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ABSTRACT
Map matching for cellular data is to transform a sequence of cell
tower locations to a trajectory on a road map. It is an essential
processing step for many applications, such as traffic optimization
and human mobility analysis. However, most current map matching
approaches are based on Hidden Markov Models (HMMs) that
have heavy computation overhead to consider high-order cell tower
information. This paper presents a fast map matching framework
for cellular data, named as DMM, which adopts a recurrent neural
network (RNN) to identify the most-likely trajectory of roads given
a sequence of cell towers. Once the RNN model is trained, it can
process cell tower sequences as making RNN inference, resulting
in fast map matching speed. To transform DMM into a practical
system, several challenges are addressed by developing a set of
techniques, including spatial-aware representation of input cell tower
sequences, an encoder-decoder framework for map matching model
with variable-length input and output, and a reinforcement learning
based model for optimizing the matched outputs. Extensive experi-
ments on a large-scale anonymized cellular dataset reveal that DMM
provides high map matching accuracy (precision 80.43% and recall
85.42%) and reduces the average inference time of HMM-based
approaches by 46.58×.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Networks→
Location based services; • Human-centered computing→ Ubiq-
uitous and mobile computing systems and tools.
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1 INTRODUCTION
Cellular data is a set of location sequences of cell towers, with
which a mobile phone has been associated. It has been processed for
many applications [1–9], including transportation analysis [4, 5] and
human mobility analysis [6–8, 10, 11]. An essential processing step
of all these applications is map matching that transforms a cell tower
sequence into the most-likely road trajectory on a road map. Efficient
map matching algorithms are necessary for providing fast processing
of large-scale cell tower sequences and minimizing computational
resource consumption (e.g., power, storage and computation). For
example, transportation analysis applications that can estimate road
traffic trends using cellular data require to match the cellular data on
a road map continuously in a timely manner.

Many map matching approaches [12–19] have been proposed.
Most of them use Hidden Markov Models [12–17] as their back-
bones, relying on Markov assumption to simplify the problem, i.e.,
the probability distribution of next roads only depends on the current
road and not on the past or future road. However, human mobility
on a road map is non-Markovian [20], especially when people have
a specific destination. Moreover, HMM-based approaches assume to
follow the shortest path between the surrounding roads of two consec-
utive cell towers, which leads to extensive search of the shortest paths
during online inference. This incurs high computational overhead,
especially for low-sampling-rate cell tower sequences. For a se-
quence of only 7 cell towers with 68 possible road candidates around
each cell tower, HMM takes about 32,368 (682 × 7) computations
of the shortest paths, corresponding to ∼ 82.5 seconds of running
time. To provide fast map matching, SnapNet [12] increases the
sampling rate of cell tower sequences by interpolating some locations
between two adjacent cell towers. SnapNet works well for moving
trajectories on highways; whereas it is hard to perform accurate
interpolation in urban areas where have a lot of possible routes
to connect two locations. As a consequence, simple interpolation
degrades the matching accuracy in urban areas.

In this paper, we propose a novel map matching framework for
cell tower sequences, named as DMM. It is based on a recurrent
neural network (RNN) [21] that takes a sequence of cell tower
locations as input and infers a trajectory composed of road segments.
The model directly learns the mapping between cell towers and roads
based on training data. This avoids the extensive computation of the
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shortest paths during online inference, and thus reduces computation
overhead. One RNN inference for a cellular data sequence is fast,
e.g., ∼1 second in our implementation for a sequence of 12 cell
towers. In addition, RNN-based model is expressive of representing
the sequence of cell towers by a hidden vector during inference. This
allows to consider multiple previous roads for inferring the next
road segment, but not just the last road. To transform DMM into a
practical system, we tackle a set of challenges.

Deep neural network based models require vector representations
for input cell towers. A classic approach is to use a binary vector
to represent a cell tower, in which all bits are ’0’ except one ’1’,
referring to the specific cell tower. However, this approach cannot
capture spatial proximity among cell towers. As a consequence,
learned map matching patterns of a cell tower cannot be utilized to
its adjacent cell towers. To enable accurate map matching, DMM
designs a high-quality, low-dimensional representation model. This
enables to share a similar representation for spatially-close cell
towers, and thus generates similar map matching results.

Intuitively, we design our map matching model based on classic
RNN-based models, e.g., Long Short-Term Memory (LSTM) [21] or
Gated Recurrent Unit (GRU) [22], which are supposed to transform
a given cell tower sequence into a trajectory composed of many
connected road segments. However, directly applying these models
does not work. First, the RNN outputs are conditionally independent,
i.e., the RNN model cannot guarantee that two adjacent output road
segments are connected. Second, since a cell tower may cover a
large area with hundreds of roads, the number of inferred road
segments for each cell tower is large and varies. To tackle the above
two challenges, we propose an encoder-decoder model for DMM,
which maintains two RNN models to maximize the probability of
identifying a true trajectory. One RNN model encodes a variable-
length cell tower sequence into a context vector with a fixed size.
The other RNN model decodes the vector into a variable-length
sequence of road segments. We also plug an alignment component
into the basic model to cope with long cell tower sequences.

To enable more accurate map matching for cellular data, DMM
leverages a number of heuristics to refine the inference. Besides the
heuristics considered in previous works [12] (i.e., taking the major
roads and staying on the same road), we also adopt a new global
heuristic, i.e., people prefer to choose a road trajectory that has less
frequency of turns given a sequence of cell towers. To incorporate
these three heuristics into a unified map matching framework, we
develop a reinforcement learning scheme. It has a well-defined
reward function to encourage the map-matched outputs that follow
the above three heuristics.

We implement DMM in PyTorch [23]. In order to train DMM,
we use an anonymized city-level cellular dataset provided by mobile
carriers in a large city. A GPU card is used to accelerate training
the neural networks. We evaluate DMM with real-world cell tower
sequences generated by volunteers travelling more than 1,700 km.
The experiment results demonstrate that DMM provides precision
and recall of 80.43% and 85.42%, respectively, corresponding to
performance gains of 19.33% and 15.12% over the state-of-the-art
approach [12]. DMM also significantly reduces the inference time of
HMM-based approaches by 46.58× while maintaining the accuracy.

In summary, this paper makes the following contributions.

• We develop DMM, an RNN-based map matching scheme.
• We customize DMM to tackle a set of challenges, including an

encoder-decoder model for variable length of input and output
sequences, a spatial-aware representation model for cell towers,
and a reinforcement learning scheme to refine the output results.
• We conduct extensive experiments and demonstrate the effective-

ness and efficiency of DMM based on a large cellular dataset.

2 MOTIVATION
In this section, we investigate the necessity of a novel map matching
scheme for cellular data and the limitations of existing solutions.

2.1 Map matching
We first define some key concepts in map matching.

Definition 1 - Cell tower sample. Every time, a mobile phone
communicates with a cell tower, including network service requests
(call, SMS and application usage) and the location updates (cell
handover and periodic location update), a cell tower sample is
passively recorded by the cellular network infrastructure. The cell
tower sample includes several fields, i.e., anonymized user identi-
fier, timestamp and the associated cell tower IDs. The anonymized
identifier is uniquely associated with each mobile phone. Based on
the cell tower map provided by the carriers, we also know the GPS
location of each cell tower.

