure depicts
the predicted temperatures of two neural network models and the
ground truth. These two models have the same architecture and
are trained with the same training data, but their training processes
start with different initialization states. In the middle region of
Figure 2, we have sufficient data, since most of the actions in the
historical data do not change the state sharply. In this region, both
models can accurately predict the next state. However, when the
actions intend to change the state much, we do not have sufficient
data for training, and the performance of the two models diverges.

Challenge 2 - Controller Effectiveness. RS generates 𝑁 in-
dependent random action sequences {𝑎𝑡 , ...𝑎𝑡+𝐻−1}, where each
sequence 𝐴𝑖 =

{
𝑎𝑖0 ...𝑎

𝑖
𝐻−1

}
for 𝑖 = 1...𝑁 is of length 𝐻 action.

Given a reward function 𝑟 (𝑠, 𝑎) that defines the task, and given
future state predictions 𝑠𝑡+1 = 𝑠𝑡 + 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) from the learned
dynamics model 𝑓𝜃 , the optimal action sequence 𝐴𝑖∗ is selected
as the one with the highest predicted reward: 𝑖∗ = arg max𝑖 𝑅𝑖 =
arg max𝑖

∑𝑡+𝐻−1
𝑡
′
=𝑡

𝑟
(
𝑠𝑡 ′ , 𝑎𝑡 ′

)
.

Figure 3 studies the energy consumption and thermal comfort
of three HVAC control methods, including a rule-based method, a
model-based method and a model-free method. To eliminate the
impact of model uncertainty for the model-based method, we use
the ground-truth states of the building as the results of the building
dynamics model (i.e. perfect future state prediction). From the
Figure 3, we can see that all threemethods canmeet the requirement
of thermal comfort with same level of PMV value (0.48, 0.45, 0.41).
The energy consumption of the model-basedmethod is 4.70% higher
than the model-free method. It is caused by RS control, because
the building dynamics model used in the model-based method is
perfect in this experiment.

Based on the previous observations, our main goal is to overcome
the drawbacks of model uncertainty and controller effectiveness
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and find a method that is able to match the high performance of
model-free methods while having the sample/data-efficiency of
model-based methods.
4 DESIGN OF MB2C
In this section, we describe the design of MB2C, including model-
based DRL for a multi-zone building control, the building dynamics
model and its training details, online control action planning and
in-situ update of the building dynamics model.
4.1 MB2C Overview
Figure 4 shows the overview of MB2C as a model-based DRL control
approach [26] for multi-zone building HVAC systems. At a high
level, MB2C includes two key components, i.e., a building dynamics
model and a Model Predictive Path Integral (MPPI) based controller.
Our building dynamics model is built by an Ensemble of multiple
Environment-conditioned Neural Networks (ENN). It takes the
current state of the building HVAC system and a specific control
action as input, and outputs the next state of the building HVAC
system. Based on the historical data, we train the building dynamics
model as a supervised learning process. With the trained building
dynamics model, our MPPI-based controller can evaluate different
control actions and find the best control action for next time step,
which meets the thermal comfort requirement with minimal energy
consumption.

When we deploy the system in a building, MB2C executes the
best control action by setting corresponding actuators every control
cycle. At the same time, we accumulate building data traces, i.e.,
the next HVAC state determined by the current HVAC state and the
executed control action. With the newly collected building traces,
we can perform in-situ updating of the building dynamics model
periodically (e.g., every week) with a sliding window of 2-months
to improve its accuracy, as the seasonality of the data changes
during the year. One iterative training process takes 25.32 minutes
to finish using a laptop with Intel 4-core i7-6700 CPU and Nvidia
GTX 960M GPU, and it can be performed in parallel when the
current model is being used in the building; thus, the overhead of
the iterative training process does not impact the usage of MB2C
in real buildings.

4.2 Model-Based Deep Reinforcement Learning
for Multi-zone Building Control

We extend the current MBRL-based method to multi-zone building
HVAC control, including the design of those key components.

4.2.1 Preliminaries for DRL. The goal of reinforcement learning
is to learn a policy that maximizes the sum of future rewards. At
each time step 𝑡 , the controller is in state 𝑠𝑡 ∈ 𝑆 , executes some
action 𝑎𝑡 ∈ 𝐴, receives reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ), and transitions to
the next state s𝑡+1 according to some unknown dynamics function
𝑓 : 𝑆 × 𝐴 → 𝑆 . The goal at each time step is to take the action
that maximizes the discounted sum of future rewards, given by∑∞
𝑡
′
=𝑡
𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′ ), where 𝛾 ∈ [0, 1] is a discount factor that

prioritizes near-term rewards. Note that performing this policy ex-
traction requires knowing the underlying reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 )
that we use for planning actions under the learned model.

