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ABSTRACT
Arm posture tracking is essential for many applications, such as ges-
ture recognition, fitness training, and motion-based controls. Smart-
watches with Inertial Measurement Unit (IMU) sensors (i.e., ac-
celerometer, gyroscope, and magnetometer) provide a convenient
way to track the orientation and location of the wrist. Existing ori-
entation estimations are based on predefined data fusion methods
that do not consider the variations in the data quality of different
IMU sensors. Existing location estimations rely on the estimated
orientation results. A small orientation estimation error may cause
high inaccuracy in location estimation. Moreover, these location es-
timation algorithms, e.g., Hidden Markov Model and Particle Filters,
cannot provide real-time tracking on commercial mobile devices
due to high computation overhead. This paper presents RTAT , a
Real-Time Arm Tracking system that tackles the above limitations
in a data-driven way. RTAT estimates both orientation and location
simultaneously using a multitask learning neural network. It also
incorporates a unique attention layer and a dedicated loss function to
learn the dynamic relationship among IMU sensors. RTAT supports
real-time tracking by performing model inference on smartphones.
Finally, to train RTAT’s neural network, we develop an easy-to-use
labeled data collection system that uses a low-cost virtual reality
system to provide orientation and location labels for the smartwatch.
Extensive experiments show RTAT significantly outperforms exist-
ing state-of-the-art solutions in both accuracy and latency.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile devices;
• Computer systems organization → Real-time systems; • Com-
puting methodologies → Artificial intelligence.
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1 INTRODUCTION
Real-time and accurate arm posture tracking is essential to the per-
formance of many applications, e.g., gesture recognition [1, 2], gym
exercise assessment [3], and motion-based control [4]. Once we
know the a user’s forearm length and orientation and location of
wrist, we can estimate the user’s elbow location and track the arm
movements [3, 5]. As smartwatches are more pervasively adopted,
they provide a more easily accessible arm posture-tracking alter-
native to other infrastructure-based systems, such as wireless sens-
ing [6–8], visible light [9, 10] and customized wearable sensors [11].
The Inertial Measurement Unit (IMU) inside a smartwatch, can be
used to track arm motions [3, 5, 12, 13].

Arm posture tracking requires continuous knowledge of a smart-
watch’s three-dimensional (3D) orientation and location in a desired
reference frame, e.g., the Global Reference Frame (GRF), typically
<North, East, Up>. However, all three IMU sensors report sensing
readings in the Watch’s Reference Frame (WRF). We must find
the transformation between these two reference frames. The WRF-
to-GRF rotation is the orientation of the smartwatch in GRF. This
rotation is needed to calculate the watch’s location in GRF.

Gyroscopes measure the angular velocity around the three axes
of a device. Intuitively, with a known initial orientation, subsequent
orientations can be estimated by integrating gyroscope readings
over time. However, estimation error accumulates with the noise
and bias of the gyroscope [14–17]. 𝐴3 calibrates the orientation re-
sults using the direction anchors measured by the accelerometer and
magnetometer when the smartphone is static or moving at a con-
stant speed [18]. Only in these moments can gravity be accurately
decomposed from accelerometer readings, since the accelerometer
measures a mixture of gravity and linear acceleration. The mag-
netometer measures geomagnetic North, which can be leveraged
to estimate the heading angle of a device. Once the directions of
both gravity and magnetic North are known in GRF, the device’s
orientation in GRF can be uniquely determined. However, such cali-
brations can only be done opportunistically because a device may
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pause infrequently. MUSE [12] adopts a complementary filter to do
calibration continuously using magnetic North because the magnetic
North is unaffected by the motion of a device. However, such fixed
calibration methods prove insufficient because the magnetic read-
ings are sensitive to nearby environments. For example, when the
magnetic readings are skewed by nearby ferromagnetic materials,
as is often true indoors [12, 18], orientation estimation should not
strongly rely on the magnetic readings. Therefore, an adaptive orien-
tation estimation method is necessary for incorporating the readings
of three IMU sensors according to their varying quality.

State-of-the-art approaches for wrist location estimation rely on
orientation estimation. ArmTrak [5] adopts a Hidden Markov Model
(HMM) and MUSE [12] uses a Particle Filter. ArmTroi [3] reduces
the computational latency of the HMM proposed in ArmTrak. These
methods use estimated orientation to project accelerometer read-
ings onto the desired reference frame. However, locations derived
from inaccurate orientations can fall outside the possible space. Fur-
thermore, they cannot provide real-time wrist location tracking on
smartphones if the sampling frequency is higher than 10 Hz. A high
sampling frequency (e.g., 50 Hz) is desired for fine-grained arm
tracking applications, e.g., motion-based control.

In this paper, we develop a Real-Time Arm Tracking (RTAT)
system for smartwatches. RTAT uses a multitask neural network for
simultaneous prediction of both orientation and location. It leverages
Bidirectional Long Short-Term Memory (BiLSTM) as its backbone,
considering its effectiveness for time-series data processing [17, 19].
Our proposed multitask learning scheme offers the following bene-
fits over conventional arm tracking systems. First, RTAT estimates
orientation and location simultaneously [20]. Orientation and loca-
tion estimations are two related tasks. Solving them together with
multitask learning improves accuracy and avoids additional overhead
for training two separate models. Second, as a supervised learning
method, RTAT learns the best fusion scheme of three IMU sensor
data streams from the labeled data, which is more immune to the
noise of IMU sensor data [14–17]. Unlike conventional sensor fu-
sion methods with predefined calibrations, RTAT adapts to complex
temporal variations in the quality of the three IMU sensors’ readings.
Third, RTAT is faster than conventional location estimation methods
(i.e., 0.1633 ms vs. 2337.50 ms for processing 50 samples).

Building the aforementioned learning system involves the fol-
lowing three challenges. 1) How do we teach the neural network
to adapt to temporal variations of IMU sensor data quality? 2) If
we utilize a loss function that minimizes the difference between
inferred results and the labels, the neural network’s outputs are in-
dependent at different timestamps. However, arm movements are
not just sequences of independent wrist orientations and locations.
How can we incorporate the temporal correlation of consecutive arm
movements in our neural network? 3) A large-scale labeled dataset is
necessary to develop the system. It is challenging to collect accurate
orientations and locations of a smartwatch at a low cost.

We tackle the above three challenges with a set of novel tech-
niques developed for RTAT . 1) We develop a BiLSTM-based multi-
task neural network for processing three IMU data streams. We also
design an attention mechanism in our neural network architecture to
dynamically learn the importance of different IMU sensor streams.
2) We incorporate smooth losses into the loss function of our neural
network. These losses ensure the changing rate of orientation and

location are sufficiently similar to the labels. 3) We use the Meta
Quest 2 VR system to collect labeled data to train and test our model
offline. Meta Quest 2 includes one headset and two touch controllers.
To collect data, users wear a smartwatch and hold a VR controller
simultaneously while moving their arms. Meta Quest 2 accurately
measures its controller’s orientation and location, but not that of
the smartwatch. Thus we develop a labeled data collection system
that converts the VR measurements into the orientation and location
of the smartwatch. RTAT only relies on the VR system for training
data collection. Once our model is well trained, it can estimate the
orientation and location of users’ wrist by smartwatch alone.

We collect data from nine volunteers (four females and five males)
at two places. This research study has been approved and exempted
by the IRB committee of UC Merced. We do not pre-define any
gestures for the volunteer users. We ask them to move their arms
freely at their natural speed. They perform random arm gestures or
daily gestures, including driving, drinking, writing, exercising, push
and pull, drawing and so on. Each user performs gestures in their
own way. The arm motion style and motion speed of different users
are different. To the best of our knowledge, this is the first dataset of
fine-grained orientation and location labels for smartwatch tracking.
The dataset is available at https://github.com/mmmmliu/RTAT.

We use data from five volunteers to train and evaluate a general
neural network model. Extensive experiments show that RTAT re-
duces the orientation estimation error by up to 51% and 31.63% at
two places, respectively, compared to state-of-the-art orientation esti-
mation methods. RTAT also reduces the location error up to 45% and
46.9% these two places, respectively, compared with state-of-the-art
location estimation methods. Additionally, we test RTAT with four
new users whose data is not used for training. The experiment results
show RTAT has no significant performance degradation on new users.
Furthermore, RTAT can easily support real-time arm tracking with
the maximum data sampling frequency on commercial smartphones.

In summary, this paper makes the following contributdions.

• To the best of our knowledge, this is the first work to leverage
end-to-end deep learning for IMU-based arm tracking.

• This is the first work to track the orientation and location of a
smartwatch simultaneously, rather than sequentially.

• We consider adjusting the importance of the three IMU chan-
nels according to their temporal variations.

• We develop a labeled data collection system to collect the
orientation and location labels of a smartwatch.

• Extensive experiments are conducted to evaluate RTAT and
baseline solutions.