Definition 2 - Cell tower sequence. A cell tower sequence is
the input of map matching, composing of a sequence of cell towers
accessed by a mobile phone, i.e., 𝑋 = 𝑥1, 𝑥2, ..., 𝑥 |𝑋 | , where |𝑋 | is
the number of cell towers. In our dataset, we have 887,116 pieces of
cell tower sequences from two mobile carriers of a large city.

Definition 3 - Road map. A road map can be described as a
directed graph 𝐺 (𝑉 , 𝐸), where 𝑉 is a set of nodes on the road map,
representing intersections or terminal points, and 𝐸 is a set of road
segments connecting these nodes. In this study, the road map is
obtained from a public open-source website (OpenStreetMap [24]).
All road information used in DMM is provided in the OpenStreetMap
road map (e.g., the length and speed limit of road segments).

Definition 4 - Candidate road segments. The candidate road
segments of a cell tower is a set of roads within a radius 𝑅𝐶 near a
cell tower. The setting of 𝑅𝐶 is related to location error of different
location sensors. For the sensor data with low location error (e.g.
GPS sensor), we select a smaller value (e.g. 100). In cellular environ-
ment, due to the different densities of cell towers in different areas,
the choice of 𝑅𝐶 varies, e.g., a small value 200 in urban areas and a
large value 500 in rural areas.

Definition 5 - Route or trajectory. A route 𝑌 is the output of
map matching, connecting a sequence of road segments on the road
map 𝐺 , i.e., 𝑌 = 𝑦1, 𝑦2, ..., 𝑦 |𝑌 | , where 𝑦𝑖 is a road segment in the
route 𝑌 , |𝑌 | is the number of road segments, and the end point of 𝑦𝑖
is the start point of 𝑦𝑖+1.

Definition 6 - Map matching. Given a cell tower sequence 𝑋

and a road map 𝐺 (𝑉 , 𝐸), a map matching model finds a most-likely
route 𝑌 on 𝐺 .

2.2 Existing map matching solutions
Most recent map matching approaches are based on Hidden Markov
Models (HMMs) [12–17]. They define a hidden state (road segment)
and an observable state (cell tower) for the map matching process.
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Figure 1: Performance of the HMM-based model under different settings.

Each road segment maintains two probabilities, i.e., emission proba-
bility and transition probability. The emission probability evaluates
the probability of a cell tower is localized at this road segment.
Transition probability evaluates the probability that transits from the
last road segment (first-order HMM) or the last two road segments
(second-order HMM) to the current road segment. Empirically,
HMMs assume that closer roads have larger emission probabilities.
For transition probability, HMMs assume to follow the shortest path
between the surrounding roads of two consecutive cell towers.

For an online inference, HMM first searches for the candidate
road segments within the search radius 𝑅𝐶 of each cell tower. As
the HMM process proceeds, the product of emission probabilities
and transition probabilities of some routes that are composed of a
sequence of road segments increases faster than others. In the end, an
optimal route with the highest product value can be identified using
the dynamic programming technique [25], which leads to 𝑂 (𝑛2)
computation complexity.

We find three factors that may influence the performance of HMM-
based map matching, i.e., the order of HMM model, the location
error of cell towers and the sampling rate of cell tower sequences.
We use a state-of-the-art HMM-based approach [12] and conduct a
series of empirical studies to illustrate why the HMM-based methods
are not efficient for cellular sequences. For each experiment, we
measure precision, recall and inference time on the same hardware.
The specific experiment settings are introduced in Sec. 5.1.

Impact of the order of HMM model. A higher-order HMM
model considers last several cell towers in the HMM process. It has
an important influence on the accuracy and inference time. Fig. 1(a)
depicts the performance of HMM models on different orders (first-
order HMM and second-order HMM). We discover that the accuracy
of second-order HMM is higher than that of first-order HMM, but
the inference time significantly increases.

Impact of location error of cell towers. The location error of
cell towers determines the setting of search radius 𝑅𝐶 . This leads to
different number of candidate road segments in the HMM process.
Less road segments indicates fast inference, but it may lead to local
optimal results. We investigate the performance of an HMM-based
algorithm with respect to different 𝑅𝐶 in Fig. 1(b). When 𝑅𝐶 is small,
the accuracy decreases sharply despite the fast inference time. As 𝑅𝐶
increases, the inference time increases at an exponential rate. This
is because more candidate road segments are considered into the
HMM process, leading to the exponential growth of search space.

We study the location error of the cellular data. We depict the
Cumulative Distribution Function (CDF) distribution of the location
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Figure 2: Properties of cellular data.

error of collected cellular data (Sec. 5.1), Location error is measured
as the distance between the user’s GPS position and the cell tower
position. As shown in Fig. 2(a), about one third of the location errors
of cell towers are larger than 0.4 km, corresponding to a large search
radius 𝑅𝐶 , which implies a long inference time.

Impact of sampling rate of cell tower sequences. The sampling
rate determines the distance between two consecutive cell towers,
affecting the running time of calculating shortest paths in the HMM
process. We depict the inference time of map matching with re-
spect to different sampling rates in Fig. 1(c). As the sampling rate
decreases, the inference time increases at an exponential rate.

We exploit the sampling rates of cell tower sequences in Fig. 2(b).
Since the cell tower can only receive the signal when a mobile phone
requests the location updates or an application requests the network
services, nearly all cell tower sequences have average sampling rate
less than 1 sample per minute, leading to an infeasible inference
time for map matching.

Summary. From the above empirical experiments, we conclude
that the three factors impact the performance of HMM-based ap-
proaches. It is difficult to determine the appropriate order of HMM
model, the search radius of candidate road segments and the sam-
pling rate of cell tower sequence to achieve the best performance on
both accuracy and inference time in the cellular environment.

3 DESIGN OF DMM
In this section, we introduce an overview of DMM and the design of
key components in DMM.

3.1 DMM Overview
Fig. 3 depicts the architecture of DMM, consisting of two stages,
i.e., the offline training and the online inference.

Offline Training. Given the cell tower sequences in the cellular
dataset, we first learn a location representer to capture high-quality
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Figure 3: The architecture of DMM.

representations for cell towers (Sec. 3.2). Based on the location
representer, we transform all the cell tower sequences into vector
sequences and store them in a vector sequence dataset, which will
be used for training the map matching model. Then, we learn an
RNN-based map matching model to generate the most-likely route
on the road map given a vector sequence (Sec. 3.3). The vector
sequences as well as the estimated ground truth labels generated from
an HMM-based method [12] are used to train the model. Moreover,
we customize the map matching model into a reinforcement learning
framework to refine the map matching results (Sec. 3.4). By the
reward mechanism of reinforcement learning that automates to
explore the space of possible results, the initial map matching
model is further optimized by incorporating heuristics. Note that the
training of the models can be conducted offline, without impacting
the speed of online inference.

Online inference. In this stage, cell tower sequences are continu-
ously fed into DMM for route inference. For a cell tower sequence,
DMM first transforms it to a vector sequence by the location repre-
senter and passes the vector sequence into the final map matching
model to identify the most-likely route on the road map.