In model-based reinforcement learning, a model of the dynamics
is used to make predictions, which is used for action selection.
Let 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) denote a learned discrete-time dynamics function,
parameterized by 𝜃 , that takes the current state 𝑠𝑡 and action 𝑎𝑡 and
outputs an estimate of the next state at time 𝑡 + Δ𝑡 . We can then
choose actions by solving the following optimization problem:

(𝑎𝑡 , ...𝑎𝑡+𝐻−1) = arg max𝑎𝑡 ,...𝑎𝑡+𝐻−1

∑𝑡+𝐻−1
𝑡
′
=𝑡

𝛾𝑡
′−𝑡𝑟

(
𝑠𝑡 ′ , 𝑎𝑡 ′

)
(1)

In other words, we will pick the action sequence that maximizes
the discounted sum of reward of future 𝐻 time-steps. In practice,
it is often desirable to solve this optimization at each time step,
execute only the first action from the sequence, and then re-plan at
the next time step with updated state information. Such a control
scheme is often referred to as model predictive control (MPC), and
is known to compensate well for errors in the model.

4.2.2 State Design. The state is what the building dynamics model
takes as input for the next prediction step. In this study, we separate
the state into 2 parts: (a) the building state (𝑠𝑡𝑖 ), which are the
state variables that change with our control actions; and (b) the
environment state (𝑒𝑡𝑖 ), which are the state variables that do not
change with our control actions.

Building State (𝑠𝑡𝑖 ) The building state vector that changes over
time 𝑡 for the 𝑖th zone consists of the following items: indoor air
temperature(◦C), indoor air relative humidity (%), PMV, heating en-
ergy consumption (kWh) and cooling energy consumption (kWh).

Environment State (𝑒𝑡𝑖 ) The environment state vector that
changes over time 𝑡 for the 𝑖th consists of the following items:
outdoor air temperature (◦C), outdoor air relative humidity (%),
diffuse solar radiation (𝑊 /𝑚2), direct solar radiation (𝑊 /𝑚2), solar
incident angle (◦), wind speed (m/s), wind direction and occupancy
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flag (0 or 1). The occupancy flag is an indicator to detect whether
there are people in the 𝑖th zone, and it is the only element in the
vector that changes per zone.

Taking our 5-zone building as an example, the state dimension
is 37 including the building, and environment state variables.

4.2.3 Action Design. The action vector (𝑎𝑡𝑖 ) shows the actuation
variables used by the controller to control the building state (𝑠𝑡𝑖 ).
The action state vector that changes over time 𝑡 for the 𝑖th zone
consists of the following items: cooling temperature set-point and
the heating temperature set-point (both in ◦C). Given the current
state (𝑠𝑡𝑖 and 𝑒𝑡𝑖 ) and action (𝑎𝑡𝑖 ), we want the controller to find
the most suitable action combinations (𝑎 (𝑡+1)𝑖 ) for all the zones
to balance energy consumption and thermal comfort metrics. The
action dimension is 10 in our five-zone building.

4.2.4 Reward Design. The reward function controls the optimiza-
tion parameters that want to be maximized when the agent per-
forms an action (𝑎𝑡𝑖 ) to transition from the building state 𝑠𝑡𝑖 to
𝑠 (𝑡+1)𝑖 . Both thermal comfort and energy consumption should be
incorporated. The reward function is defined as follows:

𝑅 = −
𝑁∑
𝑖=1
(𝜌𝑁𝑜𝑟𝑚( |𝑃𝑀𝑉𝑖 |) + 𝑁𝑜𝑟𝑚(𝐸𝑖 )) , (2)

where 𝐸 is heating and cooling energy consumption for each zone,
we use Fanger’s formula for the Predictive Mean Vote (PMV) [23]
to estimate comfortable temperature bounds for the “standard”
occupant within the current seasonal conditions, as defined by
ASHRAE standard 55 [28]. The maximum high/low end of the
comfort range for Class C environments has PMV values of +/-
0.7. 𝜌 is used to balance the relative importance between energy
consumption and thermal comfort. We use 𝜌 = 4 during occupied
periods and 0.1 during unoccupied periods since the range of human
comfort and energy consumption is different during occupied and
unoccupied periods. The reward evaluates the actions to meet the
requirement of thermal comfort of all the occupants in the building.
𝑁 is the number of zones. In the following sections, we will remove
the 𝑖 index for each zone to simplify the notation.