2 RELATED WORK
Deep Learning for Device Orientation Estimation. Deep learn-
ing has been used in many applications, such as image process-
ing [21, 22], wireless networking [23], smart buildings [24, 25],
smart driving [26], smart irrigation [27], and map matching [28].
Recent literature has begun utilizing deep neural networks for IMU
measurements processing [14, 29–31] and orientation estimation [15–
17]. OriNet [15] uses an LSTM-based architecture to estimate the
3D orientation of flying robots from gyroscope readings. Brossard
et al. [16] estimate device orientation by correcting gyroscope read-
ings with a CNN, then integrating the corrected readings. These
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methods do not explore learning from multi-modality sensors. The
accelerometer and magnetometer can help estimate orientation when
the gravity error or the deviation of magnetic field density is small.
IDOL [17] proposes an Extended Kalman Filter (EKF) architecture
to estimate device orientation. The prediction model of its EKF uti-
lizes an LSTM-based neural network. This neural network estimates
orientation using all three IMU sensors. The measurement model of
its EKF is based on gyroscope readings integration. While Kalman
Filter and its variants are dependent on the system noise parameters,
the noise of IMU sensors is environment-dependent. IDOL uses a
static diagonal propagation noise matrix for the gyroscope readings
integration, which is not able to depict the system noise.

RTAT greatly differs from IDOL in the following ways. First,
IDOL outputs its orientation result as a unit quaternion, which can-
not be accurately predicted by a neural network without a dedicated
loss design. Second, we propose a novel network architecture from
IDOL. We design a multitask learning network to output orientation
and location simultaneously rather than with separate neural net-
works. Third, we do not treat readings from the three IMU channels
equally. Instead, we incorporate an attention layer to adjust the fea-
ture importance from the three IMU channels. Finally, we develop a
labeled data collection system for smartwatch-based arm tracking.

Conventional Device Orientation Estimation. 𝐴3 [18] intel-
ligently selects the moments that gravity and magnetic North are
reliable and calibrates the orientation estimation from gyroscope
integration. However, the assumption that device motions have fre-
quent pauses for resetting the orientation is inapplicable for wear-
ables. MUSE [12] proposes that magnetic North is more trustworthy
than gravity because it is unpolluted by device motion. It designs
a magnetometer-centric sensor fusion algorithm based on the com-
plementary filter for orientation tracking. However, magnetic North
can only calibrate 2 of 3-DoF (Degrees of Freedom) of orientation,
and magnetic fields can vary significantly within the same space due
to the local ferromagnetic disturbances. The complementary filter’s
performance is highly dependent on the appropriate selection of its
parameters. For example, when magnetic interference is high, we
should adjust our confidence in the magnetometer readings. The
complementary filter proposed by MUSE cannot adapt to different
environments with its fixed magnetometer calibration parameters.

IMU-based Location Tracking. Prior studies [32–37] leverage
multiple sensors to track the human body or upper limb movement.
ArmTrak [5] proposes to recover and track the 3D arm posture using
only a smartwatch. It leverages a Hidden Markov Model (HMM) to
continuously estimate elbow and wrist locations. However, its com-
putation latency is high, and it cannot support real-time performance
on smartphones. ArmTroi [3] optimizes ArmTrak with HMM state
reorganization and hierarchical search. It is faster than ArmTrak
but still suffers from high latency with sampling rates above 10 Hz.
MUSE [12] uses Particle Filters to estimate the smartwatch location.
It achieves a higher location estimation accuracy than ArmTrak and
ArmTroi, but with higher computational latency than ArmTroi Its
real-time computation still cannot be afforded by a smartphone.

Human Skeleton Tracking. Various sensing modalities have
been used for estimating the posture of the human skeleton, including
vision [38], light [9, 10], wireless signals [39, 40], and mm-wave [8].
However, these systems require infrastructure support. They also

have limited service coverage and performance will decrease when
tracking multiple people simultaneously.

3 BACKGROUND & MOTIVATION
In this section, we introduce orientation representations and analyze
the existing orientation estimation solutions.

3.1 Orientation Representation
The 3D orientation of an object can be represented in different ways,
i.e., quaternion, rotation vector (axis/angle) and 3x3 rotation matrix.
Each representation can be converted to another.

A unit quaternion is a 4D complex vector 𝑞 = (𝑞0, 𝑞1, 𝑞2, 𝑞3).

𝑞0 = 𝑐𝑜𝑠 ( 𝜃
2
), 𝑞1 = 𝑥 · 𝑠𝑖𝑛 ( 𝜃

2
), 𝑞2 = 𝑦 · 𝑠𝑖𝑛 ( 𝜃

2
), 𝑞3 = 𝑧 · 𝑠𝑖𝑛 ( 𝜃

2
) . (1)

It represents a rotation of degree 𝜃 along a vector (𝑥,𝑦, 𝑧) from the
default orientation. All four items in a unit quaternion must satisfy
the following constraint.√︃

𝑞20 + 𝑞
2
1 + 𝑞

2
2 + 𝑞

2
3 = 1 (2)

A unit quaternion can be uniquely transformed into a rotation matrix
using the Rodrigues’ rotation formula as follows.

1 − 2(𝑞22 + 𝑞
2
3) 2𝑞1𝑞2 − 2𝑞3𝑞0 2𝑞1𝑞3 + 2𝑞2𝑞0

2𝑞1𝑞2 + 2𝑞3𝑞0 1 − 2(𝑞21 + 𝑞
2
3) 2𝑞2𝑞3 − 2𝑞1𝑞0

2𝑞1𝑞3 − 2𝑞2𝑞0 2𝑞2𝑞3 + 2𝑞1𝑞0 1 − 2(𝑞21 + 𝑞
2
2)

 (3)

A unit quaternion can also be uniquely transformed into a 3D rotation
vector by Equation (4).

®𝑣 = (𝑣1, 𝑣2, 𝑣3) = (𝜃 · 𝑥, 𝜃 · 𝑦, 𝜃 · 𝑧) = 𝜃 · (𝑥,𝑦, 𝑧)
𝜃 = 2 · 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑞0) (𝜃 ≠ 0) (4)

where ∥®𝑣 ∥ = 𝜃 , and its direction is the rotation axis. Uniquely, when
𝜃 = 0, ®𝑣 = 0. Any rotation vector can be uniquely transformed into a
unit quaternion by Equation (5).

q = (𝑐𝑜𝑠 (𝜃
2
), 𝑣1

𝜃
· 𝑠𝑖𝑛(𝜃

2
), 𝑣2

𝜃
· 𝑠𝑖𝑛(𝜃

2
), 𝑣3

𝜃
· 𝑠𝑖𝑛(𝜃

2
))

(𝜃 = ∥®𝑣 ∥, ∥®𝑣 ∥ ≠ 0)
(5)

Uniquely, when ∥®𝑣 ∥ = 0, q = (1, 0, 0, 0).

3.2 Conventional Orientation Tracking
We implement a complementary filter, representative of the conven-
tional orientation estimation approach, and conduct a set of experi-
ments under different scenarios to investigate its performance. The
device we use is a Fossil Gen 5 smartwatch. A VR controller of Meta
Quest 2 is used to provide ground truth orientations for evaluation.
Details about our data processing are introduced in Section 4.5.

We find two places to do experiments: a room and a hallway.
From our measurements, the magnetic field in the room is stable,
whereas the magnetic field in the hallway is unstable. We ask one
volunteer to wear the smartwatch and hold the VR controller by
his/her left hand, then perform free gestures as introduced in Section
1. The experiments are conducted under three scenarios. For each,
the user is asked to move his/her arm for ten minutes.

We implement three kinds of complementary filters, all primarily
dependent on gyroscope readings integration. The first is an imple-
mentation of MUSE [12]. It fuses magnetometer and accelerometer
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Table 1: Average orientation error of complementary filter at different places for ten-minute data.

Speed(m/s) Gravity Error(degree) Magnet Deviation(degree) Gravity Opportunities(%) Sensors_to_use Orientation Error(degree)

S1:Hallway
Mag. + Accl. 58.93

0.39 7.15 45.41 3.34 % Mag. 72.53
Accl. 27.10

S2: Room
Mag. + Accl. 19.17

0.30 5.37 5.10 4.4% Mag. 46.93
Accl. 29.88

S3: Room
Mag. + Accl. 53.03

0.98 20.47 9.0 1.94% Mag. 52.59
Accl. 77.04

readings to calibrate orientation drift caused by gyroscope read-
ings integration. The magnetometer readings are used continuously,
while the accelerometer readings are used opportunistically (when
the accelerometer roughly measures 9.8 𝑚/𝑠2). The second fuses
just magnetometer readings continuously, and the third fuses just
accelerometer readings opportunistically to perform the calibration.