3.2 Location representer
Intuitively, DMM can quantify an input cell tower using two ap-
proaches, i.e., one-hot representation and GPS coordinates of the
cell tower. For the one-hot representation, we represent the cell tower
as a high dimensional binary vector, in which all bits are ’0’ except
one ’1’, referring to as the specific cell tower. However, the binary
based cell tower representation suffers from two drawbacks. First,
the redundant representation reduces the training efficiency of the
map matching model, especially in the environment with a large
number of cell towers. Second, the learned matching patterns cannot
be effectively utilized for unobserved cell tower sequences. For the
other representation, it restricts the representation of a cell tower
into a two-dimensional GPS coordinates, which essentially encodes
the spatial proximity among cell towers. However, it is difficult to
derive a high-quality representation of an input cell tower sequence
from a sequence of two-dimensional coordinates. Towards this end,
we propose to leverage the auto-encoder model [26] to automatically
learn high-level and low-dimensional cell tower representations.

The auto-encoder uses a multi-layer neural network to learn the
identity mapping for the same input and output. The middle layer
learns high-level representations for cell towers, where the number
of hidden neurons is less than that of the input and output layers.

Figure 4: The architecture of the location representer.

However, the basic auto-encoder model is hard to capture the spatial-
aware feature among cell towers. Towards this end, we instead use
spatially-close cell towers as the expected output of the auto-encoder
model. By this way, the spatial characteristic of close cell towers can
be easily incorporated into the representations.

Given a cell tower 𝑥 , we learn the model to maximize the proba-
bility that predicts the cell tower 𝑥 ′ in the spatially-close cell tower
set𝐶𝑥 as Eq. 1.𝐶𝑥 is constructed by the preceding and the following
cell towers in a search radius of the present cell tower.

maximize
∑

𝑥 ′∈𝐶𝑥

log 𝑃 (𝑥 ′ |𝑥) (1)

Fig. 4 depicts the architecture of location representer, consisting
of an input layer, a representation layer, and an output layer. The
input and output are close cell towers in space and the representation
layer plays the role of extracting the high-level features of input
cell towers. The input layer simply takes a 𝐵-dimension binary cell
tower vector as input, where 𝐵 is the size of cell tower set. We
use a fully-connected neural network to transform the input into
a 𝐷-dimension vector in the representation layer, which can be
expressed as a matrix transformation 𝑾𝐵𝐷 . In the output layer, we
use a fully-connected neural network as well as a softmax network
to classify the 𝐷-dimension vector as a spatially-close cell tower 𝑥 ′

in 𝐶𝑥 . Specifically, the fully-connected neural network (denoted as
𝑾𝐷𝐵) learns a classification function in the low dimensional vector
space and outputs the classification value. The softmax network
then normalizes the output values to [0, 1], indicating the probability
distribution of all cell towers.

To train the location representer, we feed the spatially-close cell
tower pairs into the model continuously and calculate the difference
between the output probability and the expected output probability
as the optimization criterion. After many iterations, the location



DMM: Fast Map Matching for Cellular Data MobiCom ’20, September 21–25, 2020, London, United Kingdom

information of cell towers as well as spatial proximity among cell
towers are learned and represented in the weight matrix of the
representation layer.

3.3 Map matcher
Inspired by recent advancement on recurrent neural networks (RNNs)
for sequential-based applications [22, 27–33], we design an RNN-
based map matcher to learn the mapping between the cell tower
sequence and the sequence of roads on the road map. Fig. 5 depicts
the architecture for the map matcher, consisting of an RNN encoder-
decoder model (blue blocks) and a plug-in alignment component
(red block).

3.3.1 Encoder-decoder. The input to the map matcher is a repre-
sented cell tower sequence 𝑋 . The encoder first transforms the input
cell tower sequence𝑋 into a sequence of hidden state 𝒉1,𝒉2, . . . ,𝒉 |𝑋 | .
After encoding the input, the context vector 𝒄 (the last hidden state
𝒉 |𝑋 |) is passed to the decoder. Then, the decoder identifies the
optimal road segments successively based on the context vector 𝒄,
and finally generates the route 𝑌 .

Encoder. The encoder is implemented as one RNN, which en-
codes the cell tower sequence 𝑋 successively and embeds it into a
context vector 𝒄 . During the encoding process, the hidden state 𝒉𝑡 is
updated as Eq. 2.

𝒉𝑡 = GRU (𝒉𝑡−1, 𝑥𝑡 ) (2)
where GRU (Gated Recurrent Unit [22]) is a non-linear function.
After encoding the whole cell tower sequence, the continuous vector
𝒄 (i.e., the hidden state 𝒉 |𝑋 |) is served as the input of the decoder
network, which conserves the location information of the sequence.

Decoder. The decoder is the other RNN, which generates the
map-matched route 𝑌 successively given the context vector 𝒄. At
the beginning, we feed the decoder a Start Of Sequence token (SOS)
to start a map matching process. At step 𝑡 , given the last predicted
road 𝑦𝑡−1 and the hidden state 𝒉𝑡 at step 𝑡 , the probability can be
estimated as Eq. 3.

𝑃 (𝑦𝑡 |𝑦1, · · · , 𝑦𝑡−1) = GRU (𝑦𝑡−1,𝒉𝑡 ) (3)

where GRU is the other non-linear function to generate the proba-
bility 𝑦𝑡 . Until the decoder generates an End Of Sequence (EOS)
token, we accomplish a map matching process and finally obtain a
map-matched route 𝑌 .

3.3.2 Alignment model. In the above encoder-decoder model,
the encoder compresses the input cell tower sequence into a fixed
context vector, which is difficult to memorize the whole information
of long sequences. As a result, the basic map matching model faces
a performance degradation on accuracy in the case of the long
sequences. Towards this end, we plug an alignment component
into the encoder-decoder model, which learns to match and align
the input cell tower sequence and the map-matched route jointly.
Specifically, the alignment component considers all hidden states
𝒉1,𝒉2, . . . ,𝒉 |𝑋 | of the encoding stage instead of the last context
vector 𝒄, as the basic encoder-decoder model does. This avoids to
conserve the whole information of cell tower sequence, and thus
handling the long cell tower sequences. Next, we present how the
alignment component works.

As shown in the red block of Fig. 5, at step 𝑖 − 1 of the decoding
process, the decoder generates a road segment 𝑦𝑖−1 and updates the

Figure 5: The architecture of map matcher.

hidden state 𝒉′
𝑖
. Then, the alignment component searches for the

most relevant context vectors from the hidden states 𝒉1,𝒉2, . . . ,𝒉 |𝑋 |
from the encoding process. An adaptive context vector 𝒄𝑖 is de-
signed to weight the hidden states 𝒉1,𝒉2, . . . ,𝒉 |𝑋 | to concentrate the
relevant parts of the cell tower sequence as Eq. 4.

𝒄𝑖 =
|𝑋 |∑
𝑗=0
(𝛼𝑖 𝑗𝒉 𝑗 ) (4)

where 𝑗 represents the 𝑗 th element in the input cell tower sequence,
|𝑋 | represents the length of the sequence, and 𝒉 𝑗 represents 𝑗𝑡ℎ
hidden state of the encoder. 𝛼𝑖 𝑗 measures the importance of 𝒉 𝑗 ,
which can be calculated by Eq. 5.

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑ |𝑋 |

𝑘=1 exp(𝑒𝑖𝑘 )
(5)

where 𝑒𝑖 𝑗 is a score function, which measures the matching degree
between the hidden state 𝒉 𝑗 of the encoder network and the hidden
state 𝒉

′
𝑖−1 of the decoder.