4.3 Learning the Building Dynamics
We require a parameterization of the building dynamics model that
can cope with high-dimensional state and action spaces, and the
complex dynamics of a multi-zone building. Therefore, we represent
the dynamics function 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) as a multi-layer neural network,
parameterized by 𝜃 . This function outputs the predicted change
in state that occurs as a result of executing action 𝑎𝑡 from state 𝑠𝑡 ,
over the time step duration of Δ𝑡 . Thus, the predicted next state is
given by: 𝑠𝑡+1 = 𝑠𝑡 + 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ). While choosing too small of a Δ𝑡
leads to too small of a state difference to allow meaningful learning,
increasing the Δ𝑡 too much can also make the learning process
more difficult because it increases the complexity of the underlying
continuous-time dynamics.

4.3.1 Environment-conditioned Neural Network Architecture. We
define a neural network model 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) for the building dynamics.
In order to make the model achieve both good predictive accuracies
and tractable computational optimization, we propose a simple and
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Figure 5: Environment-conditioned neural network for our
Building Dynamics Model.

highly effective method for incorporating environment informa-
tion. We formulate an environment-conditioned dynamics model
𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 , 𝑒𝑡 ) that takes as input not only the current building state
𝑠𝑡 and action 𝑎𝑡 , but also the current environment state 𝑒𝑡 . The
model architecture is shown in Figure 5. The building state vector
𝑠𝑡 , the action vector 𝑎𝑡 and the environment state vector 𝑒𝑡 are
concatenated together and then are passed through two hidden
layers and a final output layer. As opposed to a straightforward
outputting of all the related states (building and environment), we
produce a prediction of building state difference Δ𝑠𝑡 . This reduces
the burden of the model to learn the changes in the environment
that are not necessary. We provide the ground truth value for
environment state, e.g., weather data and occupancy [21].

4.3.2 Weighted Ensemble Learning. As prior work [25, 26] has
shown, capturing epistemic uncertainty in the network weights is
important in model-based RL, especially with high capacity models
that are liable to over-fit to the training set and extrapolate erro-
neously outside of it. To solve epistemic uncertainty, we propose
a weighted ensemble learning algorithm, which approximates the
posterior 𝑝 (𝜃 |𝐷) with a set of𝑀 models, each with parameters 𝜃𝑖 .
For deep models, it is sufficient to simply initialize each model 𝜃𝑖
with a different random initialization 𝜃0

𝑖
and use different batches

of data 𝐷𝑖 at each training step.
We have𝑀 environmental-conditioned models. The input for all

𝑀 models is the same and it includes the building and environment
states and actions. To evaluate the performance of each model, we
calculate the mean square error (𝑀𝑆𝐸) of the past𝐶 timesteps (4 in
our case) for each model compared to the ground truth for 𝑁 states
using Equation 3.

𝑀𝑆𝐸 =
∑𝐶
𝑖=1

∑𝑁
𝑗=1 𝜙

𝐶
���𝑓𝜃 (

𝑠𝑖, 𝑗 , 𝑎𝑖, 𝑗
)
− 𝑓𝑡𝑟𝑢𝑒

���2 (3)

We introduce a temporal discount factor 𝜙 (0.9 in our case) that
is used to evaluate how important past model error to the current
model error. The temporal discount factor is a value between 0 and 1
since recent prediction cases aremore important to the performance
of current prediction. After we have the𝑀𝑆𝐸 for each model of past
𝐶 timesteps, we first normalize the𝑀𝑆𝐸 to 0-1 scale. 𝑁𝑜𝑟𝑚(𝑥) is a
normalization process, i.e., 𝑁𝑜𝑟𝑚(𝑥) = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛).
Then we calculate the weight ratio𝑊 for all models by Equation 4.

𝑊 =
1−𝑁𝑜𝑟𝑚 (𝑀𝑆𝐸𝑖 )∑𝑀

𝑖=1 (1−𝑁𝑜𝑟𝑚 (𝑀𝑆𝐸𝑖 ))
(4)

The sum of all model’s weight is 1. After that, we leverage
Equation 5 to predict the next state.

𝑠𝑡+1 =
∑𝑀
𝑖=1𝑊𝑖 𝑓𝜃𝑖 (𝑠, 𝑎) (5)
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This allows our method to dynamically adjust the weights in
aggregating the𝑀 models (𝑀=5 in our case) during the prediction.
As the states result in unequal prediction accuracy, our method is
more robust against this variance.

4.4 Training the Building Dynamics Model
In this section, we illustrate how we pre-process training data, and
train the proposed ENN model.