Table 1 shows the statistical analysis of the three scenarios: S1, S2
and S3. In Table 1, speed is calculated as the average moving speed
of the device for the ten-minute data. Gravity error is the average
angular difference between every measured gravity direction and the
true gravity direction (’down’). It is highly affected by the motion of
a device. Magnet deviation represents the angular deviation of the
measured magnetic direction in GRF. It measures the stability of the
magnetic field. The gravity opportunities refer to the percentage of
data samples that are considered to be linear-acceleration-free over
the ten-minutes data. They are considered as such moments when
the accelerometer readings are 9.8 ± 0.3 𝑚/𝑠2 during consecutive
500 ms. Sensors_to_use denotes which sensors are used to calibrate
the gyroscope readings integration. S1 stands for the scenario where
the magnetic field is unstable but the motions of the device are slow
(North is inaccurate, gravity is accurate). S2 is the scenario where the
magnetic field is stable and the motions of the device are slow (both
North and gravity are accurate). S3 represents the scenario where
the magnetic field is stable but the motions of the device are fast
(North is accurate, gravity is inaccurate). By analyzing the results in
Table 1, we get two observations.

Observation 1: Incorporating magnetometer readings will hurt
the orientation estimation when the magnetic field is distorted; and
vice versa. S1 and S2 are conducted at different places with simi-
lar motion speeds. They have similar gravity errors. S1 has 45.41◦

magnetic direction deviation, whereas S2 has 5.10◦This indicates
the magnetic field in the hallway is unstable, but stable in the room.
The results of S1 in Table 1 show a 58.93◦ error when using two
sensors to calibrate. The error when using either magnetometer or
accelerometer is 72.53◦ and 27.10◦ respectively. Calibrating with
two sensors results in a larger error than calibrating with solely
accelerometer, but a smaller error than calibrating just with the
magnetometer. This indicates incorporating magnetometer hurts the
performance. In comparison with S2, calibrating with two sensors
produces a smaller error than calibrating with one of them, which in-
dicates the magnetometer improves the orientation estimation under
this scenario.

Observation 2: Incorporating gravity does not improve the orien-
tation estimation when the device moves fast. We further investigate

the effect of gravity on orientation estimation with S3 in Table 1. In
this scenario, the motions of the smartwatch are fast. The average
moving speed is 0.98 m/s and gravity calibration opportunities occur
only 1.94% of the time. The gravity error is larger than in S1 and S2.
In this scenario, calibrating with two sensors gets almost the same
error as calibrating just with the magnetometer, demonstrating that
gravity does not improve the orientation estimation.

Summary: A better sensor fusion scheme is needed to toler-
ate the noise from IMU sensors for accurate orientation track-
ing. Each IMU sensor has its own limitations. Integration of gy-
roscope readings drifts over time. Accelerometer readings are highly
motion-dependent. Magnetometer readings are highly environment-
dependent. Due to these inherent hardware limitations, we need a
more flexible data fusion method that can adapt to different scenar-
ios automatically. Data-driven methods [14–17] have shown great
potential for handling data noises and adapting to the variation of
data distribution in many computer vision and natural language
processing applications [41, 42].

3.3 Conventional Location Tracking
Conventional location tracking approaches of smartwatches rely on
the orientation of the smartwatches. Orientation is used to transform
the accelerometer readings into a desired reference frame, e.g., GRF,
to infer the location of the device in GRF. As introduced in Section
1 and Section 2, three solutions have been proposed for smartwatch
location tracking recently, ArmTrak [5], ArmTroi [3], and MUSE
[12]. These solutions require pre-existing knowledge of user-specific
information, including shoulder width and the lengths of the lower
arm, upper arm and torso. They use user-specific information to
generate 3D point clouds for each user and search the possible loca-
tions of the smartwatches from these point clouds. There are three
main limitations to those solutions. First, the point cloud generation
process is time-consuming. The more point clouds generated, the
more time is needed. Second, point clouds are generated according
to the user-specific information, which require each user to generate
his/her personal point clouds and to run HMM or Particle Filters
to estimate the possible locations of the smartwatch. Point clouds
are not generalizable to different users. Third, the computation la-
tency of such searching solutions is long and cannot be afforded by
commodity mobile devices in real-time if the sampling rate is higher
than 10 Hz.

Summary: A new method that supports accurate real-time smart-
watch location tracking on mobile devices is needed. In this paper,



Real-Time Tracking of Smartwatch Orientation and Location by Multitask Learning SenSys ’22, November 6–9, 2022, Boston, MA, USA

Multitask Learning

Attention Smoothness

Online

Inference

Orientation and

Location Tracking

Labeled Data Collection

Time

Synchronization

Orientation

Label

Location

Label

RTAT: Real Time Arm Tracking

Full IMU

Offline Training

Figure 1: System Overview of RTAT

we exploit the benefits of deep learning to track the device’s orienta-
tion and location.

4 THE DESIGN OF RTAT
In this section, we first introduce the overview of our system. We
then show our design of multitask learning neural network, attention-
based feature adjustment, and labeled data collection.

4.1 Overview
Figure 1 shows the two major parts of our system, i.e., real-time
arm tracking and labeled data collection. During the offline train-
ing phase, we feed the collected IMU readings of the smartwatch
and labels to RTAT to train a multitask model. During the online
inference phase, a user can use the well-trained model to do infer-
ence by just wearing a smartwatch. The model can be executed on a
smartphone. The smartwatch transmits the IMU sensor data stream
to the smartphone via Bluetooth. The smartphone receives and then
forwards the IMU readings to the model deployed on the smartphone.
The labeled data collection system is no longer needed during the
inference phase.

RTAT’s Arm Tracking System. We design a multitask neural
network to jointly predict the orientation and location of the wrist
(Section 4.2). The inputs of the neural network are the IMU sensor
data stream from a smartwatch, and the outputs are the correspond-
ing orientation and location series. Since the importance of different
IMU sensors in orientation estimation is varying over time, we de-
sign an attention mechanism on top of our multitask neural network
(Section 4.3). The attention mechanism adjusts the input focuses
of the network automatically according to the varying sensor data
quality. Furthermore, to guarantee the smoothness of the inferred
arm motions, we employ smooth losses for both orientation and
location tracking (Section 4.4).

RTAT’s Labeled Data Collection. To train a model with su-
pervised learning, we need to build a training dataset. The dataset
should consist of a large amount of time-series IMU readings from
the smartwatch, and the orientation and location labels of the smart-
watch. However, acquiring accurate labels for the smartwatch is
a non-trivial task. Thus we develop a labeled data collection part
(Section 4.5) to derive training labels. As depicted in Figure 1, the
training data collection process requires volunteers to wear a smart-
watch and hold a VR controller simultaneously. The VR system
provides labels for the smartwatch. However, the readings we col-
lect from the VR system describe the orientations and locations of

the VR controller, not the smartwatch. Since the center of the VR
controller and smartwatch are not aligned, training the model on
unprocessed VR controller data would constitute training a model to
predict the orientations and locations of the VR controller given IMU
readings from the smartwatch. To fill in the gap between the acquired
orientations and locations of the VR controller and the required ones
of the smartwatch, we design a labeled data collection system. The
system is built in three steps, i.e., time synchronization and align-
ment (Section 4.5.3 and Section 4.5.4), orientation label derivation
(Section 4.5.1) and location label derivation (Section 4.5.2).

4.2 Multitask Learning Neural Network
Previous solutions usually estimate the orientation of devices first,
and then the location. Multitask learning provides us the opportunity
to solve multiple tasks simultaneously [20, 43]. We thus design a
multitask neural network to jointly estimate the device orientation
and location from the IMU readings. Our multitask neural network
has two outputs, i.e., orientation and location.

Formally, we denote a posture 𝑃𝑤 of a wrist as the union of an
orientation 𝑜𝑟𝑖𝑤 and a location 𝑙𝑜𝑐𝑤 , where 𝑃𝑤 = ⟨𝑜𝑟𝑖𝑤 , 𝑙𝑜𝑐𝑤⟩. Our
multitask neural network is designed to learn a data-driven mapping
from IMU measurements to orientations and locations as follows.

𝑜𝑟𝑖𝑡 , 𝑙𝑜𝑐𝑡 = 𝑓 (𝑎𝑡 , 𝜔𝑡 ,𝑚𝑡 ) (6)

where 𝑎𝑡 , 𝜔𝑡 and𝑚𝑡 are the readings from accelerometer, gyroscope
and magnetometer at timestamp 𝑡 . Each of them is a 3D vector as
depicted in Figure 2. 𝑓 is the weight to be learned by the multi-
task network. 𝑜𝑟𝑖𝑡 and 𝑙𝑜𝑐𝑡 are the 3D orientation and 3D location
predicted by the neural network at at timestamp 𝑡 .

Figure 2 demonstrates our network architecture. The network
consists of three BiLSTM layers [44] and two fully-connected (FC)
layers. BiLSTM is one kind of Recurrent Neural Network (RNN).
RNN is designed for processing sequential data. We set the length
of a sequence as 32 time steps (32 data samples) in our implemen-
tation. A BiLSTM consists of two LSTMs, a forward LSTM and a
backward LSTM. The forward one takes an input sequence in a for-
ward direction, and the backward one in a backward direction. The
BiLSTM layer’s output is a combination of the two LSTM layers’
outputs. We set the sampling rate of IMU sensors to 50 HZ. Data
for an input sequence (32 samples) can be collected in less than one
second. From Section 6.5.2, our model takes on average 2~3 ms to
process one-second of data (50 samples) on smartphones.