3.3.3 Training for the map matcher model. The RNN-based
map matcher needs to be trained using a large amount of cell tower
sequences with labeled true route, which is difficult to obtain in
practical. We take the second best to generate the labels of cell
tower sequences using a state-of-the-art HMM-based method [12].
Although this will bring deficiencies to the map matcher model, the
model is only for the initialization for the RL optimizer for further
optimization.

Specifically, given a cell tower sequence, the encoder-decoder
model and the alignment model are jointly trained to maximize the
log-likelihood of the output road sequence:

max
𝜽

1
𝑁

𝑁∑
𝑖=1

log 𝑃𝜽 (𝑌𝑖 |𝑋𝑖 ) (6)

where 𝜽 is the parameters in networks, 𝑁 is the number of training
pairs sampled from the training data and (𝑋𝑖 , 𝑌𝑖 ) is a training pair of
the cell tower sequence and the output route. To speed the conver-
gence in the training process, we use expected output 𝑦𝑡−1 obtained
from the labels as the input of step 𝑡 , instead of the predicted output
𝑦𝑡−1 of last step 𝑡 − 1.
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Figure 6: The architecture of RL optimizer.
3.4 RL optimizer
To further improve performance, we exploit the global hints observed
from real driving scenarios, such as preferring the routes with more
proportion of major roads, less frequency of turns and U-turns. To
incorporate these hints, we customize the basic map matching model
into a reinforcement learning framework.

3.4.1 Basics for RL. Reinforcement learning (RL) is a promising
machine learning approach, which instructs an agent to accomplish
a task by trials [34–37]. A learning process is described by four
elements, i.e., state, action, policy and reward. Given a specific state,
a policy of the agent learns to map from the state to an action. A
reward is then designed to estimate how good or bad of current
action or a sequence of actions. Finally, the policy is optimized for
better performance with respect to the reward.

To apply RL in DMM, we view the map matcher model as the
agent and customize it into a RL framework with specific designs of
the key elements. Fig. 6 depicts the architecture of RL optimizer. At
every iteration, the map matcher agent reads the cell tower sequence
𝑋 = 𝑥1, ..., 𝑥 |𝑋 | as state input and generates an action sequence
𝑌 = 𝑦1, 𝑦2, ..., 𝑦 |𝑌 | , which is also the map-matched result of our
model. A reward 𝑟 , which measures the satisfactions of global hints
of route 𝑌 , is then computed to assess the quality of output route.
Finally, the REINFORCE algorithm [38] is used to update the policy
of map matcher agent based on the reward. Next, we introduce the
details of reward function and REINFORCE algorithm.

3.4.2 Reward design. We incorporate a number of global hints
into DMM. First, users are more likely to select a sequence of major
roads based on the uneven distribution of traffic flows. Second, users
prefer the routes with turns as few as possible if exists multiple
possible routes between the origin and destination. Third, people
normally prefer to follow the same direction, rather than completely
changing the moving direction. Based on the above observations, we
present the corresponding design of the reward 𝑟 (𝑌 ) to evaluate the
output routes, as shown in Eq. 7.

𝑟 (𝑌 ) = 𝜆𝑃 · 𝑟𝑃 + 𝜆𝑇 · 𝑟𝑇 + 𝜆𝑈 · 𝑟𝑈 (7)

where 𝜆𝑃 , 𝜆𝑇 , 𝜆𝑈 ∈ [0, 1]. 𝑟 (𝑌 ) is a shorthand for 𝑟 (𝑋,𝑌 ) where 𝑋 is
the input cell tower sequence, 𝑌 is the map-matched route. 𝑟𝑃 , 𝑟𝑇 , 𝑟𝑈
represent for the goal of the output route, namely, spatial proximity
to the input cell tower sequence, less frequency of turns, less U-turns.
In the following, we present detail designs for the reward.

Spatial proximity. The reward of spatial proximity 𝑟𝑃 needs to
ensure that the generated routes are spatially-closest to the input cell
tower sequence, which is in line with the intuition of map matching
task. However, due to the large location error of the cellular data, a

Algorithm 1 Training process of the RL optimizer

1: Initialize the parameters 𝜽 of policy 𝜋𝜽 using the pre-trained
map matcher;

2: for iteration = 1, · · · , 𝐼 do
3: Sample 𝑀 routes from the distribution 𝜋𝜽 (·|𝑋 );
4: Estimate an expected reward 𝐽 (𝜽 ) as Eq. 9;
5: Calculate the gradient ∇𝐽 (𝜽 ) as Eq. 10;
6: Update the parameters 𝜽 of policy 𝜋𝜽 as Eq. 11.
7: end for

cell tower may cover an area with many roads, leading to the basic
intuition incorrect. Inspired by the first observation, we propose to
use the negative weighted projection distance between the input
cell tower sequence and the map-matched route as the design of
𝑟𝑃 . The projection distance is calculated by the geodesic distance
between the GPS location of cell tower and its projected location on
the corresponding road segment.

Specifically, we assign a road weight 𝑤𝑠 to different types of
roads. The road with a higher speed limit is assigned with a smaller
weight, making the projection distance to the major roads smaller.
In this setting, the map matching results are more likely to move on
the major roads. We use a linear function to calculate the weight as
𝑤𝑠 = 1 − 𝑞 · 𝑟𝑙 , where 𝑞 is a constant and 𝑟𝑙 is the speed limit of the
road. If the user does move on the side road, using this trick may
lead to incorrect matching results. However, the probability is lower
than that of driving on the main road in most cases.

Less frequency of turns. To avoid the unnecessary turns of
output routes, we design a reward 𝑟𝑇 , which rewards the route with
similar number of turns between the sequence and the output route.
Based on the second observation, we define the reward 𝑟𝑇 as Eq. 8.

𝑟𝑇 =

{
1 − |𝑇𝑋−𝑇𝑌 |

𝑇𝑋
if 𝑇𝑋 ≥ 𝑇𝑌 and 𝑇𝑋 ≠ 0

1 − |𝑇𝑋−𝑇𝑌 |
𝑇𝑌

if 𝑇𝑋 ≤ 𝑇𝑌 and 𝑇𝑌 ≠ 0
(8)

where𝑇𝑋 and𝑇𝑌 are the estimated numbers of the turns of input and
output sequences. We measure the number of turns based on the sum
of angles of every adjacent cell towers.

Less U-turns. We design a reward 𝑟𝑈 to avoid the occurrence of
U-turns in the output routes. Different from the design of 𝑟𝑇 , we
estimate the difference of the number of U-turns between the cell
tower sequence 𝑈𝑋 and the output route 𝑈𝑌 as the reward 𝑟𝑈 . We
measure the number of U-turns by the number of the completely
change of the moving direction in the sequence. Specifically, we
replace the 𝑇𝑋 and 𝑇𝑌 in the reward 𝑟𝑇 with 𝑈𝑋 and 𝑈𝑌 in Eq. 8 to
calculate 𝑟𝑈 .

3.4.3 REINFORCE algorithm. In terms of the characteristics of
encoder-decoder based policy in the map matcher agent, we adopt
the REINFORCE algorithm [38] to refine the policy of map matcher
agent. It optimizes the policy in an episodic way, i.e., optimizing
the policies using the final reward obtained at the end of an episode,
such as playing chess (win/lose in the end). In DMM, the reward
of map-matched route cannot be computed until the end of map
matching process.