4.4.1 Data Collection. We collect the training dataset𝐷 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
by executing the rule-based controller at each time step, and record-
ing the resulting data 𝜏 = (𝑠 (0), 𝑎(0), 𝑠 (1), 𝑎(1), ..., 𝑠 (𝑇 − 2), 𝑎(𝑇 −
2), 𝑠 (𝑇 − 1))) of length𝑇 . We note that these data are very different
from the data the controller will end up executing when planning
with this learned dynamics model and a given reward function
𝑟 (𝑠𝑡 , 𝑎𝑡 ) (Section 4.5), showing the ability of model-based methods
to learn from off-policy data.

4.4.2 Data Preprocessing. We slice the collected data {𝜏} into train-
ing data inputs (𝑠𝑡 , 𝑎𝑡 ) and corresponding output labels 𝑠𝑡+1 − 𝑠𝑡 . In
building HVAC control, states can be temperature, humidity ratio,
energy consumption, etc. These measurements have various ranges
and the weights of the losses will be different if we feed the raw
values directly to train the neural network model. Thus, we subtract
the mean of the states/action and divide by the standard deviation
𝑥 ′ = 𝑥−𝑥

𝜎 (𝑥) , where x stands for state or action.

4.4.3 Training the ENN Dynamics Model. ENN model consists of
an ensemble of models. To make sure the models behave differently
on the same dataset 𝐷 , we randomly initialize model parameter
𝜃1, 𝜃2, ..., 𝜃𝑀 for all the dynamicsmodels and use different batches of
data𝐷 at each training step. We train the dynamics model 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 )
using stochastic gradient descent [29] by minimizing the Mean
Square Error (MSE) between predicted delta observation and ground
truth delta observation as follows:

𝜀 (𝜃 ) = 1
𝐷

∑
(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1) ∈𝐷

1
2 ∥(𝑠𝑡+1 − 𝑠𝑡 ) − 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) ∥

2 (6)

We use 5-year weather data from Fresno, CA and Chicago, IL
for the ENN model training and a completely different one-year
for testing in this study. We provide the ENN model with ground
truth information on future environment state, i.e. weather and
occupancy [21]. In our implementation of ENN, we use the Adam
optimizer [30] for gradient-based optimization with a learning
rate of 10−3. We train the ENN model with a batch size of 512
and a discount factor 𝛾 = 0.99. The number of epochs is 40. Each
dynamicsmodel consists of a neural network of two fully-connected
hidden layers of size 200 with relu being nonlinear and a final fully-
connected output layer. The weights and biases are initialized using
the Xavier initialization process [31]. The number of samples for
MPC controllers (RS, CEM, and MPPI) is 1000. The control cycle
(timestep) is 15 minutes that have been used in classic control
work [32]. We achieve convergence by 4.75x104 time-steps as ex-
plained in Section 5.3.1.

4.5 Online Control Action Planning
In our method, we use online planning with MPC to select ac-
tions via our model predictions. Given the building state 𝑠𝑡 at
time 𝑡 , the prediction horizon 𝐻 of the MPC controller, and an

action sequence 𝑎𝑡 :𝑡+𝐻 = {𝑎𝑡 , ..., 𝑎𝑡+𝐻 }, the proposed ENN model
𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ) produces a prediction over the resulting data 𝑠𝑡 :𝑡+𝐻 . At
each time step 𝑡 , the MPC controller applies the first action 𝑎𝑡 of the
sequence of optimized actions 𝐴𝐻𝑡 = arg max𝐴𝐻

𝑡

∑𝑡+𝐻−1
𝑡
′
=𝑡

𝑟
(
𝑠𝑡 ′ , 𝑎𝑡 ′

)
.

We adopt the MPPI control method [13] to compute the optimal
action sequence.

Model Predictive Path Integral (MPPI) Controller. MPPI
control method has been applied to autonomously control a vehi-
cle and get good performance. MPPI is an importance-sampling
weighted algorithm and considers an update rule that more effec-
tively integrates a larger number of samples into the distribution
update. As derived by recent model-predictive path integral work
[13], this general update rule takes the following form for time step
𝑡 , from each of the 𝐾 predicted trajectories:

𝑎𝑖+1𝑡 = 𝑎𝑖𝑡 +
∑𝐾
𝑘=1 𝜔 (𝜀

𝑘 )𝜖𝑘𝑡 (7)

Where 𝜔 is the importance-sampling weight for each trajectory
and 𝜖 is the noise for exploration. The action for timesteps 𝑡 of
(𝑖 + 1)𝑡ℎ trajectory is the sum of the action for timesteps 𝑡 of 𝑖𝑡ℎ
trajectory and the noise-weighted average over sampled trajecto-
ries.

As shown in the algorithm 1, an initial control sequence is done
either by initializing the input buffer with zeros or by using a
secondary controller such as rule-based method and using its inputs
as the initial control sequence. We first sample 𝐻 noise from a
normal distribution. Then, we compute 𝐾 trajectories for 𝐻 finite
horizon with Brownian motion. For each trajectory generated, a
cost is computed and stored in memory (line 2-7).