Each BiLSTM layer takes the 3D vector sequences from one of
the IMU sensors. The outputs of BiLSTM layers are the hidden
states of the temporally dependent data. The hidden states from
the three BiLSTMs are concatenated in the concatenation layer.
The concatenated vectors are forwarded to each of the FC layers
to predict the orientations and locations. A loss function plays an
important role in the fast and accurate training of a neural network.
The rest of this subsection focuses on our loss function design.

Orientation Output. A rotation is a process of 3 degrees-of-
freedom (DoF). A quaternion we introduced in Section 3.1 is a 4D
vector used to represent a 3D rotation. If we define the orientation
output as a quaternion, we should normalize the square of the 4D
vector as 1 to meet Equation (2). From our experiments, the neural
network cannot learn quaternions well following this design. Thus,
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Figure 2: Multitask Network Structure.

we use a 3D rotation vector instead of a quaternion as the orientation
output of our multitask neural network.

An orientation label we collect from the VR system at each times-
tamp is a unit quaternion. Therefore, we transform the 3D vector
output of our neural network into a unit quaternion using Equation
(5) when we calculate the loss. By comparing the inferred quater-
nions to the quaternion labels, the neural network is trained to learn
from the labeled data. Since the quaternion label meets the constraint
in Equation (2), we implicitly implant the constraint into our learning
process to predict the 3D rotation vectors.

Loss Function for Orientation. Assume a quaternion label is 𝑞𝑡
and the predicted quaternion is 𝑞𝑡 . The loss for orientation is:

𝐿𝑜𝑟𝑖 =
1
𝑇

𝑇∑︁
𝑡=1

𝑑𝑒𝑔(𝑞𝑡 · 𝑞−1𝑡 )
(7)

𝑑𝑒𝑔(𝑞) = 2 · 𝑎𝑟𝑐𝑐𝑜𝑠 ((𝑞′0, 𝑞
′
1, 𝑞

′
2, 𝑞

′
3)) = 2 · 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑞′0) = 𝜃 (8)

where 𝑞−1𝑡 is the inverse of𝑞𝑡 , and 𝑞𝑡 ·𝑞−1𝑡 returns a quaternion, which
is the rotation from 𝑞𝑡 to 𝑞𝑡 . The operator · is the Hamilton product,
which represents the quaternion product. The function 𝑑𝑒𝑔(𝑞) returns
the quaternion difference of 𝑞𝑡 and 𝑞𝑡 . The constant parameter 𝑇 is
the number of data samples in a training batch.

Loss Function for Location. Location can be represented as a
3D vector, with the form 𝑝 = (𝑝1, 𝑝2, 𝑝3). Mean squared error (MSE)
between the predicted locations and labels is used for location loss.

𝐿𝑙𝑜𝑐 =
1
𝑇

𝑇∑︁
𝑡=1

(𝑝𝑡 − 𝑝𝑡 )2 (9)

where the 𝑝𝑡 and 𝑝𝑡 are the position label and the predicted position
at timestamp 𝑡 , respectively.

Loss Function for Multitask Learning. With the definition of
the orientation loss and the location loss, the overall loss of our
multitask network is given below.

𝐿1 = 𝛼𝐿𝑜𝑟𝑖 + 𝛽𝐿𝑙𝑜𝑐 (10)

twhere 𝛼 and 𝛽 are hyper-parameters to balance the two losses.

4.3 Attention-based Feature Adjustment
As shown in the motivation experiments, three IMU sensors play
varied roles in orientation estimation in the conventional filtering
algorithms. We further investigate the importance of each sensor for
orientation estimation in deep learning.

We build and train five models using data from the same user,
each with different inputs. The inputs are different combinations
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Figure 3: Orientation error over time of models with different
combinations of sensor inputs.

Table 2: The orientation error (degree) and Be-The-Best (BTW,
%) for ten-minutes data from different sensor combinations.

Model Gra_Mag Gra_Gyro Gyro_Mag Gra_Gyro_Mag Gyro

Error 9.38 17.14 16.92 8.12 33.98
BTW 30.16 11.22 12.82 44.18 1.62

of data from the three IMU sensors. Gra, Mag and Gyro stand for
the readings of the accelerometer, magnetometer and gyroscope
respectively. For example, the inputs for "Gra_Mag" are the data
combinations from accelerometer and magnetometer.

Figure 3 demonstrates how the error of different models varies
over time. None of them consistently outperform the other sensor
combinations. Each of them achieves the lowest error at different
points. The model that utilized all three sensors had the most stably
low error. Table 2 shows a statistical analysis over ten minutes of data.
The third row, "Be-The-Best," presents the percentage of time the
corresponding data combination can achieve the lowest prediction
error. "Gra_Gyro_Mag" performs the best the majority of the time,
but not always. Other models sometimes take the place.

From Figure 3 and Table 2, we observe that we still need to use the
data from all three sensors as input for our neural network. To fully
exploit the neural network’s capabilities and achieve higher accuracy,
we must dynamically identify the importance of each sensor.

We thus introduce an attention-based design on top of the mul-
titask neural network to learn how important a sensor is at each
timestamp. As shown in Figure 4, the network inputs include three
parts; They are the data from accelerometer, gyroscope and magne-
tometer, respectively. The attention scheme is designed to automat-
ically adapt the network to different parts of the inputs. Attention
is an emerging technique. It is used for automatically adjusting the
focuses of a DNN by multiplying a weighting vector, the value of
each element in the vector can vary [3, 41]. In our case, the network
should treat readings from different sensors differently. It intends to
use the most effective portion (context) to derive outputs. We can
exploit this ability to dynamically increase the weight of important
sensor inputs and reduce the weight of unimportant sensor inputs.
Hence, the attention scheme is suitable for learning the importance
of different input channels.

As shown in Figure 4, we add an attention layer into the network,
which learns to assign weights for different IMU input channels.
Originally, as shown in Figure (2), 𝑧𝑡 is the concatenation of the
BiLSTMs’ outputs, where 𝑧𝑡 =

{
𝑧𝑡1, 𝑧

𝑡
2, 𝑧

𝑡
3
}
, they are from the ac-

celerometer, gyroscope and magnetometer, respectively. This feature
vector 𝑧𝑡 serves as the input of the last two FC layers. Instead of
equally fusing them into the last two layers, an adaptive context
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vector 𝑐𝑡
𝑖

is designed to weight 𝑧𝑡1, 𝑧
𝑡
2, 𝑧

𝑡
3 and then concentrate the

weighted value as shown in the Equation (11) below.

𝑐𝑡𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝛼𝑡1𝑧
𝑡
1, 𝛼𝑡2𝑧

𝑡
2, 𝛼𝑡3𝑧

𝑡
3) (11)

where 𝑧𝑡𝑟 and 𝛼𝑡𝑟 are the features from different inputs and their cor-
responding weights. 𝛼𝑡𝑟 measures the importance of the feature from
each part of the input data. It differentiates the contributions of each
input part to the orientation prediction. The weight 𝛼𝑡𝑟 for a highly
contributed 𝑧𝑡𝑟 will be greatly increased in Equation (11) by the
attention function. Otherwise, 𝛼𝑡𝑟 will be gradually decreased. The
attention function is typically realized as a single-layer multiplayer
perceptron, such as 𝑡𝑎𝑛ℎ(·) and 𝑅𝑒𝐿𝑢 (·). The calculation of 𝛼𝑡𝑟 is:

𝑎𝑡𝑡𝑡 = 𝑡𝑎𝑛ℎ(𝑊 · 𝑧𝑡 + 𝑏)
𝛼𝑡𝑟 = 𝑓𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑡𝑡𝑡 )

(12)

where 𝑎𝑡𝑡𝑡 is an intermediate variable; 𝑓𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) scales the weights
𝛼𝑡𝑟 to the range [0, 1]. 𝑊 and 𝑏 are the trainable parameters to be
determined in the training phase.

4.4 Smooth Losses
We train our multitask learning neural network by minimizing the
distance between the predicted postures (𝑃𝑤 = ⟨𝑜𝑟𝑖𝑤 , 𝑙𝑜𝑐𝑤⟩) and the
posture labels. However, this loss design treats the posture at each
time point independently. Sometimes, the inferred movements of the
human wrist may not be continuous and smooth over time, resulting
in an unrealistic posture estimation. To fully leverage the temporal
correlation between the wrist postures at two adjacent timestamps,
we add a smoothness item in our loss function for both orientation
and location predictions. The new smooth loss makes the difference
between consecutive postures close to that of the labels:

𝐿𝑜𝑟𝑖𝑠 =
1

𝑇 − 1

𝑇∑︁
𝑡=2

𝑑𝑒𝑔((𝑞𝑡 · 𝑞−1𝑡−1) · (𝑞𝑡 · 𝑞
−1
𝑡−1)) (13)

𝐿𝑙𝑜𝑐𝑠 =
1

𝑇 − 1

𝑇∑︁
𝑡=2

((𝑝𝑡 − 𝑝𝑡−1) − (𝑝𝑡 − 𝑝𝑡 ))2 (14)

The difference between consecutive orientations measures the chang-
ing rate of orientation, which is the angular velocity. The difference
of consecutive locations measures the changing rate of location,

which is the velocity. With these two smooth losses, we extend the
multitask learning loss function in Equation (10) as follows:

𝐿2 = 𝛼𝐿𝑜𝑟𝑖 + 𝛽𝐿𝑙𝑜𝑐 + 𝛾𝐿𝑜𝑟𝑖𝑠 + 𝜂𝐿𝑙𝑜𝑐𝑠 (15)

where 𝛼 , 𝛽, 𝛾 , and 𝜂 are the hyper-parameters to balance these four
losses. In our current implementation, we set all of them to 1. We
optimize the above loss through RMSprop optimizer. By this design,
we minimize both the loss of the posture (including orientation and
location) and the loss of the posture’s changing rate.