The training process of RL optimizer is outlined in Algo. 1. We
first initialize the parameters of policy 𝜋𝜽 with a pre-trained map
matcher agent. Given a cell tower sequence 𝑋 , we generate a route 𝑌
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based on the policy 𝜋𝜽 , consisting of an action sequence (a sequence
of road segments). Then, according to the reward 𝑟 (𝑌 ), the expected
reward can be obtained as Eq. 9.

𝐽 (𝜽 ) = 𝐸𝑌∼𝜋𝜽 ( · |𝑋 ) [𝑟 (𝑌 )] (9)

There may be infinite map-matched routes for a cell tower se-
quence 𝑋 . As a result, the expectation of reward 𝐸𝑌∼𝜋𝜽 ( · |𝑋 ) from
the distribution 𝜋𝜽 (·|𝑋 ) cannot be estimated directly. We approxi-
mate this expectation by sampling 𝑀 routes from the distribution
𝜋𝜽 (·|𝑋 ) [34]. To reduce the variance that leads to inaccurate estima-
tion of expected reward, we subtract the reward 𝑟 (𝑌 ) from a baseline
𝑏 [39]. 𝑏 is defined as an average reward of sampled 𝑀 routes. Then,
the gradient can be approximated as Eq. 10.

∇𝐽 (𝜽 ) = 1
𝑀

𝑀∑
𝑚=1

|𝑌 |∑
𝑖=1
∇ log𝜋 (𝑦𝑖 |𝑦1:𝑖−1, 𝑋 ) [𝑟 (𝑌 ) − 𝑏] (10)

Finally, we update the parameters of map matcher agent using
gradient descent as Eq. 11. 𝜂 is the learning rate.

𝜽 ← 𝜽 + 𝜂∇𝐽 (𝜽 ) (11)

4 IMPLEMENTATION
In this section, we introduce implementation details on three models
and online inference process of DMM in Fig. 7. We implement DMM
on a server with 2 CPUs. Both CPUs have dual Intel(R) Xeon(R)
CPU E5-2609 v4 @ 1.70 GHz with 8 cores. A graphics process-
ing unit card (NVIDIA Titan X) is used to accelerate the training
process. We develop DMM in Python. The code is implemented in
PyTorch [23], an open-source machine learning framework.

4.1 Offline stage
With the cellular dataset provided by mobile carriers, we conduct
offline training of DMM. Three models in DMM are trained. We first
train the location representer to obtain the high-quality cell tower
representations (Sec. 3.2), and then perform the map matcher model
training (Sec. 3.3). Finally, we train the reinforcement learning
model to refine map matching results (Sec. 3.4).

Training for the location representer. To train the location
representer, we first construct a spatially-close cell tower pair set
from cell tower sequences. For any one cell tower in the cell tower
sequence, we choose the cell towers within a certain window before
and after the cell tower. The window size is set to 2. We pair each
cell tower in the window and the existing cell tower together to form
a cell tower pair. After traversing all the cell tower sequences, we
obtain a spatially-close cell tower pair set.

We implement the location representer as a two-layer neural
network. The size of input and output layer is set to the size of cell
tower set 𝐵. The size of hidden unit is 64. Cross entropy loss [40] is
used to calculate the loss between true output and expected output.
Once trained, we store the learned representations of cell towers into
a hash table. This can speed up the representations of cell towers in
the following map matching process.

Training for the map matcher. We train the map matcher model
using the represented cell tower sequences as well as the estimated
ground truth labels generated from an HMM-based method [12]. The
parameters of map matcher are uniformly initialized to [−0.1, 0.1].

Figure 7: The workflow of DMM.
We use Adam optimizer [41] to update the parameters. Batch size
is set as 128. We use Gated Recurrent Unit (GRU) [22] as the
RNN units of encoder and decoder networks due to its higher
computational efficiency than LSTM [21]. The dimension of hidden
state is set as 128. The learning rate is set as 0.001. The GRUs are
regularized with a dropout rate of 0.1. We implement the alignment
component as a feed-forward neural network, which is jointly trained
with the encoder-decoder networks.

During the training of map matcher, mini-batch is a classic tech-
nique to accelerate the training speed and model convergence. Cell
tower sequences are randomly selected to update the parameters at
every iteration. We adopt the padding technique [42] to fill short cell
tower sequences with the same length of the longest sequence in a
batch. This ensures that the cell tower sequences in a batch are of the
same length. We also divide the training cell tower sequences into
different buckets according to the number of sampling points [42].
During training, the mini-batches are sampled from the same bucket.
This can avoid the training inefficiency caused by padding too many
meaningless PADs in short cell tower sequences.

Training for the RL optimizer. Since the training of RL opti-
mizer does not need true label to calculate the loss, we use the cell
tower sequences as the training data to train the RL optimizer. We
use stochastic gradient descent with the learning rate 𝜂 = 0.01. We
set 𝜆𝑃 = 0.5, 𝜆𝑇 = 0.25, 𝜆𝑈 = 0.25.

4.2 Online stage
Once the DMM models are trained, we export the metadata of
DMM for online deployment. The metadata includes the network
architecture and the refined DNN parameters, which are used to
deploy DMM for online inference. After deploying, DMM takes the
cell tower sequences as input, transforms them into vector sequences,
and identifies the most-likely routes on the road map.

5 EVALUATION
We first present the experiment results on the overall performance
of DMM. Then, we study the performance of the two key models in
DMM, i.e., the location representer and the RL optimizer.

5.1 Experiment settings
Data collection. We recruited volunteers and collected their GPS
locations as ground truth. All the volunteers gave their consents to
participate in the experiments and use their data for study. During the
data collection, we asked the volunteers to equip with mobile phones
and drive in our city. The volunteers were required to enable GPS
on their mobile phones. We also install a data collection application
(GPS Toolbox [43]) to record GPS locations at a high sampling rate
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Figure 8: Coverage map of our collected dataset.

up to 1 sample per second. The mobile carrier also provides the
corresponding anonymous cell tower sequences of the volunteers
for evaluation. We map-match all GPS-based location sequences to
obtain the true routes as the ground truth [14].

Statistics of the collected data. We collected 198 car driving
traces, 167 of which are in urban areas (average distance less than 9
km to the city center). The total length of dataset is 1,701 km with
2,848 distinct cell towers. The traces cover various road types, such
as main roads and side roads, varying from 2.5 km to 23.6 km. The
red lines in Fig. 8 show a coverage map of the collected dataset.
Since most of the traces are collected in urban areas with varieties of
traffic conditions, 76% of average moving speed is below 18 km/h.
About 99% sampling rates of the traces are less than 1 sample per
minute.

Performance criteria. We assess the accuracy of all map match-
ing approaches by comparing the map-matched route to the ground
truth route. Given the testing cell tower sequences, we use average
precision and recall as accuracy criteria. Precision is defined as the
ratio of the total length of the correctly-matched route to the total
length of the route. Recall is the ratio of the total length of the
correctly-matched route to the total length of the ground truth route.
Meanwhile, average inference time is used to evaluate the efficiency,
which is defined as the average running time required to transform
cell tower sequences into routes.

Benchmarks. We compare DMM with following baselines. All
the baselines are implemented in Java. By default, we set the search
radius 𝑅𝐶 = 500 in our experiments.