In model predictive control, optimization and execution take
place simultaneously: a control sequence is computed, and then the
first element of the sequence is executed. This process is repeated
using the un-executed portion of the previous control sequence as
the importance sampling trajectory for the next iteration. In order
to ensure that at least one trajectory has non-zero mass (i.e., at least
one trajectory has a lowest cost), we subtract the minimum cost
of all the sampled trajectories from the cost function (line 9). Note
that subtracting by a constant has no effect on the location of the
minimum. In the second loop, we get the noise weighted average
over 𝐾 sampled trajectories (lines 10-11). The third loop computes
an optimal input sequence using least cost of the trajectories for 𝐻
finite horizons (lines 12-13). The top of the stack value is given to
the actuators (line 14). After that, the whole input control sequence
is left shifted by 1 (lines 15-16). To maintain the length of buffer,
𝑎𝑖𝑛𝑖𝑡 is appended to the input control sequence (line 17). The states
are then updated from the ENN model.

4.6 Putting It All Together
We summarize the working flow of MB2C as follows. We first
gather historical dataset 𝐷 using a rule-based policy and randomly
initialize model parameter 𝜃1, 𝜃2, ..., 𝜃𝑀 for ENN. Then we train the
ENN model using this dataset by Equation 6. Finally, we deploy the
learned ENN model and our MPPI controller in the real building
for HVAC control.

For one control execution, we first obtain the current building
state from sensors (e.g., zone temperature from a temperature



MB2C: Model-Based Deep Reinforcement Learning
for Multi-zone Building Control BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

Algorithm 1:MPPI Controller

Input: ENN dynamics model 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 );
K: Number of samples, H: Length of horizon;
(𝑎0, 𝑎1, ...𝑎𝐻−1): Initial control sequence;
𝜆:Control hyper-parameter ;
Output: The control sequence 𝑎𝑡 :𝑡+𝐻 ;

1 𝑠0 ← 𝐺𝑒𝑡𝑆𝑡𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 () ;
2 for k = 0,1,...,K -1 do
3 s← 𝑠0;
4 Sample noise 𝜀𝑘 = {𝜖𝑘0 , 𝜖

𝑘
0 , ...𝜖

𝑘
𝐻−1} ∼ N(𝜇, 𝜎) ;

5 for t = 1,...,H do
6 𝑠𝑡 ← 𝑓𝜃 (𝑠𝑡−1, 𝑎𝑡−1 + 𝜖𝑘𝑡−1) ;
7 𝐶𝑜𝑠𝑡 (𝜀𝑘 ) += −𝑟𝑒𝑤𝑎𝑟𝑑 defined by equation 2 ;

8 𝛽 ←𝑚𝑖𝑛𝑘 [𝐶𝑜𝑠𝑡 (𝜀𝑘 )] ;
9 𝜂 ← ∑𝐾−1

𝑘=0 𝑒𝑥𝑝 (−
1
𝜆
(𝐶𝑜𝑠𝑡 (𝜀𝑘 ) − 𝛽)) ;

10 for k = 0,1,...,K -1 do
11 𝜔 (𝜀𝑘 ) ← 1

𝜂 𝑒𝑥𝑝 (𝐶𝑜𝑠𝑡 (𝜀
𝑘 ) − 𝛽);

12 for t = 0,1,...,H -1 do
13 𝑎∗𝑡 = 𝑎𝑡 +

∑𝐾
𝑘=1 𝜔 (𝜀

𝑘 )𝜖𝑘𝑡 ;
14 SendToActuators(𝑎0);
15 for t = 0,1,...,H -1 do
16 𝑎𝑡−1 = 𝑎𝑡 ;
17 𝑎𝑡−1 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑎𝑡−1);

sensor). After that, the best action sequence is sampled by MPPI
controller with 𝐻 horizon and the state is propagated by ENN
model by solving the optimization problem defined in Equation 1.
We execute the first action of the optimal action sequence in the
building by setting corresponding actuators.

When MB2C is running in the building, we can also collect build-
ing operation data, which is composed of control action execution
records 𝐷 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), including current state, control action, and
next state. We add the newly collected data into a sliding window
for two months of data and train the ENNmodel from scratch again.
We use a sliding window to adapt to the seasonality of the data,
especially weather data. We randomly divide the training data set
into a set of batch and update the weight through forward and
backward propagation by feeding the data into the model. This
process is called one epoch training after traversing all the batch
of data. We will repeat this process for multiple epochs (40 in
our current implementation) until the model converges. This is an
iterative in-situ updating process to improve the accuracy of our
building dynamic model.