4.5 Labeled Data Collection
To train RTAT’s model, we need the orientation and location labels
of the smartwatch for the IMU readings.

Why Meta Quest 2 is chosen for labeled data collection? To
collect the labeled data, we may use Azure Kinect [45], VICON
motion capture system [46], or a VR system.

Azure Kinect is not able to capture the pronation/supination (in-
ward/outward rotation) of the forearm, which means it can only
capture 2 DoF orientation of the wrist [47].

VICON motion capture system can provide accurate arm posture
tracking. However, VICON cameras are expensive (more than $3000
each). Multiple cameras from different points of view in a room are
needed to provide high-precision tracking. For instance, WiPose [40]
uses 21 VICON cameras to provide labeled locations for WiFi-based
joint tracking. Moreover, once the VICON system is installed in one
room, it is costly to move it to another room.

Meta Quest 2 is the most advanced all-in-one VR system that
provides accurate tracking of its controllers at a low cost ($299 for
64GB). It can be used in any indoor environment with ignorable
setup efforts. Thus, we use a Meta Quest 2 to collect the labels.

Is Meta Quest 2 accurate enough for tracking? As shown in
Figure 5 (a), the headset of Meta Quest 2 is embedded with four cam-
eras on its four corners. It adopts Oculus Insight, the cutting-edge
VR technology that leverages computer vision algorithms and visual-
inertial simultaneous localization and mapping (SLAM) to com-
pute 6-DoF postures (3-DoF orientation and 3-DoF location) [48].
Specifically, Oculus Insight combines information from multiple
IMUs in its headset and controllers, i.e. ultra-wide-angle cameras
in the headset and infrared LEDs in the controllers, to jointly track
their orientation and location. Controlled experiments [49–51] have
demonstrated that the orientation and location tracking errors of
Meta Quest 2 are smaller than 0.85◦ and 0.7 cm respectively.

Labeled data in the VR Reference Frame (VRF). The orien-
tation and location of the VR headset and controllers are tracked
in VRF. Figure 5(a) shows the coordinates of WRF and VRF. The
origin of VRF is the midpoint of the headset. The VRF can be estab-
lished every time the VR system is used based on the initial position
of the headset. We collect the orientation and location data of one
VR touch controller in VRF. Our goal is to use the measurements
of the VR controller to calculate the orientation and location of
the smartwatch. RTAT uses the smartwatch’s IMU sensor readings
measured in WRF to infer its orientation and location in VRF.

Once the VRF is established, it will not change until the next
setup, even if the headset moves. As long as the user wears the
headset properly, VRF can represent the body’s reference frame.
Therefore, RTAT tracks the arm movements relative to the user’s
body. VRF-based labeled data also offers two advantages. 1) We
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Figure 5: Labeled Data Collection System.
do not require users to stand in the exact same position when they
collect labeled data or use RTAT for arm tracking since RTAT is
focused on arm movements relative to the user’s body. 2) We can
combine the labeled data collected from the same user at different
times. 3) We can also combine labeled data from multiple users to
train a general RTAT model. Experiments in Section 6.2.3 show that
our general model provides high performance across different users,
including the users whose data has not been used for training.

Two challenges to collect labeled data with VR controllers.
• Using the orientation and location of the VR controller to de-

rive those of the smartwatch. If we simply wear a smartwatch
and hold one VR controller in the same hand to collect data,
the relative orientation and location between these two de-
vices may vary when a user moves her/his wrist. As shown in
Figure 1, we bind the smartwatch and the VR controller onto
a rigid frame. This is constructed with four sticks to ensure
the two devices are static relative to each other. The VR sys-
tem provides the orientations and locations of the controller,
while we need those of the smartwatch.

• Time Synchronization of VR system and smartwatch. The
smartwatch and VR system are based on two different time
clocks. They need to be well synchronized to provide data at
the same timestamps.

4.5.1 Orientation Label. We use 𝑇𝑤𝑣 , a 3×3 orthogonal rotation
matrix introduced in Section 3.1 to denote the smartwatch’s orien-
tation in VRF. 𝑇𝑤𝑣 will be used as the orientation label. Similarly,
𝑇𝑐𝑣 represents the orientation of the VR controller in VRF. 𝑇𝑐𝑣 is
measured by the VR system. Our goal is to calculate 𝑇𝑤𝑣 from 𝑇𝑐𝑣 .
To do so, we need the watch’s orientation relative to the controller
𝑇𝑤𝑐 , i.e., 𝑇𝑤𝑣 = 𝑇𝑤𝑐 ·𝑇𝑐𝑣 . 𝑇𝑤𝑐 is a constant matrix, as the controller
and the watch are fixed to each other. However, it is impossible to
physically measure 𝑇𝑤𝑐 .

Fortunately, the orientation of a smartwatch in GRF, 𝑇𝑤𝑔, can be
accurately calculated when the smartwatch is static using gravity
and magnetic North as direction anchors. If the transformation from
VRF to GRF 𝑇𝑣𝑔 is known, we can transform the orientation of
the smartwatch in VRF 𝑇𝑤𝑣 to the orientation of the smartwatch in
GRF 𝑇𝑤𝑔, and then get 𝑇𝑤𝑐 . Leveraging this resource, we update the
strategy into 𝑇𝑤𝑔 = 𝑇𝑤𝑣 ·𝑇𝑣𝑔 = 𝑇𝑤𝑐 ·𝑇𝑐𝑣 ·𝑇𝑣𝑔. All four matrices are
3×3 orthogonal matrices. Since VRF does not change each time it is
established, the transformation from VRF to GRF 𝑇𝑣𝑔 is a constant
but unknown matrix. We perform a set of static gestures to acquire

multiple 𝑇𝑤𝑔, and with the known 𝑇𝑐𝑣 , we jointly determine 𝑇𝑤𝑐 and
𝑇𝑣𝑔. Finally, we apply 𝑇𝑤𝑐 to 𝑇𝑐𝑣 to get 𝑇𝑤𝑣 .

𝑇𝑤𝑔 can be acquired via its inverse, 𝑇𝑤𝑔 = 𝑇 −1
𝑔𝑤 . For 𝑇𝑔𝑤 , the

three axes of GRF represented in WRF, −−→𝑥𝑔𝑤 , −−→𝑦𝑔𝑤 , −−→𝑧𝑔𝑤 , can all be
determined when the watch is static. −−→𝑧𝑔𝑤 is the opposite direction

of gravity
−→
𝐺𝑟 . ®𝑥 is the horizontal direction of Geo-North, which

is perpendicular to
−→
𝐺𝑟 . Thus −−→𝑥𝑔𝑤 =

®𝑥 ′

∥ ®𝑥 ′ ∥
, and ®𝑥 ′ =

−−→
𝑀𝑟 − (−−→𝑀𝑟 ·

−−→𝑧𝑔𝑤)−−→𝑧𝑔𝑤 , where
−−→
𝑀𝑟 is the magnetometer reading. The smartwatch

we used applies the left-hand-rule, thus we also apply left-hand-rule
to our reference frame, so that −−→𝑦𝑔𝑤 =

−−→𝑥𝑔𝑤 × −−→𝑧𝑔𝑤 . The inverse of an
orthogonal matrix is its transpose. Then we have

𝑇𝑔𝑤 =


−−→𝑥𝑔𝑤−−→𝑦𝑔𝑤−−→𝑧𝑔𝑤

 , 𝑇𝑤𝑔 = 𝑇 −1
𝑔𝑤 =


−−→𝑥𝑔𝑤−−→𝑦𝑔𝑤−−→𝑧𝑔𝑤


−1

=


−−→𝑥𝑔𝑤−−→𝑦𝑔𝑤−−→𝑧𝑔𝑤


𝑇

(16)

Recall that in 𝑇𝑤𝑔 = 𝑇𝑤𝑐 · 𝑇𝑐𝑣 · 𝑇𝑣𝑔, both 𝑇𝑤𝑐 and 𝑇𝑣𝑔 do not
change, and 𝑇𝑤𝑔 and 𝑇𝑐𝑣 are dynamic but can be acquired. Then we
must determine the two constant matrices 𝑇𝑤𝑐 and 𝑇𝑣𝑔. If we collect
𝑁 static periods, we have 𝑁 pairs of (𝑇𝑤𝑔 (𝑖), 𝑇𝑐𝑣 (𝑖)). We define the
calculation loss as:

𝐿𝑜𝑠𝑠 =

∑𝑁
𝑖=1𝑑𝑖 𝑓 𝑓 (𝑇𝑤𝑔 (𝑖),𝑇𝑤𝑐 ·𝑇𝑐𝑣 (𝑖) ·𝑇𝑣𝑔)

𝑁
(17)

where 𝑑𝑖 𝑓 𝑓 (𝑇𝑥 ,𝑇𝑦) returns the minimum degree of rotation between
𝑇𝑥 and 𝑇𝑦 .