• ST-Matching. ST-Matching [14] is a widely used HMM-based
approach for mapping low-sampling-rate GPS-based cell tower
sequences, which takes the spatial topological structure of road
maps and the temporal constraints of moving speed into account
simultaneously.
• SnapNet. SnapNet [12] designs an HMM-based map matching

approach for cellular data collected from mobile phone side. It
incorporates several digital map hints and heuristics to handle
the issues of larger location error and low sampling rate, e.g.,
preferring major roads and staying on the same road.
• SnapNet w/o I. SnapNet [12] adopts a linear interpolation tech-

nique to improve the sampling rates of cell tower sequences, but
it severely harms the accuracy of map matching, as we have
discussed in Sec. 2.2. Towards this end, we implement a variant of
SnapNet, denoted as SnapNet w/o I, to compare with other meth-
ods. In particular, SnapNet w/o I gets rid of the linear interpolation
from pre-processing model of SnapNet.
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Figure 9: Overall performance of DMM.

Table 1: Inference time (s) of different approaches w.r.t. the
sampling rate of cell tower sequences (/min).

Sampling rate 0.2 0.4 0.6 0.8 1
ST-Matching 111.65 64.58 39.91 26.37 21.35

SnapNet w/o I 104.46 59.84 35.63 22.55 15.84
SnapNet 0.10 0.10 0.15 0.14 0.13
DMM 0.94 0.77 0.84 1.25 1.08

5.2 Overall performance of DMM
We first compare DMM with the baselines on the cell tower se-
quences collected by our volunteers. Fig. 9 depicts the overall
performance of all approaches.

5.2.1 Accuracy. We use the map matcher in DMM to transform
the cell tower sequences of our volunteers into the routes on the road
map and compare the generated results with the corresponding GPS
ground truth. All the 1701-km traces are used in the test. As depicted
in Fig. 9, we discover that DMM provides the best accuracy. The
reasons are as follows. First, DMM adopts an RNN-based model
to transform the cell tower sequence into context vectors, which
conserves the historical location information for map matching. For
HMM-based approaches, they can only take the last road segment
into account to make inference, leading to the loss of historical cell
tower information. Second, the location representer enables high
quality cell tower representations, which allows to make inference
for unobserved cell tower sequences. Third, we also leverage a
reinforcement learning based framework to incorporate the global
information of the cell tower sequences. We will further decompose
the performance of location representer and RL optimizer in Sec. 5.4
and Sec. 5.5 respectively.

5.2.2 Running efficiency. We also use the collected dataset to
evaluate the running efficiency of different map matching approaches
in Fig. 9. DMM runs much faster than the other HMM-based ap-
proaches, except SnapNet. This is because DMM only needs to
make a forward computation of neural networks to identify an
optimal route during the inference stage, which only requires 𝑂 (𝑛)
computation complexity. In contrast, the HMM-based approaches
rely on heavy computations of dynamic programming to identify
the optimal matching, with a time complexity of 𝑂 (𝑛2) computation
complexity. Although SnapNet has less inference time than DMM by
using a linear interpolation of raw cell tower sequences, the precision
and recall of SnapNet decrease sharply. SnapNet is more capable
of handling the trajectories on highways. In urban areas, the linear
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Figure 10: Alignment component in the map matcher.

interpolation of low-sampling-rate cell tower sequences introduces
large noise between two adjacent cell towers.

To exploit the inference time of different approaches as the
sampling rate varies, we discretize the sampling rate into five levels,
i.e., {< 0.2/𝑚𝑖𝑛}, {≥ 0.2/𝑚𝑖𝑛 & < 0.4/𝑚𝑖𝑛}, {≥ 0.4/𝑚𝑖𝑛 & <

0.6/𝑚𝑖𝑛}, {≥ 0.6/𝑚𝑖𝑛 & < 0.8/𝑚𝑖𝑛} and {≥ 0.8/𝑚𝑖𝑛 & < 1/𝑚𝑖𝑛}
and obtain results in Tab. 1. When the sampling rate is low, DMM can
still maintain lightweight inference. In contrast, the inference time
of HMM model increases exponentially to maintain high accuracy.

5.2.3 Effect of the alignment component. To enable more
accurate map matching for long cell tower sequences, we plug
an alignment component into the basic map matching model. We
explore the benefit of the alignment component under different
length of cell tower sequences, varying from 3 km to 15 km in
Fig. 10. We discover that both the precision and recall of the basic
encoder-decoder model deteriorate rapidly as the length of cell tower
sequences increases. By incorporating the alignment component, the
results are better than the basic model, especially for the long input
sequences. This is due to the fact that the alignment component only
needs to memorize relevant location information in the cell tower
sequence, instead of memorizing the whole cell tower sequence.

5.3 DMM Robustness
We evaluate system robustness according to different attributes of
input cell tower sequences.

5.3.1 Different input cell tower sequences. We first exploit the
system robustness in Fig. 11 according to different categories, i.e.,
area of the cell tower sequences, sampling density of the cell tower
sequences. The sampling density is defined as the average number of
sampling points per kilometer, which is determined by the moving
speed and sampling rate of the cell tower sequence.

Impact of area of the cell tower sequences. We evaluate the
impact of the area of cell tower sequences on system performance.
We divide the collected sequences into 5 levels according to the
distance to the center of city. Fig. 11(a) depicts the accuracy in the
different areas. As shown, DMM achieves comparable accuracy in
both urban areas and remote areas. The reasons are as follows. First,
in the remote area (larger than 9 km), the driving speed is high and
the cell tower density is low. Both will cause low sampling rates that
may impact the system performance; however, road density in remote
areas is much lower than that that in urban areas, which makes
the map matching model easily determine the true route, which
a user is moving along with. Second, in the urban area, although
road conditions are more complex, cell tower density is higher too;
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Figure 11: Different input cell tower sequences.

therefore, the sequences in urban areas have high sampling density,
and thus more information can be used for map matching.

Impact of sampling density of the cell tower sequences. We
also exploit the accuracy as sampling density varies. We discretize
the sampling density into four levels, i.e., {≥ 0/𝑘𝑚 & < 1/𝑘𝑚},
{≥ 1/𝑘𝑚 & < 2/𝑘𝑚}, {≥ 2/𝑘𝑚 & < 3/𝑘𝑚} and {≥ 3/𝑘𝑚}. As
shown in Fig. 11(b), the results reveal that DMM also achieves
stable accuracy as the sampling density varies. For the cell tower
sequences with high sampling density, more information can be used
for map matching. For the cell tower sequences with low sampling
density, we deeply analyze the map matching results and find that
most cell tower sequences with low sampling density are collected
in the remote area, which has better map matching performance.

5.3.2 Impact of sampling rate and moving speed. The above
experiment results are the average results for our collected cell
tower sequences. We further explore the accuracy in the urban
area, which is more challenging because of high road density and
complex road condition. We calculate the average distance of each
cell tower in a cell tower sequence to the city center and conserve
the cell tower sequences that the distance to city center is less than
9𝑘𝑚 for evaluation. To test the system robustness on cell tower
sequences with lower sampling density, we down-sample each cell
tower sequences for lower sampling rate. In this way, with consistent
moving speed, the average distance between the cell towers will
be increased as the sampling rate decreases. Towards this end, we
first describe the procedure of processing the collected dataset into
smaller datasets with different levels of sampling rates and moving
speeds and then test the performance on each dataset.