5 EVALUATION
In this section, we conduct a variety of experiments in EnergyPlus
to evaluate the performance of MB2C and three baselines by a set
of performance metrics.

5.1 Platform Setup
Building Example and its Dynamics Model in EnergyPlus In
this work, we evaluate the performance ofMB2C in a building of 463
𝑚2 at Fresno, California. It is a single floor rectangular building of 5
thermal zones- 4 exterior zones, 1 interior zone. There are windows
on all 4 facades. The HVAC system is single duct terminal reheat,
which is composed by an Air Handler Unit (AHU) and Variable Air
Volume (VAV) boxes. The AHU includes a fan, heating and cooling
coils that can change the air’s temperature. The VAV boxes take
this pre-conditioned air from the main duct, heat it if necessary,
and control the airflow provided to each zone.

Since we cannot conduct control experiments in the real building,
we leverage a building model in EnergyPlus version 8.6 and conduct
simulations with Typical Meteorological Year 3 (TMY3) weather
data. In our implementation, the AHU set-point is set by default
EnergyPlus control logic, and we only control the heating and
cooling set-point in the VAV box.

EnergyPlus has been widely used to evaluate the HVAC control
algorithm [6, 7, 10, 21]. There are four reasons why we choose
EnergyPlus. First, we do not have one real building that allows us
to conduct experiments. MB2C could be deployed in a real building
after we finish the ENN model training. Second, it is convenient to
generate enough historical training data of rule-based method to
train the ENN model. Third, in order to compare with a model-free
DRL, we need a significant training data set to train these models
since MFRL is not sample efficient. In our case, we need 5200 days
(14+ years) of training data, which is unreasonable to obtain from
real buildings. Finally, it is easy for us to evaluate the performance
of different control algorithms under different locations, seasons
and weather profiles.

MB2C System Components As shown in Figure 4, MB2C sys-
tem includes two main parts: the building dynamics model ENN
and the MPPI controller. We also need to store the newly col-
lected building operation data for in-situ update of the building
dynamics model. All these three components are all implemented
in Tensorflow, which is an open-source machine learning library in
Python. We use the building control virtual testbed (BCVTB) [33]
for establishing a connection between EnergyPlus and MB2C. We
execute the control action by setting the temperature to a specific
set point for each zone of our EnergyPlus building model during
each control cycle.

5.2 Experiment Setting
We train ENN model based on the weather data from two different
cities, Fresno, CA and Chicago, IL due to their distinct weather char-
acteristics. The weather data for Fresno has intensive solar radiation
and large variance in temperature, while Chicago is classified as
hot-summer humid continental with four distinct seasons.

We compare MB2C with the three baselines. We execute these
four control methods to control the building HVAC system using
the same weather data for simulation.

Rule-based Method: We implement a rule-based method ac-
cording to our current campus building control policy for training
data generation and comparison evaluation. We assign different
zone temperature set-points. Each zone has a separate heating and
cooling set-point. The heating set-point is set to 70 ◦F, and the
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Figure 8: Daily Energy Consumption for
Five Zones.

cooling set-point to 74 ◦F during the warm-up stage. The cooling
set-point is limited between 72◦F and 80◦F, and the heating set-
point is limited between 65◦F and 72◦F.

Model-free DRL:We implement Proximal Policy Optimization
(PPO) [22] that is the default reinforcement learning algorithm at
OpenAI because of its ease of use and good performance.

Model-based DRL with RS: For the conventional model-based
method, we implement the deterministic neural network to model
the building dynamics and RS method to choose the heating and
cooling setpoints [10].

5.3 Experiment Results
We compare MB2Cwith the above baselines by a set of performance
metrics, including convergence analysis, energy efficiency and
thermal comfort.We also study the performance ofMB2C, including
its daily energy consumption for each zone, the performance gain
of its key components, and its parameter setting.

5.3.1 Convergence Analysis. We first study the data efficiency of
MB2C and the other three baselines. For this study, we do not limit
ourselves to a sliding window of two months for MB2C, since the
MFRL method requires copious amount of training data. Figure 6
shows that the accumulated reward of four control methods in
each episode during a training process. One episode contains the
data collected in one month, corresponding to 2976 time-step. We
calculate the reward function every timestep. The reward in Figure 6
is the accumulated reward of one episode, i.e., the sum of the
rewards of 2976 time-steps. From the results in Figure 6, we see that
the episode reward increases and tends to be stable as the number
of training episodes increases. When the episode reward does not
change much, it means that we cannot do further to improve the
learned control policy and thus the training process converges.