A rotation of reference transformation is a process of 3-DoF. We
have two unknown rotations, meaning there are six variables that
need to be determined. Fortunately, we know the VRF and the GRF
share the same ‘up’ direction, which reduces the DoF of 𝑇𝑣𝑔 to 1.
This leaves 3+1=4 variables to be determined. We jointly determine
𝑇𝑤𝑐 and 𝑇𝑣𝑔 by searching for the best pair of them that returns the
minimum calculation loss in Equation (17). The minimum loss is
0.15◦. We then apply 𝑇𝑤𝑐 we get to every 𝑇𝑐𝑣 to calculate 𝑇𝑤𝑣 .

4.5.2 Location Label. We can obtain the location of the VR
controller represented in VRF 𝐿𝑐−𝑉𝑅𝐹 from the VR system. To
derive the location of the smartwatch 𝐿𝑤−𝑉𝑅𝐹 from 𝐿𝑐−𝑉𝑅𝐹 in VRF,
we need to obtain the vector points from the center of controller
to the center of smartwatch in VRF 𝐿𝑤𝑐−𝑉𝑅𝐹 . Then 𝐿𝑤−𝑉𝑅𝐹 =

𝐿𝑐−𝑉𝑅𝐹 +𝐿𝑤𝑐−𝑉𝑅𝐹 . Since the relative positions of smartwatch and
the VR controller to each other are static, the vector 𝐿𝑤𝑐−𝑉𝑅𝐹 is
constant. However, it is impossible to manually measure this vector.
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Figure 6: Time synchronization of smartwatch and VR.

As shown in Figure 5(b), we know that the center of the smartwatch
is the center of its body, but we cannot exactly pinpoint the center of
the VR controller.

Fortunately, we derived the transformation from WRF to VRF
𝑇𝑤𝑣 in Section 4.5.1, if we can acquire the vector in WRF, 𝐿𝑤𝑐−𝑊𝑅𝐹 ,
then 𝐿𝑤𝑐−𝑉𝑅𝐹 = 𝐿𝑤𝑐−𝑉𝑅𝐹 ·𝑇𝑤𝑣 . We thus design an experiment to
derive the vector in WRF. If the locations of the smartwatch and
the VR controller in WRF are known, the vector in WRF can be
derived. The locations of the VR controller in WRF can be obtained
by transforming the locations of VR controller in the VRF, because
the transformation between the two references are known in Section
4.5.1. However, the smartwatch does not provide any information
about its own location in WRF. To eliminate the uncertainty of the
location of the smartwatch, we do not move but rotate the center of
the smartwatch along its axes, so that its location does not change.
The location trace of the VR controller in VRF is a circle.

As shown in Figure 5(b), we set up a spinning platform, whose
rotation axis is vertical. The platform rotates automatically with elec-
tric power. We carefully adjust the smartwatch to a certain posture
so that the Z-axis of the smartwatch is exactly on the rotation axis of
the spinning platform. In this situation, when we rotate the platform,
the location of the smartwatch does not change, from the point of the
watch (WRF), the location of the controller does not change, while
the location trace of the controller in VRF is a circle. The center of
the circle is on the Z-axis of the watch. As shown in Figure 5(c),
the radius of the circle is the length of the projection of the vector
𝐿𝑤𝑐−𝑊𝑅𝐹 on the X-Y plane in WRF. We use 𝐿𝑋−𝑌

𝑐 to denote the
collected locations of the controller, and 𝐿𝑋−𝑌

𝑤 to denote the location
of the smartwatch (center of the circle). Then in WRF, we acquire
the vector from 𝐿𝑋−𝑌

𝑐 to 𝐿𝑋−𝑌
𝑤 , 𝐿𝑋−𝑌

𝑤𝑐−𝑊𝑅𝐹
= 𝐿𝑋−𝑌

𝑤 − 𝐿𝑋−𝑌
𝑐 , which

is the projection of the vector on the X-Y in WRF.
With the same principle, we can get 𝐿𝑌−𝑍

𝑤𝑐−𝑊𝑅𝐹
and 𝐿𝑋−𝑍

𝑤𝑐−𝑊𝑅𝐹
.

Then we search for a vector 𝐿𝑤𝑐−𝑊𝑅𝐹 in a small 3D space (20𝑐𝑚3),
whose projection on the Y-Z, X-Z and X-Y best matches 𝐿𝑌−𝑍

𝑤𝑐−𝑊𝑅𝐹
,

𝐿𝑋−𝑍
𝑤𝑐−𝑊𝑅𝐹

, and 𝐿𝑋−𝑌
𝑤𝑐−𝑊𝑅𝐹

, respectively. 𝐿𝑤𝑐−𝑊𝑅𝐹 will be the vector
we want to derive in WRF. The best match loss is 0.14 cm. We then
apply this vector to every data sample and acquire the true location
of the watch in VRF:

𝐿𝑤−𝑉𝑅𝐹 = 𝐿𝑐−𝑉𝑅𝐹 +𝐿𝑤𝑐−𝑉𝑅𝐹 = 𝐿𝑐−𝑉𝑅𝐹 +𝐿𝑤𝑐−𝑊𝑅𝐹 ·𝑇𝑤𝑣 (18)

4.5.3 Time Synchronization of VR system and Smartwatch.
Since the VR controller and the smartwatch are static to each other.
Their angular movements relative to the world should always be the
same. To find the time bias between these two systems, we make use
of the magnitude of angular velocity measured by the VR system and
the smartwatch, ∥𝜔𝑣𝑟 ∥ and ∥𝜔𝑤𝑎𝑡𝑐ℎ ∥. ∥𝜔𝑣𝑟 ∥ and ∥𝜔𝑤𝑎𝑡𝑐ℎ ∥ should
match the most when the two systems are well synchronized. As

shown in Figure 6 (a), Given the data sequences from the VR system
and the smartwatch, we add a time compensation 𝑡𝑐 on the timestamp
of VR readings and find the 𝑡𝑐 that returns the minimum difference
between ∥𝜔𝑣𝑟 (𝑡 + 𝑡𝑐 )∥ and ∥𝜔𝑤𝑎𝑡𝑐ℎ (𝑡)∥. Finally, we synchronize
the VR system with the smartwatch by adding 𝑡𝑐 to all of the VR
readings. Figure 6 (b) demonstrates the synchronization results.

4.5.4 Alignment of Time Series Data From the Two Systems.
The smartwatch and the VR system output data at different times-
tamps with different frequencies. The smartwatch outputs data with
an average interval of 20 ms. The three IMU sensors may output
data at different timestamps. The VR system outputs data with an
average interval of 15 ms. We need to align the four time series data
from the two systems.

Assume we want a data sample from sensor S at time t, while the
sensor does not have outputs at this specific timestamp. We search
for the two nearest data samples 𝑡𝑖 and 𝑡𝑖+1 that enclose time t, 𝑡𝑖
< t < 𝑡𝑖+1. Sensor S outputs 𝑆 (𝑡𝑖 ) at 𝑡𝑖 , and 𝑆 (𝑡𝑖+1) at 𝑡𝑖+1. We then
perform a linear interpolation to acquire a virtual data sample S(t) at
time t , with 𝑡𝑖 , 𝑡𝑖+1, 𝑆 (𝑡𝑖 ) and 𝑆 (𝑡𝑖+1):

𝑆 (𝑡) = 𝑆 (𝑡𝑖+1) · (𝑡 − 𝑡𝑖 ) + 𝑆 (𝑡𝑖 ) · (𝑡𝑖+1 − 𝑡)
𝑡𝑖+1 − 𝑡𝑖

(19)

We prepare a timeline with a fixed sampling frequency f, and perform
linear interpolation at every wanted timestamp. We set f as 50Hz,
which is close to the smartwatch’s sampling frequency, and lower
than VR system’s frequency of 66 Hz. By this step, the data streams
from the two systems are aligned.

5 IMPLEMENTATION
Data Collection. Data collection consists of IMU data from the
smartwatch and ground truth data from the VR system.

To read the IMU data from the smartwatch, we develop and
install an App into the watch. The SensorManager API in Android
is used to read data from sensors. To collect the IMU readings,
we establish a server based on Apache Tomcat and Eclipse. The
application installed in the smartwatch capture the IMU sensor data
of the smartwatch and sends the data automatically to the server via
http by finding the IP address of the server when the application is
running. The server connects to a MySQL database to store data.
The application and data collection server are implemented in Java.