We first split the collected dataset into the datasets with different
levels of moving speeds. Based on the statistical analysis on our
collected dataset, we discretize the moving speeds into the three
levels, i.e. {≥ 0𝑘𝑚/ℎ & < 6𝑘𝑚/ℎ}, {≥ 6𝑘𝑚/ℎ & < 12𝑘𝑚/ℎ},
{≥ 12𝑘𝑚/ℎ & < 18𝑘𝑚/ℎ} and obtain three datasets. Then, we further
divide each of the three datasets into five sub-datasets according to
the preseted levels of sampling rates (i.e., 0.1/𝑚𝑖𝑛, 0.2/𝑚𝑖𝑛, 0.3/𝑚𝑖𝑛,
0.4/𝑚𝑖𝑛, 0.5/𝑚𝑖𝑛). Specifically, for a sub-dataset with the same
level of moving speed, we first sort the sequences according to the
ascending order in their sampling rates. Then, we down-sample each
trace to a certain sampling rate one by one until all the sequences
have been processed. For example, given a trace with 10 cell tower
samples in 10 minutes (corresponding to the sampling rate at 1), if
the sampling rate is larger than the current level of sampling rate (e.g.
0.5/𝑚𝑖𝑛), we remove 5 cell tower samples (10 − 0.5/𝑚𝑖𝑛 × 10𝑚𝑖𝑛)
to obtain the specific sampling rate. If the number of the sequences
of a given level of sampling rate reaches 1/5 of the number of
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Figure 12: Impact of sampling rate and moving speed.

the sequences in the sub-dataset, the following sequences will be
distributed to the next level.

Based on the processed 15 sub-datasets, we exploit the DMM
robustness on different levels of moving speeds and sampling rates.
As shown in Fig. 12, we find that DMM provides relatively low
accuracy under the circumstances of low sampling rate. For example,
for the cell tower sequences with the average moving speed about
15 km/h and sampling rate about 0.1 sample per minute (the average
sampling distance is about 2.5 km), DMM achieves the average
precision and recall about 41.5% and 48.9%. This is because it is
difficult for the map matching model to determine the specific route
between the sparse cell towers.

With the increase of the sampling rate or the decrease of the
moving speed, DMM provides better precision and recall. This
is because slower moving speed and larger sampling rate lead to
denser cell tower sequences, thus more location information can
be used to localize the true route. For example, as the sampling
rate increases from 0.1 to 0.5, both the precision and recall values
increase sharply (e.g., 78.0% in precision and 85.5% in recall for the
sequences with the moving speed below 0.6 km/h). It also suggests
the potential of DMM to be better in the future, where mobile app
usages will significantly increase and thus the sampling rate of cell
tower sequences will be further increased.

5.3.3 Impact of sampling rate and number of cell towers. We
also conduct the system robustness evaluation on different level of
sampling rate with different number of cell towers in the urban area.
Given a level of sampling rate, different numbers of cell towers cor-
respond to different time duration of the route. Specifically, we first
partition the cell tower sequences in the urban area into four datasets
with different levels of sampling rate. For each sequence in the four
datasets, we generate a set of sequences with different number of cell
towers by connecting the sequence between the first cell tower and
the remaining cell towers. We keep the cell tower sequences with
four levels of numbers of cell towers, i.e., 2, 8, 14, 20. For example,
for a cell tower sequence 𝑋 = 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥9, we could generate
two sequences, i.e., 𝑋1 = 𝑥1, 𝑥2 and 𝑋2 = 𝑥1, 𝑥2, . . . , 𝑥8.

As shown in Fig. 13, we find that the performance of short
sequences performs worse than that of long sequences. This indicates
that it is hard for our map matching model to work for the short
sequences. For example, the accuracy of the cell tower sequence
of two cell towers achieves 22.6% in precision and 32.5% in recall.
The reasons for better performance of long sequences are as follows.
First, DMM adopts an RNN-based model to transform the input into
context vectors, which conserves the location information for map
matching. Second, our performance criteria focus on the length of
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Figure 13: Impact of sampling rate and number of cell towers.

correctly-matched route. For the long sequences, it is more tolerant
of partial matching errors than short sequences.

Moreover, with the increase of cell tower number and sampling
rate, DMM provides better accuracy. For example, when the number
of cell towers in a cell tower sequence is larger than 8 and the
sampling rate is larger than 0.6/min (corresponding to average
moving time of the trajectory is about 13.33 min and average moving
length is about 2km with an average speed about 9 km/h), DMM
can achieve 58.3% in precision and 68.4% in recall. This is because
longer sequences contain more location information that can be used
for map matching.

5.4 Location representer in DMM
We verify the effectiveness of our spatial-aware cell tower repre-
sentation technique in DMM based on the map matching accuracy.
We also visualize learned representations of cell towers to better
understand our location representer.

5.4.1 Effectiveness of the location representer. We implement
a variant of DMM (DMM w/o LR), which simply uses binary vectors
to represent cell towers. As depicted in Fig. 14, the precision and
recall of DMM w/o LR are 74.66% and 79.54%, worse than those
of DMM. This is because DMM w/o LR cannot learn the spatial
proximity relationship so that it is impossible to generalize the
learned map matching patterns to unobserved cell tower sequences.

5.4.2 Case study of the location representer. We use a case
study to present how the location representer captures spatial prox-
imity among cell towers. We visualize the learned representations
of 4 cell towers in the cellular dataset. For each cell tower, we find
the closest 10 cell towers and lookup their vectors represented by
the location representer. Finally, we use Principal Component Anal-
ysis (PCA) technique [44] (one of the widely-used data dimension
reduction method) to visualize the cell towers in a two-dimensional
space. For close cell towers, we use the same sign and color. Fig. 15
depicts that the cell towers with the same marker are close to each
other, indicating that the location representer enables close cell
towers to have similar representations. This confirms the spatial-
aware characteristic of learned representation.

5.5 RL optimizer in DMM
We investigate the performance of the RL optimizer and also use
examples to show how it helps for capturing the global hints.

5.5.1 Effectiveness of the RL optimizer. We first study the per-
formance gain of RL optimizer on the accuracy of the map matcher.
We report results in Fig. 16. We observe that the RL optimizer
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Figure 14: Effectiveness of the
location representer.

Figure 15: Spatial proximity
of the cell towers.

significantly improves the accuracy of basic map matching model
in precision and recall by 14.04% and 4.49%, respectively. This
indicates that our reinforcement learning based scheme succeeds in
optimizing the map matching model with global hints we observed
in the real driving scenarios, such as preferring the routes with major
roads and less turns.

5.5.2 Effect of the road weight. The road weight 𝑞 determines
the degree of tendency for the main roads. A small 𝑞 means that
the map matching model is more inclined to choose a route with
more proportion of side roads, while a large 𝑞 corresponds to more
main roads. We exploit the map matcher performance as the road
weight 𝑞 varies in Fig. 17. We discover that DMM achieves the best
performance at 𝑞 = 0.08. As the road weight 𝑞 increases, both the
precision and recall increase, because it is more likely that the map-
matched results prefer to choose the routes with more proportion of
main roads, which is in line with the observation that the main roads
are more likely to be chosen.

5.5.3 Case study of the RL optimizer. The reward 𝑟 (𝑌 ) of a
map matching result 𝑌 is the weighted sum of the three components
aimed at capturing the global hints of the output route, i.e., spatial
proximity to the cell tower sequence, less frequency of turns and U-
turns. Fig. 18 illustrates by examples to show how three components
in the reward help in the map matching results. The top row shows
the cell tower sequences (blue points) and the ground truth (blue
lines) collected from the volunteers. The bottom row depicts the
map matching results of the basic map matching model and DMM,
denoted by dashed black lines and red lines, respectively.