As indicated in Figure 6, MB2C behaves better than rule-based
method after the 1.75×104 time-steps. In this stage, the ENN model
is first learned from off-line historical data. Then it can be deployed
into real buildings and leverages theMPPI controller for exploration
to further improve its performance. The model-based DRL and
model-free DRL need 7.5×104 and 23.75×104 time-steps to behave
better than rule-based method. MB2C achieves 4.28× and 13.57×
more data-efficient than model-based DRL and model-free DRL.

For convergence time, MB2C converges faster than both model-
based DRL and model-free DRL. MB2C needs 4.75×104 and model-
based DRL needs 11.5×104 time-steps. The model-free DRL needs
50x104 timesteps. MB2C is 2.4× and 10.52× data-efficient than

model-based DRL and model-free DRL with the same performance
as model-free DRL.

5.3.2 Energy Efficiency. Figure 7 depicts the energy consumption
results of four control methods. The results reveal that MB2C saves
10.65% and 8.23% energy on average, compared with the rule-based
method and model-based DRL. Compared with model-free DRL,
MB2C achieves comparable performance. MB2C reduces the energy
consumption of HVAC by modeling the complex building dynamics
accurately and finding better heating and cooling setpoints.

We can also find that for different seasons and cities, the energy
consumption is different. In Fresno, the building consumes 4770.04
kWh in July which is 33.39% more energy than that in January
which consumes 3576.07 kWh. The reason is that in July, the out-
door air temperature range at Fresno is 15◦C ∼ 42◦C. We have
to keep cooling in daylight. However, in January, the outdoor air
temperature range at Fresno -1◦C ∼ 18◦C. This means that we can
use outside air that is already in best range of thermal comfort to
save energy.

In Chicago, the building consumes 4300.47 kWh in January that
is 6.86% more energy than in July, because the weather is cold and
the outdoor air temperature range in Chicago is -20◦C ∼ 15◦C. In
July, the outdoor air temperature range at Merced and Chicago is
similar, 15◦C ∼ 42◦C and 15◦C ∼ 40◦C respectively. But the energy
consumption in Fresno is 18.53% higher than the energy in Chicago.
The reason is that the average day and night temperature difference
for each day is larger than Chicago.

5.3.3 Thermal Comfort. Table 1 presents the average PMV value
for all five zones in January and July under Fresno and Chicago
weather data. All four control methods can maintain the PMV value
in the desired range (-0.7∼0.7) for most of the time. The average
violation rate of model-based method is 1.97%, which is a little
higher than the other three methods, because the controller tries
random actions and some of the actions may lead to bad thermal
comfort. MB2C achieves a low average violation rate by leveraging
more accurate ENN model and more effective MPPI controller.

5.3.4 Daily Energy Consumption for Five Zones. We analyze the
daily energy consumption of MB2C for five zones in July at Fresno.
As shown in Figure 8, we record the heating energy and cooling
energy for each zone per day. The top five hollow line symbols
record the trend of cooling energy for five zones respectively. The
bottom five solid line shows the trend of heating energy for five
zones respectively. The energy spent by the third zone is higher
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Table 1: Thermal Comfort Statistical Results for Rule-based, Model-based, Model-free and MB2C Schemes

Location Comfort Metric Rule-based method Model-based method Model-free based method MB2C
January July January July January July January July

Fresno PMV
Mean -0.36 -0.20 -0.32 -0.19 -0.11 -0.03 -0.04 0.13
Std 0.26 0.36 0.31 0.34 0.15 0.18 0.11 0.14

Violation rate 1.22% 1.51% 2.12% 1.71% 0 0.14% 0.40% 0.58%

Chicago PMV
Mean -0.17 -0.30 -0.26 -0.18 -0.25 0.07 -0.23 0.05
Std 0.23 0.33 0.24 0.31 0.17 0.19 0.07 0.20

Violation rate 1.20% 2.04% 1.9% 2.13% 0.95% 0 0.46% 1.23%

than the other zones, because the third zone is south-oriented and
the sunlight hits into that zone most of the time.

We also see that both heating and cooling occurs in some days,
because the day and night temperature difference is large. In the
daylight, the average outdoor temperature is 38◦C, and thus we
need more energy for cooling. However, at night, the average
outdoor temperature is 15◦C, and thus we need some heating
air to meet the minimum requirement of thermal comfort (in our
simulations we assume an office-like environment with students
working at night sometimes).

5.3.5 Performance Decomposition. We implement three versions of
MB2C with different control methods, i.e., RS (MB_ENN_RS), CEM
(MB_ENN_CEM) and MPPI control method (MB_ENN_MPPI). We
also compare with the rule-based method and the existing model-
based DRL method (MB_DNN_RS).