To read the orientation and location of the VR controller, we
develop an App based on unity and install it to the VR system. Since
the VR device has sufficient disk space, we save the data locally.
The orientation and location readings of the VR controller are saved
into a CSV file automatically created by the App when it is running.

Multitask Model. Our multitask model is implemented and
trained by Keras in Python. Each BiLSTM layer has 32 units, and
each FC layer has three units. The optimizer is RMSprop, with a
learning rate of 0.0001. The training epoch is 100, the batch size is
128, and the number of time steps considered by the BiLSTM is 32.
The computer we use to collect data and develop our framework is
an Alienware Aurora R7, with a Intel Core i5 8400 CPU (6-core)
and NVIDIA GeForce GTX 1070 GPU (8GB memory).

TensorFlow Lite model. To execute RTAT on smartphones, we
convert the well-trained TensorFlow model on the desktop to a
TensorFlow Lite model capable of inference on mobile devices
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using the TensorFlow Lite Converter. To do that, we froze the model
as a TensorFlow concrete function. This process fixes the input size,
which is specified as a tensor. It also specifies a tf.function which can
be saved into a .pb file, the preferred input format for the TensorFlow
Lite Converter. Running the TensorFlow Lite Converter on the saved
model returned a FlatBuffer file with a .tflite extension which can
be imported and used on mobile devices running Android or iOS, as
well as some embedded devices and microcontrollers.

6 EVALUATION
In this section, we introduce our experiment settings. We demon-
strate the performance and performance decomposition of RTAT , the
performance of different applications, and the system overhead.

6.1 Experiment Settings
Platform and Devices. The platform we used to do evaluation ex-
periments is introduced in Section 5. As introduced in Section 3,
the smartwatch we use is Fossil Gen 5. It includes an LSM6DSO
3D accelerometer + 3D gyroscope and an AK0991X magnetome-
ter. Similar chips are in many other commercial devices, including
Samsung Galaxy A52, Samsung Galaxy S22 Ultra, Samsung Galaxy
Note 10, Xiaomi Mi 10T Pro, Xiaomi POCO X3 Pro, Oneplus 7,
MiWatch, TicWatch Pro 3, Sony Xperia 1 III, Motorola moto g fast,
etc. We still use the Meta Quest 2 VR system to provide the ground
truth for the evaluation.

Evaluation Metrics. We use the following metrics to quantify
the performance of RTAT in estimating orientation and location.

• 3D orientation error. It is measured as the minimum degree
of rotation required to align the estimated orientation to the
ground truth orientation.

• 3D location error. It is the Euclidean distance between the
estimated location and the ground truth location.

Baselines for Orientation Estimation. We compare the orientation
estimation error of RTAT to two baselines.

• MUSE [12]: The state-of-the-art conventional sensor fusion
approach for estimating device orientation.

• IDOL [17]: IDOL is based on Extended Kalman Filter (EKF).
The prediction model of its EKF uses an RNN to predict
orientation. The measurement model of its EKF is based on
gyroscope readings integration.

Baselines for Location Estimation. We compare the smartwatch’s
location estimation error of RTAT with two baselines.

• MUSE [12]: It estimates the location using Particle Filters.
• ArmTroi [3]: It estimates location using HMM. As stated in

[3], ArmTroi provides real-time computation on smartphones
when the sampling rate is 5 Hz, but it is less accurate than
MUSE. We will compare the accuracy of RTAT with MUSE,
and the latency of RTAT with ArmTroi.

Dataset. We collect data from five users (two females and three
males) to train and test our model. We collect data at two places, the
hallway and the room. At each place, we collect 50-minute data from
each user. The dataset collected from the hallway includes 754,688
samples, and the dataset collected from the room includes 761,856
samples. We divide each dataset into train and test data at a ratio of
4:1. At each place, we use the data from all 5 users to train a general

model and test its performance on all 5 users. The test data for RTAT
and the baselines is the same. We also collect data from four new
users (two females and two males) to test the model. The model
has never seen their data during training. We collect 10-minute data
(around 30000 samples) from each user in each place.
Dataset Collection Scenarios. The age of the nine users ranges
from 21 to 32, i.e., 30, 28, 23, 26, 21, 32, 32, 22, and 22, respectively.
Their height ranges from 158 cm to 182 cm, i.e., 168 cm, 170
cm, 182 cm, 177 cm, 158 cm, 175 cm, 165 cm, 179 cm, and 160
cm, respectively. We ask users to move their arms freely at their
normal movement speed. They perform random arm gestures or
daily gestures, including driving, drinking, writing, exercising, push
and pull, drawing, and so on.

6.2 RTAT Performance
In this subsection, we compare the performance of RTAT to the
baseline methods in orientation and location estimation. The per-
formance of RTAT is evaluated from the overall performance, the
performance over time, the performance of different users and the
performance of new users.

6.2.1 Overall Performance. Figure 8 depicts the overall orien-
tation and location estimation error at the two testing places. From
Figure 8 (a), in the hallway, the orientation error of MUSE, IDOL
and RTAT are 35.13◦, 22.87◦ and 17.19◦, respectively averaged
over the whole test data. RTAT decreases the orientation error by
24.84% and 51.07% compared to IDOL and MUSE, respectively.
In the room, the orientation error of MUSE, IDOL and RTAT are
24.66◦, 16.86◦ and 12.67◦, respectively on the whole test data. RTAT
decreases the orientation error by 24.85% and 31.63% compared to
IDOL and MUSE, respectively. All systems perform better in the
room than the hallway as magnet deviation in the hallway is larger.

The neural network of IDOL outputs quaternions directly. The
orientation error defined as the norm quaternion difference between
its predicted quaternions and the ground truth quaternions. Although
its orientation estimation error is not high, we found its predicted
quaternions do not meet Equation (2). Because its loss design ignores
this constraint. The neural network finds a way to minimize the loss
but it does not realize the constraint.

Figure 8 (b) shows the average location estimation error at the
two different places. In the hallway, the location error of MUSE and
RTAT are 19.87 cm and 10.93 cm, respectively. RTAT decreases the
location error by 45% compared to MUSE. In the room, the location
error of MUSE and RTAT are 22.75 cm and 12.09 cm, respectively.
RTAT decreases the error by 46.9% compared to MUSE.

Figure 7 demonstrates the CDF of RTAT’s orientation and location
error compared to the baselines at the two places. RTAT consistently
outperforms the baselines for orientation and location estimation.
From Figure 7 (a), for 80% cases, the orientation error of RTAT
is less than 25 ◦ in the hallway. Similarly, Figure 7 (b) shows the
orientation error of RTAT is less than 25 ◦ for 90% cases in the room.
The CDF of location error at two places are similar, for 80%, the
location error is smaller than 25 cm.

6.2.2 Performance Along with Time. Figure 9 shows the orien-
tation and location error of RTAT and baselines along with time in
the two places. Figure 9 is plotted based on 100-second data. From
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Table 3: Statistical analysis on users’ test data

Hallway / Room Gravity Error (degree) Magnet Deviation (degree) Static Moments Gravity Opportunities (%) Speed (m/s)

User1 8.83 / 9.54 13.34 / 5.69 85 / 71 5.92 / 4.74 0.55 / 0.56
User2 8.05 / 6.23 21.50 / 6.82 141 / 124 8.97 / 10.63 0.59 / 0.48
User3 7.15 / 5.37 45.41 / 5.10 165 / 216 10.52 / 13.3 0.39 / 0.30
User4 10.57 / 20.47 26.13 / 9.0 34 / 40 3.37 / 3.49 0.66 / 0.98
User5 7.69 / 9.56 26.61 / 7.15 75 / 17 5.62 / 2.61 0.42 / 0.57

Average(User1-5) 8.458 / 10.234 26.598 / 6.752 100 / 93.6 6.88 / 6.954 0.522 / 0.578

User6 (new) 7.21 / 4.54 24.71 / 5.91 110 / 351 8.22 / 30.77 0.61 / 0.29
User7 (new) 11.12 / 14.97 29.91 / 8.90 153 / 233 11.53 / 18.59 0.67 / 0.86
User8 (new) 12.61/10.25 26.15 /6.19 79/74 5.8/6.4 0.73 / 0.57
User9 (new) 23.92/16.94 36.08/9.10 17/5 3.0/4.5 1.27/0.78
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Figure 7: Orientation error and location error in hallway and room.
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Figure 8: Overall orientation and location error.

Figure 9 (a)-(d), we show RTAT performs better than MUSE and
IDOL on orientation estimation and exhibits better location esti-
mation than MUSE over time. RTAT is also more stable than the
baseline orientation and location estimation methods.

6.2.3 Performance of Different Users. Figure 10 plots the ori-
entation and location error of RTAT and the baseline methods on
different users in the two sites. We collect both training and test
data for RTAT from U1-U5, while RTAT has never seen the data
of U6-U9 during training. For each user, RTAT exhibits better than
MUSE and IDOL on orientation estimation and exhibits better than
MUSE on location estimation. In comparison with MUSE, RTAT
achieves more consistent performance across all users.

6.2.4 Performance of New Users. The U6-U9 in Figure 10
depicts the orientation and location of new users, whose data was
omitted from the training phase.