Spatial proximity. We first exploit the effectiveness of the spatial
proximity hint, which rewards the routes spatially-close to the input
cell tower sequence. As depicted in Fig. 18(a), the encoder-decoder
model identifies the most path in the output result except a side road,
which is closer to the cell tower sequence. After incorporating the
spatial proximity hint, DMM takes the route with a sequence of
major roads, and thus obtains a better result.

Less frequency of turns. Due to the sparsity of cell tower se-
quence, there may be multiple routes among cell tower samples.
According to the observation that users prefer to choose the route
with less frequency of turns [45], we incorporate the hint by a
specific design of reward 𝑟𝑇 . From Fig. 18(b), we find that DMM can
effectively select the route with less turns among multiple possible
routes. However, the encoder-decoder model selects the shortest
path between two consecutive cell towers. This is because the basic
model does not consider the route choice preference of the trip.

Less U-turns. Due to the large location error of cellular data, the
encoder-decoder model identifies the most path accurately except
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Figure 17: Effect of the road
weight 𝑞.

unexpected U-turns. We use the reward 𝑟𝑈 to eliminate this phenom-
enon. In Fig. 18(c), we discover that DMM succeeds in avoiding a
U-turn. If the cell tower samples actually indicate a real occurrence
of U-turn in the raw cell tower sequence, DMM can generate a
correct result with U-turns adaptively.

6 RELATED WORK
Many works [12, 19, 46–49] have explored map matching using
the cellular data. Algizawy et al. [46] extend the typical HMM to
mapping cellular-based trajectories for traffic analysis. CTrack [19]
proposes a grid-based HMM approach to identify the most likely
roads. SnapNet [12] develops an HMM-based model for map match-
ing in view of the road information. However, these approaches
cannot consider high-order historical cell tower information. Several
data augmentation techniques [47–49] are proposed for the cellular-
based map matching model to handle insufficient training data. In
our work, we train an RNN-based model using the labels generated
by the HMM-based method [12] and optimize the basic model in
the reinforcement learning framework.

Meanwhile, several works [16, 50–56] have been proposed to
localize the cellular measurement record (MR) data collected by
network infrastructures. The types of MR data include sector infor-
mation, signal latency, signal strength, signal quality, etc. 𝐶𝑒𝑙𝑙∗ [50]
and CTS [16] estimates more precise location using sector informa-
tion. DeepLoc [51] localizes the accurate position using ubiquitous
cellular signals received from adjacent cell towers. Ergen et al. [53]
develop an HMM-based localization model based on the received
signal strength indicator (RSSI) sent by adjacent cell towers. RecuL-
STM [54] develops a deep learning based framework to infer the
positions from measurement records. However, these data are not
available in our dataset.

Besides cellular-based data, many previous map matching ap-
proaches are designed for GPS data [13–15, 57–60]. Mosig et al. [58]
apply 𝐹𝑟𝑒𝑐ℎ𝑒𝑡 distance for map matching, but they cannot consider
road network information. Many advanced algorithms, such as
conditional random field [59], particle filter [60] and hidden Markov
model [13–15], are developed to deal with complex road networks.
For example, ST-Matching [14] map-matches GPS trajectories with
spatial and temporal information. However, these works cannot
be used in DMM because of the large location error and the low
sampling rate of cellular data.

Map matching can also be used as a fundamental step for many
trajectory mining applications [4, 18, 61–64]. VTrack [18] leverages
an HMM-based map matching scheme to estimate road traffic. TS-
Join [62] proposes a network-based trajectory similarity join by
mapping massive trajectories on the road. Prokhorchuk et al. [4]
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(a) Spatial proxmity. (b) Less frequency of turns. (c) Less U-turns.

Figure 18: Case study of the RL optimizer, showing the raw cell tower sequences, the ground truth (top), and the map-matched routes
of basic encoder-decoder model and DMM (bottom).

infer travel time distributions by map-matched floating car data.
TrajCompressor [63] designs a trajectory compression framework,
along with the first pre-processing step of map matching.

7 DISCUSSION
DMM heuristics. DMM incorporates several heuristics to achieve
the goal of accurate map matching. In the following, we show the
validity and rationality of these heuristics. First, we assume that
people normally prefer to choose the route that has more proportion
of major roads. The assumption is confirmed by [65]. In that work,
Yao et al. used Multinomial Logit Model to analyze the route choice
behaviors of taxi drivers using the GPS data of taxis in China. The
result shows that users tend to choose the route with the larger
proportion of major roads. Second, we assume that people normally
prefer the routes with less frequency of turns between origin and
destination. Venigalla et al. [45] used a real-world GPS data in urban
areas to exploit the effect on route choices and revealed that drivers
would rather spend more time or travel longer distance on roads than
make frequent turns. Third, we also assume that people normally
prefer to follow the same direction, rather than completely changing
the moving direction. This is confirmed by the work [66]. Mondal et
al. analyzed the vehicles at six areas and showed that 93.4% of
drivers prefer straight roads.

Deployment cost. For online inference, a CPU with 2 cores is
enough. For offline training, we need to process about 0.6 million
anonymized cell tower sequences to train DMM. The training data
can be acquired in cooperation with the mobile carriers. The amount
of data is about the number of cell tower sequences that can be
collected from all subscribers of the mobile carriers of a metropolis
in one day. We use a graphics processing unit (GPU) to accelerate
the training process. Besides, a reliable storage system is used to
store the cellular data.

Privacy issues. We use the cellular dataset provided by mobile
carriers to train the models in DMM. The data have been anonymized

to protect users’ privacy by replacing users’ identifiers by hash codes.
The data only contain anonymized samples of cell towers, without
any information related to text messages or mobile phone usages.
Moreover, we randomly select a portion of cell tower sequences,
which can further prevent leaking privacy.

We collected GPS locations and cellular data from volunteers
for evaluation. We anonymized users’ identifiers in our data. We
explained the experiment design to the volunteers and obtained their
consents to use the data for this study.

Limitations. DMM has several limitations. First, to ensure both
high precision and recall, higher sampling rate of cell tower se-
quences (larger than 0.2/min in the urban area) is required for our
system (Fig. 12). It will be better to extend our system, where cell
tower density and mobile app usages will be further increased in the
future. Second, our system targets the driving scenario that has long
moving distance and moving time. The scenario of short-distance
or short-time movement (e.g. walking) remains to be explored in
the future. Third, DMM leverages the estimated labels generated
from an HMM algorithm to train its map matching model. It may
learn some inaccurate map matching patterns of the HMM algorithm.
More labeling methods for training data are worthy to be explored
in the future.

8 CONCLUSION
In this paper, we develop an RNN-based map matching framework
for the coarse-grained and low-sampling-rate cellular-based location
sequences. By combining an encoder-decoder based map matching
model, a location representation model, and a reinforcement learning
based optimizer together, DMM provides effective and efficient map
matching for cellular data. Extensive experiments on a large dataset
and real-world collected cell tower sequences in a large city show
that DMM can achieve high map matching precision and recall of
80.43% and 85.42%. In addition, DMM also achieves an average
speedup about 46.58× faster than the HMM-based methods.
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