ForMB_ENN_CEM, we implement (Cross-entropymethod) CEM
[34] controller that begins as the RS method and does this sampling
for multiple iterations 𝑚 ∈ {0...𝑀} at each time step. The top 𝐽
highest-scoring action sequences from each iteration are used to
update and refine the mean and variance of the sampling distribu-
tion for the next iteration. After𝑀 iterations, the optimal heating
and cooling actions are selected to be the resulting mean of the
action distribution.

Figure 9 demonstrates the energy consumption of these four
methods in two different months and at two different places (Fresno
and Chicago). Compared with the rule-based method, MB_DNN_RS
can only save 2.42% energy. When the building dynamics model
in MB_DNN_RS changed to proposed model (MB_ENN_RS), 3.34%
more energy can be saved, which illustrates the efficiency of pro-
posed model. When we change the RS method to CEM method
and MPPI method with the proposed model, 2.39% and 4.89 % more
energy can be saved that illustrates efficiency of the MPPI controller.

5.3.6 Parameter Setting. MB2C has two important parameters that
may influence its performance.

The Number of Samples in the MPPI Algorithm. Figure 10
illustrates the performance of the MPPI controller as the number
of sample trajectories is changed. We run MPPI controller with
ground truth model to investigate the effect of different number
of trajectories (10, 30, 100, 500, 1000, 2000, 5000, 10000). We ran 10
times to calculate the mean and standard reward for each number
of trajectories. From Figure 10, we can see that the reward increases
quickly as we increase the number of trajectories before 1000
trajectories (power of 3 in the figure). Then it increases slowly
after 1000 trajectories, indicating that it is enough for the MPPI
algorithm to converge. We also calculate the latency for making one
action selection under different number of trajectories. we can see
that the latency increases exponentially when trajectories increase.
Thus we choose 1000 as the number of trajectories by considering
the best reward and lower latency trade-off.

The Length of Horizon in the MPC Process. The horizon
refers to the number of steps to look ahead in the MPC process.
We investigate the effect of different length of Horizon 𝐻 in Al-
gorithm 1 to the performance of MPPI Controller. From Figure 11,
we can see that the reward increases as the length of 𝐻 increases
and achieves the highest reward when 𝐻 is 20. Then the reward
decreases when we continue increasing the length of𝐻 . The reason
is that small horizon results in more greedy actions that may not
consider future dynamics. Large horizon produces worse actions
since the prediction errors aggregate as the horizon becomes larger.
We choose 20 for the horizon, which balances the prediction errors
and action performance with short latency.

6 DISCUSSION
Building Model Calibration. Currently, we are leveraging the
existing five-zone building model in EnergyPlus to evaluate all
the existing control methods. We have not done the calibration
for this building model since we have no historical operation data
of that building. The buildings implemented in EnergyPlus are
based on first principles thermodynamical models, so we expect
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this model to be similar in performance to a real building. Moreover,
it is reasonable to compare all the control methods based on the
same building model implemented in EnergyPlus as ground truth.
So, for the evaluation done in the paper, we believe this is a fair
comparison to test the relative performance of different schemes for
“a particular building”. If the proposed MB2C was to be deployed in
a real building, we would first need to learn the dynamics model
from the existing historical data from a real building. Then we
deploy the model in the real building for control. If we were to
do simulations to test MB2C before real deployment, we need to
develop a calibrated EnergyPlus model that matches the target
building [6, 7].

Occupancy and Weather Model. In MB2C, we provide the
ground truth value of weather and occupancy for ENN dynamics
model. MB2Cmight be a bit more optimistic sincewe assume perfect
prediction for the weather and occupancy. The errors in prediction
may impact controller performance. However, we believe the perfor-
mance will not significantly deviate from actual results considering
model prediction errors. First is that the existing occupancy and
weather prediction model [3, 4, 35, 36] show very small prediction
error. Second is that MPPI controller outputs the optimal trajectory
over the planning horizon. MPPI only takes the first optimal action
and re-plans at the next time step based on new observations. This
efficiently avoids compounding model error over time.

7 CONCLUSIONS
This paper proposesMB2C, a novel model-based DRLHVAC control
system for multi-zone buildings. We develop a new building dy-
namics model as an ensemble of multiple environment-conditioned
neural network models. We also adopt a model predictive path
integral control method to perform HVAC control. We compare
the performance of MB2C with the rule-based, and state-of-the-art
model-based and model-free DRL schemes. The results show that
MB2C can achieve 10.65%, 8.23% energy savings on the former and
comparable performance with the later, while maintaining (and
sometimes even improving) thermal comfort of occupants. Perhaps
more importantly, we can achieve this by significantly reducing
the training set required by an order of magnitude (10.52× less).
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