For the new users, the performance of RTAT does not degrade
much, indicating its applicability to new users. Moreover, RTAT still
outperforms baselines at both orientation and location estimation
for the four new users. Table 3 shows the statistical analysis on the
users’ test data at the two places. The motion speed of users will
influence the prediction accuracy.

6.3 Performance Decomposition of RTAT
We test the performance gain provided by the three components of
RTAT (i.e., multitask learning, attention and smooth loss) on the
whole test data at the two places.

Multitask Learning. We first compare a multitask learning model
against two single-task models, an orientation-only model and a
location-only model. Both of the models are trained with the data
from all three IMU sensors. Table 4 shows that while multitask
learning decreases the orientation and location error by 9.1% and
21.8% in the hallway, it decreases the orientation and the location
error by 1.7% and 5.5% in the room. Multitask learning reduces the
model training time and the model inference overhead by half in
comparison to implementing two single-task learning methods.

Attention Mechanism. We then compare RTAT _Multitask_Att
to RTAT _Multitask. Table 4 demonstrates that the attention mecha-
nism decreases the orientation and location error by 4.7% and 17.7%
in the hallway. Compared to the hallway, the performance gain from
the attention mechanism in the room is marginal. It only decreases
the orientation and location error by 1.1% and 1.6% in the room.
This is because the gravity error at these two places is very similar,
but the magnetic field in the room is more stable than in the hallway.
The attention mechanism contributes less in the room.

Smooth Loss. Finally, we show the benefits of smooth loss. The
primary purpose of smooth loss is not to reduce the orientation and
location error but to improve the smoothness of orientation and loca-
tion tracking and makes posture tracking more realistic. We evaluate
the orientation/location smoothness error by comparing the orienta-
tion/location difference of predicted ones to the orientation/location
difference of ground truth between two consecutive timestamps.
We also calculate the standard deviation of the orientation/location
smoothness error.

From Table 4, smooth loss decreases orientation and location
error by 5.5% and 7.8% in the hallway. It decreases orientation and
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Figure 9: Orientation error and location error along with time in hallway and room.
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Figure 10: Orientation and location error of different users in hallway and room.

Table 4: Average orientation and location estimation error of different models at hallway and room.

Hallway Room

Model Orientation Error (degree) Location Error (cm) Orientation Error (degree) Location Error(cm)

RTAT _Orientation_Only 21.00 \ 13.23 \
RTAT _Location_Only \ 18.40 \ 13.44

RTAT _Multitask 19.09 14.39 13.00 12.70
RTAT _Multitask_Att 18.20 11.85 12.86 12.50

RTAT _Multitask_Att_Smooth 17.19 10.93 12.67 12.09

Table 5: Analysis on smoothness of orientation and location at two places.

Hallway Room

Orientation Location Orientation Location
Model Error (degree) Error_std Error (degree) Error_std Error (degree) Error_std Error (degree) Error_std

RTAT w/o Smooth Loss 1.28 2.91 1.58 2.43 1.30 2.68 1.43 2.0
RTAT w/ Smooth Loss 1.05 2.71 1.27 1.84 0.92 1.91 1.39 2.0

location error by 1.5% and 3.3% in the room. Table 5 shows the
orientation/location smoothness error and the standard deviation
of smoothness error at the two places. RTAT w/o Smooth Loss is
the RTAT _Multitask_Att model. From Table 5, with smooth loss,
RTAT improves the orientation smoothness and location smoothness
by 18% and 19.6% in the hallway. RTAT improves the orientation
smoothness and location smoothness by 29.2% and 2.8% in the
room. The standard deviations of orientation/location smoothness
error are also decreased under almost all scenarios.

6.4 Performance of Different Applications

Table 6: Statistic on different motion speed

Room
Speed
(m/s)

Gravity Error
(degree)

Magnet Deviation
(degree)

Gravity
Opportunities (%)

Slow 0.35 4.43 5.59 25.06
Medium 0.51 8.14 5.86 7.21

Fast 1.01 20.78 9.0 2.36

For different application scenarios, user motion speed may vary.
When a user performs gym gestures, such as front raise and chest
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Figure 11: Performance under different motion speeds at room.

fly, motion is slow. When a user performs some daily gestures like
making a call, pushing and pulling, the motion speed is moderate.
When a user performs some AR games, motion is fast. We ask one
user to perform gestures with different motion speeds in the room.
Table 6 shows the statistical analysis. Figure 11 plots the orientation
and location error with different motion speeds. As motion speed
increases, the error of all systems increases. However, RTAT always
performs better than the baseline systems, demonstrating its stability.
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6.5 System Overhead
6.5.1 Location latency on desktop. We evaluate the location
latency of different systems on an Alienware Aurora R7 desktop.
It takes MUSE, ArmTroi and RTAT 5427.05 ms, 2337.50 ms and
0.1633 ms respectively to process one-second data (50 samples).
In MUSE [12] and ArmTroi [3], they use 10 Hz and 5 Hz respec-
tively. RTAT is significantly faster than two conventional approaches,
since they are based on searching algorithms. The deep learning
architecture of RTAT is very lightweight.

6.5.2 Inference overhead on mobile devices. We also run
RTAT on two commercial smartphones, Samsung S9 and Google
Pixel3. We convert a well-trained TensorFlow model to a TensorFlow
Lite model capable of inference on mobile devices by TensorFlow
Lite Converter. Then we test the overhead of RTAT on the two
smartphones. As shown in Table 7, the execution latency, memory
usage and CPU usage of RTAT are low at both devices. It is even
much faster than MUSE and ArmTroi running on the desktop.

6.5.3 Energy Consumption on Mobile Devices. We measure
the energy consumption of RTAT on Samsung S9 by Monsoon
monitor in Figure 12. The IMU data measured by the smartwatch
is transmitted to the smartphone for processing via Bluetooth. We
run the inference of RTAT for about 2 seconds, as indicated as the
inference segment in Figure 12. The average working current (mA)
in idle state with screen on is about 221 mA. The average working
current on the RTAT inference state is about 357 mA. The average
working current on playing music state is about 498 mA. RTAT only
increases the working current by 136 mA, including both running
the model and receiving IMU data via Bluetooth; whereas, playing
music increases the current consumption by 277 mA. The power
consumption of RTAT is less than half of playing music.

Similar to previous works [3, 5, 12], RTAT requires the smart-
watch to continuously collect IMU sensor data and transmit the
data to the smartphone while the system is in use. This process is
power-consuming. Based on our experiments, it drains the watch’s
battery in around 3.5 hours. However, this limitation is not unique to
our system. All the applications that require smartwatches to trans-
mit IMU readings suffer from the same problem due to the limited
battery power of smartwatches. We expect smartwatches will have
more powerful batteries in the future.

Table 7: Inference overhead of RTAT on smartphones

Samsung S9 Google Pixel3

Latency(ms) 2.98 1.82
Memory Usage (MB) 4.8 5.1
CPU Usage(%) 17 13

7 DISCUSSION
Data efficiency. We develop our system based on supervised learn-
ing. Collecting labeled data is labor-intensive. To train a generalized
and robust model, the dataset should cover a wide variety of gestures,
users, and environments. To reduce the labeled data, we may explore
self-supervised training to capture temporal relations and feature
distributions in IMU sensor measurements in the future [31].

Smartwatch-wearing angles. We indirectly study the different
smartwatch-wearing angles in this work. Each user collects the data

Figure 12: Energy Consumption on Samsung S9.

several times. We do not require the users to wear the smartwatch
at the same angle. Even the same user may wear the smartwatch
slightly differently each time. Different users also wear smartwatches
at different angles. Our system is tolerant to wearing the smartwatch
with slightly different rotation angles. Our data collection scenario is
to accurately reflect how people wear a smartwatch in daily life, thus
we do not consider wearing the watch with significantly different
rotation angles on the wrist when we build the dataset. Inference
accuracy drops when we apply the model to data collected from
a smartwatch worn at significantly different rotation angles on the
wrist. To accommodate this limitation, we may collect training data
by wearing the watch with different rotation angles on the wrist,
summarizing the data features with different rotation angles, and
exploring domain shift in future work.

Generalization. It refers to two perspectives, i.e., the generaliza-
tion across different users and the generalization across different
places. The accuracy of our system drops slightly for new users
because the data from new users have not been seen by the model
during the training process. To improve the model generalization
across users, training data could be collected from users with broader
age and height ranges. To improve the model generalization across
different places, transfer learning may be used to transfer the deep
learning model learned by the data at one place to a new model for
another place. We leave generalization as future work.

8 CONCLUSION
This paper presents RTAT , the first 3D human wrist tracking sys-
tem via a smartwatch based on multitask deep learning. We design
an attention mechanism and a smooth loss on top of the multitask
learning network to improve its performance. RTAT is lightweight
and supports real-time tracking on smartphones with high sampling
frequency. We collect a large-scale dataset using our customized la-
beled data measurement system. Extensive experiments show RTAT
achieves higher accuracy and lower latency when compared with
baseline methods.
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